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External-field effects on molecular electronic transitions in charge-transfer systems
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We investigate strong-external-field effects on optical transitions between electronic states of charge-transfer
systems in condensed media. We will use as a model a two-level system coupled to a dissipative medium
driven by a strong, time-dependent external field. The external field induces transitions between the levels, and
the dissipation, represented by a stochastic process, induces relaxation. The power absorbed by the system is
characterized by spectral densities that not only depend on the detuning from resonance and the strength of the
dissipation, as found for line shapes in linear spectroscopy, but also on the strength of the external field. Our
treatment is nonperturbative in the strength of the external field, and leads to the conclusion that spectral line
shapes can be manipulated by the application of sufficiently strong external fields.@S0163-1829~98!03712-6#
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I. INTRODUCTION

The study of molecular electronic transitions in co
densed media has provided a wealth of information o
molecular system’s interaction with a medium.1,2 When the
coupling to the medium is strong, and there is a signific
difference in electronic structure between the system’s sta
there may be a substantial broadening of the electronic t
sition. A prime example is that of optical electron transfer
polar media.3 Linear spectroscopic methods, based on line
response theory~LRT! ~equivalently, Fermi’s golden rule!
provide information via the linear susceptibility. In linea
spectroscopy, there is a close connection between op
spectra~e.g., for intervalence bands! and nonradiative~ther-
mal! electron transfer rates.4–6 In both, the information is
contained in a spectral density~line shape! that depends on
the strength of the dissipation and the detuning of the tr
sition frequency from the the applied field frequency~the
latter being zero for a thermal process!. More recently, vari-
ous forms of nonlinear spectroscopy have been develo
They are based on either perturbative expansions in
strength of the external field, involving nonlinea
susceptibilities,2,7,8 or on nonpertubative analysis of the de
sity matrix by numerical methods.9 We have recently studied
the role of strong constant and time-dependent external fi
on rates of thermal charge transfer reactions, at high10,11 and
low temperatures,12 without relying on a perturbation expan
sion in the external field.

In this paper we will use a nonperturbative approach
study strong external field effects on radiative electro
transitions. The focus will be on the time development of
power absorbed from the external field. By restricting t
calculation to a two-state system, and by representing
system-medium interaction~the dissipation! by a classical
stochastic process, we will arrive at a simple view of t
effect of the strong external field on the system and its in
570163-1829/98/57~12!/6972~6!/$15.00
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action with the medium. The strong external field chang
the level populations by a finite amount, so that one does
obtain, as in LRT, a constant cycle-averaged power
sorbed,̂ P̄&. Instead,̂ P̄& will depend on time in a charac
teristic fashion. Furthermore, spectral densities will app
that are different from those found in LRT, as they depe
on the external field strength, in addition to the detuning a
the dissipation. The nonperturbative treatment leads to
~approximate! analytic expression for the dependence of t
power absorbed on the external field strength. The spec
densities that appear in the analytic expression are Lore
ians whose line centers are linear functions of the exte
field strength. This result suggests the possibility of us
external fields of varying strengths to access the spectral
sities in frequency ranges that would not be accessible in
linear-response regime.

The plan of the rest of this paper is as follows. In Sec
we will describe the Hamiltonian appropriate to a two-lev
system coupled to a stochastic bath and driven by an exte
field. The equations of motion that follow from this Hami
tonian are averaged over the stochastic process and so
approximately. In Sec. III we compare the numerical so
tion of the averaged equations of motion with the analy
solutions, and analyze the effect of a strong driving field.

II. DERIVATION OF THE AVERAGED POWER
ABSORBED

The Hamiltonian we use,

H52
\

2
@v01h~ t !#sz12\b~ t !sx , ~1!

describes a system with two electronic statesu0& and u1&,
interacting with a classical external field and a medium.s i ,
with i 5x, y, andz, are the Pauli spin operators. The exte
6972 © 1998 The American Physical Society
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57 6973EXTERNAL-FIELD EFFECTS ON MOLECULAR . . .
nal field-system interaction energy is defined by 2\b(t)
5^0um̂u1&•E(t), wherem̂ is the system dipole moment op
erator andE(t) is the external field. The medium dynamics
described here by a classical stochastic processh(t) that
simulates the medium’s fluctuations around its~differing!
equilibrium positions in theu0& and u1& electronic states. The
displacement of the medium’s equilibrium position in r
sponse to the differing charge distributions of theu0& and u1&
electronic system states incorporates the strong coup
typical of charge-polar medium interactions. The stocha
Hamiltonian of Eq.~1! can be obtained from a spin-boso
Hamiltonian when two conditions are met.10 First, the tem-
perature must be sufficiently high to permit a classical tre
ment of the medium degrees of freedom. This is often
case for electronic transitions of solute molecules in po
solvents, where the coupling is to long-range collect
modes~e.g., the solvent’s orientational polarization!.5 Sec-
ond, we require thatb0tc is small, wheretc is the correlation
time of the medium fluctuations andb0 is the magnitude of
the external field-system couplingb(t). If this condition is
not satisfied, a classical stochastic model for the med
dynamics would not be appropriate, and more sophistica
techniques would have to be used.12

The classical stochastic process equivalent to the one
ing from a spin-boson Hamiltonian, with the bath initial
equilibrated to the ground electronic state, is Gaussian
average over the medium fluctuations is the reorganiza
energyEr , which measures the energetic cost of reequ
brating the medium to stateu1& if it was initially equilibrated
to stateu0&. Thus Er5Gneq(u1&)2Geq(u1&), where the first
term is the free energy of stateu1& interacting with the me-
dium equilibrated to stateu0& ~hence a nonequilibrium free
energy!, and the second is the free energy with the medi
equilibrated to stateu1&. For convenience, we have include
the average value of the stochastic process in the defin
of \v0 , so that the mean valueh̄(t) is zero. The quantity
\v0 then is the energy gap between thesolvatedelectronic
states, with the medium degrees of freedom kept fixed
their equilibrium configuration in theu0& electronic state, as
we now show. With our definition ofh(t) as the fluctuation
from equilibrium,\v05DG01Er , whereDG0 is the stan-
dard free-energy difference between theu1& and u0& states,
DG05Geq(u1&)2Geq(u0&). Using the definition of Er
above,\v05Gneq(u0&)2Geq(u0&), which is the vertical ex-
citation energy including the solvation contribution.

The evolution of the system can be obtained from
density matrix equation of motion

i\
]r

]t
5@H~ t !,r~ t !#. ~2!

Expressing the density matrixr(t) as

r~ t !5 1
2 @11x~ t !sx1y~ t !sy1z~ t !sz#, ~3!

and using Eqs.~1!–~3!, results in the following stochasti
equations of motion for the time dependent coefficientsx(t),
y(t), andz(t)
g
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ẋ~ t !5@v01h~ t !#y~ t !, ~4!

ẏ~ t !52@v01h~ t !#x~ t !24b~ t !z~ t !,

ż~ t !54b~ t !y~ t !.

The instantaneous power absorbed by the system from
external field is given by

P~ t !5Trr~ t !2\ḃ~ t !sx . ~5!

In the stochastic description,P(t) is a fluctuating quantity.
Its averageP̄(t) follows directly from Eqs.~3! and~5!. Thus

P̄~ t !52\ḃ~ t ! x̄~ t !, ~6!

wherex̄(t) represents the stochastic average ofx(t). In this
paper, we will consider thath(t) is an Ornstein-Uhlenbeck
stochastic process with correlation functionh(t)h(s)
5D2exp(2ut2su/tc), with D252ErkBT/\2.13 The quantities
D andtc are, respectively, the strength and correlation ti
of the stochastic process. The thermal ability of the solv
to produce fluctuations in theu0&–u1& energy gap is charac
terized byD. The correlation time of the fluctuations in pola
media scales with the dielectric relaxation time,tL .13

In general, a closed set of equations of motion for t
averages can only be obtained from the stochastic set@Eq.
~4!# under some suitable approximations. This is the c
even for weak external fields—the system-medium inter
tion leads to stochastic equations of motion with multiplic
tive noise. WhenDtc!1, the fluctuations can be treated as
perturbation of the systematic dynamics.11,14 This will be a
good approximation, as long as we contemplate exte
fields with strengths such thatv0@b0 . But note that the
applied field can be quite substantial so as to prevent us f
considering a perturbation expansion in its strength. As
correlations decay rapidly for typical polar media, we anti
pate obtaining time-local average equations of motion.
following methods we have developed for treating exter
field effects on similar stochastic equations of motion,10 we
obtain

ẋ̄~ t !5v0ȳ~ t !2dx̄~ t !,

ẏ̄~ t !52v0x̄~ t !2dȳ~ t !24b~ t ! z̄~ t !, ~7!

ż̄~ t !54b~ t ! ȳ~ t !.

The effect of dissipation appears in the factord[D2tc . Al-
though Eq.~7! can be readily integrated numerically, insig
can be gained by carrying out an approximate analyt
treatment. To this end, it is convenient to recast Eq.~7! as the
following set of second order in time equations of motion
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ẍ̄~ t !12dẋ̄~ t !1~v0
21d2! x̄~ t !524b0v0 cosVt z̄~ t !,

ÿ̄~ t !12dẏ̄~ t !1~v0
21d2! ȳ~ t !52

d

dt
„4b~ t ! z̄~ t !…

2d 4b~ t ! z̄~ t !, ~8!

ż̄~ t !54b0 cosVt ȳ~ t !.

We have taken the applied field to be sinusoidal in time,
thatb(t)5b0 cosVt, with a frequencyV'v0 . We now ap-

proximate theȳ(t) equation, assuming thatV@d, ż̄, as

ÿ̄~ t !12dẏ̄~ t !1~v0
21d2! ȳ~ t !54b0V sin Vt z̄~ t !. ~9!

Neglecting the transient part of the solution of the abo
equation, and noting that the system is initially in theu0&
state, so thatx(0)5y(0)50 and z(0)51, lets us write a
solution near resonance as

ȳ~ t !'2
2b0V

v0
F E

0

t

dt e2d~ t2t! z̄~t!GcosVt. ~10!

Using this result in Eq.~8!, and averaging the resulting ex
pression over the fastV oscillations, we find that the averag
population difference between the electronic states,z̄(t), sat-
isfies

ż̄~ t !524b0
2E

0

t

dt e2dt z̄~ t2t!. ~11!

Taking a time derivative of this last equation, one can wr
a second-order differential equation forz̄(t) whose solution
for the initial conditionsz(0)51, ż(0)50 is

z̄~ t !5e2 dt/2S cosv1t1
d

2v1
sin v1t D , ~12!

wherev15A4b0
22(d/2)2. Here we have assumed that th

external field strength is such thatb0.d/2. Thus the time
behavior of the population difference induced by the exter
field is basically that of an underdamped harmonic oscilla
Using this result in the first of Eqs.~8!, with the initial con-
ditions x(0)5 ẋ(0)50, yields

x̄~ t !524b0E
0

t

dt e2dt sin~v0t!cos@V~ t2t!# z̄~ t2t!.

~13!

An approximate expression for the power absorbed is
tained from Eqs.~6! and ~13! as
o

e

e

l
r.

-

P̄app~ t !58\b0
2VF1

2
sin 2VtE

0

`

dt e2dt sin v0t

3cosVt z̄~ t2t!1
12cos 2Vt

2

3E
0

`

dt e2dt sin v0t sin Vt z̄~ t2t!G . ~14!

Using the above analytical expression, and Eq.~12!, the
power absorbed by the system can be expressed as

P̄app~ t !

~1/ 2!\~2b0!2V
52e2 dt/2@C0 cosv1t1C1 sin v1t#

1e2 dt/2@C2 cos~2V1v1!t

1C3 cos~2V2v1!t1C4 sin~2V1v1!t

1C5 sin~2V2v1!t#, ~15!

where

C05 1
4 @ I ~d22v1!2I ~d11v1!1I ~d21v1!2I ~d12v1!#

2
d

2v1

1

4
@J~d21v1!2J~d22v1!2J~d11v1!

1J~d12v1!#,

C15
d

2v1

1

4
@ I ~d22v1!2I ~d11v1!1I ~d21v1!

2I ~d12v1!#1 1
4

@J~d21v1!2J~d22v1!

2J~d11v1!1J~d12v1!#,

C252
1

2 F I ~d22v1!2I ~d11v1!1
d

2v1
J~d22v1!

1
d

2v1
J~d11v1!G ,

C352
1

2 F I ~d21v1!2I ~d12v1!2
d

2v1
J~d21v1!

2
d

2v1
J~d12v1!,G

C45
1

2 FJ~d22v1!1J~d11v1!2
d

2v1
I ~d22v1!

1
d

2v1
I ~d11v1!G ,

C55
1

2 FJ~d11v1!1J~d12v1!1
d

2v1
I ~d21v1!

2
d

2v1
J~d12v1!G .
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Here d65v06V are the detuning frequencies and, asb0
@d/2 for strong external fields,v1'2b0 . The I ’s and J’s
appearing in the above expressions are defined in term
the integrals

I ~n!5E
0

`

dt e2 dt/2 cos~nt !5
d/2

~d/2!21n2 ,

~16!

J~n!5E
0

`

dt e2 dt/2 sin~nt !5
n

~d/2!21n2 .

We shall refer to theI ’ and J’s as the spectral densities; the
are, respectively, the real and imaginary parts of the o
sided Fourier transform of the relaxation kern
exp(2dt/2), evaluated at the indicated frequencies.

III. ANALYSIS OF THE AVERAGED POWER ABSORBED

The derivation carried out in Sec. II provides a close
form approximate solutionP̄app(t) for the average power ab
sorbed of the system. Before analyzing the implications
this expression, and comparing it with the numerical solut
of the averaged equations of motion, let us regain the lin
response theory. If\b0 is small, then the population differ
ence is changing slowly, i.e., we may setz̄(t)'1 in Eq.
~13!. The resulting P̄app(t), which we will denote as
P̄LRT(t), is a periodic function of time, and its cycle avera

^P̄LRT&5
V

2p E
0

2p/V

dt P̄LRT~ t !, ~17!

provides the conventional result

^P̄LRT&5 1
2 \~2b0!2V@ I ~d2!2I ~d1!#. ~18!

The system’s~linear! susceptibility^P̄LRT&/1/2\(2b0)2V is
independent ofb0 , of course. The spectral densityI (n), @cf.
Eq. ~16!# is a Lorentzian with broadening given by the di
sipation d[D2tc , reflecting the interaction of the syste
with the medium.

Another view of LRT follows from our equations of mo

tion method. If theż̄(t) equation in Eq.~11! is solved for
smallb0 by assuming thatz̄(t) is slowly varying, so that Eq
~11! becomes time local, thenz̄(t)5exp@2(2b0)

2t/d#. @An
equivalent procedure is to solve the second order equa
that led to Eq.~12!, but now in the limit of extreme over
damping.# Furthermore, as the right hand side of Eq.~14!

becomes proportional toz̄(t) for slowly varying z̄(t), the
ratio ^P̄LRT&/ z̄(t) yields the same result as settingz̄(t)'1.
Thus the cycle average will still yield the LRT result give
by Eq. ~18!. These analytic predictions are verified by n
merically solving forz̄(t). Numerical integration of the sys
tem of equations in Eq.~8! is readily carried out. Figure 1
presents the numerical solutions for varying values of
external field strength,b0 . For b050.0005, z̄(t) does not
decay on the time scale of the plot. Forb050.005, the decay
is exponential~after a transient!, and is well described by the
above overdamped decay. Thus, our results show that LR
obtained even if there is a finite population change, when
of
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f
n
ar

on
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e

equation of motion approach is used.~Usually, LRT is done
by a golden rule approach that uses an initial decay
methodology.! As long as the decay ofz̄(t) is exponential,
the linear-response regime will be appropriate.

Turning to the case of stronger coupling, Fig. 1 display
nonexponentially decayingz̄(t) for b050.0125. Since 2b0
5d/2, this is, according to the analytic approximation,
critically damped oscillator. Forb050.05 the decay is a
damped oscillation, reflecting the inversion of the populat
difference, z̄(t), brought about by the applied field. Th
strong field result exhibits the damped oscillatory decay
obtained in Eq.~12!. The other line in Fig. 1, with the smal
amplitude oscillations, is the difference between the num
cal results and that obtained from Eq.~12!, for b050.05.
Clearly, the analytic result given in Eq.~12! is an excellent
approximation to that obtained by numerical solution of E
~8!.

Once z̄(t) is accurately described,P̄app(t) will be very
close to the numerical result. This feature follows from E
~6!, ~13! and ~14!, from which it is evident that the only
approximation involved is that already made in obtaini
z̄(t). Therefore, the expression in Eqs.~15! and~16! for the
power absorbed is essentially the same as that obtained
merically.

There are a number of significant features ofP̄app(t) that
arise for stronger fields. The susceptibility corresponding
P̄app(t) now depends on the strength of the external field a
since our derivation is nonperturbative, includes the effec
the external field to all orders in its strength. Most signi
cantly, operationally, the peaks of the spectral densities
now displaced by 2b0 , with respect to the detuningsd6 . In
particular, the line-shape functions, for example anI that is
close to resonance, and will therefore contribute the mos
the power absorbed, have the form

I ~v02V2v1!'I ~v02V22b0!

5
d/2

~d/2!21~v02V22b0!2 , ~19!

where we have noted thatv1'2b0 for 2b0@d/2. As we
assume that we are close to resonance in the sense thav0
2V'0, Eq. ~19! shows that the external field strength c
produce a significant shift in the position of the resonanc

FIG. 1. Time behavior ofz̄(t) for several values of the externa
field strength, as indicated on the plot, withd50.05,v051.0, and
V51.0. Time is measured in units of 1/v0 . The line with the
small-amplitude oscillations is the difference between the numer
result and that obtained from Eq.~12! for b050.05.
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FIG. 2. Power spectrumP̄(v) of P̄(t) for the indicatedb0 values withd50.05,v051.0, andV51.0. The analyticalP̄app(t) @cf. Eq.
~15!# shows that peaks should appear at the displayed frequencies. The amplitudes of the peaks are also quantitatively predic
analytic expression.
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The spectral functions are time independent quanti
that determine, in part, the time dependence ofP̄app(t). The
time dependence of the average power absorbed arises
the finite population change in the system induced by
strong driving field. That the average power absorbed is t
dependent is a feature that makes the strong-field result m
involved than the LRT limit. However, the analysis can
simplified in several ways. For one, a cycle average
P̄app(t) reduces the complexity of Eq.~15! considerably as
only theC0 andC1 coefficient terms~those that only oscil-
late with v1! survive. The time dependence of^P̄app(t)&,
then, is a damped oscillation at only the one frequency,v1 .

Another approach is to simply Fourier analyze the co
pleteP̄app(t). The approximate result of Eq.~15! shows that
the frequenciesv1 and 2V6v1 appear, so a Fourier trans
form of P̄app(t) will lead to lines broadened by the dissip
tion, d, centered at these frequencies. This is clearly see
Fig. 2, where we display the~un-normalized! power spec-
trum of the numerically obtainedP̄(t). The series of plots is
for a fixed value of the dissipation and increasingb0 values.
The low-frequency peak shifts away from zero frequen
and the high-frequency peaks are split more asb0 increases.
The analytic expression in Eq.~15!, when Fourier trans-
formed, properly describes both the peak positions and
plitudes displayed in Fig. 2. Figure 3 provides the pow
spectrum for a larger value of dissipation than in Fig. 2, a
shows the increasing broadening engendered by stronge
sipation.

FIG. 3. Power spectrumP̄(v) of P̄(t) for b050.1 with d

50.1, v051.0, andV51.0. The analyticalP̄app(t) @cf. Eq. ~15!#
shows that the lines should be broadened more than for the sm
value of the dissipation,d, used to construct Fig. 2.
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Increasing the value ofb0 for fixed values of the other
parameters could be used as a means of generating suffi
data to fit to the analytic form of Eq.~15!, and thereby ob-
taining the value of the dissipation,d. As v1'2b0 and the
applied frequencyV must be much larger thanb0 ~for the
example in Fig. 2!, the low-frequency peak and the high
frequency doublet of the power spectrum must be well se
rated. Their intensities are on the same scale, approxima
Thus, depending on the desired frequency domain of an
sis, optical forV, the external field frequency, and rough
infrared for the low-frequency peak aroundb0 , either regime
can be used to provide the same information.

IV. CONCLUDING REMARKS

In this work we have analyzed a model of a two-lev
system coupled to a dissipative medium and to an exte
field that induces transitions between the system states.
result presented in Eqs.~15! and ~16! is a closed-form solu-
tion for P̄app(t), the average power absorbed by the syste
that does not rely on performing perturbation theory in t
external field strengthb0 . This approximate solution is in
good agreement with that generated by numerical solutio
the averaged equations of motion. It is remarkable that
entire nonlinear response effect can be so compactly
pressed. It would be difficult to obtain this simple result
perturbation theory, as the perturbation theory would have
be carried out to infinite order.

We showed that the time-dependent power absorbe
determined by coefficients that are determined by spec
densities of a Lorentzian form. The centers of the Loren
ians are linear functions ofb0 . Thus the spectral densitie
are centered on frequencies that can be controlled by
external field’s strength. This observation suggests that
shapes could be manipulated to, e.g., be of greater inten
in a desired range of applied frequencyV by the application
of stronger external fields than those used in the line
response regime.

It is also interesting that the use of strong external fie
leads to the appearance of theI and J spectral densities
whereas only theI one appears in LRT. Of course, the sam
information is contained in either spectral density. Note t
the coefficients of the low- and high-frequency terms inP̄(t)
depend on the sameI andJ spectral densities, so a measur
ment in either frequency regime can be used to obtain
complete information.

The calculations presented here can be extended in
ller
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57 6977EXTERNAL-FIELD EFFECTS ON MOLECULAR . . .
eral directions. First, the line shapes obtained here
Lorentzian, due to the assumption of weak couplingDtc
!1. In polar media, the coupling tends to be stronger a
for the LRT regime, leads to Gaussian spectral densitie4,5

We have analyzed15 the technically more demanding stron
coupling case, and find that, again, the spectral density
pends on the external field strength. Second, our stoch
Hamiltonian leads to equal population of the levels (z̄→0)
in the long-time limit. For not too strong external fie
strengths (b0!v0), the long-time behavior should be we
described by the Boltzmann distribution. Phenomenolo
cally, this can be accounted for by interpretingz̄(t) as the
deviation from its equilibrium value. This would not chang
the spectral densitiesI andJ that would appear in the modi
di
re

d,

e-
tic

i-

fied P̄(t). Third, when the characteristic medium frequenc
are large compared to the temperature, quantum medium
fects on the spectral transitions should be evaluated. A t
table route /to these effects is via the spin-boson model
we shall detail elsewhere.
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