
XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Solving common in�uence region queries with the GPU

Marta Fort and J.Antoni Sellarès∗

Departament Informàtica, Matemàtica Aplicada i Estadística. Universitat de Girona.

Abstract

In this paper we propose and solve common in�u-

ence region queries. We present GPU parallel algo-
rithms, designed under CUDA architecture, for ap-
proximately solving the studied queries. We also pro-
vide and discuss experimental results showing the ef-
�ciency of our approach.

Introduction

Common in�uence region queries are related to the
capacity of two sets of facilities of di�erent type, com-
petitive and collaborative, of attracting customers.
Solutions to common in�uence region queries help de-
cision makers to develop competitive-collaborative op-
portunities.

Papers [2, 3, 1] deal with a related problem
which tries to maximize the area of the Voronoi
region of a new non-weighted facility. Fort and
Sellarès [4] present an algorithm for optimizing k-
nearest/farthest in�uence regions of a set of non-
weighted facilities.

The advancement in GPUs (Graphics Processing
Units) hardware design, together with CUDA (Com-
pute Uni�ed Device Architecture), make them attrac-
tive to solve problems which can be treated in parallel
as an alternative to CPUs. General-Purpose comput-
ing on GPUs (GPGPU) is playing an increasing role
in scienti�c computing applications, which range from
numeric computing operations to data mining or geo-
metric processing, where the potential of the GPU for
delivering real performance gains on computationally
complex, large problems is demonstrated.

By working towards practical solutions, since ex-
act algorithms to solve the common in�uence region
queries are hard to implement and quite slow in prac-
tice, we explore a GPU parallel approach, designed
under CUDA architecture, for solving the queries ap-
proximately. We also provide and discuss experimen-
tal results obtained with the implementation of our
algorithms that show the e�ciency and scalability of
our approach.

∗Email:(mfort,sellares)@imae.udg.edu.
Authors research supported by TIN2010-20590-C02-02.

1 Preliminaries

1.1 The weighted area of a region

Let R = {R1, · · · , Rm} be a partition of the domain
D. We associate with each region Ri a non-negative
number wi, called the weight of Ri.

We de�ne the weighted area of the region R ⊂ D,
denoted w(R), as:

w(R) =
∑

j=1,··· ,m
wj µ(R ∩Rj) ,

where µ(R ∩ Rj) denotes the area of the subregion
R ∩Rj .

1.2 CUDA architecture

CUDA is a parallel computing architecture that
makes GPUs accessible for computation like CPUs.
The CUDA processors, which can be executed in par-
allel, are referred as threads, and each thread exe-
cutes the instructions contained in the so called ker-
nels in parallel. Each thread computation is indepen-
dent from the others, however, there exist some read-
modify-write atomic operations called atomic func-
tions. They read and return the value stored in a
memory position, operate on it and store the result
without allowing, during the whole process, any other
access to that memory position. These operations al-
low the users to obtain global results when several
threads access to the same memory position. For in-
stance we can obtain a global sum, maximum or min-
imum in a speci�c position by using them.
Several types of memories can be used, data stored

in global memory are accessible by every thread and
are visible from the CPU, global memory is where
more data can be allocated, but is the slowest access
time memory. Shared memory and registers are the
fastest memory, shared memory can be accessed by all
the threads of the same block, and registers store the
local variables of the threads. The number of accesses
to memory are re�ected in the execution times of the
algorithms. Thus they are provided in the complexity
analysis, ν read or written values to global memory
are represented by rgν and wg

ν , and to shared memory
they are denoted by rsν and ws

ν .

15



Common in�uence region queries

2 In�uence regions

Let S be a set of n points included in a bounded
domain D of the Euclidean plane. Each point s ∈ S
is associated with a positive real weight ws > 0. The
weighted distance ds(q) from an arbitrary point q ∈ D
to the point s ∈ S is de�ned as ds(q) = (1/ws) d(s, q),
where d(p, q) denotes the Euclidean distance between
points p, q.
The k-in�uence region of a point s ∈ S, denoted

Ik(s, S), is the set of points of D having s among
their k-nearest points in S. For any point q ∈ D,
denote by nk(q, S) the weighted distance from q to its
k-th nearest point in S, i.e. the weighted distance to
the point of S that ranks number k in the ordering
of the points by increasing weighted distance from q.
We have:

Ik(s, S) = {q ∈ D | ds(q) ≤ nk(q, S)} .

From the de�nition follows that the 1-in�uence region
of a site s is its 1-Voronoi region, and that Ik(s, S) ⊂
Ik+1(s, S).
A k-in�uence region is bounded by bisectors of

points in S. In general, k-in�uence regions need not to
be convex, nor simply connected, nor even connected.
Two k-in�uence regions may share disconnected edges
(see Figures 1 a) and b)).

2.1 Common in�uence regions

Let P andQ be �nite disjoint sets of n andm weighted
points, respectively, within the bounded domain D of
the Euclidean plane.
The (k, k′)-Common In�uence Region of p ∈ P , q ∈

Q, denoted Ck,k′(p, q, P,Q), is the set of points of D
having p among their k-nearest points in P and at the
same time having q among their k′-nearest points in
Q:

Ck,k′(p, q, P,Q) = Ik(p, P ) ∩ Ik′(q,Q) .

In Figure 1 c) we can see an example of a (5, 2)-
common in�uence region painted in green.

a) b) c)

Figure 1: a) 5-in�uence region, b) 2-in�uence region, c)

(5, 2)-common in�uence region.

2.2 Common in�uence region queries

Let P andQ be �nite disjoint sets of n andm weighted
points, respectively, within the bounded domain D of

the Euclidean plane, and R be a weighted partition
of D. We study the following queries:

Feasible pairs query. Given �xed non-empty sets
P ′ ⊆ P and Q′ ⊆ Q and a real positive number W0,
�nd all pairs (p, q), p ∈ P ′ and q ∈ Q′, such that the
weighted area w(Ck,k′(p, q, P,Q)) ≥ W0.

Feasible partners query. Given �xed non-empty
sets P ′ ⊆ P and Q′ ⊆ Q and a real positive number
W0, �nd all points p ∈ P ′, such that for each q ∈ Q′

the weighted area w(Ck,k′(p, q, P,Q)) ≥ W0.

The parameters k, k′, W0, I0 should be chosen by
an expert, according to the localization of p with re-
spect the points ofQ′ and the cardinality ofQ′, during
an iterative what-if analysis process.

To obtain w(Ck,k′(p, q, P,Q)) = w
(
Ik(p, P ) ∩

Ik′(q,Q)
)
, we can �rst compute the overlay intersec-

tion between Ik(p, P ), Ik′(q,Q) and the regions of the
weighted partition R. Since each maximal connected
region of the resulting intersection is contained in a
region of R, it has univocally associated a weight.
Consequently, the weighted area w(Ck,k′(p, q, P,Q))
can be written as a sum of functions that depends on
the location of p and q. Since computing the maximal
connected regions together with their weighted area
is di�cult, it is also di�cult computing the weighted
area of a common in�uence region and solving com-
mon in�uence region queries. This has motivated us
to explore an alternative GPU parallel approach, de-
signed under CUDA architecture, for approximately
solving common in�uence region queries.

3 Solving common in�uence re-

gion queries using CUDA

The weighted areas of the common in�uence regions
are estimated by using a discretization of the domain
D. An axis-parallel rectangular grid of size H × W
is superimposed on the domain D de�ning a set S of
r points corresponding to the geometric center of the
grid cells which are weighted according to the domain
partition P. As it is obvious, the bigger the size of
the used grid the more accurate the obtained common
in�uence region. The weighted area is estimated by
summing up the weights of all the points of S con-
tained in the common in�uence region. Notice that,
depending on the domain weighted partition, small
changes in the common in�uence region can produce
big changes in its weighted area.

Solving the de�ned queries requires an initial step
consisting in computing the k-nearest neighbor dis-
tance from each point of S to the points in P and the
k′ nearest neighbor to the points in Q. Notice that
even though the queries subsets P ′ and Q′ are used,

16



XV Spanish Meeting on Computational Geometry, June 26-28, 2013

the k and k′-neighbor distances are always referred to
P and Q.

3.1 k-nearest neighbor distance com-

putation

We start by computing the weighted distance of each
point s ∈ S to its k-th nearest neighbor in P , consid-
ering all the points in parallel. With this aim, we have
extended the CudaKNN algorithm described by Liang
et al. [5] to handle the weighted case. The algorithm
computes for each p ∈ P the weighted distances to
all the points in S using shared memory and making
the threads in a block cooperate to determine, after
exploring all the point in P , the k-nearest neighbors
of s. We transfer the points of S and P from the CPU
to the GPU, then we compute the k-weighted nearest
distance of each point in S to P and store all them in
global memory in a 1D array nPk

of size r.
In the same way, we also transfer the points of S

and Q from the CPU to the GPU, compute the k′-
weighted nearest distance of each point in S to Q and
store them in a 1D array nQk′ of size r.

3.2 In�uence region queries resolution

Given P ′ ⊆ P and Q′ ⊆ Q of size n′ and m′ respec-
tively, and assuming that the k and k′-nearest neigh-
bor distances from each point of S to P and Q have
been computed, we explain how the proposed queries
can be solved.
Our approach for solving the feasible pairs and the

possible partners queries follow a very similar proce-
dure.

Feasible pairs query

The solution of the feasible pair query is reported
giving the number of feasible pairs and the list con-
taining them. In order to solve it we consider n′m′

threads, an integer to store the number of feasible
pairs and an 1D-array of size n′m′ to store the fea-
sible pairs. Each thread estimates the weighted area
wp,q = w(Ck,k′(p, q, P,Q)) of one pair (p, q). In the
case that wp,q gets the minimum required value W0,
the number of feasible pairs is incremented by one,
and the pair is stored in the �rst empty position of
the feasible pairs array.
The weighted area wp,q is estimated by considering

all the points s ∈ S, computing the distances dp(s)
and dq(s) and comparing them with nk(s, P ) and
nk′(s,Q) which are the ones stored in nPk

and nQk′ .
Thus s ∈ Ck,k′(p, q, P,Q) whenever dp(s) ≤ nPk

(s)
and dq(s) ≤ nQk′ (s). In such a scenario, where all
threads check all the points in S, shared memory
should be used. The B threads in a block cooperate
loading the space points and their neighbor distances
from global to shared memory. This requires using
three shared memory arrays of size B per block: Ss

which stores B weighted space points, and ns
Pk
, and

ns
Qk′ storing their corresponding k and k′-neighbor

distances to P and Q, respectively. The i-th thread of
the block reads from global memory the point si ∈ S
and its corresponding k and k′ nearest neighbor dis-
tances, and stores them in the i-th position of Ss and
ns
Pk

and ns
Qk′ , respectively. When all the threads

in the block have �nished loading this information,
the �rst B points of S can be analyzed. Then each
thread determines which of these points are contained
in its corresponding common region Ck,k′(p, q, P,Q)
and accordingly accumulates their weights in a regis-
ter. Once all the threads of the block have checked
all the already loaded points, the next B points of S
and their distances are loaded to shared memory and
analyzed. We keep on proceeding similarly until all
the points in S have been handled, and consequently
wpq has been estimated.

In order to obtain correct results it is important
that the threads in a block wait each other in some
critical points. In fact, two synchronization points
are needed, one after transferring the corresponding
weighted point of S with its two associated distances
and the other when all the already stored points have
been checked, just before starting transferring new
information to shared memory. Otherwise there is
no guarantee that all the threads in the block have
�nished with their tasks. The implementation has to
be carefully done when r, the number of points in S, is
not a multiple of B, the number of threads in a block,
to avoid accesses to non-existent memory positions,
but guaranteing that all the points of S are loaded to
shared memory.

Feasible partners query

To solve this query we use an array fp, of size n′,
which is used as a boolean array. At the end of the
process, positions containing a 1 correspond to the
points of P ′ having all the points of Q′ as feasible
partners.

After initializing the array fp with ones, we proceed
as before estimating the weighted common in�uence
areas of all the m′n′ pairs in P ′ ×Q′. When a thread
�nishes estimating its corresponding weight wpq, it
checks wether wpq < W0, and in such a case, it sets
fp[p] to 0. Thus, only for those points p achieving the
minimum in�uence value for all the points q ∈ Q′ we
will have fp[p] = 1 at the end of the process.

The number, n′
f , and the list, f , of feasible partners

can be obtained by performing a pre�x sum on the
array fp, which is stored in ps. After allocating an
array of size n′

f , n
′ threads are considered, each thread

checks wether its point of P ′ is a feasible partner of
Q′, by looking at its corresponding position of fp. If
it is so, the point of P ′ is stored in f in the position
given by ps.

17



Common in�uence region queries

3.3 Complexity analysis

Computing simultaneously for the r points of S the k-
neighbor distances with respect to the set of n points
by using the CudaKNN algorithm [5] requires O(rnB)
total work, where B is the number of threads per
block. The computation is done in three di�erent
steps, that have O(r), O(B) and O(k + n/B) oper-
ations per thread, respectively. Thus, the initial step
in our case requires O(r(n+m)B) total work.

Solving the feasible pairs query requires n′m′

threads performing O(r) operations each, leading to
O(rn′m′) total work. Concerning memory accesses, in
the worst case O(rgn′m′r/B+ws

n′m′r/B+rsn′m′r+wg
n′m′)

accesses are required. Finally, the global memory
needed is 3r + n′ + m′ + n′m′ + 1, while 3B �oats
per block are required in shared memory.

The di�erences between solving the feasible pairs
query and the feasible partners one, before �nding
the list of feasible partners, do not change the work
per thread neither the global work nor the memory
accesses. However, the global memory requirements
are reduced to 3r + 2n′ +m′. Finding the list f only
increases the global memory requirements in n′ + n′

f .

4 Experimental Results

In this section, we present several experimental results
obtained with the implementation of our algorithms.
In all the experiments the points of P and Q are ran-
domly distributed in the domain and their weights are
randomly obtained integers between 1 and 15. They
are based on the weighted domain partition presented
in Figure 2. The points of the domain are painted
in a purple color gradation, the darker the color the
smaller the density value.

Figure 2: Domain weighted partition according to the

population density.

In Figure 3, we provide the solution of a feasible
partners query. Figure 3 a) shows the sets P , Q, P ′

and Q′, that have 100, 100, 25 and 10 points, respec-
tively. Points of sets P ′ and Q′ are represented by
grey squares and green triangles, and the points of P
and Q not in P ′ and Q′, by red squares and blue trian-
gles, respectively. The orange squares of Figure 3 b)
are the points of P ′ conforming the solution of the
feasible partners query de�ned by P , Q, P ′, Q′ for

k = k′ = 15, when the minimum required in�uence
value is 20.

a)

b)

Figure 3: a) Points of the sets P , Q, P ′, Q′. b) Solutions

of the feasible partners query.

For a grid of size 400 × 400, n = 500, n′ = 50,
m = 200, m′ = 25, k = 20 and k′ = 20, the running
times needed to solve a feasible pairs query and a fea-
sible partners query are 12 and 16 milliseconds. Us-
ing the CPU sequential version of the algorithms the
times become 347 and 351 miliseconds, respectively.
In the CPU version, the feasible partners query can
be solved in 62 miliseconds if point p ∈ P ′ is set as
a not feasible partner at the �rst q ∈ Q′ for which
w(Ck,k′(p, q, P,Q)) < W0. This can not be done in
the GPU, because threads cooperate transferring in-
formation to shared memory.

References

[1] O. Cheong, A. Efrat, and S. Har-Peled, Finding a guard

that sees most and a shop that sells most, Discrete Com-
put. Geom. 37(4) (2007), 545�563.

[2] M. Denny, Solving geometric optimization problems us-

ing graphics hardware, Comput. Graph. Forum 22 (2003),
no. 3, 441�452.

[3] F. K. H. A. Dehne, R. Klein, and R. Seidel, Maximizing a

Voronoi region: the convex case, Int. J. Comput. Geome-
try Appl. 15(5) (2005), 463�476.

[4] M. Fort and J.A. Sellarès, GPU-Based In�uence Regions

Optimization, ICCSA (2012), 253�266.

[5] S. Liang, Y. Liu, C. Wang, L. Jian, A CUDA-based parallel

implementation of k-nearest neighbor algorithm, IEEE'09
(2009), 291�296.

18


	papers
	5-egc_paper_4_final


