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Abstract

Given an arrangement A of n sensors and two
points s and t in the plane, the barrier resilience
of A with respect to s and t is the minimum num-
ber of sensors whose removal permits a path from
s to t such that the path does not intersect the
coverage region of any sensor in A. When the
surveillance domain is the entire plane and sen-
sor coverage regions are unit line segments, even
with restricted orientations, the problem of de-
termining the barrier resilience is known to be
NP-hard [11, 12]. On the other hand, if sensor
coverage regions are arbitrary lines, the problem
has a trivial linear time solution. In this paper,
we give an Opn2mq time algorithm for computing
the barrier resilience when each sensor coverage
region is an arbitrary ray, where m is the number
of sensor intersections.

1 Introduction

Barrier coverage is an important coverage concept
that arises in the analysis of wireless sensor net-
works [3]. Other notions of coverage try to quan-
tify the effectiveness of a collection of sensors in
detecting the presence of objects in a particular
surveillance region. Barrier coverage, motivated
by applications such as border control, measures
the effectiveness of detecting the movement of ob-
jects between, but not necessarily within, critical
regions. Given a sensor network, specified as an
arrangement A of sensors with associated cover-
age regions in the plane, and two points s and t,
we say that the sensor network provides barrier
coverage if it guarantees that any object moving
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from point s to point t must be detected by at
least one sensor.

If sensor regions are connected then determin-
ing barrier coverage amounts to asking if s and t
belong to the same face of the arrangement, which
is straightforward to check provided the sensor re-
gion boundaries are sufficiently simple. In order
to measure robustness of barrier coverage, Kumar
et al. [10] introduced k-barrier coverage that guar-
antees that any path from a point s to a point t
must intersect at least k distinct sensor regions.
They showed that for unit disk sensors (i.e., sen-
sors whose coverage regions are unit disks) dis-
tributed in a strip separating s and t, k-barrier
coverage can be determined efficiently by reduc-
tion to a maximum flow problem in the intersec-
tion graph of the disks.

Bereg and Kirkpatrick [2] introduced and stud-
ied the associated optimization problem, which
they called barrier resilience. This specifies the
minimum number of sensors whose removal per-
mits a path from point s to point t such that
the path does not penetrate any of the remaining
sensor coverage regions. Bereg and Kirkpatrick
showed that there is a 3-approximation (or, un-
der mild restrictions concerning the separation of
s and t, a 2-approximation) algorithm for com-
puting the barrier resilience of unit disk sensors.
When the sensor coverage regions are arbitrary
line segments, Alt et al. [1] proved that the prob-
lem of determining barrier resilience is NP-hard
and APX-hard. In fact, even if all sensor coverage
regions are unit line segments in one of at most
two orientations, the barrier resilience problem re-
mains NP-hard [11, 12]. The reader is referred to
the papers [3,5,8] for more information on barrier
coverage and related problems.

It is straightforward to see that if sensor cov-
erage regions are arbitrary lines, the barrier re-
silience problem has a linear time solution, since
the resilience of a given arrangement of lines is
just the number of lines that separate s and t.
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Resilience of ray-sensors
In this paper, we address the case where sensor
coverage regions are half-lines (or rays). We de-
scribe an Opn2mq time algorithm for computing
the resilience of an arbitrary arrangement of n
rays with m intersections. (Due to space con-
straints, proofs are omitted; full proofs will ap-
pear in an expanded version of the paper.)

2 Ray barriers and barrier
graphs

Let ~V be a set of n rays, specified by an endpoint
and a direction, in the plane. Suppose that we
are given a sensor network consisting of n sensors,
where the coverage regions of sensors correspond
to the rays in ~V , and two points s and t which are
not intersected by any of the rays in ~V . We con-
sider the problem of finding a subset ~U of rays in
~V with the minimum cardinality such that there
is a path from s to t which does not intersect any
rays in ~V z~U . The cardinality of ~U is referred to as
the resilience of the sensor configuration ps, t, ~V q,
and ~U is a resilience set of ps, t, ~V q.1
We say that a set ~V 1 � ~V forms a barrier for

ps, t, ~V q if any path from s to t intersects at least
one of the rays in ~V 1. Thus a set ~U � ~V is a re-
silience set of ps, t, ~V q if and only if ~U is a smallest
subset of ~V with the property that ~V z~U does not
form a barrier. Our algorithm for computing a
resilience set uses a reformulation of the problem
as a graph problem. This reformulation is based
on the observation that if a set of rays forms a
barrier it must contain a subset consisting of two
rays that forms a barrier; we refer to such a subset
as a 2-barrier.
In order to substantiate this observation, we

introduce some helpful notation. For two points
a and b in the plane, we use ab to denote the
line segment with endpoints a and b, and use ~a to
denote a ray with endpoint a.
For the remainder of this paper, suppose, with-

out loss of generality, that the line containing st
is horizontal. (Accordingly, we will say “above
(resp., below) st” as an abbreviation for “above
(resp., below) the horizontal line supporting st”.)
For any ray ~a P ~V , we assign a unique color as fol-
lows: (i) if ~a intersects st and goes down we assign
it the color red (drawn as a solid ray in figures);
(ii) if ~a intersects st and goes up we assign it the
color blue (drawn as a dashed ray in figures); and
(iii) if ~a does not intersect st we assign it the color

1Note that a configuration ps, t, ~V q does not necessarily
have a unique resilience set.
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Figure 1: paq: a red-blue 2-barrier; pbq: a red-
black 2-barrier; pcq: a blue-black 2-barrier

s t

(a) (b)

Figure 2: paq: a sensor configuration ps, t, ~V q; pbq:
its associated barrier graph

black (drawn as a dotted ray in figures).
We first observe that certain pairs of intersect-

ing rays are guaranteed to form a 2-barrier (see
Figure 1).

Proposition 1 Let ps, t, ~V q be a sensor config-
uration. A pair of intersecting rays t~a,~bu � ~V
forms a 2-barrier if (i) one is red and the other
is blue, (ii) one is red and the other is black and
they intersect above st, or (iii) one is blue and the
other is black and they intersect below st.

Lemma 2 Let ps, t, ~V q be a sensor configuration
and ~V 1 � ~V . The set ~V 1 forms a barrier for
ps, t, ~V q if and only if there are two rays ~a,~b P ~V 1

such that t~a,~bu forms a 2-barrier of one of the
types described in Proposition 1.

Lemma 2 motivates the reformulation of the re-
silience problem as a graph problem (see Lemma 3
below.) We say that a graph G � pV,Eq is a
barrier graph of ps, t, ~V q, denoted by Gp~V q, if V

is the set of all endpoints in ~V , and ta, bu P E

iff the corresponding pair of rays t~a,~bu forms a
2-barrier (see Figure 2). It follows immediately
from Lemma 2 that barrier graphs are tripartite.
Note that we use the same notation for a ver-

tex in Gp~V q and an endpoint in ~V . When there
is no ambiguity, a vertex of Gp~V q is also re-
ferred to as an endpoint of a ray. We exploit the
vertex-endpoint duality to view Gp~V q as a vertex-
coloured embedded graph. This allows us to say,
for example, that any vertex that lies above st
must be red or black, and any vertex that lies
below st must be blue or black.
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Lemma 3 For any sensor configuration ps, t, ~V q,
a vertex set Vc is a minimum size vertex cover of
Gp~V q if and only if the corresponding set of rays
~Vc is a resilience set of ps, t, ~V q.

From Lemma 3, it is clear that we can find a
resilience set efficiently if there is an efficient al-
gorithm to compute a minimum size vertex cover
of the graph Gp~V q. Unfortunately, the vertex
cover problem on general tripartite graphs is NP-
complete (there is a straightforward reduction
from the vertex cover problem for cubic planar
graphs, which is known to be NP-complete [6]).
In fact, Clementi et al. [4] have shown that the
minimum size vertex cover for tripartite graphs is
not even approximable to within a factor of 34{33,
unless P=NP.
Thus, we are motivated to look for additional

structure in instances of the tripartite vertex cover
problems that arise from barrier graphs. In some
settings, for example if all rays are parallel to one
of two different lines, the graph Gp~V q is easily
seen to be bipartite. It is well-known, by König’s
theorem [9], that, for bipartite graphs, construct-
ing a minimum size vertex cover is equivalent to
constructing a maximum size matching. Thus, we
can use the Hopcroft-Karp algorithm [7] to find
a minimum size vertex cover in such instances in
Opm?

nq time, where m is the number of edges in
Gp~V q .
To exploit the structure inherent in less re-

stricted instances, we first introduce some addi-
tional notation (see Figure 3). We denote by `sv

the line passing through points s and v. Simi-
larly `tw denotes the line passing through points
t and w. A generic line through s (respectively,
t) is denoted `s� (respectively, `t�). Similarly, a
distinguished line through s (respectively, t) will
be denoted `s� (respectively, `t�). With any line
`s� (respectively, `t�) we associate the half-space,
denoted `�s� (respectively, `�t�) consisting of all
points to the left of `s�, or above `s� in case `s�

is horizontal (respectively, all points to the right
of `t�, or above `t� in case `t� is horizontal).
Armed with this notation, we can capture two

additional properties of barrier graphs that can be
exploited in the efficient construction of optimal
vertex covers:

Lemma 4 Let Gp~V q be a barrier graph and sup-
pose that Vc is any vertex cover of Gp~V q. Then
there must exist lines `s� and `t�, through s and
t respectively, such that Vc contains all of the red
and blue vertices that lie in `�s� Y `�t�.

ts

v

w

`tw
`sv

`+tw
`−sv

Figure 3: Lines (and associated half-spaces)
through s and t.

Lemma 5 Let `s� and `t� be arbitrary lines
through s and t respectively, and let }RB denote
the set of red and blue vertices that lie in `�s�Y`�t�.
Then the subgraph of the barrier graph Gp~V q that
is induced by the vertices in V z}RB, is bipartite.

3 Algorithm

In this section, we present an algorithm for com-
puting resilience sets. Its correctness follows im-
mediately from Lemma 3.

Algorithm 1: resilience.

Input: Sensor configuration ps, t, ~V q.
Output: A resilience set for ps, t, ~V q.
build the vertex-coloured barrier graph Gp~V q1

(described in Section 2)
return min-vertex-coverpGp~V qq2

As we have already noted, a minimum size ver-
tex cover of a bipartite graph can be found in
polynomial time [7]. So the basic idea of our al-
gorithm is to exploit this by forming a sequence
of subsets U1, U2, . . . of V such that (i) for all i,
G|pV zUiq, the subgraph of Gp~V q induced on the
vertex set V zUi, is bipartite, and (ii) for some i,
the minimum size vertex cover of G|pV zUiq, to-
gether with the vertices in Ui, forms a minimum
size vertex cover of Gp~V q.
We know, by Lemma 4, that for any minimum

size vertex cover Vc of Gp~V q there must exist lines
`s� and `t�, through s and t respectively, such
that Vc contains all of the vertices in}RB, the set
of red and blue vertices that lie in `�s� Y `�t�. Fur-
thermore, the vertices of Vcz}RB must be a min-
imum size vertex cover of G|pV z}RBq; otherwise
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Vc would not have minimum size. So our algo-
rithm simply tries all possibilities for `s� and `t�,
determines the associated set }RB, finds a mini-
mum size vertex cover of G|pV z}RBq (which, by
Lemma 5, is bipartite), and chooses, among all of
these possibilities, one that minimizes the size of
this vertex cover together with the set}RB.

Algorithm 2: min-vertex-cover of a bar-
rier graph.

Input: A barrier graph Gp~V q.
Output: A minimum vertex cover of Gp~V q.
}RB Ð tred vertices in V }1

V Ctemp Ð2

bipartite-vertex-coverpG|pV z}RBqq
V Cbest Ð V Ctemp Y}RB3

for every red vertex v do4

for every red vertex w do5
}RB Ð6

tred and blue vertices in `�sv Y `�twu
V Ctemp Ð7

bipartite-vertex-coverpG|pV z}RBqq
if |V Ctemp| � |}RB|   |V Cbest| then8

V Cbest Ð V Ctemp Y}RB9

return V Cbest10

As we have already noted, the correctness of
Algorithm resilience follows immediately from
Lemma 3. We now turn our attention to the cor-
rectness of our vertex cover algorithm for bar-
rier graphs.

Theorem 6 The output of Algorithm 2 is a min-
imum size vertex cover of Gp~V q.
It will be clear from the description of Algo-

rithm 2 that the problem of constructing a min-
imum size vertex cover of a barrier graph with n
vertices and m edges can be reduced to Opn2q
minimum size vertex cover subproblems on in-
duced subgraphs, each of which, by Lemma 5,
is bipartite. As previously noted, König’s the-
orem [9] states that, for bipartite graphs, con-
structing a minimum size vertex cover is equiv-
alent to constructing a maximum size matching.
Thus, we can use the Hopcroft-Karp algorithm
to find a minimum size vertex cover in each sub-
problem in Opm?

nq time [7], or Opn2m
?

nq time
in total. We note, however, that it is possible to
implement Algorithm 2 to run in Opn2mq time,
by ordering the successive subproblems in a way
that they do not require independent solution; we

leave the details to an expanded version of this
paper.
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