
Using Dynamic Modeling and Simulation to Improve
the COTS Software Process

Mercedes Ruiz1, Isabel Ramos2, and Miguel Toro2

1 Department of Computer Languages and Systems
Escuela Superior de Ingeniería. University of Cádiz

C/ Chile, nº1. 11003 – Cádiz (Spain)
mercedes.ruiz@uca.es

2 Escuela Técnica Superior de Ingeniería Informática. University of Seville
Avda. Reina Mercedes, s/n. 41012 – Seville (Spain)

{isabel.ramos, miguel.toro}@lsi.us.es

Abstract. In the last several years, software industry has undergone a
significant transition to the use of existing component products in building
systems. Nowadays, more and more solutions are built by integrating
Commercial-Off-The-Shelf (COTS) products rather than building from scratch.
This new approach for software development has specific features that add new
factors that need to be taken into account to successfully face software
development. In this paper, we present the first results of developing a dynamic
simulation model to model and simulate the COTS-based software development
process with the aim of helping to understand the specific features of this kind
of software development, and design and evaluate software process
improvements. An example of how to use these dynamic simulation models to
study how the system integration starting point affects the main project
variables is shown.

1 Introduction

In the software industry, demands for new services are outpacing our ability to
develop and manage them. Current systems have stringent demands in scalability,
reliability, and real-time interaction with other elements. In an attempt to meet the
requirements of current systems, new paradigms, methods and processes have been
developed by the software engineering community. One of them, the component-
based software engineering (CBSE), promotes the building of new systems by
incorporating pre-existing software with the aim of lowering overall development and
maintenance costs, as well as involving less development time. The practice of ‘buy,
don’t build’ was initially introduced by Fred Brooks in 1987 [3]. Since then, the
features and trends of new software systems have made nothing but support the
benefits of building by integration and not from scratch.

Nowadays, creating, deploying, and offering a new software system often requires
complex interactions between several disparate systems, some of which may be
legacy ones. The problem is how to achieve this integration in a speedy, cost-

effective, flexible manner. It is important to minimize costs for building and
maintaining integration solutions. Over the last decades, there have been several
approaches to solve the problem of integrating systems. Integration techniques can be
classified into three generations attending to their evolution over time.

First-Generation integration techniques were the first to appear. This approach
coincides with the first attempts of the software industry in software reutilization, and
it is based on the concept of point-to-point integration. It becomes evident that this
solution to the problem of integration was soon observed impractical because of two
factors. First, the number of interfaces required grows exponentially with the number
of components to integrate. Second, the impact of minor changes, such as that of
adding a new component, is significant, turning maintenance into a nightmare.

Second-Generation integration techniques, try to solve the problem of the
increasing number of interfaces by reducing them to a linear increase through the use
of middleware. This solution requires interfacing each application to a ‘data bus’
using, for instance, the Common Object Request Broker Architecture (CORBA) [7]
and XML [14] as the data format for the interchange of data through this so-called
data bus.

Third-Generation integration techniques encourage the concept of extreme
integration. This extreme integration is aimed to obtain a better understanding of the
requirements, an easier maintenance, and therefore, an easier accommodation of
changes in the system developed. Within this extreme integration approach, the
concept of building software using certain components called Commercial-Off-The-
Shelf (COTS) products has become a topic of research, development, and production.
COTS refers to a particular type of software component which is purchased from and
supported by a third party and that is not customized, or is only minimally
customized. COTS software has the potential to save both time and money in the
software development process and it is a common way of developing software
nowadays. Some examples of the systems developed under this approach are: Internet
tools and browsers, CASE tools, GUI generators, code generators, database
management systems, Geographic Information Systems (GIS), office automation
software, and operating systems, among others.

Each COTS software component used means less code that needs to be designed
and implemented by the developers. However, the developer is faced with the
problem of ensuring that the COTS product does perform the functionality that it
claims to perform, that is not intentionally perform functionality to be harmful to the
system, that it will not adversely affect the system, and that it can robustly respond to
failures and anomalous inputs to prevent errors from propagating through the entire
system. Furthermore, the use of COTS products in software development can require
a considerable integration effort leading to the research of new models or means to
better manage this effort.

Whereas much of the research effort in the area is mainly focussed on the
development of methodologies to better document, search and evaluate components,
or the improvement of the trading process, it is also necessary to invest some research
effort to help in the understanding and improvement of the specific features of the
COTS software process. In this paper, we propose the utilization of System Dynamics
simulation models to help understand and improve the COTS-based software
development process. The structure of the paper is as follows. Section 2 introduces
the motivation and problem definition, the concepts of software process modeling and
simulation using system dynamics models, and describes in depth the model

developed to analyze the phases of glueware development and system integration. An
example of how these dynamic models can be used to simulate different scenarios and
analyze its results is included in Section 3. Finally, Section 4 summarizes the paper
and draws the conclusions and further works.

2 Developing the Simulation Model for COTS Process

2.1 Motivation and Problem Definition

Our main objective is to develop a simulation model to help understand and improve
the COTS software process. In the building of this simulation model, several issues
regarding modularity, abstraction and reusability have been taken into account. With
the aim of obtaining a certain product after this research effort, our goal has been the
development of the dynamic simulation modules that can be added to, or literally
“plugged” into, an existing framework of dynamic modules that simulate the
traditional software process. Following this approach, our intention is to build new
dynamic models combining the existing dynamic modules that help in the design of
improvement initiatives aimed to achieve higher maturity levels within organizations,
with the new ones that have been developed. The dynamic model resulting from the
collaboration of the previous modules (for the traditional software development) and
the new ones (specific for the COTS software development) will be able to simulate
the complete life cycle.

2.2 Simulation Approach

In the simulation domain there are multiple strategies to build models. Among them,
there are two main approaches: continuous and discrete modeling. The continuous
simulation technique is based on System Dynamics [1]. A continuous simulation
model represents the interactions between key process factors, as a set of differential
equations, where time is increased step by step. Frequently, the metaphor of a system
of interconnected tanks filled with fluid is used to exemplify the ideas underlying this
kind of modeling approach.

On the other hand, discrete modeling is based on the metaphor of a queuing
network, where time advances when a discrete event occurs. When this happens, an
associated action takes place which, in most occasions, can imply placing a new event
in the queue. Time is always advanced to the next event, so it can be difficult to
integrate continually changing variables.

Since the purpose of this study is to model and visualize process mechanisms,
continuous modeling has been used. This technique also allows to include systems
thinking and it is considered to be better than the discrete event model at showing
qualitative relationships [13].

Traditionally, three important drawbacks have been claimed against the use of
dynamic simulation models in the software industry: the level of education or
expertise needed to develop and use the models, the effort required to be invested to
model the organization processes, and the lack of data available to validate and
populate the final models. [8]

Having specific education in order to be able to use simulation models is no more a
requirement. Current simulation tools allow to develop user-friendly interfaces
capable of hiding all the mathematical details of models, and enabling to carry out
simulation games easily.

In an attempt to initiate a research effort aimed to ease the objections previously
mentioned, we developed a Dynamic Integrated Framework for Software Process
Improvement (DIFSPI) [10, 11, and 12]. This framework had been originally
designed with the aim of creating both a conceptual and formal framework, and a
working environment to help in the achievement of higher maturity levels according
to CMM [6]. The main issues underlying this integrated framework follow. First,
during the process of model building, the project manager may gain much new insight
into those aspects of the development process that mostly influence the success of the
project (time, cost and quality). Second, having the possibility of gaming with the
DIFSPI, it allows project managers to better understand the underlying dynamics of
the software process. As a consequence, several process improvement suggestions
may easily be designed and, most importantly, analyzed using simulation of
scenarios. Third, templates and guidelines for a metrics collection program may be
almost automatically derived from the requirements of the dynamic modules. Fourth,
the approach of abstraction and encapsulation followed to develop the dynamic
modules makes it possible to easily instantiate a dynamic model using different
dynamic modules which can be plugged in the final model. Finally, the combination
of the dynamic approach with other techniques allows project managers to perform
complete analysis and quantification of the effects and the benefits of different
software process improvements. All these features combined in the framework intend
to help organizations to design and execute more mature processes and, therefore, to
increase their maturity level.

Although there are some significant applications of System Dynamics to model
and simulate the traditional software process, little has been done regarding the
modeling and simulation of the COTS-based systems in the sense of this study, except
Kim’s work [4]. However, concepts such as modularization, abstraction,
encapsulation and reutilization that have been widely applied in the field of computer
programming, and which have not been so commonly applied in the field of System
Dynamics, are indeed strongly used within the framework proposed.

2.3 COTS Process Modeled

Like other software development processes, the process of building a COTS-based
system starts with the definition of the system requirements. Once the system
requirements have been gathered and reviewed, the processes of COTS identification,
evaluation, and selection begin. COTS identification consists of Web searches,
product literature surveys and reviews, identification of other reusable system
components, and recommendations from external sources. As COTS components are
identified, the evaluation and selection processes start. COTS evaluation steps include
prototyping, vendor demonstrations, and in-depth review of literature such as manuals
and user guides. Vendor training sites and availability are considered. Procurement
issues surface such as development fees for added requirements, licensing and
maintenance fees, and sustaining engineering support.

It can be said that there are as many COTS software development processes as
organizations are applying the principles of integration to develop software. For this
study, the suggested process resulting from the survey carried out by the Software
Engineering Laboratory (SEL) has been used [5]. This process is targeted to COTS-
based projects using several peer COTS or one COTS integrated with a considerable
amount of new developed software.

According to the conclusions of this study, the main phases of the COTS software
process are: requirements, design, coding and integration. Most phases encompass
activities specific to COTS-based development. Figure 1 illustrates the proposed
COTS process. It is important to notice that the horizontal line in the figure
graphically separates the two tracks existing in COTS-based projects, that is,
traditional activities and COTS-specific activities (highlighted in shadowed boxes).

Fig. 1. Proposed COTS Process

It is important to notice that the parallelism between the COTS-specific activities
and the traditional activities is strongly emphasized using this process. Hence, a
specific effort to support the same parallelism between theses activities in the
simulated process has been needed.

2.4 Development of the Simulation Modules

For the purpose of this study, new dynamic modules have been developed and added
to the DIFSPI. These dynamic modules are aimed to model the structure,
relationships, and behavior of the following processes:

- Glueware Development. Glueware is the new code needed to get a COTS
component and integrate it into a larger system that can be the target system or
another component that needs to be integrated in a later phase. This special kind
of code is considered to be one of the following: 1) any code required to facilitate
information or data exchange between a COTS component and the application, 2)
any code needed to “hook” the COTS component into the application, even if it
may not necessarily facilitate data exchange, and 3) any code needed to provide

REQUIREMENTS INTEGRATION

Package
Identification,
Evaluation &

Selection

Requirement
Analysis

Identify
Glueware &

Requirement
Integration

Non-COTS
Design

Write
Glueware and

Interfaces

NON-COTS
Coding

Target
System

Integration &
Acceptance

Test

Integration &
Test

DESIGN CODING

functionality that was originally intended to be provided by the COTS
component, and which must interact with the COTS component [2].

- Application Integration. The integration process varies a great deal from project
to project, depending on which and how many COTS products are being used. At
system integration and testing the COTS packages are treated as black boxes. The
final integrated system is made up from the application system, the COTS
packages, and the glueware that has been needed to be developed.

- Another non-process dynamic module has been integrated in the framework to
model and facilitate the analysis of cost effects of different improvement
initiatives. This new module gathers together all the parameters that have an
influence on the COTS-based system development according to the COCOTS
model [2].

The following sections describe in depth the components of these modules.

Glueware Development

This dynamic module represents the process of glueware development. The
development of glueware can be achieved through the following phases:

- First, the requirements for the glueware to be developed must be elicitated and
analyzed.

- Second, these requirements constitute the input to the design phase, and
- Finally, the designed product enters the phase of coding.

Figure 2 illustrates a simplified stock and flow diagram of this module.

GluewareRequired
Glueware
DesignedGlueware Design

Rate

Initial GW Design
Size

GW Design done

GW Dev
AccumulatedGW Accumulation

Rate

<GW Multiplier>
<Concurrence Constraint

COTS Development>

Glueware
DevelopedGlueware

Development Rate

Initial GW
Development Size GW Development

done

Initial GW
Requirements

Fig. 2. Simplified stock and flow diagram for Glueware development

As it can be seen, each one of the phases previously mentioned is represented by a
level variable. Each level variable is initially populated with the estimated size of the
product that needs to be developed during that phase. The meaning of each of these
level variables follows:

Glueware Required: Glueware that needs to be developed, measured in
number of tasks.
Glueware Designed: Glueware that has been designed, in number of tasks.
Glueware Developed: Glueware that has been coded, in number of tasks.
GW Dev Accumulated: Glueware that has been coded, in number of tasks.

By applying a development rate, work flows from a level to the following. Rates
mainly depend on the productivity of the personnel assigned to the development of
each phase. They also are influenced by other factors such as the GW Multiplier
(Glueware Multiplier), or component drivers (see section COTS component factors).

The variable Concurrence constraint COTS development determines when
the activities of glueware development can start. Figure 3 shows the diagram for the
computation of this variable. Percentage of GW designed needed to
development keeps the percentage of design tasks that need to be accomplished
before the implementation or coding phase can be initiated. Knowing the initial size
of this phase and the amount of tasks that have been achieved at each moment
(Initial GW Design Size and Glueware Designed, respectively), it is
possible to calculate the fraction of glueware that has been designed at a given time.
By comparing this value with the parameter that keeps the percentage needed to begin
development, it is possible to model the decision of start the following phase. Hence,
Concurrence constraint COTS development will act as a flag variable that
helps to determine the beginning of the coding phase.

Fig. 3. Concurrence constraint for COTS development modeling

There is another group of variables that need an explanation now because the ideas
underlying their modeling are used in almost every module of this framework. These
variables do not have a proper semantic regarding the system under modeling, but are

Concurrence Constraint
COTS Development

<Glueware
Designed>

<Initial GW
Design Size>

Fraction designedPercentage of GW
designed needed to

development

needed to shut down the generation of non-real values in the model. In order to stop
activity on task completion, the rates variables are all affected by some other flag
variables (GW design done, GW development done). These flag variables act in
a similar way of the variables that model the concurrence constraints in the model. By
comparing the estimated size of a task with the current size accomplished, the
percentage of achievement is calculated. When this percentage is 100%, these flags
are activated to indicate the end of the activity, and hence, the respective development
rate falls to a value of zero.

The last level variable GW Dev Accumulated, does not serve to a specific semantic
feature of the problem, and it is only maintained as an accumulation variable in order
to know, at every moment, the amount of glueware that has been coded. Without this
variable, it would not be possible to know how much work has been completed as it
flows from a level to the following one (in this case, glueware flows to the system
integration phase).

Application Integration

Depending on the type of application, the amount of application development needed
to obtain the final product can vary, but it is obvious that first, a process of application
development is needed before the integration of the components can start. This
module represents the application development and integration processes. Again, like
the previous development process described above, it consists of three level variables,
one for each phase of the development process, plus an additional level to represent
the process of system integration. Figure 4 shows the simplified stock and flow
diagram of this module. It can be seen that this module is made of two subsystems:
the first one deals with the process of application development itself. It consists of
three level variables, as three is the number of phases of the application development
process. The second subsystem models the application integration itself, and it
consists of one level variable as the process needs only one phase to be executed.

Application
Requirement

Application
Design

Application
Developed

System
Integrated

Application
Design Rate

Application
Develop Rate

Application
Integration Rate

App Design Done
App Develop

Done

System Integrated
Done

Initial App
Design Size

Initial App
Develop Size

Initial System Size

Initial App
Requirements

<Concurrence
Constraint App
Development>

<Integration Start
Constraint>

<Glueware
Developed>

Glueware
Integration Rate

Fig. 4. Simplified stock and flow diagram for Application Integration

The level variables in the model are the following:

Application Requirement: Number of application tasks that represent the
application requirements left to be implemented.
Application Design: Number of application tasks that have been designed.
Application Developed: Number of application tasks that have been
coded.
System Integrated: Number of application tasks that have been integrated.
It consists of application code and glueware.

It is important to notice that the components that control the concurrence constraint
for the beginning of the coding phase, and those that control the workflow between
whatever two phases are included in this model too. From an abstract point of view,
what is done is the instantiation of a generic dynamic meta-constructor that can be
used to model a component whenever a task development process is needed to be
modeled. This generic meta-constructor does not only help to formalize
mathematically the development process, but to effectively implement the principles
of modularization and reutilization in System Dynamics. The ultimate representation
of this abstraction is the re-engineering of the models using JavaTM technology. Using
this technology, these constructors have been represented under the concept of
interface to define a set of methods and a protocol of behavior that can be then
implemented by any class in the class hierarchy.

One important parameter that plays a decisive role in the integration subsystem is
Integration Start Constraint. This parameter determines the starting point of
the integration process based on the glueware that has been developed. For instance, if
this parameter is set to 65%, then the integration process will start when the glueware
developed has achieved 65% of glueware requirements. Different values in this
parameter can have significant effects on the integration process resulting in different
quality and costs outcomes. These outcomes can be studied and analyzed using
simulation within a non-cost process.

COTS Component Factors

This module represents COTS component factor module. The variable GW multiplier
is calculated by multiplying the COTS component drivers suggested by Abts [2]. For
the purpose of this study, these factors have been transformed into a set of input
parameters of the dynamic model. The parameters take their values from a qualitative
domain ranging from very low (point value 0) to very high (point value 5). A brief
description of the parameters associated with the COTS component factors follow:

1. COTS Product Documentation: How strongly is effort/productivity affected by
the extent to which the COTS product comes with the necessary documentation
to install, maintain and use the product? Does the software come with extensive
and well written documentation? Or does it come with little documentation?

2. COTS Product Vendor Support: How strongly is effort/productivity affected by
the extent to which the vendor offers technical support for the COTS product?
Does the vendor provide extensive support for its products? Or no support?

3. COTS Product Ease of Installation: How strongly is effort/productivity affected
by the ease or difficulty anticipated to install and integrate the COTS product?
Are the interfaces required between the COTS product and the larger system
simple or complex?

4. COTS Product Ease of Maintenance or Upgrade: How strongly is
effort/productivity affected by the ease or difficulty anticipated to maintain or
upgrade the COTS product, particularly after it has been integrated into the
larger system? Are upgrades to the COTS product simple to perform, or
difficult?

5. COTS Product Ease of Customization: How strongly is effort/productivity
affected by the ease or difficulty anticipated to customize or modify the COTS
product to make it suitable for use in the larger system if adaptation is
necessary? Is customization simple, or difficult?

6. COTS Product Portability: How strongly is effort/productivity affected by the
portability of the COTS product across platforms? Is the product easily portable,
or difficult to port?

7. COTS Product Ease of Use: How strongly is effort/productivity affected by the
ease or difficulty anticipated for the user to operate the COTS product,
particularly after it has been integrated into the larger system? Is the product
easy, or difficult to use?

8. COTS Product Training: How strongly is effort/productivity affected by the
extent of the training the user will require learning to operate the COTS
product? Will the user need a lot of training, or little training?

9. COTS Product Dedicated Database: How strongly is effort/productivity affected
by the extent to which the COTS product has specialized data needs? Does the
product require a specialized database? Or require the population of new
elements within an existing database? Or are the product’s specialized data
needs minimal?

3 First Results of the Simulation

This section shows some of the results obtained with the simulation of the resulting
dynamic model that simulates the life cycle illustrated in Figure 1. It is essential to
notice here the important lack of real data that organizations have about their own
processes. This lack of data often reveals a major problem which is the lack of
knowledge and definition for the software process. With the aim of validate and test
our modules, we have used data from the literature, mainly those shown in [2].

To show an example of how these models can be used, the effect of different
integration starting points on key project variables will be analyzed. The following
figures show the sensitivity analysis of the integration start constraint and its effect on
the delivery time of the final product (see figure 5), the productivity (see figure 6),
and the effort needed to end the project (see figure 7). The results obtained with these
simulations can help to determine the most efficient value for this parameter in terms
of delivery time, productivity, and cost.

Fig. 5. Sensitivity analysis of the integration start constraint on the delivery time

In order to start the integration phase parts of the glueware code and the application
system need to be completed. In the model, the parameter that determines the starting
moment of the integration phase is measured as the percentage of the glueware code
that needs to be coded before the integration phase can start.

Figure 5 shows different moments to begin the integration phase (expressed in
percentage of the glueware coded) and its effect on the delivery time. The simulation
outputs suggest that the best delivery time is achieved when the integration phase
starts when 60% to 80% of the glueware has been developed.

Fig. 6. Sensitivity analysis of the integration start constraint on productivity

Figure 6 shows the influence of the moment at which the integration phase starts
on the productivity needed in the project. The simulation outputs suggest that the later
the integration process starts, the higher values of productivity need to be achieved to
meet the deadline and the objectives of the project.

In Figure 7, the effect of the integration start point on the effort needed to end the
project is shown. Best results are again obtained when the integration phase starts
when 60% to 80% of the glueware has been developed. For higher values, the effort
needed, and therefore the overall costs, grow rapidly.

Sensitivity analysis of the model demonstrates that, from a qualitative point of
view, the patterns of behavior shown are consistent with reality and are the ones that
one can expect under the scenarios modeled.

Fig. 7. Sensitivity analysis of the integration start constraint on effort needed

Figure 8 shows the evolution of the global number of tasks developed in each one
of the phases of the lifecycle. The number of tasks accomplished shown here is the
result of adding the number of tasks accomplished given by each dynamic module
that is simulating the specific phase. Note that the figure represents this variable as the
percentage of accomplished tasks, showing the temporary evolution of the life cycle
in accordance with the sequence and prerequisites restrictions loaded in the inputs of
the model.

Tasks accomplished

Time (months)

Accomplished Fraction - Design

Accomplished Fraction - Analysis

Accomplished Fraction - Coding

Accomplished Fraction - Test

Fig. 8. Tasks accomplished evolution of lifecycle phases

Finally, as it was previously mentioned, all the models within this framework have
been re-engineered in order to develop a tool for software process improvement. The
new dynamic modules developed for the specific features of COTS have been coded
into a family of JavaTM classes that inherit and implement the protocol of behavior
defined in the framework. As it has been previously said, the tool is intended to asses

in the design of software process improvement. The experiment of different
improvement initiatives can be done by populating the model with, either, ordinal
values for the parameters, or a range of values where the parameters can vary. As a
result of running the simulations, a database is fed with data that can be then analyzed
to determine the effect of the improvement initiative. One of the techniques that we
are currently using to perform this analysis is automatic learning [9].

4 Conclusions and Further Work

In this work, we have presented the first results of a research effort aimed to the
development of a set of dynamic modules to model and simulate COTS-based
software development process. These modules are then integrated in a dynamic
framework that had been previously developed to help organizations design and
evaluate process improvement initiatives [12].

The resulting and enhanced framework integrates a set of traditional techniques for
software process management, measuring, monitoring and control, with an extensive
use of System Dynamics to build models for the software process. It is important to
notice that one of the main features of this dynamic framework is that the process of
model building triggers itself a metrics collection program [10]. This metrics
collection program contributes to a better understanding of the software process
carried out in the organization. In addition, the data collected by these programs are
useful too to validate and populate the dynamic modules. In the case of COTS
development this is very important as the number of parameters or process drivers
that have been proposed in literature is high [2].

As it has been previously said, the building approach followed has the features of
modularity, abstraction, and reusability. These are features that intend to ease and
promote the use of this kind of modeling, which has been proved to be successful in
other areas of engineering, in the software industry.

The conceptual ideas have been implemented to develop a tool using VenSim®
(design, development, and testing of the dynamic modules) and JavaTM technology.
The results obtained from the simulation can be graphically displayed in order to
merge in a single view the static data offered by the traditional models with the
dynamic data provided by the simulation runs. After this, it is possible to experiment
different process improvements and alternative plans just by changing the values of
the parameter(s) required and running new simulations. All the results obtained are
saved in a database. This database may then be used to feed some machine learning
algorithms in order to automatically obtain management and process improvement
rules.

Our future work is mainly concentrated on the full development of dynamic
modules to model the formal reviews that take place after each of the phases shown in
Figure 1. In addition, although the experiments carried out with the current modules
prove that they reproduce the expected behavior from a qualitative point of view, we
intend to obtain real data to validate them from a quantitative perspective.

Acknowledgements. The authors wish to thank the Comisión Interministerial de
Ciencia y Tecnología, Spain, (under grant TIC2001-1143-C03-02) for supporting this
research effort.

References

1. Abdel-Hamid T. Madnick S., Software Project Dynamics: an Integrated Approach.
Prentice-Hall, 1991.

2. Abts CM. Boehm, B., COTS Software Integration Cost Modeling Study. June, 1997 [on-
line] (January 2004)
<http://sunset.usc.edu/COCOTS/cocots.html>

3. Brooks FP. No silver bullet. Essence and Accident of Software Engineering. IEEE
Computer, 20 (4) 10-19, April, 1987.

4. Kim W. Baik, J. Dynamic Model for COTS Glue Code Development and COTS
Integration, 1999 [on-line] (January 2004)
<http://sunset.usc.edu/classes/cs599_99/projects/COTS.pdf>

5. Morisio M. Sunderhaft N., Commercial-Off-The-Shelf (COTS): A Survey. December,
2002.

6. Paulk M. Garcia S.M. Chrissis M.B. Bush. M., Key practices of the capability maturity
model. Version 1.1 Technical Report CMU/SEI-93-TR-25. Software Engineering
Institute, Carnegie Mellon University, Pittsburg, PA (1993)

7. Pope A., The CORBA Reference Guide: Understanding the Common Object Request
Broker Architecture. Addison-Wesley, 1998.

8. Raffo D. Spehar G. Nayak U., Generalized Simulation Models: What, Why and How?
Proceedings of Software Process Simulation Modeling Workshop, ProSim 2003. Oregon,
USA, May 2003.

9. Ramos I. Aguilar J. Riquelme JC. Toro M., A new method for obtaining software project
management rules. SQM 2000, Greenwich, UK, June 2000, 149-160.

10. Ruiz M. Ramos I. Toro M., A Dynamic Integrated Framework for Software Process
Improvement. Software Quality Journal, Vol. 10, Nº2, 2002, 181-194.

11. Ruiz M. Ramos I. Toro M., An Integrated Framework for Simulation-Based Software
Process Improvement. Proceedings of Software Process Simulation Modeling Workshop,
ProSim 2003. Oregon, USA, May 2003.

12. Ruiz M. Ramos I. Toro M., Integrating Dynamic Models for CMM-Based Software
Process Improvement, in Markku Oivo, Seija Komi-Sirviö (Eds.): Product Focused
Software Process Improvement, 4th International Conference, PROFES 2002,
Rovaniemi, Finland, December 9-11, 2002, Proceedings. LNCS 2559, Springer-Verlag,
2002,

13. Senge P., The Fifth Discipline. Currency, 1st edition, 1994.
14. Williamson H., XML: The Complete Reference. McGraw-Hill Osborne Media, 1st

edition, 2001.

	1 Introduction
	2 Developing the Simulation Model for COTS Process
	2.1 Motivation and Problem Definition
	2.2 Simulation Approach
	2.3 COTS Process Modeled
	2.4 Development of the Simulation Modules

	3 First Results of the Simulation
	4 Conclusions and Further Work

