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Abstract

The problem of identifying a functor between the categories of algebras and graphs
is currently open. Based on a known algorithm that identifies isomorphisms of Latin
squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs
that enable us to find a faithful functor between finite-dimensional algebras over finite
fields and these graphs.
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1 Introduction

Graph Theory has revealed to be an interesting tool to deal with distinct aspects on the
study of algebras [3, 4, 7, 9]. Nevertheless, the problem of identifying a functor that relates
the category of algebras with that of graphs remains still open. Both categories are referred
with respect to their corresponding isomorphisms among algebras and graphs. Based on a
proposal of McKay et al. [10] for identifying isomorphisms of Latin squares with isomor-
phism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a
faithful functor between finite-dimensional algebras over finite fields and these graphs. We
focus in particular on the distribution of partial-magma algebras into isomorphism classes
by means of some isomorphism invariants related to the mentioned graphs.
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2 Preliminaries

2.1 Isotopisms of algebras

In 1942, Albert [1] introduced the concept of isotopism of algebras as a generalization of that
of isomorphism. Specifically, two n-dimensional algebras (A, ·) and (A′, ◦) defined over the
same field K are said to be isotopic if there exist three non-singular linear transformations
f , g and h from A to A′ such that

f(u) ◦ g(v) = h(u · v), for all u, v ∈ A. (1)

Hereafter, in order to simplify the notation and whenever no confusion arises, we do not write
explicitly the products · and ◦. That is, we write the previous identity as f(u)g(v) = h(uv),
for all u, v ∈ A. The triple (f, g, h) is an isotopism between the algebras A and A′.

Let A be an n-dimensional algebra over a field K and let {e1, . . . , en} be a basis of this
algebra. The structure constants of A are the numbers ckij ∈ K such that

eiej =

n∑
k=1

ckijek, for 1 ≤ i, j ≤ n. (2)

If the structure constants of an algebra are all of them zeros, then this algebra is called
abelian .

Lemma 1. The n-dimensional abelian algebra is not isotopic to any other n-dimensional
algebra. �

Let S be a vector subspace of an algebra A. The left and right annihilators of S in A
are respectively defined as the sets

AnnA−(S) = {u ∈ A | uv = 0, for all v ∈ S}. (3)

AnnA+(S) = {u ∈ A | vu = 0, for all v ∈ S}. (4)

The intersection of both sets is called the annihilator of S in A. It is defined as

AnnA(S) = {u ∈ A | uv = vu = 0, for all v ∈ S}. (5)

Lemma 2. Let (f, g, h) be an isotopism between two n-dimensional algebras A and A′. Let
S be a vector subspace of A. Then,

a) f(AnnA−(S)) = AnnA′−(g(S)).
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b) g(AnnA+(S)) = AnnA′+(f(S)).

c) f(AnnA−(S)) ∩ g(AnnA+(S)) = AnnA′(f(S) ∩ g(S)). �

Proposition 1. Let (f, g, h) be an isotopism between two n-dimensional algebras A and A′.
Then,

a) f(AnnA−(A)) = AnnA′−(A′).

b) g(AnnA+(A)) = AnnA′+(A′).

c) f(AnnA−(A)) ∩ g(AnnA+(A)) = AnnA′(A
′).

Proof. The result follows straightforward from Lemma 2 and the regularity of f and g.

Hereafter, given a vector subspace S of an algebra A, we define the vector subspace
SA = {uv | u ∈ S and v ∈ A}. The derived algebra of the algebra A is then defined as the
subalgebra

A2 = AA = {uv | u, v ∈ A} ⊆ A. (6)

Lemma 3. Let (f, g, h) be an isotopism between both algebras A and A′. Then, h(A2) = A′2

and dim(A2) = dim(A′2). �

2.2 Partial-magma algebras

A partial magma is a finite set endowed with a partial binary operation. Hereafter, we
suppose this set to be [n] = {1, . . . , n} and we denote the operation as ·. In this case, n
is the order of the partial magma. Two partial magmas ([n], ·) and ([n], ◦) are said to be
isotopic if there exist three permutations α, β and γ in the symmetric group Sn such that

α(i) ◦ β(j) = γ(i · j), for all i, j ≤ n such that i · j exists. (7)

If α = β = γ, then the partial magmas are said to be isomorphic. The triple (α, β, γ)
constitutes an isotopism of magmas (an isomorphism if α = β = γ).

A partial quasigroup is a partial magma ([n], ·) such that if the equations ix = j and
yi = j, with i, j ∈ [n], have solutions for x and y in [n], then these solutions are unique.
Every partial quasigroup of order n is the multiplication table of a partial Latin square of
order n, that is, an n× n array in which each cell is either empty or contains one element
chosen from the set [n], such that each symbol occurs at most once in each row and in each
column. Every isotopism of a partial quasigroup is uniquely related to a permutation of
the rows, columns and symbols of the corresponding partial Latin square. The distribution
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of partial Latin squares into isotopism classes is known for order up to 6 [5, 6]. Finally, if
two Latin squares are isotopic after a reordering of the components of all their entries, then
they are said to be paratopic.

In 1944, Bruck [2] introduced the concept of quasigroup algebra as an n-dimensional
algebra over a base field K such that there exists a basis {e1, . . . , en} and a quasigroup
([n], ·) satisfying that eiej = cijei·j for each pair of elements i, j ≤ n and some non-zero
structure constant cij ∈ K \ {0}. The algebra is then said to be based on the quasigroup
([n], ·). If all its structure constants are equal to 1, then this is called a quasigroup ring.
Partial-magma algebras constitute a natural generalization of the concept of quasigroup
algebra, once the condition of being based on a quasigroup is replaced by that of being
based on a partial magma.

2.3 Graph theory

A graph is a pair G = (V,E) formed by a set V of points or vertices and a set E of lines or
edges formed by subsets of two vertices of V . The degree of a vertex v ∈ V is the number
d(v) of edges containing this vertex. A graph is said to be vertex-colored if there exists a
partition into color sets of its set of vertices. The color of a vertex v is denoted as color(v).
An isomorphism between two vertex-colored graphs G = (V,E) and G′ = (V ′, E′) is any
bijective map f between the set of vertices V and V ′ that preserves collinearity and such
that color(f(v)) = color(v), for all v ∈ V .

Let L = (lij) be a Latin square of order n. McKay et al. [10] defined the vertex-colored
graph G2(L) with n2 + 3n vertices

{ri | i ≤ n} ∪ {ci | i ≤ n} ∪ {si | i ≤ n} ∪ {tij | i, j ≤ n},

where each of the four subsets (related to the rows (ri), columns (ci), symbols (si) and cells
(tij) of the Latin square L) has a different color, and 3n2 edges

{rieij , cjeij , sijtij | i, j ≤ n}}.

They also defined the vertex-colored graph G1(L) from the graph G2(L) by adding 3 ad-
ditional vertices {R,C, S} and 3n additional edges {Rri, Cci, Ssi | i ≤ n}. Here, there are
three colors: one for {R,C, S}, one for {ri, ci, si | i ≤ n} and one for the rest of vertices.
Finally, they defined the vertex-colored graph G3(L) from the graph G2(L) by adding 3n
additional edges {rici, cisi, risi | i ≤ n}. Here, the color of the vertices coincides with
those of G1(L). These authors proved (Theorem 6 in [10]) that two Latin squares L1 and
L2 of the same order are paratopic (respectively, isotopic or isomorphic) if and only if the
graphs G1(L1) and G1(L2) (respectively, G2(L1) and G2(L2), and G3(L1) and G3(L2)) are
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isomorphic. Figure 1 shows an example of the three graphs related to the next Latin square
of order 2.

L =

(
1 2
2 1

)
.

We have used distinct styles (◦, N, I, J and •) in the vertices of the graphs to represent
their colors.

G1(L) G2(L) G3(L)

Figure 1: Graphs related to a Latin square of order 2.

3 The proposed graph

Based on the proposal of McKay et al. for Latin squares, we describe now a pair of graphs
that are uniquely related to a finite-dimensional algebra over a finite field and which enable
us to ensure that any two isotopic or isomorphic algebras map to two isomorphic graphs.
To this end, let A be an n-dimensional algebra over a finite field K. Firstly, we define the
vertex-colored graph G1(A) with four maximal monochromatic subsets

RA = {ru | u ∈ A \AnnA−(A)},
CA = {cu | u ∈ A \AnnA+(A)},
SA = {su | u ∈ A2 \ {0}},
TA = {tu,v | u, v ∈ A, uv 6= 0}.

and edges
{rutu,v, cvtu,v, swtu,v | u, v, w ∈ A, uv = w 6= 0}.

From this graph we also define the vertex-colored graph G2(A) by adding the edges

{rucu, | u ∈ A \AnnA(A)} ∪ {cusu | u ∈ A2 \AnnA+(A)} ∪ {rusu | u ∈ A2 \AnnA−(A)}.

Figure 2 shows, for instance, the two graphs G1 and G2 that are related to any n-
dimensional anticommutative algebra over the finite field F2, with basis {e1, . . . , en}, that
is described by the non-zero product e1e2 = e1.
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G1 G2

Figure 2: Graphs related to the anticommutative algebra e1e2 = e1 over F2.

Example 1. In order to illustrate in a better way the proposed graphs, we describe how to
construct step by step the graph G2 related to the 3-dimensional anti-commutative algebra
A over the finite field F2, with basis {e1, e2, e3}, that is linearly defined from the non-zero
products e1e3 = e2 and e2e3 = e1. In order to make easier this construction, we place the
vertices of the graph in rows and columns as if they were the elements of a matrix. Each
one of these vertices can, therefore, be described by its position (i, j) inside this matrix.

Step 1. The underlying set of vectors of our algebra is {e1, e2, e3, e1+e2, e1+e3, e2+e3, e1+
e2 +e3}. Since AnnA(A) = ∅, these seven vectors can appear as left or right factors
of a non-zero product in A. We start, therefore, the construction of the graph G2(A)
by drawing seven vertices labeled as ru in a column at the left of the graph and other
seven vertices labeled as cu in a row on the top of the graph. Each u denotes here
a vector of the algebra (see Figure 3 (left)).

Step 2. In the body of the graph (the empty zone among the two sets of vertices that have been
drawn until now) we draw now those vertices corresponding to non-null brackets.
Since we have at most seven times seven brackets, we add at most 49 new vertices
labeled as tu,v. These vertices are distributed in matrix form according to the left
and right factors that determine the corresponding product (see Figure 3 (center)).

Step 3. Now, since A2 \ {0} = {e1, e2, e1 + e2}, we draw three new vertices labeled as su in
a column at the right of the graph (see Figure 3 (right)).

Step 4. We deal now with the construction of the edges. Firstly, we join each vertex (i, 1)
at the left of the graph with the vertices (i, j) for 2 ≤ i, j ≤ 7. These correspond to
the edges rutu,v of the description (see Figure 4 (left)).

Step 5. After that, we join each vertex (1, j) on the top of the graph with the vertices (i, j)
for 2 ≤ i, j ≤ 7. These correspond to the edges cutu,v of the description (see Figure
4 (left in the center)).
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Figure 3: Steps 1–3 in the construction of the graph G2(A).

Step 6. Next, we join each vertex (i, 1) with the vertex (1, i) for 2 ≤ i ≤ 7. These correspond
to the edges rucu of the description. (see Figure 4 (center)).

Step 7. Now, we join each of the vertices tu,v with the corresponding vertex constructed in
Step 3. These correspond to the edges swtu,v of the description (see Figure 4 (right
in the center)).

Step 8. Finally, whenever is possible, we join the vertices (1, j) and (i, 1) with the cor-
responding vertices constructed in Step 3, for 2 ≤ i, j ≤ 7. These correspond,
respectively, to the edges rusu and cusu of the description (see Figure 4 (right)). C

Figure 4: Steps 4–8 in the construction of the graph G2(A).

Lemma 4. Let A be an n-dimensional algebra over a finite field K. Then,

a) If the algebra A is abelian, then both graphs G1(A) and G2(A) are empty.

b) The graph G1(A) does not contain triangles.

c) In both graphs G1(A) and G2(A),

• The number of vertices is

|A \AnnA−(A)|+ |A \AnnA+(A)|+ |A2|+ |{(u, v) ∈ A×A | uv 6= 0}| − 1.
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• d(tu,v) = 3, for all u, v ∈ A such that uv 6= 0.

d) In the graph G1(A),

• d(ru) = |A \AnnA+({u})|, for all u ∈ A \AnnA−(A).

• d(cu) = |A \AnnA−({u})|, for all u ∈ A \AnnA+(A).

• d(su) =
∑

v∈A |ad−1v (u)|, for all u ∈ A2 \ {0}. Here, ad denotes the adjoint action.

e) In the graph G2(A),

• d(ru) = |A \AnnA+({u})|+ 1A\AnnA− (A)
(u) + 1A2(u), for all u ∈ A \AnnA−({u}).

• d(cu) = |A \AnnA−({u})|+ 1A\AnnA+ (A)(u) + 1A2(u), for all u ∈ A \AnnA+({u}).
• d(su) = 1A\AnnA− (A)

(u) + 1A\AnnA+ (A)(u) +
∑

v∈A |ad−1v (u)|, for all u ∈ A2 \ {0}.

Here, 1 denotes the characteristic function.

Proposition 2. Let A be an n-dimensional algebra over a finite field K. Then,

a) The number of edges of its related graph G1(A) is∑
u6∈AnnA− (A)

(|A \AnnA+({u})|+
∑

v∈A2\{0}

|ad−1u (v)|) +
∑

u6∈AnnA+ (A)

|A \AnnA−({u})|.

b) The number of edges of its related graph G2(A) coincides with those of G1(A) plus

|A \AnnA(A)|+ |A2 \AnnA−(A)|+ |A2 \AnnA+(A)|.

Proof. The result follows straightforward from the First Theorem of Graph Theory [8] and
assertions (c–e) in Lemma 4.

Theorem 1. Let A and A′ be two n-dimensional algebras over a finite field K. Then,

a) If both algebras are isotopic, then their corresponding graphs G1(A) and G1(A
′) are

isomorphic. Reciprocally, if the graphs G1(A) and G1(A
′) are isomorphic, then there

exist three bijective maps f , g and h between A and A′ such that f(u)g(v) = h(uv).

b) If both algebras are isomorphic, then their corresponding graphs G2(A) and G2(A
′) are

also isomorphic. Reciprocally, if the graphs G2(A) and G2(A
′) are isomorphic, then there

exists a multiplicative bijective map between the algebras A and A′, that is, a bijective
map f : A→ A′ so that f(u)f(v) = f(uv), for all u, v ∈ A.
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Proof. Let (f, g, h) be an isotopism between the algebras A and A′. We define the map α
between G1(A) and G1(A

′) such that
α(ru) = rf(u), for all u ∈ A \AnnA−(A),

α(cu) = cg(u), for all u ∈ A \AnnA+(A),

α(su) = sh(u), for all u ∈ A2 \ {0},
α(tu,v) = tf(u),g(v), for all u, v ∈ A such that uv 6= 0.

The description of both graphs G1(A) and G1(A
′) together with Proposition 1, Lemma 3

and the regularity of f , g and h involve α to be an isomorphism between these two vertex-
colored graphs, that is, α is a well-defined bijection between the vertices ofG1(A) andG1(A

′)
that preserves collinearity and the color of the vertices. The same map α constitutes an
isomorphism between the graphs G2(A) and G2(A

′) in case of being f = g = h, that is, if
the algebras A and A′ are isomorphic.

Reciprocally, let α be an isomorphism between the graphs G1(A) and G1(A
′). Collinear-

ity involves this isomorphism to be uniquely determined by its restriction to RA ∪CA ∪SA.
Specifically, the image of each vertex tu,v ∈ TA by means of α is uniquely determined by the
corresponding images of ru, cv and suv. Let β and β′ be the respective bases of the algebras
A and A′ and let π : A → A′ be the natural map that preserves the components of each
vector with respect to the mentioned bases. That is, π((u1, . . . , un)β) = (u1, . . . , un)β′ , for
all u1, . . . , un ∈ K. Let us define three maps f , g and h from A to A′ such that

f(u) =

{
π(u), for all u ∈ AnnA−(A),

v, otherwise, where v ∈ A is such that α(ru) = rv.

g(u) =

{
π(u), for all u ∈ AnnA+(A),

v, otherwise, where v ∈ A is such that α(cu) = cv.

h(u) =

{
π(u), for all u ∈ (A \A2) ∪ {0},
v, otherwise, where v ∈ A is such that α(su) = sv.

From Proposition 1 and Lemma 3, these three maps are bijective. Let u, v ∈ A. If
u ∈ AnnA−(A) or v ∈ AnnA+(A), then there does not exist the vertex tu,v in the graph
G1(A). Since α preserves collinearity, there does not exist the vertex tf(u),g(v) in the graph
G1(A

′), which means that f(u) ∈ AnnA′−(A′) or g(v) ∈ AnnA′+(A′). In any case, we have
that f(u)g(v) = 0 = h(uv). Finally, if u 6∈ AnnA−(A) and v 6∈ AnnA+(A), then the vertex
tu,v connects the vertices ru, cv and suv in the graph G1(A). Now, the isomorphism α maps
this vertex tu,v in G1(A) to a vertex tu′,v′ in G2(A) that is connected to the vertices ru′ ,
cv′ and su′v′ . Again, since α preserves collinearity, it is f(u) = u′, g(v) = v′ and, finally,
h(uv) = f(u)g(v).
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In case of being α an isomorphism between the graphs G2(A) and G2(A
′) it is enough

to consider f = g = h in the previous description. This is well-defined because of the new
edges that are included in the graphs G1(A) and G1(A

′) in order to define, respectively, the
graphs G2(A) and G2(A

′). These edges involve the multiplicative character of the bijective
map f , that is, f(u)g(v) = h(uv), for all u, v ∈ A.

Theorem 1 enables us to determine non-isotopic and non-isomorphic algebras from
their corresponding non-isomorphic graphs. To this end, it is interesting to compute some
isomorphism invariants of the corresponding graphs G1 and G2. In this regard, Table
1 shows, for instance, some graph invariants of the graph G1 related to each one of the
possible isomorphism classes of 3-dimensional Lie algebras over the finite fields F2 and F3.
All of them constitute partial-magma algebras.

F2 F3

Lie partial-magma algebra Vertices Edges Triangles Vertices Edges Triangles

Abelian 0 0 0 0 0 0
e1e2 = e3 37 72 0 482 1296 0
e1e2 = e2 37 72 0 482 1296 0

e1e2 = e3, e1e3 = −e2 - - - 636 1728 0
e1e2 = e3, e1e3 = e2 53 108 0 636 1728 0
e1e2 = e2, e1e3 = e3 53 108 0 636 1728 0

e1e2 = e2, e1e3 = −e3, e2e3 = −e1 63 126 0 - - -
e1e2 = e2, e1e3 = −e3, e2e3 = 2e1 - - - 702 1872 0

Table 1: Graph invariants for the graph G1 related to each isomorphism class of 3-
dimensional Lie partial-magma algebras over the finite fields F2 and F3.

Thus, for instance, it is known that the n-dimensional anticommutative algebra over
the finite field F2, with n ≥ 3, described by the product e1e2 = e3 is not isomorphic to the
n-dimensional anticommutative algebra over F2 described by the product e1e2 = e1. This
follows straightforward from the fact that the corresponding graph G2 related to the former
coincides with that associated with the latter, which is shown in Figure 2 (right), up to the
vertex se1 , which becomes se3 , and the two edges re1se1 and ce1se1 , which disappear. Both
graphs are, therefore, non-isomorphic and hence, the algebras are neither isomorphic. It is
straightforward verified that both algebras are, however, isotopic. Besides, even if this does
not constitute a necessary condition, their corresponding graphs G1 are isomorphic. That
graph shown in Figure 2 (left) is indeed the graph G1 corresponding to the anticommutative
algebra described by the product e1e2 = e1.

We finish this paper with an illustrative example that focuses on those graphs G1 and
G2 related to the set of non-abelian partial-quasigroup rings over a finite field that are
based on the known distribution of partial Latin squares of order 2 into isotopism classes.
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Particularly, Table 2 shows the graph invariants related to the finite field F2. Partial Latin
squares are written row after row in a single line, with empty cells represented by zeros.
For each isotopism class we indicate the sequence with the number of vertices of each color,
the number of edges and that of triangles of the corresponding graphs G1 and G2.

G1 G2

Partial Latin square Vertices Edges Triangles Vertices Edges Triangles

10 00 (2,2,1,4) 12 0 (2,2,1,4) 16 7
10 01 (3,3,1,6) 18 0 (3,3,1,6) 23 7
10 02 (3,3,3,7) 21 0 (3,3,3,7) 30 16
10 20 (3,2,3,6) 18 0 (3,2,3,6) 25 12
12 00 (2,3,3,6) 18 0 (2,3,3,6) 25 12
12 20 (3,3,3,8) 24 0 (3,3,3,8) 33 13
12 21 (3,3,3,8) 24 0 (3,3,3,8) 33 13

Table 2: Graph invariants for the graphs G1 and G2 related to 2-dimensional non-abelian
partial-quasigroup rings over the finite field F2.

Theorem 2. The set of 2-dimensional non-abelian partial-quasigroup rings is distributed
into six isotopism classes.

Proof. A computational case study enables us to ensure the result. In particular, if the
characteristic of the base field is distinct of two, then the six isotopism classes under con-
sideration are those related to the next partial Latin squares of order 2

1 1

1

1

2

1 2 1 2

2

1 2

2 1

Otherwise, if the characteristic of the base field is two, then the isotopism classes related
to the last two partial Latin squares coincide. In this case, the next partial Latin square
corresponds to the sixth isotopism class

1

2

If the characteristic of the base field is distinct of two, the partial-quasigroup ring
related to this partial Latin square is isotopic to that related to the unique Latin square of
the previous list.

c©CMMSE ISBN: 978-84-608-6082-2



A FAITHFUL FUNCTOR AMONG ALGEBRAS AND GRAPHS

4 Conclusion and further studies

We have described in this paper a pair of graphs that enable us to define faithful functors
between finite-dimensional algebras over finite fields and these graphs. The computation of
isomorphism invariants of these graphs plays a remarkable role in the distribution of distinct
families of algebras into isotopism and isomorphism classes. Some preliminary results have
been exposed in this regard, particularly on the distribution of partial-quasigroup rings
over finite fields. Based on the known classification of partial Latin squares into isotopism
classes, further work is required to determine completely this distribution.
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