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Abstract

In this paper, we characterize digraphs of 3 vertices associated with Lie algebras

according to isomorphism classes of these associated Lie algebras. At this respect,

we introduce and implement two algorithmic methods: the first is devoted to

draw the digraph associated with a given Lie algebra and the second allows us

to determine if a given digraph is associated or not with a Lie algebra.
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1 Introduction

Finding new links among different fields of Mathematics has always been one of the
most interesting challenges in mathematical research, since it allows to use alternative
techniques to solve open problems, improve known theories and reveal new ones. This
paper is devoted to link Lie Theory and Graph Theory. On one hand, research on
Graph Theory is running in a high level, being used as a very useful tool to deal with
other knowledge fields. Regarding this, this work continues the line opened in [1], where
a mapping between Lie algebras and combinatorial structures was introduced in order
to translate properties of Lie algebras into the language of Graph Theory and vice
versa.
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On the other hand, applications of Lie Theory are being considered in fields like
Engineering, Physics and Applied Mathematics, for instance, being its research very
extensive both theoretically and practically. However, several topics are still unsolved
and new alternatives are welcome to work them. In this sense, determining which
isomorphism classes there exist for nilpotent and solvable Lie algebras is nowadays an
important open problem, especially if we take into account that other types of Lie
algebras (like semisimple and simple) were completely classified in 1890.

The main goal of this paper is to make progress in the relation between graphs
and Lie algebras, carrying on with previous papers like [1, 2, 3]. The structure is
the following: firstly, we determine all isomorphism classes of Lie algebras admitting
configurations of 3 vertices described in [1]. In fact, we characterize the different con-
figurations that correspond to the same isomorphism class. Secondly, we introduce and
implement two new algorithmic methods based on the relation between graphs and Lie
algebras: one to obtain the digraph associated with a given n-dimensional Lie algebra
and another to determine if a given digraph is associated with a Lie algebra or not.

In our opinion, the procedures introduced here allow us to advance, make easier
and improve the characterization of Lie-algebra isomorphism classes by means of the
classification of their associated combinatorial structures (graphs, in this case).

2 Preliminaries of Lie algebras

Some preliminary concepts of Lie algebras are recalled, bearing in mind that the reader
can consult [4] for a general overview. In this paper, we consider K = R or C and
K∗ = Kr {0}.

Definition 1 A Lie algebra g is a vector space with a second bilinear composition law

[·, ·] called the bracket product, which satisfies two conditions: [X,X] = 0, ∀X ∈ g and

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0, ∀X,Y, Z ∈ g. This last condition is called the

Jacobi identity and denoted by J(X,Y, Z) = 0.

Definition 2 The Lie algebra g is semisimple if it does not contain any proper abelian

ideals. If g is non-abelian with no non-trivial ideals, then it is simple.

Definition 3 The commutator central series and the lower central series of a finite-

dimensional Lie algebra g are, respectively,

C1(g) = g, C2(g) = [g, g], . . . , Ck(g) = [Ck−1(g), Ck−1(g)], . . . and

C1(g) = g, C2(g) = [g, g], . . . , Ck(g) = [Ck−1(g), g], . . .

Hence, g is (m − 1)-step solvable if there exists m ∈ N such that Cm(g) ≡ {0} and

Cm−1(g) ̸= {0}. Analogously, g is (m − 1)-step nilpotent if there exists m ∈ N such

that Cm(g) ≡ {0} and Cm−1(g) ̸= {0}
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3 Associating combinatorial structures with Lie algebras

Given an n-dimensional Lie algebra g with basis B = {ei}ni=1, the law of g with respect
to B is given by its structure constants cki,j as follows: [ei, ej ] =

∑n
k=1 c

k
i,jek. The

pair (g,B) can be associated with a combinatorial structure by the following method,
introduced in [1]:

a) For each ei ∈ B, one vertex labelled as index i is drawn.

b) Given three vertices i < j < k, the full triangle can be drawn. The weights cki,j ,

cij,k, and c
j
i,k are assigned to the edges {i, j}, {j, k} and {i, k}, respectively.

b1) If cki,j = cij,k = cji,k = 0, then the triangle is not drawn.

b2) If a structure constant is zero, its corresponding edge is drawn using a dis-
continuous line and called ghost edge.

b3) If two triangles of vertices {i, j, k} and {i, j, l} with 1 ≤ i < j < k < l ≤ n
satisfy cki,j = cli,j , then the edge {i, j} is shared.

c) Given two vertices i < j, draw a directed edge from j to i if cii,j ̸= 0 or from i to

j if cji,j ̸= 0.

4 Digraphs of 3-vertices associated with Lie algebras

There exist only 4 digraphs of 3 vertices associated with 3-dimensional Lie algebras
according to Lemma 3.1 in [1] (see Figure 1). We study their isomorphism classes.

Figure 1: Digraphs of 3 vertices associated with Lie algebras.
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Proposition 1 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c21,2w2;

[w2, w3] = c22,3w2, with (c21,2, c
2
2,3) ∈ K2 r {(0, 0)} associated with the configuration a)

in Figure 1. Then

i) There exists a basis {ei}3i=1 of g with respect to which: [e1, e2] = e2; [e2, e3] = e2.

ii) There exists a basis {vi}3i=1 of g with respect to which: [v1, v2] = p1v1 + p2v2 with

(p1, p2) ∈ K2 r {(0, 0)}.

Proof: For i), it suffices to consider the basis change ϕ : g → g given by e1 = ϕ(w1) =
1

c21,2
w1; e2 = ϕ(w2) = w2; e3 = ϕ(w3) =

1
c22,3

w3.

To prove ii), we consider an arbitrary basis change from an arbitrary basis to the
basis given in i) as follows: ei =

∑3
j=1 ai,jvj , with [vi, vj ] =

∑3
k=1 d

k
i,jek. Imposing the

law given in i) and solving the resulting system, we obtain the law expressed in ii). �

Remark 1 Statement ii) in Proposition 1 means that there exists an isomorphism

between the two structures of Figure 2, independently of the weights.

Figure 2: Isomorphism from Proposition 1.

Corollary 1 Lie algebras associated with configuration a) constitutes a unique isomor-

phism class g1: [e1, e2] = e2, [e2, e3] = e2. This class also contains 3-dimensional Lie

algebras with center of dimension 1 (associated with a graph having a unique isolated

vertex).”

Proposition 2 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1;

[w2, w3] = c32,3w3, with c
1
1,2, c

3
2,3 ∈ K∗ associated with the configuration b) in Figure 1.

Then, there exists a basis {ei}3i=1 of g verifying [e1, e2] = e1; [e2, e3] = pe3 with p ∈ K∗.

Proof: It is sufficient to consider the basis change ϕ : g → g defined by e1 = ϕ(w1) = w1;

e2 = ϕ(w2) =
1

c11,2
w2; ϕ(w3) = w3 and denote p =

c32,3
c11,2

. �

Remark 2 From here on, g2(p) with p ∈ K∗, will denote the 3-dimensional Lie algebra

of law: [e1, e2] = e1; [e2, e3] = pe3, obtained in Proposition 2.
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Proposition 3 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1 +

c21,2w2; [w1, w3] = c31,3w3; [w2, w3] = c32,3w3, with c
1
1,2, c

2
1,2, c

3
1,3, c

3
2,3 ∈ K∗ associated with

the configuration c) in Figure 1. Then, there exists a basis {ei}3i=1 of g with respect to

which [e1, e2] = p(e1 − e2); [e1, e3] = e3; [e2, e3] = e3, with p ∈ K∗.

Proof: It is sufficient to consider the basis change ϕ : g → g defined by e1 = ϕ(w1) =
1

c31,3
w1; e2 = ϕ(w2) =

1
c32,3

w2; e3 = ϕ(w3) = w3, denote p =
c11,2
c32,3

and keep in mind that

c11,2c
3
1,3 + c21,2c

3
2,3 = 0, due to the Jacobi identity. �

Remark 3 From here on, g3(p) with p ∈ K∗, will denote the 3-dimensional Lie algebra

of law [e1, e2] = p(e1 − e2); [e1, e3] = e3; [e2, e3] = e3, obtained in Proposition 3.

Proposition 4 Let us consider the Lie algebra g = ⟨w1, w2, w3⟩ : [w1, w2] = c11,2w1 +

c21,2w2; [w1, w3] = c11,3w1+c
3
1,3w3; [w2, w3] = c22,3w2+c

3
2,3w3, with c

1
1,2, c

2
1,2, c

1
1,3, c

3
1,3, c

2
2,3,

c32,3 ∈ K∗ associated with the configuration d) in Figure 1. Then

i) There exists a basis {ei}3i=1 of g verifying [e1, e2] = −p1
p2
(e1 − e2); [e1, e3] =

p1e1 + e3; [e2, e3] = p2e2 + e3, with p1, p2 ∈ K∗.

ii) There exists a basis {vi}3i=1 of g verifying [e1, e2] = −p(e1−e2); [e1, e3] = e1+e3;

[e2, e3] =
1
pe2 + e3, with p ∈ K∗.

Proof: For i), it is sufficient to consider the basis change ϕ : g → g given by e1 =
ϕ(w1) = 1

c31,3
w1; e2 = ϕ(w2) = 1

c32,3
w2; e3 = ϕ(w3) = 1

c21,2
w3 and the Jacobi identity

J(e1, e2, e3) = 0, as well as denoting p1 =
c11,3
c21,2

and p2 =
c22,3
c21,2

. Starting from this law

and considering the basis change ψ : g → g with e1 = ψ(w1) = w1; e2 = ψ(w2) = w2;
e3 = ψ(w3) =

1
p1
w3, we obtain the law stated in ii) after denoting p = p1

p2
. �

Remark 4 From here on, g4(p) with p ∈ K∗, will denote the 3-dimensional Lie al-

gebra of law [e1, e2] = −p(e1 − e2); [e1, e3] = e1 + e3; [e2, e3] =
1
pe2 + e3, obtained in

Proposition 4.

Proposition 5 The dimension of the derived Lie algebra D(gi) = [gi, gi] is

dim(D(gi)) =


1, if i = 1;

2, if i = 2, 3 ∨ (i = 4 ∧ p = 1);

3, if i = 4 with p ̸= 1.

Proof: In virtue of Propositions 1, 2, 3 and 4, we only need to study D(g4) = ⟨−p(e1 −
e2), e1 + e3,

1
pe2 + e3⟩. The coefficient matrix is −p 1 0

p 0 1
p

0 1 1


whose rank equal to 2 if and only if p = 1. �

@CMMSE                                 Page 271 of 1703                                 ISBN: 978-84-614-6167-7



Combinatorial structures of three vertices and Lie algebras

Corollary 2 The following two statements are verified

1. g1 is not isomorphic to g2(p), g3(p) or g4(p), for p ∈ K∗. Consequently, the last

three are not isomorphic to Lie algebras associated with configurations having an

isolated vertex.

2. Given p ∈ K∗ \ {1}, g4(p) is not isomorphic to g2(q), g3(q) either g4(1), for

q ∈ K∗.

Proposition 6 Given p1, p2 ∈ K∗ and i ∈ {2, 3, 4}, the Lie algebras gi(p1) and gi(p2)

are isomorphic if and only if p1 = p2 or p1 · p2 = 1.

Proof: Fixed and given i ∈ {2, 3, 4}, the Lie algebras gi(p1) and gi(p2) are isomorphic
if and only if there exists a basis change leading from the law of gi(p1) to the one
of gi(p2). Let {ej}3j=1 and {wj}3j=1 be the bases giving the law of gi(p1) and gi(p2),
respectively and let us consider a general basis change given by w1 =

∑
a1,jej , w2 =∑

a2,jej , w3 =
∑
a3,jej . Imposing the law of gi(p1) over gi(p2), we obtain a system

whose solutions are p1 = p2 or p1 · p2 = 1. �

Proposition 7 Given p ∈ K∗, Lie algebra g2(p) is isomorphic to Lie algebra g3(p).

Proof: The isomorphism is ϕ : g2(p) → g3(p) defined by w1 = ϕ(e1) = −e2 + e3;
w2 = ϕ(e2) = −e2 − e3; w3 = ϕ(e3) = e1; where {ei}3i=1 and {wi}3i=1 are the respective
bases of g2(p) and g3(p). �

Remark 5 Proposition 7 involves that configurations of Figure 3 are associated with

the same Lie algebra for a given p.

Figure 3: Isomorphism from Proposition 7.

Proposition 8 Lie algebra g2(−1) is isomorphic to Lie algebra g4(1).

Proof: The isomorphism is given by ϕ : g2(−1) → g4(1), where w1 = ϕ(e1) = e1 −
e2;w2 = ϕ(e2) = −e2 + e3;w3 = ϕ(e3) = e1 + e2 + e3. �
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Figure 4: Isomorphism from Proposition 8.

Remark 6 Proposition 8 establishes that configurations in Figure 4 correspond to the

same Lie algebra.

Proposition 9 sl2(K) is isomorphic to g4(p) if and only if p = −1.

Proof: Given p ∈ K∗ r {1}, we consider the Lie algebra g4(p) = ⟨e1, e2, e3⟩ with
law [e1, e2] = −p(e1 − e2); [e1, e3] = e1 + e3; [e2, e3] = 1

pe2 + e3 and Lie algebra
sl2(K) = ⟨w1, w2, w3⟩ with law [w1, w2] = 2w2; [w1, w3] = −2w3; [w2, w3] = w1. When
defining an arbitrary basis change ei =

∑3
j=1 ai,jwj , for i = 1, 2, 3 and imposing the

laws of g4(p) and sl2(K), we obtain a system of equations such that every solution
involves p = −1, which concludes the proof. �

Remark 7 Proposition 9 implies that configurations in Figure 5 comes from the same

Lie algebra.

Figure 5: Isomorphism from Proposition 9.

All the previous results can be summarized as follows

Theorem 1 The isomorphism classes of 3-dimensional Lie algebras are the following

a) g1.

b) g2(−1) ∼= g3(−1) ∼= g4(1).
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c) g2(p) ∼= g2(
1
p)

∼= g3(p) ∼= g3(
1
p),∀p ∈ K∗ r {−1}.

d) g4(−1) ∼= sl2(K).

e) g4(p) ∼= g4(
1
p),∀p ∈ K∗ r {−1, 1}.

Moreover, the algebras belonging to the first three classes are 2-step solvable and

non-nilpotent, while the corresponding with the fourth class is simple.

5 Algorithmic methods

In this section we show two algorithms dealing with converse questions: the first is
devoted to obtain the digraph associated with a given Lie algebra starting from its law;
and the second is useful to determine if a weighted digraph is associated with a Lie
algebra or not.

5.1 Algorithm to obtain the digraph associated with a Lie algebra

Given an n-dimensional Lie algebra g with basis Bn = {ei}ni=1, its law consists only of
brackets [ei, ej ] = cii,jei + cji,jej . This is because of dealing with digraphs and not with
full triangles.

To implement the algorithm, we have used the symbolic computation package
MAPLE 12, loading the libraries linalg, GraphTheory and Maplets[Elements]. The
first two libraries allow us to apply commands of Linear Algebra and Graph Theory,
respectively; whereas the last is used to display a message so that the user introduces
the required input in the first subroutine, devoted to define the law of the Lie algebra
g. The algorithm to obtain the digraph associated with g considers the following two
steps:

1. Entering the law of g by means of a routine computing the Lie bracket between
two arbitrary basis vectors in Bn.

2. Defining the digraph associated with g using the method reviewed in Section 3.

The first routine, named law, receives two natural numbers as inputs. These num-
bers represent the subindexes of two basis vectors in Bn. The subroutine returns the
result of the bracket between these two vectors. In addition, conditional sentences are
inserted to determine the non-zero brackets and the skew-symmetry property. Since the
user has to complete the subroutine inserting the non-zero brackets of g, we have also
added a sentence at the beginning of the implementation, reminding this fact. Note
that before running any other sentence, we must restart all the variables and delete all
the computations saved for previous law. Additionally, we must update the value of
variable dim with the dimension of g.
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> restart:

> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets of the algebra

and its dimension in subroutine law",’onapprove’=Shutdown("Continue"),

’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law:=proc(i,j)

> if i=j then return 0; end if;

> if i>j then return -law(j,i); end if;

> if (i,j)=... then return ...; end if;

> if ....

> else return 0; end if;

> end proc;

The ellipsis in command assign corresponds to write the dimension of g. The
following two suspension points are associated with the computation of [ei, ej ]: first,
the value of the subindexes (i, j) and second, the result of [ei, ej ] with respect to Bn.
The last ellipsis denotes the rest of non-zero brackets. For each non-zero bracket, a
new sentence if has to be included in the cluster.

Next, we implement the second step of the algorithm with the routine drawdigraph,
receiving the dimension n of g as input. This routine draws the digraph associated with
g. To do so, two local variables V and E have been defined: V is a list with the vertices of
the digraph and E is a set containing the edges. Hence, several loops are programmed to
include all the directed, weighted edges in the set E according to the non-zero brackets
saved in the subroutine law.

> drawdigraph:=proc(n)

> local E,V; E:={};V:=[];

> for x from 1 to n do

> V:=[op(V),x]; end do;

> for i from 1 to n do

> for j from i+1 to n do

> if coeff(law(i,j),e[j])<>0 then

> E:={op(E),[[i,j],coeff(law(i,j),e[j])]}; end if;

> if coeff(law(i,j),e[i])<>0 then

> E:={op(E),[[j,i],coeff(law(i,j),e[i])]};

> end if; end do; end do;

> G:=Digraph(V,E);

> return DrawGraph(G);

> end proc:

Example 1 To illustrate this algorithm, we apply it to the 6-dimensional Lie algebra

with law [e1, e3] = 2e3, [e1, e4] = −e4, [e1, e6] = e6, [e2, e3] = −e3, [e2, e4] = e4,

[e2, e5] = e5. First, we complete the routine law as follows:

> restart:
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> maplet:=Maplet(AlertDialog("Don’t forget to introduce non-zero brackets of the algebra

and its dimension in subroutine law",’onapprove’=Shutdown("Continue"),

’oncancel’=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,6):

> law:=proc(i,j)

> if i=j then return 0;end if;

> if i>j then return -law(j,i);end if;

> if (i,j)=(1,3) then return 2*e[3];end if; if (i,j)=(1,4) then return -e[4];end if;

> if (i,j)=(1,6) then return e[6];end if; if (i,j)=(2,3) then return -e[3];end if;

> if (i,j)=(2,4) then return e[4];end if; if (i,j)=(2,5) then return e[5];

> else return 0;

> end if;

> end proc:

Next, we run the routine drawdigraph and execute the sentence drawdigraph(dim)

obtaining the digraph in Figure 6.

Figure 6: output from Example 1.

5.2 Algorithm to decide if a digraph is associated with a Lie algebra

We show an algorithmic procedure to determine if a given digraph is associated or not
with a Lie algebra. The algorithm consists of two steps: a) generating the law candidate
to be a Lie algebra using the construction reviewed in Section 3; and b) checking if
the Jacobi identities are satisfied for this law. To implement the algorithm, we need
load the libraries DifferentialGeometry, LieAlgebras and GraphTheory to activate
commands related to Lie algebras and Graph Theory.

First, we build a vector space associated with the digraph using the routine program,
receiving two inputs: a list V with the vertices of the digraph and a set E with the di-
rected, weighted edges. As output, we obtain a vector space with basis {ei}ni=1 where
ei corresponds to vertex i from the list V and the brackets associated with the edges
in the set E. To implement this routine we define two local variables: B and L, where B
saves the basis {ei}ni=1 and L is a list containing the indexes of the structure constants
from the non-zero brackets.
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> program:=proc(V,E)

> local B, L;

> B:=[]; L:=[];

> for x from 1 to nops(V) do

> B:=[op(B),e[x]];

> end do;

> for i from 1 to nops(E) do

> L:=[op(L),[[op(E[i][1]),E[i][1][2]],E[i][2]]];

> end do;

> return _DG([["LieAlgebra",Alg1,[nops(V)]],L]);

> end proc:

Next, the vector space having such basis and law is generated when evaluating the
sentence

> DGsetup(program(V,E));

After defining this vector space Alg1, we can operate over it. More concretely, we
check if Jacobi identities hold or not for Alg1:

Alg1 > Query(Alg1,"Jacobi");

The vector space Alg1 defined by the output of program is a Lie algebra if and
only if the answer is true for this question.

Example 2 Consider the digraph in Figure 7. After running the routine program, we

define the list V of vertices and the set E of edges. Then the routine program generates

the vector space associated with the graph and finally Jacobi identities are checked

Figure 7: Digraph of Example 2.

> V:=[1,2,3,4];

> E:={[[1,2],1],[[1,3],1],[[2,4],1],[[3,4],1]};

> DGsetup(program(V,E));

Alg1 > Query(Alg1,"Jacobi");

> false

Since the answer is false, the digraph in Figure 7 is not associated with a 4-

dimensional Lie algebra.
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