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Control issues

The meaning of control

CONTROL PROBLEMS

What is usual: analysis and (numerical) resolution of

=

Beyond: control, i.e. acting to get good (or the best) results ...

What is easier? Solving? Controlling?
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Background
Optimal control

OPTIMAL CONTROL

The (general) optimal control problem;

Minimize J(v,y)
Subjectto v € Vag, ¥ € Vaa, (v,y) satisfies (S)
with
E(y)=F(v) + ... (S)

Main questions: 3, uniqueness/multiplicity, characterization, computation, . ..
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Control oriented to therapy and tumor growth

Optimal radioterapy strategies

MODELLING AND OPTIMIZING RADIOTHERAPY STRATEGIES
(glioblastoma, results by R Echevarria and others, 2007)

e Brain ~ a two-dimensional crown section
e 2 subdomains

8c<
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Control oriented to therapy and tumor growth

Optimal radioterapy strategies

The state equation (a simplified description of the phenomenon):

¢t — 0i(D(x)dic) = (p— viu)c, (x,t)€Qx(0,T)
{ Clieo = Co, X €Q (E)
P ooa

¢ = c(x, t) is the state: a cancer cell population density

v = v(x, t) is the control: a radiotherapy administration dose
Glioblastoma [Murray-Swanson, 90’s], D(x) = Dy or Dy (white and grey
matters)

The optimal control problem:

{ Minimize J(v,y) =3 [ 10, TP+ 3 [y 0.1 IV

Subjectto 0 <v <M, [f xon V< R, ..., (v,y) satisfies (E)
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Background
Controllability

CONTROLLABILITY

A null controllability problem

Find (v,y)
Such that v € Vag, (v,y) satisfies (ES), y(T) =0
with
E)=yvi+AYy)=F(Vv) + ... (ES)

Main questions: 3, uniqueness/multiplicity, characterization, computation, ...
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Controllability problems, examples and applications
Examples and applications

FIRST EXAMPLE:

1D heat:
Y — Yo = Vi, (X,t)€(0,1)><(o, T)
y(x,0) = y°(x), x€(0,1)

We assume: w = (a,b),0 <a< b< 1
Null controllability problem: For all y° find v such that y(T) = 0
NC? Yes, for all w and T

Applications: Heating and cooling, controlling a population, etc.
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Hierarchical control

The system and the controls. Meaning

A HIERARCHICAL CONTROL PROBLEM

Three controls: one leader, two followers

yt_}/xx:f1O+V11O1+V2102» (th)€(071)><(077-)
(H) y(0,)=y(1,1)=0, te(0,T)
{ y(XvO) :yO(X)7 X € (071)

Different intervals O, O;

Three objectives:

@ Get y(T) = 0 — Null controllability
@ Atthe sametime, y ~ yiqin O;q x (0, T), i = 1,2, reasonable effort:

i of [yl euf] it i=ve
0j,¢x(0,T) 0;x(0,T)

Bi-objective optimal control

What can we do?
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Hierarchical control

The system and the controls. Meaning

y(0,t) =y(1,t)=0, te(0,T)
y(X’O):yO(X)v X€(071)

Goal: drive y to rest and keep y close to yj 4 in O; x (0, T) fori=1,2

Yi— Yo =Moo+ vilo, +vlo,, (x,t)€(0,1)x(0,T)
(H)

Many applications:

@ Heating: Controlling temperatures
Various heat sources at different locations
Heat PDE (linear, semilinear, etc.)
@ Tumor growth: Controlling tumor cell densities
Radiotherapy strategies
Reaction-diffusion systems (linear, semilinear, etc.), bilinear control
@ Fluid mechanics: Controlling fluid velocity fields
Several mechanical actions
Stokes, Navier-Stokes or similar
@ Finance: Controlling the price of an option
Several agents at different stock prices, etc.
Backwards in time heat-like PDE
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Hierarchical control
The Stackelberg-Nash strategy
THE STACKELBERG-NASH STRATEGY

Step 1: f is fixed

Ji(vi, vo) := a,// |Y*}/i,d|2+u,// i, i=1,2
O; g% (0,T) O;%x(0,T)

Find a Nash equilibrium (v (), vo(f)) with vi(f) € L2(O; x (0, T)):

J1(V1(f)7 Vg(f)) S ;/1(V17 Vz(f)) VV1 S L2(01 X (0, T))
Jg(V1(f), Vg(f)) < Jg(V1(f), V2) \V/Vg € LZ(OQ X (0, T))

Equivalent to:

1 1
Yi—Yu=Mo— —d11lo, — —d210,
i I

(HN) —bit — Gixx = ai(y — Yia)lo;, 1=1,2
¢I(07t):¢l(17t):07 y(07t):y(17t):05 tE(O,T)
y(X7O):yO(X)7 ¢i(X7 T):07 X6(071)

0 1 R
Then: v;(f) = _;T,-‘ZS"OIX(O’T) (Pontryagin)



Hierarchical control

The Stackelberg-Nash strategy
THE STACKELBERG-NASH STRATEGY
Step 2: Find f such that

1 1

Vi— Y=o — E¢11o1 = Eqﬁﬂoz

(HSN); —¢it — Pix = 0oi(y — Yid)lo;,, i=1,2
¢I(O7t):¢l(17t):07 y(ovt):y(17t)207 te(07T)
y(x,0) = y°(x), ¢i(x,T) =0, xe€(0,1)

(HSN), y(x,T)=0, x¢€(0,1)

with [|fll .20 x 0,7y < CIY°ll.2

For instance, for y; 4 = 0, equivalent to:

R(L) — R(M), with Ly® :=y(-,T), Mf:=y(-,T)...

In turn, equivalent to: ||[L*7 || < [M*yT|| vyT € L3(0,1)
(classical, functional analysis; [Russell, 1973])
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Hierarchical control
The result. Idea of the proof

Theorem [Araruna-EFC-Santos]

Assume: O1.q = 024, 0j.g N O £ 0, large u;
3p such that, if [, 1) P2yig|? dx dt < +o0, i = 1,2, then:

vy°® e L3(Q) Inull controls f € L*(O x (0, T)) & Nash pairs (vi(f), va(f))

Idea of the proof:
1-Large i = Vfe L?(O x (0, T)) 3! Nash equilibrium (v;(f), vo(f))
2- ||l yT| < M7 VT e [3(0,1) means observability:

2

uw\rzou%Z// P2y dxdt < C// [[? dx o
3 Q Ox(0,T)

for all 47, with =

—t— o = Ly a'log, N Y = W10,
Pler =97(x), Y=o =0, etc.
Observability < Carleman estimates for 4, +'

2
// p‘z\w\zdxdt—&—Z// 52 dx dit < c// 22 dx dit
Q — JJa Ox(0,T)



Hierarchical control
Extensions

EXTENSIONS

@ More followers, coefficients, non-scalar parabolic systems, other
functionals, boundary controls, higher dimensions, etc.

@ Semilinear systems, for instance:

Vi— Yo =F(x, tby)+flo+ >0, vilo,
y(0,t)=y(1,t)=0, te(0,T), etc.

OK for Lipschitz-continuous F
@ Constraints, for instance:

Vi— Yo =Moo+ 30, vilo,
y(0,t)=y(1,t) =0, te(0,T), etc.

Find a constrained Nash equilibrium (v4(f), v2(f)) with
Vi(f) € Ui ag C L2(O; x (0, T)):

J1(V1(f), Vz(f)) < J1(V17 Vg(f)) Yvi € Z/[1,ad
Jg(V1(f), Vz(f)) < JZ(V1(f), Vg) Yo € (/{2_’,3(1

Then, find f such that y|;—.r =0
OK for local constraints, i.e. Ui ag = { vi € L2(O; x (0, T)) : vi(x, 1) € L; }
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Additional results and comments

Other questions

MORE COMMENTS:

@ Previous work: [Guillén et al. 2013]

@ The previous proof — a method to compute f and (v4(f), va(f))
@ O14 # 02,47

@ Other strategies? Stackelberg-Pareto controllability?

@ Numerical results?

In progress . ..
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Turbulence control (l)

Background: turbulence, a-models and control

CONTROLLING TURBULENCE (1)

The Leray-a model - distributed controls:

i+ (z-V)y—wAy+Vp=vi,, V-y=0
z—d?Az+Vn=y, V-z=0
y(x,t)=z(x,t)=0, (x,t) €02 x(0,T)
y(x,0) = y°(x)

AC? NC? ECT? OPEN
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Background: turbulence, a-models and control

Turbulence

Fluid regimes: Laminar or turbulent
[Reynolds 1895], [Kolmogorov 1941], [Batchelor 1953]

———==(vs. turbulent)

e —

itp: /v flickr.cc 1/

Main characteristics of turbulence:

- Fast variations in space and time, wide range of length scales (eddy motion)
- Well behavior of (appropriately) averaged variables

Typically: small (resp. large) Re := UL/v = laminar (resp. turbulent) flow
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Background: turbulence, a-models and control

Turbulence

Turbulent flows in waves and tornados
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Background: turbulence, a-models and con

Turbulence

@
o
el
L)
)
=
3
=1

http://www.emmett-photography.com

Turbulent smoke rings
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Background: turbulence, a-models and control

Turbulence

To understand something on turbulence: [Schlichting 1968], [Temam 1988],
[Lesieur 1997], [Matthieu-Scott 2000]

Turbulence modelling
1 - Start from Navier-Stokes:

v+ -V)y-—wlAy+Vp=f, V-y=0

2 - Averages:

y=y+y, p=p+p
For instance, y(x, t) := lim__,¢+ ffl(x’,t’)—(x,t)lgs y(x',t') dx dt
Reynolds (PDE'’s for y and p?):

Vi+V-(y®y)-wAy+Vp=f V-y=0

3 - Closure hypotheses: assumptions relating y ® y and y
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Background: turbulence, a-models and control

a-models

Reynolds: B
Yi+V-(y®y)-wAy+Vp=£f V-y=0

A particular closure hypothesis:
YRy~ 2z, 9y, with z, = (Id. + o°A)"'y, o — 0"
Leray-a model:

Vi+ (2o V)Y — oAy +Vp=1Ff, V-y=0
Zo —PAZ, + Vo =Y, V-2,=0

[Leray 1934], [Cheskidov-Holm-Olson-Titi 2005]
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Background: turbulence, a-models and control

Control

The significance of controlling a turbulence model:
Yi+V-S—unlAy+Vp=vi,, V-y=0

with S = S(¥(-, -)) (an approximation of y ® y)
@ We control averaged states

@ With averages depending on «, are controls uniformly bounded?
Do averaged controls converge?

If yes: controlling the Navier-Stokes system in the limit
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Background: turbulence, a-models and control

Basic results

Navier-Stokes:
i+ -V)y—wlAy+Vp=vi,, V-y=0
y(x,t)=0, (x,t)€dQ2x(0,T)
y(x,0) = y°(x)

AC? NC? ECT? OPEN

What we know: Local ECT

Theorem [EFC-Guerrero-Imnuvilov-Puel 2004]

Fix a solution (y, p), withy € L=
Je > 0 such that ||y°® — )7(0)|\H3 < e = Fcontrols such that y(T) = y(T)

For the proof:
@ Reduce ECT to NC, (NC) = “F(y, v) = 0” in an appropriate space
@ Then: apply Liusternik’s Theorem (linearized at zero is NC)

Other results, among them:

- Global AC for when N = 2, Navier boundary conditions [Coron 1996]

- Global NC with periodicity [Fursikov-Imanuvilov 1999], without boundary
[Coron-Fursikov 19961, . ..
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Main results
Local uniform NC for Leray-

The Leray-a model - distributed controls:

Yi+(z-V)y—wAy+Vp=vil,, V.-y=0
z—d?Az+Vr=y, V-z=0
y(x,t)=2z(x,t) =0, (x,t)€02x(0,T)
y(x,0) = y°(x)

AC? NC? ECT? OPEN
What we know: local NC, controls converge as o — 07

Theorem [Araruna, EFC, Souza 2014]

Je > O such that y° € H, |[|y°||,2 < e = 3 controls v,, such that y(T) =0
Furthermore, ||v.||2 < C

H={wel2(Q":V-w=0in Q w-n=0 ondQ}
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Main results
Local uniform NC for Leray-

Idea of the proof (I):

Lemma (regularizing effect)

¢ = ¢(s) > 0, with ¢(s) - 0as s — 0":
a) Jarbitrarily small t* € (0, T/2) with ||y (£*)|Ioa)y < ¢(||¥oll2)
b) The set of these t* has positive measure

This lemma = we can assume that || yo||pa) << 1

Idea of the proof (lI):

@ Fixed-Point formulation:

z—d?Az+Vr=y, V-z=0

{ ie. z=(d. + a?A) "'y

Yi+(z-V)y —wAy+Vp=vil,, V.-y=0, etc.
@ y € L>=(0, T; D(A%?)), s > N/2 = z € L* and NC for Oseen uniformly
@ [[Vallioe(r2y < C, Va >0
@ y € compact set of L>=(0, T; D(A%/?))
© [|Yolle small = [|¥l| o (0, 7;p(a52) < C {1Vl oo (0, 700572 < C
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Main results
Local uniform NC for Leray-

Assume y° € H, ||y°||l2 <¢

Yat +(Za  V)Ya —0AYa + VP =Valw, VYo =0
Zo — 0PAZy + Vo =Yo, V-2=0

Yo(X, 1) = Zo(Xx, 1) =0, (x,1) €02 x(0,T)
Ya(x,0) = y°(x),  Ya(x,T)=0

Then, at least for a subsequence
@ v, — vweakly in L2(w x (0, T))
@ y., — yand z, — y strongly in L3(Q x (0, T)) etc.

y(x,t)=0, (x,t)€edx(0,T)

{yz+(y-V)y—quy+Vp:v1w7 V-y=0
y(x,0)=y°(x), y(x,T)=0
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Main results
Local uniform NC for Leray-

The Leray-o model - boundary controls:
More natural, but how?

The good boundary control problem:

i+ (z-V)y —wAy+Vp=0, V-y=0
z—d?Az+Vr=y, V-z=0
y(x,t)=z(x,t)y=h1,, (x,t) €02 x(0,T)
y(x,0) = y°(x)

Again, AC, NC, ECT are open and we get uniform local NC:

Theorem [Araruna, EFC, Souza 2014]

Je > 0 such that y° € V, ||y0HHg < €= 3o With [, ha - ndl =0, y(T) =0
Furthermore, ||ha | o (0, 7.11/2(1)) < C

V={we H@Q)":V-w=0 in Q}
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Main results

Local uniform NC for Leray-

Idea of the proof (I): An auxiliary extension €, a fictitious w

Lemma (modified regularizing effect)
Inp = 1(s) > 0, with 1(s) — 0 as s — 0*:

a) 3Tp € (0, T), h, € L°(0, To; H'/%(%)), (Vu, Per, Za» ™) @nd arbitrarily
small t* such that _
Yo can be extended to Q x (0, Tp), with ||j/a(t*)|\D(7\) < z/;(|\yo||H8)
b) The set of these t* has positive measure
c) h. is uniformly bounded in L*°(0, To; H'/?(%))

This lemma => we can work in Q x (0, T) assuming H)N/OHD(;) << 1
Idea of the proof (ll): Solve

A+ (VP —whj+Vp=vi, V-y=0 Qx(0,T)

z-d?Az+Vr=y, V-z=0, Qx(0,7)
y(x,t) =0, o0 % (0, T)
z(x,t) = y(x, 1), 902 % (0,7)
7(x,0) = 7°(x), (x,T) =0, Q

Again: Fixed-Point argument works .. .
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Main results

Local uniform NC for Leray-

The extended domain and the fictitious control region

E. Fernandez-Cara Control of PDEs



Main results
Local uniform NC for Leray-

Assume y° € V, |ly°lly <e

Yot + (Z(x . V)y(\ - VOAy(x +Vp: 07 \Y Yo = 0
Zo —0PAZy + Vo =Yo, V2o =0
yﬁ(X7t):z”(X7t):h01"r7 (X7t)€89><(07 T)
Ya(x,0) = yo(X)7 Ya(x,T)=0

Then, at least for a subsequence

@ h, — hweakly-x in L=(0, T; H'/2(v))
® y., — yand z, — y strongly in L2(Q x (0, T)) etc.

y(x,t) = z(x,t) = h1,, (x,t) €9Qx (0,T)

{yr+(y-V)y—VoAy+Vp=0, V-y=0
y(x,0)=y°(x), y(x,T)=0
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Additional results and comments
Other nonlinear systems

Simplified models: the Burgers and Burgers-« systems

L>0,T>0
Burgers:
ytfl/oyxx‘Fyyx:f» (X,t)G(O,L)X(O, T)
y(0,)=y(L,-)=0, te(0,T)
y('vo):yov XG(O,L)
Burgers-a:
,Vt - Voyxx + Zayx = f, (X7 t) € (Oa L) X (07 T)
Zo — 02 (Zo)x = Y, (x,t) € (0,L) x (0, T)
_V(O, ) = _V(L, ) = zu(O, ) = Za(Lv ) =0, te (07 T)
y(+,0) = yo, x €(0,L)
Motivations:

@ A “toy model” for Leray-«
@ Applications to the description of 1D motion

Similar results
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Additional results and comments
Other nonlinear systems

1D motion in a neon tube
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Additional results and comments
Other nonlinear systems

Traffic motion
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Additional results and comments
Other nonlinear systems

For small yo, again:

e NC
@ ||V ||oo(wx (0, 1)) S uniformly bounded

Remarks:

@ Comparison (maximum) principle, easier to get z, bounded in L*

@ Burgers is not globally NC.
Therefore: for large y°, at most, || Va||Loc (wx (0, 7)) is unbounded
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Turbulence control (l1)

Another model

CONTROLLING TURBULENCE (lI)

The Ladyzhenskaya-Smagorinsky model:
Coming back to turbulence modelling - Reynolds:

Vi+V-(y®y)-wAy+Vp=f V-y=0

How to relate y ® y and y?
Boussinesqg-like closure hypotheses:

yey~=y®y—R,with BR=wvr(Vy(-,-))Dy

R is the Reynolds tensor, vt is the turbulent viscosity
[Launder-Spalding 1972], [Cebeci-Smith 1974]

A simple assumption: v = v (||VY(-, )]?)

Y+ (- V)Y —v([oIVYP)AY +VPp=Y, V- ¥y =0
[Ladyzhenskaya 1961], [Smagorinsky 1963]

E. Fernandez-Cara Control of PDEs



Turbulence control (l1)

Another model

The Ladyzhenskaya-Smagorinsky model:

e+ -V)y —v([oVYP)Ay +Vp=v1,, V-y=0
y(x,t)=0, (x,t)€dQx(0,T)
y(x,0) = y°(x)

We assume: vr € C}, vr > 19 > 0

AC? NC? ECT? OPEN - What we know: local NC

Theorem [EFC-Limaco-Menezes 2014]

3e > 0 such that ||y°||,2 < e = 3 null controls

Arguments similar to those for Navier-Stokes:

@ Rewrite NC in the form (NC) = “F(y, v) = 0" in an appropriate space X
Key point: Choose X to have

@ F: X+ Z well defined and C' (small)
e F’(0,0) € L(X;Z) onto (large)

@ Then: apply Liusternik’s Theorem (linearized at zero is Stokes, NC)

Attention: local ECT is also open!
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Additional results and comments
Final comments

ADDITIONAL COMMENTS:

@ Many open questions remain:

o Other similar «-models (LANS-a, Cannasa-Holm model, etc.). NC?
Global control results?

Reducing the number of controls? Specially difficult in the boundary case!
Control results of other kinds? In particular, Lagrangian controllability?
[Glass-Horsin 2010 .. .]

@ Numerical analysis and convergence results for these and other
problems: in progress ...
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A nonlinear-nonlocal parabolic system
The system

Similar results for nonlinear-nonlocal parabolic systems:

yt— a(foy, Jo2)Ay = f(y, )+ vy, (%0 eQx(0,T)
(NN) b(Joy, Jo2)Ay =9(y.2), (x,1)€Q2x(0,T)
(X t)=2z(x,t)=0, (x,t)€0Qx(0,T)
y(x,0) = y°(x), z(x,0)=2"(x), x€Q
Several difficulties, mainly:
@ Nonlinear g, b, f,g
@ Only one control

[EFC-Limaco-Menezes 2013]

Applications: Controlling reacting media, interacting populations, among
others
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A nonlinear-nonlocal parabolic system
The system

An experiment, nonlinear-nonlocal system:
yz — a(fny, Jo2)Ay =f(y,2) +vi,, (x,1)€Qx(0,T)
(NN) ny fQ Ay g(y7 )7 (X7 t) € Q X (07 T)
(x t)=2z(x,t)=0, (x,t)e0Q2x(0,T)
y(x,0) = y°(x), z(x,0)=2"(x), x€Q
a,b,f,geCl,a>ay>0,b>by>0,08,9(0,0)#0

Q=(0,1),w=1(02,0.8), T = 0.5, yo(x) = sin(mx), Zo(x) = sin(2wx),
f=Ai(1+siny)y+Bi(1+sinz)z,g=A(1+siny)y+ Bx(1+sinz)z
a=za(1+(1+rP+88) "), b=b(1+(1+rP+)™).

Formulation F(y, z, v) = 0 + Quasi-Newton method — Only F’(0, 0, 0)!
Convergence is ensured

At every step: NC for a linear parabolic system (1 control)

Approximation: Py in (x, t) + multipliers (mixed formulation), C° in (x, t)
freeFem++ & mesh adaptation
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A nonlinear-nonlocal parabolic system
The mesh

MESH ADAPTATION

Figure: The initial mesh. Number of vertices: 232. Number of triangles: 402. Total
number of unknowns: 6 x 232 = 1392.
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A nonlinear-nonlocal parabolic system
The mesh

MESH ADAPTATION

Figure: The final adapted mesh. Number of vertices: 2903. Number of triangles: 5594.
Total number of unknowns: 6 x 2903 = 17418.
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A nonlinear-nonlocal parabolic system

The control

FINAL CONTROL

CONTROL

Figure: The computed null control.
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A nonlinear
The state

onlocal parabolic system

FIMAL STATE ()
0.05 -

0.04 <

0.03 =

W-STATE

Figure: The computed state y.
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A nonlinear-nonlocal parabolic system
The state

FINAL STATE (2)

2-STATE

Figure: The computed state z.
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Additional results and comments
Final comments
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