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External-field effects on molecular electronic transitions in charge-transfer systems
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We investigate strong-external-field effects on optical transitions between electronic states of charge-transfer
systems in condensed media. We will use as a model a two-level system coupled to a dissipative medium
driven by a strong, time-dependent external field. The external field induces transitions between the levels, and
the dissipation, represented by a stochastic process, induces relaxation. The power absorbed by the system is
characterized by spectral densities that not only depend on the detuning from resonance and the strength of the
dissipation, as found for line shapes in linear spectroscopy, but also on the strength of the external field. Our
treatment is nonperturbative in the strength of the external field, and leads to the conclusion that spectral line
shapes can be manipulated by the application of sufficiently strong external fetd63-182608)03712-9

I. INTRODUCTION action with the medium. The strong external field changes
the level populations by a finite amount, so that one does not
The study of molecular electronic transitions in con-obtain, as in LRT, a constant cycle-averaged power ab-
densed media has provided a wealth of information on &orbed,(P). Instead,(P) will depend on time in a charac-
molecular system’s interaction with a medidfWhen the teristic fashion. Furthermore, spectral densities will appear
coupling to the medium is strong, and there is a significanthat are different from those found in LRT, as they depend
difference in electronic structure between the system’s statesn the external field strength, in addition to the detuning and
there may be a substantial broadening of the electronic trarthe dissipation. The nonperturbative treatment leads to an
sition. A prime example is that of optical electron transfer in(approximatg analytic expression for the dependence of the
polar media Linear spectroscopic methods, based on linearpower absorbed on the external field strength. The spectral
response theoryLRT) (equivalently, Fermi's golden rule densities that appear in the analytic expression are Lorentz-
provide information via the linear susceptibility. In linear ians whose line centers are linear functions of the external
spectroscopy, there is a close connection between opticéield strength. This result suggests the possibility of using
spectra(e.g., for intervalence bangdand nonradiativéther-  external fields of varying strengths to access the spectral den-
mal) electron transfer ratés® In both, the information is sities in frequency ranges that would not be accessible in the
contained in a spectral densitine shapg that depends on linear-response regime.
the strength of the dissipation and the detuning of the tran- The plan of the rest of this paper is as follows. In Sec. Il
sition frequency from the the applied field frequenthe  we will describe the Hamiltonian appropriate to a two-level
latter being zero for a thermal procgsMlore recently, vari-  system coupled to a stochastic bath and driven by an external
ous forms of nonlinear spectroscopy have been developefield. The equations of motion that follow from this Hamil-
They are based on either perturbative expansions in tht®onian are averaged over the stochastic process and solved
strength of the external field, involving nonlinear approximately. In Sec. Ill we compare the numerical solu-
susceptibilitie$:” or on nonpertubative analysis of the den-tion of the averaged equations of motion with the analytic
sity matrix by numerical methodsWe have recently studied solutions, and analyze the effect of a strong driving field.
the role of strong constant and time-dependent external fields
on rates of thermal charge transfer reactions, at'flifrand Il. DERIVATION OF THE AVERAGED POWER
low temperature& without relying on a perturbation expan- ABSORBED
sion in the external field.
In this paper we will use a nonperturbative approach to The Hamiltonian we use,
study strong external field effects on radiative electronic
transitions. The focus will be on the time development of the
power absorbed from the external field. By restricting the
calculation to a two-state system, and by representing the
system-medium interactiofthe dissipation by a classical describes a system with two electronic staj@sand |1),
stochastic process, we will arrive at a simple view of theinteracting with a classical external field and a medium.
effect of the strong external field on the system and its interwith i =x, y, andz, are the Pauli spin operators. The exter-

h
H=—5[wot 7(t) Jo +2hb(1) oy, @
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nal field-system interaction energy is defined bib2t) X(t)=[wo+ n()]y(1), 4
=(0|p|1)-E(t), whereu is the system dipole moment op-

erator ancE(t) is the external field. The medium dynamics is

described here by a classical stochastic proegd$ that y(t)= —[wo+ 7(t)Ix(t) — 4b(t)z(1),

simulates the medium’s fluctuations around (itkffering)

equilibrium positions in thé0) and|1) electronic states. The :

displacement of the medium’s equilibrium position in re- 2(t)=4b(1)y(V).

sponse to the differing charge distributions of {Beand|1)
electronic system states incorporates the strong couplingx
typical of charge-polar medium interactions. The stochastic
Hamiltonian of Eq.(1) can be obtained from a spin-boson
Hamiltonian when two conditions are m@tFirst, the tem-
perature must be sufficiently high to permit a classical treat-

ment of the medi_um degrges of freedom. This is o_ften 8, the stochastic descriptior®(t) is a fluctuating quantity.
case for electronic transitions of solute molecules in polar

solvents, where the coupling is to long-range coIIectiveIts averageP(t) follows directly from Egs(3) and(5). Thus

modes(e.g., the solvent’s orientational polarizaticnSec-

ond, we require thdt, 7. is small, wherer, is the correlation _ .

time of the medium fluctuations aris}, is the magnitude of P(t)=2%b(t)x(1), (6)

the external field-system coupliftg(t). If this condition is — . i

not satisfied, a classical stochastic model for the mediunf’herex(t) represents the stochastic average(@. In this

dynamics would not be appropriate, and more sophisticateBaPer, we will consider thag(t) is an Ornstein-Uhlenbeck

techniques would have to be uskd. stochastic process with correlation function(t) z(s)
The classical stochastic process equivalent to the one ariss A%exp(—[t—sl/7;), with A= 2E,kgT/4%.*® The quantities

ing from a spin-boson Hamiltonian, with the bath initially A and 7 are, respectively, the strength and correlation time

equilibrated to the ground electronic state, is Gaussian. It6f the stochastic process. The thermal ability of the solvent

average over the medium fluctuations is the reorganizatiof? produce fluctuations in thi@)—|1) energy gap is charac-

energyE,, which measures the energetic cost of reequili-terized byA. The correlation time of the fluctuations in polar

brating the medium to staf) if it was initially equilibrated ~ media scales with the dielectric relaxation time, ™

to state|0). ThusE,=G"q{|1)) —G®Y|1)), where the first In general, a closed set of equations of motion for the

term is the free energy of stai®) interacting with the me- averages can only be obtained from the stochasti¢ Bt

dium equilibrated to staté) (hence a nonequilibrium free (4)] under some suitable approximations. This is the case

energy, and the second is the free energy with the mediuntven for weak external fields—the system-medium interac-

equilibrated to statél). For convenience, we have included tion leads to stochastic equations of motion with multiplica-

the average value of the stochastic process in the definitiofive noise. Whem 7.<1, the fluctuations can be treated as a

of iy, SO that the mean valug(t) is zero. The quantity Perturbation of the systematic dynamic¢g? This will be a

fw, then is the energy gap between tmvatedelectronic good approximation, as long as we contemplate external

states, with the medium degrees of freedom kept fixed at€!dS with strengths such thai,>b,. But note that the
their equilibrium configuration in th9) electronic state, as aPPlied field can be quite substantial so as to prevent us from

we now show. With our definition of(t) as the fluctuation conside.ring a perturba}tion expansion in its strgngth. AS. t_he
from equilibrium, i wy=AG°+E, , whereAG is the stan- correlations decay rapidly for typical polar media, we antici-

dard free-energy difference between fig and [0) states, pate obtaining time-local average equations of motion. By
AGO=G®{(|1))—G®{(|0)). Using the definition of E following methods we have developed for treating external
" r

above i wy=G"{|0)) — G| 0)), which is the vertical ex- field effects on similar stochastic equations of motibrve

citation energy including the solvation contribution. obtain
The evolution of the system can be obtained from the
density matrix equation of motion

The instantaneous power absorbed by the system from the
ternal field is given by

P(t)=Trp(t)2%b(t) o, . (5)

X(1)= woy(t) —dx(t),

L Ip _
5 ~LHRM] @ Y(t)= — wox(t) — dy(t) — 4b(t) Z(1), @

Expressing the density matrp(t) as
Z(t)=4b(1)y(1).

p(t)= %[1+x(t)ax+y(t)ay+ Z(t)o,], 3 The effect of dissipation appears in the factiee A%7.. Al-
though Eq.(7) can be readily integrated numerically, insight
and using Egs(1)—(3), results in the following stochastic can be gained by carrying out an approximate analytical
equations of motion for the time dependent coefficie(ts, treatment. To this end, it is convenient to recast&yas the
y(t), andz(t) following set of second order in time equations of motion:
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X(1) +2dX(t) + (w2+ d2)X(t) = — 4bgwy cosQtz(t),

() +2dy(t) + (wi+d?)y(t) = — %(4b(t)?(t))

—d 4b(t)z(t), (8

2(t)=4b, cosQty(t).
We have taken the applied field to be sinusoidal in time, so

thatb(t) =by cosQt, with a frequencyl~ w,. We now ap-
proximate they(t) equation, assuming th&t>d,z, as

() +2dy(t) + (wi+d2)y(t) = 4boQ sin Qtz(t). (9)

(1/ 2)h(2by)2Q
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— 1 %
Papd t) =850 5 sin sz dr e %" sin wor
0

— 1—cos A1t
xXcosQrz(t—171)+ —

X f d7 e 97 sin wyr sin QTZ_(t— T)
0

Using the above analytical expression, and 8¢), the
power absorbed by the system can be expressed as

Papd t
aorl ! 2e” W[ C, cosw,t+Cy sin wyt]

+e 97 C, cog20+ w)t

+ C3 COiZQ_ wl)t-l— C4 SII’](ZQ-I— wl)t
(15

+ CS SIH(ZQ— wl)t],

Neglecting the transient part of the solution of the aboveyhere

equation, and noting that the system is initially in to
state, so thak(0)=y(0)=0 andz(0)=1, lets us write a
solution near resonance as

2bo2

o

y(t)~— “oth e 9t=7z(7)|cosQt. (10

Using this result in Eq(8), and averaging the resulting ex-
pression over the fa$ oscillations, we find that the average

population difference between the electronic sta?(aS,, sat-
isfies

— t _
z(t):—4bgf dr e 97z(t—7). (11)

0
Taking a time derivative of this last equation, one can write
a second-order differential equation foft) whose solution
for the initial conditionsz(0)=1, z(0)=0 is

_ d
z(t)=e" ‘“’2( coswit+ =— sin wyt |,

where w,= \/4b02—(d/2)2. Here we have assumed that the
external field strength is such thby>d/2. Thus the time
behavior of the population difference induced by the external
field is basically that of an underdamped harmonic oscillator.
Using this result in the first of Eq$8), with the initial con-

ditions x(0)=x(0)=0, yields

x(t)= —4bofotdr e 97 sin(wor)cog Q(t—7)]z(t— 7).
(13

An approximate expression for the power absorbed is ob-
tained from Eqs(6) and(13) as

Co=3[1(6-—w)—1(8; + ) +1(8-+ 1)~ 1(8; —wy)]

d 1
~ 57 g0 o) = A8~ w) = )5, + )

+J(0; —w1)],

d 1
— [ (6. —w)— (6 +wy) +I(5_+ wq)

€175, 2

—|(5+—w1)]+%
[J(6-+w1)—=I(6-~wy)
—J(6y T 1) +I(6, —wq)],

1 d
C2=—§[I(5—wl)—l(5++wl)+2—w1J(5—wl)

d
+ 2—w1J( 6t wq)

1 d
C3=—§[|(5+w1)—|(5+—wl)—2—w13(5+w1)

d J(6
" Zo; (04— wy),

C4=%{J(5_—wl)+\](5++w1)—zil(é_—wl)

w7

d
+2—w1|(5++w1)

1 d
cszi{J(5++wl)+J(5+—wl)+2—w1|(5+w1)

d J(o
" Zor (04— wy)

. (19
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Here 6.=wy= ) are the detuning frequencies and, kgs 1 ~
>d/2 for strong external fieldsp;~2by. Thel’s andJ’s 0.8 £,=0.0005
appearing in the above expressions are defined in terms of 0.6 b,=0.005
the integrals o\ 04 by=0.0125
z(r) Y-
5 d/2 0.2 bO:O"O;—\
_ — dt2 -
[(v) fo dt e cogvt) (22472 A T T 500
(16) -0.2
-0.4 @of

e 14
J(v)=f dt e 2 sin(pt)= —=5—. _
0 (d/2)*+v FIG. 1. Time behavior ok(t) for several values of the external

. field st th indicated the plot, wills-0.05, wg=1. d
We shall refer to thé’ and J's as the spectral densities; they ('le: lsorer}?mé 6:2 Igézzuiedo?n uenﬁso (’)fVZJG’ Thellai)r?e wi(t)ﬁ atge

a_re, respectlyely, the real and imaginary parts_ of the Oneémall-amplitude oscillations is the difference between the numerical
sided Fourier transform of the relaxation kernel result and that obtained from E€L2) for by=0.05.

exp(—dt/2), evaluated at the indicated frequencies.

equation of motion approach is usdtsually, LRT is done
IIl. ANALYSIS OF THE AVERAGED POWER ABSORBED by a golden rule approach that uses an initial decay rate

The derivation carried out in Sec. Il provides a closed-methodology. As long as the decay d(t) is exponential,

form approximate solutio®,,{t) for the average power ab- the linear-response regime will be appropriate.

sorbed of the system. Before analyzing the implications of 1urning to the case of stronger coupling, Fig. 1 displays a

this expression, and comparing it with the numerical solutiornonexponentially decaying(t) for b,=0.0125. Since B,

of the averaged equations of motion, let us regain the linear d/2, this is, according to the analytic approximation, a

response theory. b, is small, then the population differ- critically damped oscillator. Foby,=0.05 the decay is a

ence is changing slowly, i.e., we may sgtt)~1 in Eq. damped oscillation, reflecting the inversion of the population

(13. The resulting @pp(t), which we will denote as difference, z(t), brought about by the applied field. This

PLrr(t), is a periodic function of time, and its cycle avera estror?g field result exhibits the damped oscillatory decay as
LRTAS P : y 9€ obtained in Eq(12). The other line in Fig. 1, with the small

. QO (20 _ amplitude oscillations, is the difference between the numeri-
(PlrT)= ppe j dt Pg(t), (17)  cal results and that obtained from EG-2), for by=0.05.
mJo Clearly, the analytic result given in EqL2) is an excellent
provides the conventional result approximation to that obtained by numerical solution of Eq.
(8).
(Plrr)= 2 5(2bg)2Q[1(8_)—1(8,)]. (18) Once z(t) is accurately described?,,{t) will be very

close to the numerical result. This feature follows from Egs.
The system’'glinean susceptibility( P rr)/1/24(2by)2Q is  (6), (13) and (14), from which it is evident that the only
independent ob,, of course. The spectral densitfv), [cf. ipproximation involved is that already made in obtaining
Eqg. (16)] is a Lorentzian with broadening given by the dis- z(t). Therefore, the expression in Eq45) and(16) for the
sipation d=A?7., reflecting the interaction of the system power absorbed is essentially the same as that obtained nu-
with the medium. merically.

Another view of LRT follows from our equations of mo-  There are a number of significant featuresigf{t) that
tion method. If thez(t) equation in Eq(11) is solved for ~arise for stronger fields. The susceptibility corresponding to
smallb, by assuming that(t) is slowly varying, so that Eq. Papdt) now depends on the strength of the external field and,
(11) becomes time local, thea(t) = exg —(20)2/d]. [An since our derivation is nonperturbative, includes the effect of
equivalent procedure is to solve the second order equatioff€ external field to all orders in its strength. Most signifi-
that led to Eq.(12), but now in the limit of extreme over- cantly, operationally, the peaks of the spectral densities are

damping] Furthermore, as the right hand side of Eg4) ~ Now displaced by By, with respect to the detuning®. . In

becomes proportional ta(t) for slowly varying z(t), the particular, the line-shape functions, for examplel ahat is
= prop - ; y ying i close to resonance, and will therefore contribute the most to

ratio (P grr)/ z(t) yields the same result as settiagt)~1. e power absorbed, have the form

Thus the cycle average will still yield the LRT result given

by Eq. (18). These analytic predictions are verified by nu-
merically solving forz(t). Numerical integration of the sys-

tem of equations in Eq(8) is readily carried out. Figure 1 d/2

presents the numerical solutions for varying values of the - (d/2)%+ (wg— Q. —2bg)?’
external field strengthb,. For by=0.0005, z(t) does not

decay on the time scale of the plot. Fy=0.005, the decay where we have noted that,~2b, for 2by>d/2. As we

is exponentialafter a transient and is well described by the assume that we are close to resonance in the senseghat
above overdamped decay. Thus, our results show that LRT is Q~0, Eq.(19) shows that the external field strength can
obtained even if there is a finite population change, when th@roduce a significant shift in the position of the resonance.

I((JJO_Q_wl)NI((J)O_Q_Zbo)

(19
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FIG. 2. Power spectrur‘i’?(w) of 7?(t) for the indicatedby values withd=0.05, wy=1.0, and()=1.0. The analyticavzpp(t) [cf. Eq.
(15)] shows that peaks should appear at the displayed frequencies. The amplitudes of the peaks are also quantitatively predicted by the
analytic expression.

The spectral functions are time independent quantities Increasing the value adb, for fixed values of the other
that determine, in part, the time dependenc@gjp(t). The parameters could be used as a means of generating sufficient
time dependence of the average power absorbed arises frafigta to fit to the analytic form of Eq15), and thereby ob-
the finite population change in the system induced by thdaining the value of the dissipatiod, As w;~2b, and the
strong driving field. That the average power absorbed is tim@pplied frequency) must be much larger thal, (for the
dependent is a feature that makes the strong-field result mogxample in Fig. 2 the low-frequency peak and the high-
involved than the LRT limit. However, the analysis can befrequency doublet of the power spectrum must be well sepa-
simplified in several ways. For one, a cycle average ofated. Their intensities are on the same scale, approximately.

7?app(t) reduces the complexity of Eq15) considerably as T_hus, d_epending on the desire_d frequency domain of analy-
only the C, and C, coefficient termgthose that only oscil-  SiS: optical for€), the external field frequency, and roughly
late with ;) survive. The time dependence (JEapp(t)), infrared for the low-frequency peak aroubgl, either regime

. I can be used to provide the same information.
then, is a damped oscillation at only the one frequergy,
Another approach is to simply Fourier analyze the com-

pleteﬁpp(t). The approximate result of E¢L5) shows that V. CONCLUDING REMARKS
the frequencies; and )+ w, appear, so a Fourier trans- )
= In this work we have analyzed a model of a two-level

form of Papdt) will lead to lines broadened by the d|55|pa-. ystem coupled to a dissipative medium and to an external

tion, d, centered at these frequencies. This is clearly seen i leld that induces transitions between the system states. The
Fig. 2, where we display th(am_—normallzeai POWer spec- result presented in Eq§l5) and(16) is a closed-form solu-

trum of the numerically obtaineB(t). The series of plotsis .
for a fixed value of the dissipation and increasimgvalues. tion for Papft), the average power absorbgd by the system,
that does not rely on performing perturbation theory in the

The low-frequency peak shifts away from zero frequer]Cy’external field strengtlby. This approximate solution is in

and the high-frequency peaks are split mordacreases. . . .
The analytic expression in Eq15), when Fourier trans- ghood agreemdent W'th that ?ener.ated by numerllc(:aélsolLrJ]Uonr?f
formed, properly describes both the peak positions and an{énetiraevirc?rgl(iane:?t::tslggzs% g;mfzatl:otnc.:almzIsbéeg]oarcgmgatctzli; tef_
plitudes displayed in Fig. 2. Figure 3 prowde_s th_e pOWe;oressed. It would be difficult to obtain this simple result by
shows the increasing broadening engendered by stronger di grturbgtion theor_y, as the perturbation theory would have to
sipation. e carried out to infinite qrder. _
We showed that the time-dependent power absorbed is

determined by coefficients that are determined by spectral
25 densities of a Lorentzian form. The centers of the Lorentz-
ians are linear functions df,. Thus the spectral densities
20 are centered on frequencies that can be controlled by the
external field's strength. This observation suggests that line
15 be=0.1 shapes could be manipulated to, e.g., be of greater intensity
in a desired range of applied frequen@yby the application
10 of stronger external fields than those used in the linear-
response regime.

It is also interesting that the use of strong external fields
leads to the appearance of theand J spectral densities,
whereas only thé one appears in LRT. Of course, the same

information is contained in either spectral density. Note that
o o the coefficients of the low- and high-frequency term#®it)

FIG. 3. Power spectrunP(w) of P(t) for by=0.1 with d depend on the sameandJ spectral densities, so a measure-
=0.1, wo=1.0, andQ =1.0. The analyticalP,,{t) [cf. Eq.(15]  ment in either frequency regime can be used to obtain the
shows that the lines should be broadened more than for the smalleomplete information.
value of the dissipatiord, used to construct Fig. 2. The calculations presented here can be extended in sev-

]
&

<
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eral directions. First, the line shapes obtained here arfeq7p(t). Third, when the characteristic medium frequencies
Lorentzian, due to the assumption of weak couplitg. 516 |arge compared to the temperature, quantum medium ef-

fl'hln Egl_?r m‘?d'a* Ithe dCOtUplc'?g ter_1ds to b? sltrgngg%andfects on the spectral transitions should be evaluated. A trac-
or the regime, leads 1o Laussian spectral 0ensiies. ., 10 14t fto these effects is via the spin-boson model, as
We have analyzéd the technically more demanding strong- we shall detail elsewhere

coupling case, and find that, again, the spectral density de-
pends on the external field strength. Second, our stochastic
Hamiltonian leads to equal population of the levets<0)

in the long-time limit. For not too strong external field
strengths bo<wg), the long-time behavior should be well  Support by the NATQR.I.C. and M.M), the Center for
described by the Boltzmann distribution. Phenomenologi+undamental Materials Research at Michigan State Univer-
cally, this can be accounted for by interpretinft) as the sity (R.I.C. and M.M) and the DGICYT of Spair(Project
deviation from its equilibrium value. This would not change No. PB95-053% and the Junta de AndaluciM) is grate-

the spectral densitidsandJ that would appear in the modi- fully acknowledged.
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