
XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Computing the stretch of an embedded graph

Sergio Cabello∗1, Markus Chimani†2, and Petr Hliněný‡3

1Department of Mathematics, FMF, University of Ljubljana, Slovenia
2Theoretical Computer Science, Department of Maths/CS, Osnabrück University, Germany

3Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

Let G be a graph embedded in an orientable surface
Σ, possibly with edge weights, and denote by len(γ)
the length (the number of edges or the sum of the edge
weights) of a cycle γ in G. The stretch of a graph em-
bedded on a surface is the minimum of len(α) · len(β)
over all pairs of cycles α and β that cross exactly once.
We provide an algorithm to compute the stretch of an
embedded graph in time O(g4n log n) with high prob-
ability, or in time O(g4n log2 n) in the worst case,
where g is the genus of the surface Σ and n is the
number of vertices in G.

Introduction

Consider a graph G embedded on an orientable sur-
face Σ of genus g. What can be said about the crossing
number of G in the plane? Is it computable in poly-
nomial time? If it is not, can we obtain a reasonable
approximation in polynomial time? Unfortunately,
Cabello and Mohar [3] show that the crossing number
of such graphs is not computable in polynomial time,
even when Σ is the torus. Djidjev and Vrt’o [4] show
that the crossing number of G is upper bounded by
O(g∆n), where n is the number of vertices in G and ∆
is the maximum degree of G. This is an improvement
over the previous bound of O(Cg∆n), for some con-
stant C, by Börözky, Pach and Tóth [1]. Under some
mild assumptions about the density of the embedding
of G, Hliněný and Chimani [5] give a (3 · 23g+2∆2)-
approximation algorithm for the crossing number of
G. This last work is the main motivation for our re-
search.
Hliněný and Chimani [5] define the stretch of an

∗Supported by the Slovenian Research Agency, program
P1-0297, project J1-4106, and within the EUROCORES Pro-
gramme EUROGIGA (project GReGAS) of the European Sci-
ence Foundation.
†This research was conducted while being funded by a Carl-

Zeiss-Foundation juniorprofessorship, and partially supported
by EUROCORES Programme EUROGIGA (project GraDR)
of the European Science Foundation.
‡Supported by the Czech Science Foundation, EURO-

CORES grant GIG/11/E023 (project GraDR).

embedded graph G as

str(G) = min
α,β
{len(α) · len(β)},

where α, β ranges over all pairs of cycles in G that
cross exactly once. Here, len(α) denotes the num-
ber of edges in α and a cycle is a closed walk in a
graph without repeated vertices. A precise definition
of what “crossing exactly once" means is given in Sec-
tion 1.2. The stretch plays a fundamental role in their
analysis of the algorithm. The concept of stretch can
be generalized to the case of positive edge-weighted
graphs in a natural way: take len(α) to be the sum
of the edge-weights along the cycle α. Henceforth we
will assume this more general definition of stretch.
It is worth noting that, if two cycles α and β are

crossing once, then they must be both (surface-)non-
separating. That is, cutting the surface along α or β
does not disconnect the surface. This is so because
any cycle crosses a (surface-)separating cycle an even
number of times. Thus, when computing the stretch,
we can restrict our attention to pairs (α, β) of non-
separating cycles.
In this paper we provide an algorithm to compute

the stretch of an embedded graph in time O(g4n log n)
with high probability, or in time O(g4n log2 n) in the
worst case, where g is the genus of the surface Σ and
n is the number of vertices in G.

Overview of the approach. Let us provide an in-
formal overview of the main ideas. We show the fol-
lowing recursive property of the stretch: it is defined
either by the shortest non-separating cycle α∗ and one
other cycle crossing α∗ exactly once, or by the stretch
of surface obtained by cutting along α∗ and pasting
disks. We do not prove this claim directly, but using
a detour through another concept: odd-stretch.
The definition of odd-stretch resembles the defini-

tion of stretch, but we allow closed walks α and β,
instead of just cycles, and allow an odd number of
crossings, instead of exactly one crossing. It turns
out that the stretch and odd-stretch of a graph is the
same. However, working with the odd-stretch is eas-
ier because we only need to take care of the parity
of crossings and, when constructing new closed walks

39

Computing the stretch of an embedded graph

via exchange arguments, we do not need to take care
to construct cycles. Finally, we prove the aforemen-
tioned recursive property for the odd-stretch factor.
The eventual algorithm, given in Figure 1 is very

simple. However, there is a fine point we have to
take care of to obtain a polynomial-time algorithm.
Repeatedly cutting along shortest non-separating cy-
cles and pasting disks may give rise to an exponential
growth in the size of the graphs: at each cut we make
copies of the vertices along the cycle and thus the
number of vertices may nearly double at each itera-
tion. However, if at some iteration we get a shortest
non-separating cycle with more vertices than the orig-
inal graph, we can finish the recursive search. In this
way we avoid the potentially exponential growth in
the size of the graphs.

1 Odd-stretch
In this section we introduce the concept of odd-
stretch, which is a generalization of stretch. We first
discuss crossings for curves in general position and
then crossings for closed walks in a graph. Finally, we
define the odd-stretch, discuss some of its properties
and, eventually, show that the odd-stretch is the same
as the stretch.

1.1 Crossings of curves in general po-
sition

Two curves C and C ′ on a surface Σ are in general
position if they have a finite number of intersections
and, at each intersection, they cross transversally. For
two curves C = C(t) and C ′ = C ′(t) in general posi-
tion, the set of crossings is

X(C,C ′) = {x ∈ Σ | ∃t, t′ s.t. x = C(t) = C ′(t′)}.

Two curves C and C ′ in general position cross k times
if and only if k = |X(C,C ′)|. We will use the follow-
ing (intuitive) fact: the number of crossings between
two closed curves, modulo 2, is invariant under small
perturbations of any of the two closed curves.

1.2 Crossings of closed walks

Two closed walks α and β in G cross k times if and
only if: there are arbitrarily small perturbations of α
and β to general position that cross k times, and any
small enough perturbation of α and β has at least
k intersecting points. Moreover, we can always as-
sume that the crossings of the perturbations occur in
a neighborhood of the vertices. We denote by cr(α, β)
the number of crossings between α and β.
For any closed walk α, the set of closed walks in

G that cross α an odd number of times satisfies the
so-called 3-path condition. The next lemma states

this in an equivalent way for easier use later on. This
property was already noted in [5].

Lemma 1 Let α be a closed walk and let γ be a closed
walk crossing α an odd number of times. Let x and y
be two vertices on γ and let π be some walk from x to
y. Let γ′ be the closed walk defined by concatenating
γ[y → x] and π. Let γ′′ be the closed walk defined by
concatenating γ[x → y] and the reverse of π. Then
either γ′ or γ′′ cross α an odd number of times.

1.3 Odd-stretch of an embedded graph
The odd-stretch of an embedded graph G is

oddstr(G) = min
α,β
{len(α) · len(β)},

where α, β ranges over all pairs of closed walks in G
that cross an odd number of times. We next remark
the two main differences with the previous stretch:
α and β iterate over closed walks, instead of cycles,
and the curves can cross an odd number of times,
instead of exactly once. A priori, the stretch and the
odd-stretch of an embedded graph are different. A
posteriori we can see that they are the same; this was
already noted in [5].

Lemma 2 The odd-stretch of G and the stretch of G
are the same.

2 Algorithm for computing the
stretch factor

We will use the following two properties:

Lemma 3 ([2]) Let G be a graph withm vertices em-
bedded in a surface of genus g.

• We can compute a shortest non-separating cycle
in time O(g2m logm) with high probability, or in
time O(g2m log2m) in the worst case.

• For any given non-separating cycle α, we can
compute a shortest cycle of G that crosses α ex-
actly once in time O(gm logm) with high proba-
bility, or in time O(gm log2m) in the worst case.

Lemma 4 Let α be a shortest non-separating cycle
in G. For any two vertices x and y on α, α contains
a shortest path from x to y or from y and x.

The algorithm for computing the stretch of an em-
bedded graph is given in Figure 1. We first discuss its
time complexity and then its correctness.

Lemma 5 Algorithm ComputeStretch has time
complexity O(g4n log n) with high probability, or
O(g4n log2 n) in the worst case, where n is the number
of vertices in G.

40

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

'

&

$

%

Algorithm ComputeStretch
Input: graph G embedded in surface Σ
Output: stretch of G
1. i← 1;
2. (G1,Σ1)← (G,Σ);
3. str ←∞;
4. while Σi not the sphere and |V (Gi)| ≤ g · |V (G)| do
5. αi ← shortest non-separating cycle in Gi;
6. βi ← shortest cycle crossing αi exactly once;
7. str ← min{str, len(αi) · len(βi)};
8. (Gi+1,Σi+1)← cut (Gi,Σi) along αi and attach disks to the boundaries;
9. i← i+ 1;
10. return str

Figure 1: Algorithm ComputeStretch to compute the stretch of an embedded graph.

Proof. Because of Lemma 3, in each iteration of
the while loop we need O(g2i ni log ni) time whp, or
O(g2i ni log2 ni) in the worst case, where ni is the num-
ber of vertices in Gi and gi is the genus of Σi. Since
ni = O(gn) because of the condition for iterating the
while loop and gi ≤ g, each iteration of the while loop
takes O(g2(gn) log(gn)) = O(g3n log n) time whp, or
O(g3n log2 n) time in the worst case. There are at
most g iterations of the while loop. �

Lemma 6 Let α be a shortest non-separating cycle
and let β be a shortest cycle crossing α exactly once.
Let G′ be the embedded graph obtained from G by
cutting along α and attaching a disk to the bound-
aries. The stretch of G is the minimum between
len(α) · len(β) and the stretch of G′.

Proof. Let Σ be the surface where G is embedded
and let Σ′ be the surface where G′ is embedded. Since
any two closed curves of G′ that cross an odd number
of times in Σ′ also cross an odd number of times in Σ,
it is clear that

str(G) ≤ min{str(G′), len(α) · len(β)}.

Thus, we have to argue the other inequality. If (α, β)
define the stretch of G, then the other inequality is
obvious.
Let us consider next the case where (α, β) do not

define the stretch of G; it holds that str(G) <
len(α) · len(β). Let (γ∗, σ∗) be the pair of cycles that
define the stretch of G. If there are several such pairs,
we choose one such that cr(γ∗, α)+cr(σ∗, α) is mini-
mum. We distinguish 3 cases depending on the values
of cr(γ∗, α) and cr(σ∗, α):

Case cr(γ∗, α) = cr(σ∗, α) = 0. In this case, γ∗ and
σ∗ keep crossing once in Σ′, and thus str(G) =
str(G′).

Case cr(γ∗, α) = 1 or cr(σ∗, α) = 1. This case can-
not actually happen. Let us assume that

cr(γ∗, α) = 1; the other case is symmetric. Since
γ∗ crosses α once and β is a shortest cycle cross-
ing α once, we have len(β) ≤ len(γ∗). Using that
α is a shortest non-separating cycle we have

str(G) = len(γ∗) · len(σ∗) ≥ len(β) · len(α).

This implies that (α, β) actually define the
stretch of G.

Case cr(γ∗, α) ≥ 2 or cr(σ∗, α) ≥ 2. This case can-
not actually happen. Let us assume that
cr(γ∗, α) ≥ 2; the other case is symmetric. Let
x and y be two crossings of γ∗ and α that are
consecutive along α. Because of Lemma 4, α
contains a shortest path between x and y. Let
π denote this shortest path. We can use π and
γ∗ to construct two cycles γ′ and γ′′ that are
shorter and cross α fewer times than γ∗. Because
of Lemma 1, some γ̃ ∈ {γ′, γ′′} crosses σ∗ an odd
number of times. The pair (γ̃, σ∗) contradicts the
choice of (γ∗, σ∗).

This finishes all cases. (Note that the second and
third cases are not mutually exclusive.) �

Lemma 6 shows correctness of the algorithm if the
condition |V (Gi)| ≤ g · |V (G)| is true for each i =
1, . . . , g. We next argue why we can finish the search
if at some iteration |V (Gi)| > g · |V (G)|.

Lemma 7 If, for some i, αi has more than |V (G)|
vertices, then for any ` ≥ i

str(G) = min{len(αj) · len(βj) | j = 1, . . . , `− 1}.

Proof. Assume, for the sake of this proof, that in
the algorithm ComputeStretch we drop testing the
condition |V (Gi)| ≤ g · |V (G)|. The algorithm then
makes exactly g iterations and computes cycles αj , βj
for each j = 1, . . . , g. Because of Lemma 6 it holds

str(G) = min{len(αj) · len(βj) | j = 1, . . . , g}.

41

Computing the stretch of an embedded graph

αk

Σk+1 Σk

αk

Σk

α′k α′′k

vv′′v′

Wk+1 Wk+1 Wk Wk

W ′
k

Figure 2: Figure for the proof of Lemma 7.

Assume that, at some iteration, the shortest non-
separating cycle αi in Gi, has more than |V (G)| ver-
tices. For each k < i, the cycle αi corresponds to a
closed walk Wk in the graph Gk. Moreover, the walk
Wk does not cross the cycle αk, for each k < i. Since
αi has more than |V (G)| vertices, W1 repeats some
vertex of G1 = G. This means that W1 is not a cycle.
Let k be the maximum index, 1 ≤ k < i such that

Wk is not a cycle in Gk; thusWk+1 is a cycle in Gk+1.
Since W1 is not a cycle and Wi is a cycle, the index
k is well defined. See Figure 2, left and center. Let v
be a vertex of Gk that is repeated in Wk. Cutting Gk
through αk produces two copies α′k and α′′k of αk. Let
v′ and v′′ be the corresponding copies of v. We can
form a closed walk W ′k in Gk by taking the subwalk
of Wk from the first appearance of v until the sec-
ond. This closed walk W ′k crosses αk once. Therefore
len(βk) ≤ len(W ′k) < len(Wk) = len(αi) ≤ len(αj) for
each j ≥ i. We conclude that, for each j ≥ i,

len(αj)·len(βj) > len(βk)·len(αj) ≥ len(βk)·len(αk).

Since k < i ≤ ` we conclude that

str(G) = min{len(αj) · len(βj) | j = 1, . . . , g}
= min{len(αj) · len(βj) | j = 1, . . . , `− 1}.

�

Theorem 8 Let G be a graph with n vertices embed-
ded in surface of genus g. We can compute the stretch
of G in time O(g4n log n) with high probability, or in
time O(g4n log2 n) in the worst case.

Proof. The time bound follows from Lemma 5. For
the correctness, note that the while loop has the fol-
lowing invariant: at the start of iteration i, the vari-
able str stores the value

min({len(αj) · len(βj) | j = 1, . . . , i− 1} ∪ {∞}).

If |V (Gi)| ≤ g · |V (G)| for each iteration, then the
algorithm finishes with i = g + 1, the surface Σg+1 is

a sphere, and correctness follows from Lemma 6. If
at some iteration ` we have |V (G`)| > g · |V (G)|, then
there was some index i < ` such that the cycle αi had
more than |V (G)| vertices. Correctness then follows
from Lemma 7. �

Acknowledgments. We are grateful to Daniel
Štefankovič for some early discussions.

References
[1] K. J. Börözky, J. Pach, and G. Tóth. Planar

crossing numbers of graphs embeddable in another
surface. Int. J. Found. Comput. Sci., 17(5):1005–
1016, 2006.

[2] S. Cabello, E. W. Chambers, and J. Erick-
son. Multiple-source shortest paths in embed-
ded graphs, 2013. Accepted to SIAM J. Com-
puting. Preprint available at http://arxiv.org/
abs/1202.0314. Preliminary version at SODA
2007.

[3] S. Cabello and B. Mohar. Adding one edge to
planar graphs makes crossing number hard. In
Proc. SoCG 2010, pages 68–76, 2010. See http:
//arxiv.org/abs/1203.5944 for the full version.

[4] H. Djidjev and I. Vrt’o. Planar crossing numbers
of graphs of bounded genus. Discrete & Compu-
tational Geometry, 48(2):393–415, 2012.

[5] P. Hliněný and M. Chimani. Approximating the
crossing number of graphs embeddable in any ori-
entable surface. In Proc. SODA 2010, pages 918–
927, 2010.

42

	papers
	11-egc_paper_19_final

