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Óscar Falcón
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Óscar Falcón Classifications of evolution algebras over finite fields

https://www.researchgate.net/profile/Raul_Falcon2?el=1_x_100&enrichId=rgreq-57b66944e1f71a15e4449d45f59f97b9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA2MjI5ODtBUzozNzQyOTUzMTk1OTcwNTZAMTQ2NjI1MDM2NjY1Nw==
https://www.researchgate.net/profile/Juan_Valdes4?el=1_x_100&enrichId=rgreq-57b66944e1f71a15e4449d45f59f97b9-XXX&enrichSource=Y292ZXJQYWdlOzMwNDA2MjI5ODtBUzozNzQyOTUzMTk1OTcwNTZAMTQ2NjI1MDM2NjY1Nw==


CONTENTS

1 Preliminaries.
2 Isotopisms of evolution algebras
3 Procedures
4 Finite dimensional evolution algebras
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Evolution algebras.

Jianjun Paul Tian, 2004

An n-dimensional algebra E over a field K is
said to be an evolution algebra if it admits
a basis {e1, . . . , en} such that

(1) eiej = 0 if i 6= j ,

(2) eiei =
∑

j≤n aijej , for some ai1, . . . , ain ∈ K.

A = (aij) ≡ Matrix of structure constants.

Applications: Non-Mendelian Genetic, Dynamic Systems, Markov
Processes, Theory of Knots, Graph Theory and Group Theory.

Nilpotency and solvability ⇒ Disappearance of population in
evolution processes.

References (Tian’s Web Page):

https://www.math.nmsu.edu/∼jtian/e-algebra/e-alg-index.htm
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Evolution algebras.

Theorem (Casas et al., 2014)

Every non-zero 2-dimensional complex evolution algebra is
isomorphic to exactly one evolution algebra related to one of the
next matrix of structure constants

E1 :

(
1 0
0 0

)
, E2 :

(
1 0
1 0

)
, E3 :

(
1 1
−1 −1

)

E4 :

(
0 1
0 0

)
, E5a,b :

(
1 a
b 1

)
, E6c :

(
0 1
1 c

)
,

where ab 6= 1, c 6= 0 and

E5a,b
∼= E5b,a .

E6c
∼= E6c′ ⇔

c
c ′ = cos 2kπ

3 + i sin 2kπ3, for some k ∈ {0, 1, 2}.
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Isotopisms of algebras

Abraham Adrian Albert

1905-1972

Two algebras a and a′ are isotopic (') if there
exist three regular linear transformations f , g and
h from a to a′ such that

f (u)g(v) = h(uv), for all u, v ∈ a.

The triple (f , g , h) is an isotopism between a and a′.
To be isotopic is an equivalence relation among algebras.
f = g = h⇒ Isomorphism (∼=) of algebras.

Literature: Division algebras (Albert, Benkart, Bruck, Dieterich,
Petersson, Sandler), Lie algebras (Falcón, Núñez, Jiménez),
Jordan algebras (McCrimmon, Oehmke, Petersson, Ple, Thakur),
Alternative algebras (Babikov, McCrimmon), Absolute valued
algebras (Albert, Cuenca), Structural algebras (Allison).
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Óscar Falcón Classifications of evolution algebras over finite fields



Algebraic Geometry

Let Fp[x ] be the ring of polynomials in x = {x1, . . . , xn} over the
finite field Fp.

A term order < on the set of monomials of Fp[x ] is a
multiplicative well-ordering that has the constant monomial 1
as its smallest element.

The largest monomial of a polynomial in Fp[x ] with respect to
the term order < is its leading monomial.

The ideal generated by the leading monomials of all the
non-zero elements of an ideal is its initial ideal.

Those monomials of polynomials in the ideal that are not
leading monomials are called standard monomials.

A Gröbner basis of an ideal I is any subset G of polynomials
in I whose leading monomials generate the initial ideal.

It is reduced if all its polynomials are monic and no monomial
of a polynomial in G is generated by the leading monomials.
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Algebraic Geometry

Let I be an ideal in Fp[x ].

The algebraic set defined by I is the set

V(I ) = {a ∈ Fn
p : f (a) = 0 for all f ∈ I}.

I is zero-dimensional if V(I ) is finite. In particular,

|V(I )| ≤ dimFp Fp[x ]/I .

I is radical if

{f m ∈ I ⇒ f ∈ I}, for all f ∈ Fp[x ] and m ∈ N.

Theorem

If I is zero-dimensional and radical, then

|V(I )| = dimFp Fp[x ]/I

and coincides with the number of standard monomials of I .
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Algebraic Geometry

Reduced Gröbner bases play a fundamental role in the computation
of |V(I )|.

Theorem (Lakshman and Lazard, 1991)

The complexity of computing the reduced Gröbner basis of a
zero-dimensional ideal is dO(n), where

d is the maximal degree of the polynomials of the ideal.

n is the number of variables.
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Isotopisms of evolution
algebras.
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Lemma

Let E and E ′ be two isotopic evolution algebras of respective matrices of
structure constants A = (aij) and A′ = (a′ij). Let (f , g , h) be an
isotopism between both algebras related, respectively, to the matrices
F = (fij), G = (gij) and H = (hij). Then,

a)
∑

j≤n fijgija
′
jk =

∑
j≤n aijhjk for all i , k ≤ n.

b)
∑

k≤n fikgjka
′
kl = 0, for all i , j , l ≤ n.

Proof.

a) Let {e1, . . . , en} and {e ′1, . . . , e ′n} be respective bases of E and
E ′. Let i ≤ n. Then,∑

j ,k≤n
fijgija

′
jke
′
k =

∑
j≤n

fije
′
j ·
∑
j≤n

gije
′
j = f (ei )g(ei ) =

= h(eiei ) = h

∑
j≤n

aijej

 =
∑
j ,k≤n

aijhjke
′
k

�
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Lemma

Let E and E ′ be two isotopic evolution algebras of respective matrices of
structure constants A = (aij) and A′ = (a′ij). Let (f , g , h) be an
isotopism between both algebras related, respectively, to the matrices
F = (fij), G = (gij) and H = (hij). Then,

a)
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j≤n fijgija
′
jk =

∑
j≤n aijhjk for all i , k ≤ n.

b)
∑

k≤n fikgjka
′
kl = 0, for all i , j , l ≤ n.

Proof.

b) Let {e1, . . . , en} and {e ′1, . . . , e ′n} be respective bases of E and
E ′. Let i , j ≤ n be such that i 6= j . Then,∑

k,l≤n
fikgjka

′
kle
′
l =

∑
k≤n

fike
′
k ·
∑
k≤n

gjke
′
k = f (ei )g(ej) =

= h(eiej) = 0 �
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Let E be an evolution algebra. The annihilator of E is

Ann(E ) = {x ∈ E |xE = 0}.

Lemma

Let E and E ′ be two isotopic evolution algebras and let (f , g , h) be
an isotopism between them. Then,

f (Ann(E )) = g(Ann(E )) = Ann(E ′).

Proof.
Let x ∈ Ann(E ). Then,

f (x)E ′ = f (x)g(E ) = h(xE ) = h(0) = 0.

Thus, f (Ann(E )) ⊆ Ann(E ′). The reciprocal holds similarly. The
identity with g also holds analogously. �
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2-dimensional complex evolution algebras

E1 :

(
1 0
0 0

)
, E2 :

(
1 0
1 0

)
, E3 :

(
1 1
−1 −1

)
E4 :

(
0 1
0 0

)
, E5a,b :

(
1 a
b 1

)
, E6c :

(
0 1
1 c

)
.

ab 6= 1 c 6= 0

Proposition

There are three isotopism classes in the set of 2-dimensional
complex evolution algebras:

a) E1 ' E4.

b) E2 ' E3.

c) E5a,b ' E6c , for all a, b, c .

Proof.

a) F = G =

(
1 0
0 1

)
, H =

(
0 1
1 0

)
.

e ′1e
′
1 = h(e1e1) = h(e1) = e ′2.
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Proof.

b) F =

(
1 0
0 1

)
, G =

(
1 0
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)
, H =

(
1 1
1 0

)
.
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c) F = G =

( √
c − a 1
1 0

)
, H =

( 1
1−ab 0
b

ab−1 1

)
.
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2-dimensional complex evolution algebras
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complex evolution algebras:
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b) E2 ' E3.

c) E5a,b ' E6c , for all a, b, c .

Proof.

d) E2 6' E1 6' E5.

Ann(E1) = 〈 e2 〉, Ann(E2) = Ann(E5) = ∅.

Óscar Falcón Classifications of evolution algebras over finite fields



2-dimensional complex evolution algebras
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Proposition

There are three isotopism classes in the set of 2-dimensional
complex evolution algebras:

a) E1 ' E4.

b) E2 ' E3.

c) E5a,b ' E6c , for all a, b, c .

Proof. d) E2 6' E6c .
f12g22 = f22g12 = f11g21 = f21g11 = 0,

h11 = f12g12 = f22g22,

h12 = f11g11 = f21g21

⇒ h11 = h12 = 0⇒ |H| = 0 !!!
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Procedures
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Field: K.
Sets of n2 variables:

An = {aij : i , j ≤ n},
Fn = {fij : i , j ≤ n},
Gn = {gij : i , j ≤ n},
Hn = {hij : i , j ≤ n}.

Multivariate polynomial rings:

K[An ∪ Fn] and K[An ∪ Fn ∪Gn ∪ Hn].

Matrices:

F = (fij), G = (gij), H = (hij).

Let EK
n be the n-dimensional algebra with basis

βn = {e1, . . . , en} such that

eiei =
n∑

k=1

aijej , for all i , j ≤ n.
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Isomorphisms between two n-dimensional evolution algebras over Fp.
1: procedure Isom(n, p, A, A′)
2: for i ← 1, n do

3: for k ← 1, n do

4: I = I + (f
p
ik
− fik ) + (a

p
ik
− aik ) + (a′p

ik
− aik );

5: pol1 = 0

6: for j ← 1, n do

7: pol1 = pol1 + (f2
ija
′
jk − aij fjk );

8: pol2 = 0

9: for l ← 1, n do

10: pol2 = pol2 + fil fjla
′
lk

11: end for
12: I = I + pol2;

13: end for
14: I = I + pol1;

15: end for
16: end for
17: for i ← 1, size(A) do

18: I = I + (aA[i ][1]A[i ][2] − A[i ][3]);

19: end for
20: for i ← 1, size(A′) do

21: I = I + (a′
A′ [i ][1]A′ [i ][2]

− A′[i ][3]);

22: end for
23: I = I + (det(F )p−1 − 1);

24: I = Gröbner(I );

25: return |V(I )|;
26: end procedure
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Isotopisms between two n-dimensional evolution algebras over Fp.
1: procedure Isot(n, p, A, A′)
2: for i ← 1, n do

3: for k ← 1, n do

4: I = I + (f
p
ik
− fik ) + (g

p
ik
− gik ) + (h

p
ik
− hik ) + (a

p
ik
− aik ) + (a′p

ik
− aik );

5: pol1 = 0

6: for j ← 1, n do

7: pol1 = pol1 + (fijgija
′
jk − aijhjk );

8: pol2 = 0

9: for l ← 1, n do

10: pol2 = pol2 + filgjla
′
lk

11: end for
12: I = I + pol2;

13: end for
14: I = I + pol1;

15: end for
16: end for
17: for i ← 1, size(A) do

18: I = I + (aA[i ][1]A[i ][2] − A[i ][3]);

19: end for
20: for i ← 1, size(A′) do

21: I = I + (a′
A′ [i ][1]A′ [i ][2]

− A′[i ][3]);

22: end for
23: I = I + (det(F )p−1 − 1) + (det(G)p−1 − 1) + (det(H)p−1 − 1);

24: I = Gröbner(I );

25: return |V(I )|;
26: end procedure
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Finite dimensional evolution
algebras.
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2-dimensional evolution algebras.

Lemma

Let A and A′ be the matrix of structure constants of two isotopic
2-dimensional evolution algebras and let (f , g , h) be an isotopism
between them. Let F = (fij) and G = (gij) be the matrices related,
respectively, to f and g . If |A′| 6= 0, then exactly one of the next
two assertions holds.

a) f11 = f22 = g11 = g22 = 0.

b) f12 = f21 = g12 = g21 = 0.

Proof. The reduced Gröbner basis of the ideal related to our
isotopism contains the next two generators{

f22 · g12 · |A′| = 0,

f12 · g22 · |A′| = 0.

Hence, f22 = g22 = 0 or f12 = g12 = 0.
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2-dimensional evolution algebras.

Lemma

Let A and A′ be the matrix of structure constants of two isotopic
2-dimensional evolution algebras and let (f , g , h) be an isotopism
between them. Let F = (fij) and G = (gij) be the matrices related,
respectively, to f and g . If |A′| 6= 0, then exactly one of the next
two assertions holds.

a) f11 = f22 = g11 = g22 = 0.

b) f12 = f21 = g12 = g21 = 0.

Proof. In both cases,
a′11f11g21 = 0,

a′12f11g21 = 0,

a′11f21g11 = 0,

a′12f21g11 = 0.

⇒

{
f22 = g22 = 0⇒ f11 = g11 = 0,

f12 = g12 = 0⇒ f21 = g21 = 0.

�
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2-dimensional evolution algebras.

Theorem

There are seven non-zero 2-dimensional evolution algebras over F2
up to isomorphisms:

E2
1 :

(
0 0
0 1

)
, E2

2 :

(
0 1
0 0

)
, E2

3 :

(
0 1
0 1

)
, E2

4 :

(
0 1
1 0

)
,

E2
5 :

(
0 1
1 1

)
, E2

6 :

(
1 0
0 1

)
, E2

7 :

(
1 1
1 1

)
.

Theorem

There are three non-zero 2-dimensional evolution algebras over F2

up to isotopisms:

a) E 2
1 ' E 2

2 .

b) E 2
3 ' E 2

7 .

c) E 2
4 ' E 2

5 ' E 2
6 .
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2-dimensional evolution algebras.

Theorem

Let p ∈ {3, 5}. There are six non-zero 2-dimensional evolution
algebras over Fp up to isomorphisms:

Ep
1 :

(
0 0
0 1

)
, Ep

2 :

(
0 1
0 0

)
, Ep

3 :

(
0 1
0 1

)
, Ep

4 :

(
0 1
1 0

)
,

Ep
5 :

(
0 1
1 1

)
, Ep

6 :

(
1 0
0 1

)
.

Theorem

Let p ∈ {3, 5}. There are three non-zero 2-dimensional evolution
algebras over Fp up to isotopisms:

a) Ep
1 ' Ep

2 .

b) Ep
3 .

c) Ep
4 ' Ep

5 ' Ep
6 .
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2-dimensional evolution algebras.

Theorem

Let A = (aij) be the matrix of structure constants of a
2-dimensional evolution algebra E over a field K. If |A| 6= 0, then,
E is isotopic to the 2-dimensional evolution algebra over K of
related matrix of structure constants(

1 0
0 1

)
Proof. It is enough to consider the isotopism (f , g , h) of matrices

F = G =

(
1 0
0 1

)
, H =

(
a21 a22

a11 a12

)
.

�

Óscar Falcón Classifications of evolution algebras over finite fields



References

Albert, A. A. Non-associative algebras: I. Fundamental Concepts and Isotopy,
Ann. of Math., Second Series 43 (1942), 685-707.
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