Some recent results concerning the theoretical and numerical controllability of PDEs

Enrique FERNÁNDEZ-CARA

Dpto. E.D.A.N. - Univ. of Sevilla

several joint works with

A. MÜNCH

Lab. Mathématiques - Univ. Clermont-Ferrand, France

D.A. SOUZA

Dpto. E.D.A.N. - Univ. of Sevilla

F.D. ARARUNA, M.C. SANTOS

Dpto. Matemática - UFPB - Brazil

J. LIMACO

Dpto. Matemática - UFF - Brazil

S. DE MENEZES

Dpto. Matemática - UFCE - Brazil

E. Fernández-Cara

Outline

- Background
- 2 Hierarchical control
 - The system and the controls. Meaning
 - The Stackelberg-Nash strategy
 - The result. Idea of the proof
 - Additional results and comments
- Turbulence control (I)
 - Background: turbulence, α -models and control
 - Main results
 - The boundary controllability case
 - Additional results and comments
- 4 Turbulence control (II)
 - The Ladyzhenskaya-Smagorinsky model
 - Additional results and comments
- A nonlinear-nonlocal parabolic system
 - The system
 - A numerical experiment

CONTROL PROBLEMS

What is usual: analysis and (numerical) resolution of

$$\left\{
\begin{array}{l}
E(U) = F \\
+ \dots
\end{array}
\right.$$

Beyond: control, i.e. acting to get good (or the best) results . . .

What is easier? Solving? Controlling?

OPTIMAL CONTROL

The (general) optimal control problem; an Euler's sentence: "Everything in the world obeys to a maximum or minimum principle"

Minimize
$$J(v, y)$$

Subject to $v \in \mathcal{V}_{ad}$, $y \in \mathcal{Y}_{ad}$, (v, y) satisfies (S)

with

$$E(y) = F(v) + \dots$$
 (S)

Main questions: \exists , uniqueness/multiplicity, characterization, computation, . . .

Control oriented to therapy and tumor growth

Optimal radioterapy strategies

MODELLING AND OPTIMIZING RADIOTHERAPY STRATEGIES (glioblastoma, results by R Echevarría and others, 2007)

- Brain ≈ a two-dimensional crown section
- 2 subdomains

The state equation (a simplified description of the phenomenon):

$$\begin{cases}
c_t - \partial_i (D(x)\partial_i c) = (\rho - v \mathbf{1}_{\omega}) c, & (x, t) \in \Omega \times (0, T) \\
c|_{t=0} = c_0, & x \in \Omega \\
+ \dots
\end{cases}$$
(E)

c=c(x,t) is the state: a cancer cell population density v=v(x,t) is the control: a radiotherapy administration dose Glioblastoma [Murray-Swanson, 90's], $D(x)=D_w$ or D_g (white and grey matters)

The optimal control problem:

$$\begin{cases} & \text{Minimize } J(v,y) = \frac{1}{2} \int_{\Omega} |c(x,T)|^2 + \frac{1}{2} \iint_{\omega \times (0,T)} |v|^2 \\ & \text{Subject to } 0 \leq v \leq M, \ \iint_{\omega \times (0,T)} v \leq R, \ \dots, \ (v,y) \text{ satisfies } (E) \end{cases}$$

CONTROLLABILITY

A null controllability problem

Find
$$(v, y)$$

Such that $v \in \mathcal{V}_{ad}$, (v, y) satisfies (ES), y(T) = 0

with

$$E(y) \equiv y_t + A(y) = F(v) + \dots$$
 (ES)

Main questions: ∃, uniqueness/multiplicity, characterization, computation, . . .

Controllability problems, examples and applications Examples and applications

FIRST EXAMPLE:

1D heat:

(H₁)
$$\begin{cases} y_t - y_{xx} = v\mathbf{1}_{\omega}, & (x,t) \in (0,1) \times (0,T) \\ y(0,t) = y(1,t) = 0, & t \in (0,T) \\ y(x,0) = y^0(x), & x \in (0,1) \end{cases}$$

We assume: $\omega = (a, b)$, 0 < a < b < 1Null controllability problem: For all y^0 find v such that y(T) = 0NC? Yes, for all ω and T

Applications: Heating and cooling, controlling a population, etc.

A HIERARCHICAL CONTROL PROBLEM

Three controls: one leader, two followers

(H)
$$\begin{cases} y_t - y_{xx} = f \mathbf{1}_{\mathcal{O}} + v_1 \mathbf{1}_{\mathcal{O}_1} + v_2 \mathbf{1}_{\mathcal{O}_2}, & (x, t) \in (0, 1) \times (0, T) \\ y(0, t) = y(1, t) = 0, & t \in (0, T) \\ y(x, 0) = y^0(x), & x \in (0, 1) \end{cases}$$

Different intervals \mathcal{O} , \mathcal{O}_i

Three objectives:

- Get y(T) = 0 Null controllability
- At the same time, $y \approx y_{i,d}$ in $\mathcal{O}_{i,d} \times (0,T)$, i = 1,2, reasonable effort:

$$\text{Minimize } \alpha_{i} \! \iint_{\mathcal{O}_{i,d} \times (0,T)} \left| y - y_{i,d} \right|^{2} + \mu_{i} \! \iint_{\mathcal{O}_{i} \times (0,T)} \left| \frac{\mathbf{v}_{i}}{\mathbf{v}_{i}} \right|^{2}, \quad i = 1,2$$

Bi-objective optimal control

What can we do?

(H)
$$\begin{cases} y_t - y_{xx} = f \mathbf{1}_{\mathcal{O}} + v_1 \mathbf{1}_{\mathcal{O}_1} + v_2 \mathbf{1}_{\mathcal{O}_2}, & (x, t) \in (0, 1) \times (0, T) \\ y(0, t) = y(1, t) = 0, & t \in (0, T) \\ y(x, 0) = y^0(x), & x \in (0, 1) \end{cases}$$

Goal: drive y to rest and keep y close to $y_{i,d}$ in $O_i \times (0, T)$ for i = 1, 2

Many applications:

- Heating: Controlling temperatures
 Various heat sources at different locations
 Heat PDE (linear, semilinear, etc.)
- Tumor growth: Controlling tumor cell densities
 Radiotherapy strategies
 Reaction-diffusion systems (linear, semilinear, etc.), bilinear control
- Fluid mechanics: Controlling fluid velocity fields Several mechanical actions Stokes, Navier-Stokes or similar
- Finance: Controlling the price of an option Several agents at different stock prices, etc. Backwards in time heat-like PDE

THE STACKELBERG-NASH STRATEGY

Step 1: f is fixed

$$J_{i}(v_{1}, v_{2}) := \alpha_{i} \iint_{\mathcal{O}_{i,d} \times (0,T)} |y - y_{i,d}|^{2} + \mu_{i} \iint_{\mathcal{O}_{i} \times (0,T)} |v_{i}|^{2}, \quad i = 1, 2$$

Find a Nash equilibrium $(v_1(f), v_2(f))$ with $v_i(f) \in L^2(\mathcal{O}_i \times (0, T))$:

$$J_1(v_1(f), v_2(f)) \le J_1(v_1, v_2(f)) \quad \forall v_1 \in L^2(\mathcal{O}_1 \times (0, T))$$

$$J_2(v_1(f), v_2(f)) \le J_2(v_1(f), v_2) \quad \forall v_2 \in L^2(\mathcal{O}_2 \times (0, T))$$

Equivalent to:

Then: $v_i(f) = -\frac{1}{\mu_i}\phi_i|_{\mathcal{O}_i\times(0,T)}$ (Pontryagin)

THE STACKELBERG-NASH STRATEGY

Step 2: Find f such that

$$(HSN)_1 \qquad \left\{ \begin{array}{l} y_t - y_{xx} = f1_{\mathcal{O}} - \frac{1}{\mu_1} \phi_1 1_{\mathcal{O}_1} - \frac{1}{\mu_2} \phi_2 1_{\mathcal{O}_2} \\ -\phi_{i,t} - \phi_{i,xx} = \alpha_i (y - y_{i,d}) 1_{\mathcal{O}_i}, \quad i = 1, 2 \\ \phi_i(0,t) = \phi_i(1,t) = 0, \ y(0,t) = y(1,t) = 0, \quad t \in (0,T) \\ y(x,0) = y^0(x), \ \phi_i(x,T) = 0, \quad x \in (0,1) \end{array} \right.$$

$$(HSN)_2$$
 $y(x,T) = 0, x \in (0,1)$

with
$$\|f\|_{L^2(\mathcal{O}\times(0,T))} \le C\|y^0\|_{L^2}$$

For instance, for $y_{i.d} \equiv 0$, equivalent to: $R(L) \hookrightarrow R(M)$, with $Ly^0 := y(\cdot, T)$, $Mf := y(\cdot, T) \dots$ In turn, equivalent to: $||L^*\psi^T|| \le ||M^*\psi^T|| \quad \forall \psi^T \in L^2(0, 1)$ (classical, functional analysis; [Russell, 1973])

Theorem [Araruna-EFC-Santos]

Assume:
$$\mathcal{O}_{1,d} = \mathcal{O}_{2,d}, \, \mathcal{O}_{i,d} \cap \mathcal{O} \neq \emptyset$$
, large $\mu_i = \hat{\beta}$ such that, if $\iint_{\mathcal{O}_d \times (0,T)} \hat{\rho}^2 |y_{i,d}|^2 dx dt < +\infty, \, i = 1, 2$, then:

$$\forall y^0 \in L^2(\Omega) \ \exists \ \text{null controls} \ f \in L^2(\mathcal{O} \times (0,T)) \ \& \ \text{Nash pairs} \ (v_1(f),v_2(f))$$

Idea of the proof:

1 - Large
$$\mu_i \Rightarrow \forall f \in L^2(\mathcal{O} \times (0,T)) \exists !$$
 Nash equilibrium $(v_1(f), v_2(f))$

2 -
$$\|L^*\psi^T\| \le \|M^*\psi^T\| \quad \forall \psi^T \in L^2(0,1)$$
 means observability:

$$\|\psi|_{t=0}\|^2 + \sum_{i=1}^2 \iint_Q \hat{\rho}^{-2} |\gamma^i|^2 dx dt \le C \iint_{\mathcal{O} \times (0,T)} |\psi|^2 dx dt$$

for all ψ^T , with

$$\begin{cases} -\psi_t - \psi_{xx} = \sum_{i=1}^2 \alpha_i \gamma^i \mathbf{1}_{\mathcal{O}_d}, & \gamma_t^i - \gamma_{xx}^i = -\frac{1}{\mu_i} \psi \mathbf{1}_{\mathcal{O}_i} \\ \psi|_{t=T} = \psi^T(x), & \gamma^i|_{t=0} = 0, \text{ etc.} \end{cases}$$

Observability \Leftarrow Carleman estimates for ψ, γ^i

$$\iint_{Q} \rho^{-2} |\psi|^{2} dx dt + \sum_{i=1}^{2} \iint_{Q} \hat{\rho}^{-2} |\gamma^{i}|^{2} dx dt \leq C \iint_{\mathcal{O} \times (0,T)} \rho^{-2} |\psi|^{2} dx dt$$

EXTENSIONS

- More followers, coefficients, non-scalar parabolic systems, other functionals, boundary controls, higher dimensions, etc.
- Semilinear systems, for instance:

$$\begin{cases} y_t - y_{xx} = F(x, t; y) + f 1_{\mathcal{O}} + \sum_{i=1}^m v_i 1_{\mathcal{O}_i} \\ y(0, t) = y(1, t) = 0, & t \in (0, T), \text{ etc.} \end{cases}$$

OK for Lipschitz-continuous F

Constraints, for instance:

$$\begin{cases} y_t - y_{xx} = f 1_{\mathcal{O}} + \sum_{i=1}^m v_i 1_{\mathcal{O}_i} \\ y(0,t) = y(1,t) = 0, & t \in (0,T), \text{ etc.} \end{cases}$$

Find a constrained Nash equilibrium $(v_1(f), v_2(f))$ with $v_i(f) \in \mathcal{U}_{i,ad} \subset L^2(\mathcal{O}_i \times (0,T))$:

$$J_1(v_1(f), v_2(f)) \le J_1(v_1, v_2(f)) \quad \forall v_1 \in \mathcal{U}_{1,ad}$$

$$J_2(v_1(f), v_2(f)) \le J_2(v_1(f), v_2) \quad \forall v_2 \in \mathcal{U}_{2,ad}$$

Then, find f such that $y|_{t=T} = 0$ OK for local constraints, i.e. $\mathcal{U}_{i,ad} = \{ v_i \in L^2(\mathcal{O}_i \times (0,T)) : v_i(x,t) \in L_i \}$

MORE COMMENTS:

- Previous work: [Guillén et al. 2013]
- The previous proof \rightarrow a method to compute f and $(v_1(f), v_2(f))$
- $\mathcal{O}_{1,d} \neq \mathcal{O}_{2,d}$?
- Other strategies? Stackelberg-Pareto controllability?
- Numerical results?

In progress ...

CONTROLLING TURBULENCE (I)

The Leray- α model - distributed controls:

$$\begin{cases} y_t + (z \cdot \nabla)y - \nu_0 \Delta y + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, & \nabla \cdot y = 0 \\ z - \alpha^2 \Delta z + \nabla \pi = y, & \nabla \cdot z = 0 \\ y(x, t) = z(x, t) = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x) \end{cases}$$

AC? NC? ECT? OPEN

Background: turbulence, $\alpha\text{-models}$ and control $_{\text{Turbulence}}$

Fluid regimes: Laminar or turbulent [Reynolds 1895], [Kolmogorov 1941], [Batchelor 1953]

Main characteristics of turbulence:

- Fast variations in space and time, wide range of length scales (eddy motion)
- Well behavior of (appropriately) averaged variables

Typically: small (resp. large) Re := $UL/\nu \Rightarrow$ laminar (resp. turbulent) flow

Background: turbulence, α -models and control $_{\text{Turbulence}}$

Turbulent flows in waves and tornados

Background: turbulence, α -models and control Turbulence

Turbulent smoke rings

E. Fernández-Cara

To understand something on turbulence: [Schlichting 1968], [Temam 1988], [Lesieur 1997], [Matthieu-Scott 2000]

Turbulence modelling

1 - Start from Navier-Stokes:

$$y_t + (y \cdot \nabla)y - \nu_0 \Delta y + \nabla p = f, \ \nabla \cdot y = 0$$

2 - Averages:

$$y = \overline{y} + y', \quad p = \overline{p} + p'$$

For instance, $\overline{y}(x,t) := \lim_{\varepsilon \to 0^+} \iint_{|(x',t')-(x,t)| \le \varepsilon} y(x',t') \, dx \, dt$ Reynolds (PDE's for \overline{y} and \overline{p} ?):

$$\overline{y}_t + \nabla \cdot (\overline{y \otimes y}) - \nu_0 \Delta \overline{y} + \nabla \overline{p} = \overline{f}, \ \nabla \cdot \overline{y} = 0$$

3 - Closure hypotheses: assumptions relating $\overline{y \otimes y}$ and \overline{y}

Background: turbulence, α -models and control α -models

Reynolds:

$$\overline{y}_t + \nabla \cdot (\overline{y \otimes y}) - \nu_0 \Delta \overline{y} + \nabla \overline{p} = \overline{f}, \ \nabla \cdot \overline{y} = 0$$

A particular closure hypothesis:

$$\overline{y\otimes y} pprox z_{\alpha} \otimes \overline{y}, \text{ with } z_{\alpha} = (\text{Id.} + \alpha^2 A)^{-1} \overline{y}, \ \alpha \to 0^+$$

Leray- α model:

$$\left\{ \begin{array}{l} \overline{y}_t + (z_\alpha \cdot \nabla) \overline{y} - \nu_0 \Delta \overline{y} + \nabla p = \overline{f}, \ \nabla \cdot \overline{y} = 0 \\ z_\alpha - \alpha^2 \Delta z_\alpha + \nabla \pi_\alpha = \overline{y}, \ \nabla \cdot z_\alpha = 0 \end{array} \right.$$

[Leray 1934], [Cheskidov-Holm-Olson-Titi 2005]

Background: turbulence, α -models and control $_{\text{Control}}$

The significance of controlling a turbulence model:

$$\overline{y}_t + \nabla \cdot S - \nu_0 \Delta \overline{y} + \nabla \overline{p} = v \mathbf{1}_{\omega}, \ \nabla \cdot \overline{y} = 0$$

with $S = S(\overline{y}(\cdot, \cdot))$ (an approximation of $\overline{y \otimes y}$)

- We control averaged states
- With averages depending on α, are controls uniformly bounded?
 Do averaged controls converge?
 If yes: controlling the Navier-Stokes system in the limit

Background: turbulence, α -models and control $_{\rm Basic\ results}$

Navier-Stokes:

$$\left\{ \begin{array}{l} y_t + (y \cdot \nabla)y - \nu_0 \Delta y + \nabla p = \frac{\mathbf{v}}{\mathbf{1}_{\omega}}, \ \, \nabla \cdot y = 0 \\ y(x,t) = 0, \quad (x,t) \in \partial \Omega \times (0,T) \\ y(x,0) = y^0(x) \end{array} \right.$$

AC? NC? ECT? OPEN

What we know: Local ECT

Theorem [EFC-Guerrero-Imnuvilov-Puel 2004]

Fix a solution $(\overline{y}, \overline{p})$, with $\overline{y} \in L^{\infty}$ $\exists \varepsilon > 0$ such that $\|y^0 - \overline{y}(0)\|_{H^1_0} \le \varepsilon \Rightarrow \exists$ controls such that $y(T) = \overline{y}(T)$

For the proof:

- Reduce ECT to NC, (NC) \cong "F(y, v) = 0" in an appropriate space
- Then: apply Liusternik's Theorem (linearized at zero is NC)

Other results, among them:

- Global AC for when N = 2, Navier boundary conditions [Coron 1996]
- Global NC with periodicity [Fursikov-Imanuvilov 1999], without boundary [Coron-Fursikov 1996], ...

The Leray- α model - distributed controls:

$$\begin{cases} y_t + (z \cdot \nabla)y - \nu_0 \Delta y + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, & \nabla \cdot y = 0 \\ z - \alpha^2 \Delta z + \nabla \pi = y, & \nabla \cdot z = 0 \\ y(x, t) = z(x, t) = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x) \end{cases}$$

AC? NC? ECT? OPEN

What we know: local NC, controls converge as $\alpha \to 0^+$:

Theorem [Araruna, EFC, Souza 2014]

 $\exists \varepsilon > 0$ such that $y^0 \in H$, $\|y^0\|_{L^2} \le \varepsilon \Rightarrow \exists$ controls v_{α} such that y(T) = 0 Furthermore, $\|v_{\alpha}\|_{L^2} \le C$

$$H = \{ w \in L^2(\Omega)^N : \nabla \cdot w = 0 \text{ in } \Omega, w \cdot n = 0 \text{ on } \partial\Omega \}$$

Idea of the proof (I):

Lemma (regularizing effect)

$$\exists \phi = \phi(s) > 0$$
, with $\phi(s) \to 0$ as $s \to 0^+$:

- a) \exists arbitrarily small $t^* \in (0, T/2)$ with $||y(t^*)||_{D(A)} \le \phi(||y_0||_{L^2})$
- b) The set of these t^* has positive measure

This lemma \Rightarrow we can assume that $||y_0||_{D(A)} << 1$

Idea of the proof (II):

Fixed-Point formulation:

$$\left\{ \begin{array}{l} z - \alpha^2 \Delta z + \nabla \pi = \bar{y}, \ \, \nabla \cdot z = 0 \\ \text{i.e.} \ \, z = (\mathbf{Id.} + \alpha^2 A)^{-1} \bar{y} \\ y_t + (z \cdot \nabla) y - \nu_0 \Delta y + \nabla p = \mathbf{v} \mathbf{1}_\omega, \ \, \nabla \cdot y = 0, \ \, \text{etc.} \end{array} \right.$$

- $\bar{y} \in L^{\infty}(0, T; D(A^{s/2})), s > N/2 \Rightarrow z \in L^{\infty}$ and NC for Oseen uniformly
- $\|\mathbf{v}_{\alpha}\|_{L^{\infty}(L^2)} \leq C, \ \forall \alpha > 0$
- $y \in \text{compact set of } L^{\infty}(0, T; D(A^{s/2}))$
- $\bullet \ \|y_0\|_{H^2} \text{ small} \Rightarrow \|y\|_{L^{\infty}(0,T;D(A^{s/2})} \leq C \ \text{ if } \|\bar{y}\|_{L^{\infty}(0,T;D(A^{s/2})} \leq C$

Assume $y^0 \in H$, $||y^0||_{L^2} \le \varepsilon$

$$\begin{cases} y_{\alpha t} + (z_{\alpha} \cdot \nabla)y_{\alpha} - \nu_{0}\Delta y_{\alpha} + \nabla p = v_{\alpha}1_{\omega}, \ \nabla \cdot y_{\alpha} = 0 \\ z_{\alpha} - \alpha^{2}\Delta z_{\alpha} + \nabla \pi_{\alpha} = y_{\alpha}, \ \nabla \cdot z = 0 \\ y_{\alpha}(x, t) = z_{\alpha}(x, t) = 0, \ (x, t) \in \partial \Omega \times (0, T) \\ y_{\alpha}(x, 0) = y^{0}(x), \ y_{\alpha}(x, T) = 0 \end{cases}$$

Then, at least for a subsequence

- $v_{\alpha} \rightarrow v$ weakly in $L^2(\omega \times (0, T))$
- $y_{\alpha} \to y$ and $z_{\alpha} \to y$ strongly in $L^2(\Omega \times (0, T))$ etc.

$$\begin{cases} y_t + (y \cdot \nabla)y - \nu_0 \Delta y + \nabla p = \mathbf{v} \mathbf{1}_{\omega}, & \nabla \cdot y = 0 \\ y(x, t) = 0, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x), & y(x, T) = 0 \end{cases}$$

The Leray- α model - boundary controls:

More natural, but how?

The good boundary control problem:

$$\begin{cases} y_t + (z \cdot \nabla)y - \nu_0 \Delta y + \nabla p = 0, & \nabla \cdot y = 0 \\ z - \alpha^2 \Delta z + \nabla \pi = y, & \nabla \cdot z = 0 \\ y(x, t) = z(x, t) = h \mathbf{1}_{\gamma}, & (x, t) \in \partial \Omega \times (0, T) \\ y(x, 0) = y^0(x) \end{cases}$$

Again, AC, NC, ECT are open and we get uniform local NC:

Theorem [Araruna, EFC, Souza 2014]

$$\exists \varepsilon > 0$$
 such that $y^0 \in V$, $\|y^0\|_{H_0^1} \le \varepsilon \Rightarrow \exists h_{\alpha}$ with $\int_{\gamma} h_{\alpha} \cdot n \, d\Gamma = 0$, $y(T) = 0$ Furthermore, $\|h_{\alpha}\|_{L^{\infty}(0,T;H^{1/2}(\gamma))} \le C$

$$V = \{ w \in H_0^1(\Omega)^N : \nabla \cdot w = 0 \text{ in } \Omega \}$$

Lemma (modified regularizing effect)

$$\exists \psi = \psi(s) > 0$$
, with $\psi(s) \to 0$ as $s \to 0^+$:

- a) $\exists T_0 \in (0, T), \ h_{\alpha} \in L^{\infty}(0, T_0; H^{1/2}(\gamma)), \ (y_{\alpha}, p_{\alpha}, z_{\alpha}, \pi_{\alpha})$ and arbitrarily small t^* such that
 - y_{α} can be extended to $\widetilde{\Omega} \times (0, T_0)$, with $\|\widetilde{y}_{\alpha}(t^*)\|_{D(\widetilde{A})} \leq \psi(\|y_0\|_{H_0^1})$
- b) The set of these t^* has positive measure
- c) h_{α} is uniformly bounded in $L^{\infty}(0, T_0; H^{1/2}(\gamma))$

This lemma \Rightarrow we can work in $\widetilde{\Omega} \times (0, T)$ assuming $\|\widetilde{\mathbf{y}}_0\|_{D(\widetilde{A})} << 1$ Idea of the proof (II): Solve

$$\begin{cases} & \tilde{y}_t + (\tilde{z} \cdot \nabla) \tilde{y} - \nu_0 \Delta \tilde{y} + \nabla \tilde{p} = \mathbf{v} \mathbf{1}_{\omega}, \ \nabla \cdot \tilde{y} = 0, & \widetilde{\Omega} \times (0, T) \\ & z - \alpha^2 \Delta z + \nabla \pi = \tilde{y}, \ \nabla \cdot z = 0, & \Omega \times (0, T) \\ & \tilde{y}(x, t) = 0, & \partial \widetilde{\Omega} \times (0, T) \\ & z(x, t) = \tilde{y}(x, t), & \partial \Omega \times (0, T) \\ & \tilde{y}(x, 0) = \tilde{y}^0(x), \ \tilde{y}(x, T) = 0, & \widetilde{\Omega} \end{cases}$$

Again: Fixed-Point argument works ...

The extended domain and the fictitious control region

Assume
$$y^0 \in V, \ \|y^0\|_{H^1_0} \leq \varepsilon$$

$$\begin{cases} y_{\alpha t} + (z_{\alpha} \cdot \nabla)y_{\alpha} - \nu_{0}\Delta y_{\alpha} + \nabla p = 0, & \nabla \cdot y_{\alpha} = 0 \\ z_{\alpha} - \alpha^{2}\Delta z_{\alpha} + \nabla \pi_{\alpha} = y_{\alpha}, & \nabla \cdot z_{\alpha} = 0 \\ y_{\alpha}(x,t) = z_{\alpha}(x,t) = h_{\alpha}1_{\gamma}, & (x,t) \in \partial\Omega \times (0,T) \\ y_{\alpha}(x,0) = y^{0}(x), & y_{\alpha}(x,T) = 0 \end{cases}$$

Then, at least for a subsequence

- $h_{\alpha} \to h$ weakly-* in $L^{\infty}(0, T; H^{1/2}(\gamma))$
- $y_{\alpha} \to y$ and $z_{\alpha} \to y$ strongly in $L^2(\Omega \times (0, T))$ etc.

$$\left\{ \begin{array}{l} y_t + (y \cdot \nabla)y - \nu_0 \Delta y + \nabla p = 0, \ \nabla \cdot y = 0 \\ y(x,t) = z(x,t) = \frac{h}{1}\gamma, \quad (x,t) \in \partial \Omega \times (0,T) \\ y(x,0) = y^0(x), \quad y(x,T) = 0 \end{array} \right.$$

Simplified models: the Burgers and Burgers- α systems L > 0, T > 0

Burgers:

$$\begin{cases} y_t - \nu_0 y_{xx} + y y_x = f, & (x, t) \in (0, L) \times (0, T) \\ y(0, \cdot) = y(L, \cdot) = 0, & t \in (0, T) \\ y(\cdot, 0) = y_0, & x \in (0, L) \end{cases}$$

Burgers- α :

$$\begin{cases} y_{t} - \nu_{0}y_{xx} + z_{\alpha}y_{x} = f, & (x, t) \in (0, L) \times (0, T) \\ z_{\alpha} - \alpha^{2}(z_{\alpha})_{xx} = y, & (x, t) \in (0, L) \times (0, T) \\ y(0, \cdot) = y(L, \cdot) = z_{\alpha}(0, \cdot) = z_{\alpha}(L, \cdot) = 0, & t \in (0, T) \\ y(\cdot, 0) = y_{0}, & x \in (0, L) \end{cases}$$

Motivations:

- A "toy model" for Leray-α
- Applications to the description of 1D motion

Similar results

Additional results and comments Other nonlinear systems

1D motion in a neon tube

Traffic motion

Additional results and comments Other nonlinear systems

For small y_0 , again:

- NC
- $\|v_{\alpha}\|_{L^{\infty}(\omega\times(0,T))}$ is uniformly bounded

Remarks:

- Comparison (maximum) principle, easier to get z_{α} bounded in L^{∞}
- Burgers is not globally NC. Therefore: for large y^0 , at most, $\|v_{\alpha}\|_{L^{\infty}(\omega \times (0,T))}$ is unbounded

CONTROLLING TURBULENCE (II)

The Ladyzhenskaya-Smagorinsky model:

Coming back to turbulence modelling - Reynolds:

$$\overline{y}_t + \nabla \cdot (\overline{y \otimes y}) - \nu_0 \Delta \overline{y} + \nabla \overline{\rho} = \overline{f}, \ \nabla \cdot \overline{y} = 0$$

How to relate $\overline{y \otimes y}$ and \overline{y} ?

Boussinesq-like closure hypotheses:

$$\overline{y \otimes y} \approx \overline{y} \otimes \overline{y} - R$$
, with $R = \nu_T(\nabla \overline{y}(\cdot, \cdot))D\overline{y}$

R is the Reynolds tensor, ν_T is the turbulent viscosity [Launder-Spalding 1972], [Cebeci-Smith 1974]

A simple assumption: $\nu_T = \nu_1(\|\nabla \overline{y}(\cdot,t)\|^2)$

$$\overline{y}_t + (\overline{y} \cdot \nabla)\overline{y} - \nu(\int_{\Omega} |\nabla \overline{y}|^2) \Delta \overline{y} + \nabla \overline{p} = \overline{y}, \ \nabla \cdot \overline{y} = 0$$

[Ladyzhenskaya 1961], [Smagorinsky 1963]

Turbulence control (II) Another model

The Ladyzhenskaya-Smagorinsky model:

$$\begin{cases} y_t + (y \cdot \nabla)y - \nu(\int_{\Omega} |\nabla y|^2) \Delta y + \nabla p = v \mathbf{1}_{\omega}, \ \nabla \cdot y = 0 \\ y(x,t) = 0, \ (x,t) \in \partial \Omega \times (0,T) \\ y(x,0) = y^0(x) \end{cases}$$

We assume: $\nu_T \in C_b^1$, $\nu_T \ge \nu_0 > 0$

AC? NC? ECT? OPEN - What we know: local NC

Theorem [EFC-Limaco-Menezes 2014]

 $\exists \varepsilon > 0$ such that $||y^0||_{L^2} \le \varepsilon \Rightarrow \exists$ null controls

Arguments similar to those for Navier-Stokes:

- Rewrite NC in the form (NC) \cong "F(y, v) = 0" in an appropriate space X Key point: Choose X to have
 - $F: X \mapsto Z$ well defined and C^1 (small)
 - $F'(0,0) \in \mathcal{L}(X;Z)$ onto (large)
- 2 Then: apply Liusternik's Theorem (linearized at zero is Stokes, NC)

Attention: local ECT is also open!

ADDITIONAL COMMENTS:

- Many open questions remain:
 - Other similar α -models (LANS- α , Cannasa-Holm model, etc.). NC?
 - Global control results?
 - Reducing the number of controls? Specially difficult in the boundary case!
 - Control results of other kinds? In particular, Lagrangian controllability?
 [Glass-Horsin 2010 . . .]
- Numerical analysis and convergence results for these and other problems: in progress . . .

Similar results for nonlinear-nonlocal parabolic systems:

$$(NN) \quad \begin{cases} y_t - a(\int_{\Omega} y, \int_{\Omega} z) \Delta y = f(y, z) + v_1_{\omega}, & (x, t) \in \Omega \times (0, T) \\ z_t - b(\int_{\Omega} y, \int_{\Omega} z) \Delta y = g(y, z), & (x, t) \in \Omega \times (0, T) \\ y(x, t) = z(x, t) = 0, & (x, t) \in \partial\Omega \times (0, T) \\ y(x, 0) = y^0(x), & z(x, 0) = z^0(x), & x \in \Omega \end{cases}$$

Several difficulties, mainly:

- Nonlinear a, b, f, g
- Only one control

[EFC-Límaco-Menezes 2013]

Applications: Controlling reacting media, interacting populations, among others

A nonlinear-nonlocal parabolic system The system

An experiment, nonlinear-nonlocal system:

$$(NN) \qquad \left\{ \begin{array}{l} y_t - a(\int_{\Omega} y, \int_{\Omega} z) \Delta y = f(y,z) + {\color{red} v} 1_{\omega}, \quad (x,t) \in \Omega \times (0,T) \\ z_t - b(\int_{\Omega} y, \int_{\Omega} z) \Delta y = g(y,z), \quad (x,t) \in \Omega \times (0,T) \\ y(x,t) = z(x,t) = 0, \quad (x,t) \in \partial \Omega \times (0,T) \\ y(x,0) = y^0(x), \quad z(x,0) = z^0(x), \quad x \in \Omega \end{array} \right.$$

$$a, b, f, g \in C_b^1$$
, $a \ge a_0 > 0$, $b \ge b_0 > 0$, $\partial_y g(0, 0) \ne 0$

$$\Omega = (0,1), \, \omega = (0.2,0.8), \, T = 0.5, \, y_0(x) \equiv \sin(\pi x), \, z_0(x) \equiv \sin(2\pi x), \, f \equiv A_1(1+\sin y) \, y + B_1(1+\sin z) \, z, \, g \equiv A_2(1+\sin y) \, y + B_2(1+\sin z) \, z \, a \equiv a_0(1+(1+r^2+s^2)^{-1}), \, b \equiv b_0(1+(1+r^2+s^2)^{-1}).$$

Formulation F(y, z, v) = 0 + Quasi-Newton method — Only F'(0, 0, 0)! Convergence is ensured

At every step: NC for a linear parabolic system (1 control)

Approximation: P_1 in (x, t) + multipliers (mixed formulation), C^0 in (x, t) freeFem++ & mesh adaptation

A nonlinear-nonlocal parabolic system

MESH ADAPTATION

Figure: The initial mesh. Number of vertices: 232. Number of triangles: 402. Total number of unknowns: $6 \times 232 = 1392$.

A nonlinear-nonlocal parabolic system The mesh

MESH ADAPTATION

Figure: The final adapted mesh. Number of vertices: 2903. Number of triangles: 5594. Total number of unknowns: $6 \times 2903 = 17418$.

Figure: The computed null control.

Figure: The computed state *y*.

Figure: The computed state z.

Additional results and comments Final comments

REFERENCES:

ARARUNA, F.D., FERNÁNDEZ-CARA, E. AND SANTOS, M.C. Stackelberg-Nash exact controllability for linear and semilinear parabolic equations.

To appear in ESAIM Control Optim. Calc. Var.

ARARUNA, F.D., FERNÁNDEZ-CARA, E. AND SOUZA, D.A. On the control of the Burgers-alpha model. Adv. Differential Equations 18, 9-10 (2013), 935–954.

ARARUNA, F.D., FERNÁNDEZ-CARA, E. AND SOUZA, D.A. Uniform local null control of the Leray- α model. ESAIM Control Optim. Calc. Var. 20 (2014) 1181-1202.

CLARK, H., FERNÁNDEZ-CARA, E., LÍMACO, J. AND MEDEIROS, L.A. Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Applied Mathematics and Computation 223 (2013) 483-505.

FERNÁNDEZ-CARA, E., LÍMACO, J. AND MENEZES, S.B. On the theoretical and numerical control of a Ladyzhenskaya-Smagorinsky model of turbulence. Submitted.

REFERENCES (Cont.):

FERNÁNDEZ-CARA, E. AND MÜNCH, A.

Numerical null controllability of semi-linear 1D heat equations: fixed point, least squares and Newton methods.

MCRF Volume 2, Number 3, September 2012.

FERNÁNDEZ-CARA, E. AND MÜNCH, A.

Strong convergent approximations of null controls for the 1D heat equation.

SeMA (2013) 61:49-78.

FERNÁNDEZ-CARA, E. AND MÜNCH, A.

Numerical Exact controllability of the 1D heat equation: duality and Carleman weights.

J Optim Theory Appl (2014) 163: 253–285.

THANK YOU VERY MUCH ...