
Comparing the Effectiveness of Equivalence Partitioning, Branch Testing 

and Code Reading by Stepwise Abstraction Applied by Subjects 

N . Juristo1, S. Vegas1 , M. Solari2, S. Abrahao 3 ,1 . Ramos 4 

1 Universidad Politecnica de Madrid, 2Universidad ORT Uruguay, 
3Universidad Politecnica de Valencia, 4Universidad de Sevilla 

^nataliajSvegas^fi.upm.es, 2martin.solari@ort.edu.uy, 3sabrahao@dsic.upv.es, 4iramos@us.es 

Abstract— Some verification and validation techniques have 
been evaluated both theoretically and empirically. Most 
empirical studies have been conducted without subjects, 
passing over any effect testers have when they apply the 
techniques. We have run an experiment with students to 
evaluate the effectiveness of three verification and validation 
techniques (equivalence partitioning, branch testing and code 
reading by stepwise abstraction). We have studied how well 
able the techniques are to reveal defects in three programs. 
We have replicated the experiment eight times at different 
sites. Our results show that equivalence partitioning and 
branch testing are equally effective and better than code 
reading by stepwise abstraction. The effectiveness of code 
reading by stepwise abstraction varies significantly from 
program to program. Finally, we have identified project 
contextual variables that should be considered when applying 
any verification and validation technique or to choose one 
particular technique. 

Keywords-Verification and validation, experimentation, 
combination of experimental results. 

I. INTRODUCTION 

Verification and validation (V&V) is an important but 
expensive part of the software development process. There 
are a wide range of V&V techniques, each with different 
features. It is worthwhile exploring the pros and cons of the 
techniques, that is, which techniques are better suited for 
particular software project characteristics, for example, for 
revealing a particular fault type, for application by a 
particular developer profile or for a particular software type. 
These strengths and weaknesses depend on the variables 
affecting technique effectiveness [4]. 

Several empirical studies have looked at the behavior of 
V&V techniques. In most studies, subjects did not apply the 
techniques, as we will see in the related work section. So far 
then, the onus of the research has been on examining what 
we might call pure technique behavior. We think that 
studies should address not only pure technique behavior but 
also the influence of the human factor on technique 
application. This is especially important for V&V 
techniques that have not been fully automated. 

Most empirical studies with subject participation focus 
on static techniques [1], [7], [12], [33], [40], [48]. Only a 
few studies take dynamic techniques into consideration [2], 
[8], [28], [34], [42]. As a result of differences in contextual 
conditions and a low rate of internal and external 

replication, results are extremely immature. For this reason, 
we cannot differentiate fortuitous events from regular 
patterns. 

In this paper, we examine the effectiveness of three 
V&V techniques —two dynamic techniques (equivalence 
partitioning and branch testing) and one static technique 
(code reading by stepwise abstraction)— applied to three 
different programs. We have chosen these techniques for 
two reasons. We wanted: 1) to compare techniques with a 
very different approach to software V&V, and 2) to use 
formal enough techniques to guarantee that the results of 
subjects applying the same technique were comparable. We 
have replicated the experiment eight times at four different 
sites. We have found that equivalence partitioning and 
branch testing are equally effective and better than code 
reading by stepwise abstraction. Additionally, the 
effectiveness of code reading by stepwise abstraction varies 
significantly from program to program. Finally, we have 
identified some key project contextual variables that 
influence technique effectiveness. 

The paper is organized as follows. Section 2 describes 
work related to our research. Section 3 explains the research 
method. Section 4 describes the experiment and replications. 
Sections 5 and 6 present the results. Section 7 outlines the 
findings. Finally, Section 8 presents the conclusions. 

II. RELATED WORK 

There are several recent studies of V&V technique 
behavior. We divide these studies into three categories: 
theoretical studies, empirical studies with subjects, and 
empirical studies without subjects. 

The goal of theoretical studies is to examine 
unadulterated techniques from the viewpoint of logic and 
deductive reasoning. They analyze techniques based on their 
theoretical groundwork, studying the effectiveness of code-
based [9], [10], [13], [19], [23], [24], [36], [37], [41], [51], 
[54], [58] or regression techniques [43], [45]. 

Empirical studies without subjects aim to investigate 
techniques from the angle of practice and inductive 
reasoning by simulating technique application. They address 
different aspects of V&V techniques [27]. Some examine 
test-case generation and compare the efficiency and 
effectiveness of specification-based, code-based, and fault 
based techniques [6], [25], [38], [39], [52], [56]. Others 
evaluate test sets according to different criteria (data and 
control flow, mutation, and their variants), measure the 

mailto:2martin.solari@ort.edu.uy
mailto:3sabrahao@dsic.upv.es
mailto:4iramos@us.es


criteria coverage level (adequacy) and relate criteria 
coverage and test case size to effectiveness [15], [16], [17], 
[18], [30], [53]. Finally, some studies evaluate test case 
selection approaches (regression techniques [5], [46], [50] 
filtering [21], [29], [31] or prioritization [14], [44], [47], 
[55]). Do et al. have built an infrastructure to help 
researchers to run such empirical studies [11]. 

Empirical studies with subjects take into account how 
the subject influences technique behavior. Most of these 
studies evaluate static techniques [1], [7], [12], [33], [40], 
[48]. Studies evaluating dynamic techniques have addressed 
test-case generation, comparing the efficiency and 
effectiveness of specification-based and code-based 
controlflow techniques applied by subjects [2], [8], [28], 
[34], [42]. 

Empirical studies with and without subjects are 
necessary. Studies with subjects are closer to real situations 
where techniques are applied by testers, but, they are unable 
to separate actual technique performance from the influence 
that the subject might be having on technique effectiveness. 

III. RESEARCH METHOD 

We have conducted empirical studies with subjects to 
further our knowledge of three code evaluation techniques. 
We have run a series of experiment replications. The results 
of a single experiment could be a mere one-off coincidence. 
An experiment needs to be repeated to check whether the 
observed results follow a regular pattern and are 
reproducible [20]. 

We have replicated the experiment eight times. Five 
replications were run at the Universidad Politecnica de 
Madrid (UPM01, UPM02, UPM03, UPM04 and UPM05, 
respectively). Additionally, the experiment was conducted 
at another three different sites: Universidad de Sevilla in 
Spain (UdS05), Universidad Politecnica de Valencia in 
Spain (UPV05) and the Universidad ORT in Uruguay 
(ORT05). 

The number of subjects in the experiment replications 
was 42, 39, 29, 35 and 31 at UPM; 31 at UPV; 172 at UdS; 
and 76 at ORT. 

Additionally, we have held meetings with the 
researchers present during the experimental operation at 
each site to discuss deviations from the planned execution. 
These meetings have helped us to better understand the 
conditions under which subjects apply the techniques. 

To synthesize the results of the eight replications, we 
first examine the combined results of all the replications. 
We identify the significance level of the factors (and 
interactions), and we examine the behavior of the significant 
factors identified in each replication against the response 
variable means. To do this, we may need to re-examine 
some of the results analyzed in each separate experiment or 
run alternative analyses. Second, we study contextual 
differences among the replication sites. Finally, we integrate 
the results of the two stages. 

IV. DESCRIPTION OF THE EXPERIMENT 

A. Experimental Design 

Our experiment and its replications uses the experiment 
replication packages built by Kamsties and Lott [28], and 
Roper and colleagues [42], although the material is adapted 
to our experimental goals and context. The null hypothesis 
of the experiment is: 

H0: There is no difference in the effectiveness of 
equivalence partitioning, branch testing and code reading 
by stepwise abstraction. 

For equivalence partitioning and branch testing, we 
measure the response variable effectiveness as the 
percentage of subjects that are able to generate a test case 
that uncovers the failure associated with a given fault. For 
code reading by stepwise abstraction, we measure 
effectiveness as the percentage of subjects that report a 
given fault. 

The experiment has a factorial design [26]. The 
technique is an experiment factor with three treatments (or 
levels): equivalence partitioning (EP), branch testing (BT) 
and code reading by stepwise abstraction (CR). There 
follows a brief reminder of these techniques: 
• Test case design by equivalence partitioning1 [35] is a 

two-step procedure: (1) identify the equivalence classes 
and (2) define the test cases. 
Equivalence classes are identified by taking each input 
condition (usually a sentence or statement in the 
specification) and partitioning it into two or more groups. 
There are two types of equivalence classes: valid classes 
represent valid program inputs, and invalid classes 
represent erroneous input values. Both valid and invalid 
equivalence classes are identified according to a set of 
predefined heuristics based on whether the input condition 
specifies a range of values, a number of values, a set of 
input values or a "must be" situation. If there is any reason 
to believe that the program does not handle elements in an 
equivalence class identically, the equivalence class should 
be split into smaller equivalence classes. 
The second step is to use equivalence classes to identify 
test cases. Test cases that cover as many of the uncovered 
valid equivalence classes as possible are written until all 
valid equivalence classes have been covered by test cases. 
New test cases that cover one, and only one, of the 
uncovered invalid equivalence classes are written until all 
invalid equivalence classes have been covered by test 
cases. 

• White-box testing is concerned with the extent to which 
test cases exercise the program logic. One possible logic-
coverage criterion is decision coverage or branch testing. 
This criterion states [3] that enough test cases must be 
written to assure that every branch alternative is exercised 
at least once. If enough tests are run to meet this 

1 Some authors believe the term is a misnomer and the technique should 
be named just partitioning. We use the term equivalence partitioning in 
this paper, as it is the name used in the referenced book that we use to 
teach the technique to the students. 



prescription then 100% branch coverage is achieved. 
The test case design strategy is as follows. First, an initial 
test case is generated that corresponds to the simplest, 
functionally sensible entry/exit path2. Extra test cases are 
then generated. They should differ slightly from previous 
paths. Some paths should be favoured over others: paths 
that do not have loops over paths that do, short paths over 
long paths, simple paths over complicated paths, and paths 
that make sense over paths that do not. As the test cases 
are generated, a table showing the coverage status of each 
decision is built. 

• The process of reading a program bottom up is called code 
reading by stepwise abstraction [32]. Subjects begin at the 
lowest (most detailed) level and replace each prime 
(consecutive lines of code) in the program by an 
abstraction (or specification) that summarizes its possible 
outcomes, irrespective of its internal control structure and 
data operations. Intermediate abstractions are successively 
discovered at higher levels by using those already found. 
Subjects repeat the process until they have abstracted all 
of the source code. Next, subjects compare the program 
specification with their abstraction (own specification) to 
observe inconsistencies between specified and expected 
program behavior. 

The experiment uses three different programs, written 
inC: 
• cmdline is a parser that reads the input line and outputs a 

summary of its contents. It has 209 LOC and a cyclomatic 
complexity of 61. 

• nametbl implements the data structure and operations of a 
symbol table. It has 172 LOC and a cyclomatic 
complexity of 29. 

• ntree implements the data structure and operations of an n-
ary tree. It has 146 LOC and a cyclomatic complexity of 
21. 

Each program contains seven different faults. They are 
defined according to the six fault types identified in [2]. 
Each fault type is classed as omission (something that is 
missing) or commission (something that is incorrect). The 
fault types used in our experiment are: 
• Initialization. Incorrect initialization of a data structure. 

For example, assigning an incorrect value to a variable 
when entering a module is a commission fault, whereas 
failure to initialize when necessary is an omission fault. 
Our experiment covers initialization faults of both 
commission (F4) and omission (F3). 

• Control. The program follows an incorrect control flow 
path in a given situation. For example, an incorrect 
predicate in an if-then-else sentence is a commission fault, 
whereas a missing predicate is an omission fault. Our 
experiment covers control faults of both commission (F5) 
and omission (F6). 

• Computation. These faults lead to an incorrect calculation. 

2 Sequence of instructions or statements that starts at the routine's entry 
point and ends at its exit. A path may pass through several junctions, 
processes, or decisions, one or more times. 

For example, an incorrect arithmetic operator on the right-
hand side of an assignation is a commission fault. The 
experiment will cover computation faults of commission 
(F7). 

• Cosmetic: Commission faults can result, for example, in a 
spelling mistake in an error message. Omission faults are 
faults where an error message should and does not appear. 
The experiment covers cosmetic faults of both 
commission (F2) and omission (Fl). 

We use two versions of each program in order to 
replicate every fault twice for each program. The programs 
are small in size, and we cannot seed as many faults as we 
would like to without violating the fault masking premise. 
The only difference between two versions of the same 
program is the fault instance that they contain. The 
programs always contain the same number and type of 
faults. All defects have a 100% probability of being detected 
by all three techniques. 

The experimental procedure consists of several 
sessions. Subjects apply every technique once. Subjects 
work on every program once. Therefore, a subject applies 
each technique to one program. Subjects perform the 
following tasks: 
• Subjects applying equivalence class partitioning are given 

the program specification to design test cases. Afterwards, 
they are given an executable version of the program and 
they run test cases. Subjects identify failures in terms of 
incorrect outputs. 

• Subjects are expected to get as close as possible to 100% 
branch coverage. They are given the source code without 
its specification to design test cases. Afterwards, they are 
given an executable version of the program to run the test 
cases. They are then given the program specification to 
check the test case outputs. Subjects identify failures in 
terms of invalid outputs. 

• Subjects reading the code by stepwise abstraction are 
given the program source code to identify abstractions and 
generate a program specification. They are then given the 
original specification to identify the faults in the program. 
Subjects identify faults from inconsistencies between the 
abstracted and original specifications. 

B. Description of the Replications 

Each site has some contextual conditions which affect 
experimental design. TABLE I shows each site's contextual 
conditions, along with the design decisions. There are some 
minor differences among the replications at each site: 
• UPM: As there are no time constraints, the experiment 

examines all three techniques and uses all three programs. 
As there are enough computers for all subjects, three 
sessions are held where subjects individually apply the 
techniques and, for dynamic techniques, run the test cases. 
Subjects apply one technique to one program in each 
session. Subjects apply different techniques in each 
session. This way, all six possible technique application 
orders (EP-BT-CR, EP-CR-BT, BT-EP-CR, BT-CR-EP, 
CR-EP-BT and CR-BT-EP) are covered across the three 
sessions. All three techniques are exercised during each 



session, the techniques being applied to the same program. 
Notice that the day and program are confounded. For this 
reason, subjects apply programs in different orders in 
UPM replications (cmdline-ntree-nametbl in UPM01, 
UPM02 and UPM04, and ntree-cmdline-nametbl in 
UPM03 and UPM05). Each session has a four-hour 
duration. This is equivalent to there being no time limit, as 
it does not take subjects as long to complete the task. 
Subjects receive three four-hour training sessions to learn 
how to apply the techniques before the experiment is run. 

TABLE I. EXPERIMENT ADAPTATION TO SITES. 

VARIABLE 

Time 

Computer 
availability 

Subject 
profile 

Training 
sequence 

Session 
length 

CONDITION 

Unconstrained 

Constrained 

Yes 
Limited 
No 
Familiar with 
technique 
Unfamiliar with 
the technique 

Sequential 

Interleaved 

Unlimited 

Limited 

SITE 

UPM, UdS 

UPV, ORT 

UPM, UPV 
UdS 
ORT 

UPV, UdS 

UPM, ORT 

UPM, ORT 

UPV, UdS 

UPM, ORT 

UPV, UdS 

DESIGN DECISION 

3 techniques and 3 
programs 
2 techniques, and 2 or 
3 programs 
Work individually 
Work in pairs 
No test cases run 

Refresher tutorial 

Full course on 
techniques 
First training, then 
experiment 
Training interleaved 
with experiment 
Test cases run with 
technique application. 
Application of all 
techniques in 1 session 
by different subjects 
Test cases run in a 
separate session for 
only 1 program 

• UdS: As there are no time constraints, the experiment 
examines all three techniques and uses all three programs. 
The experiment is run in four two-hour sessions, because 
session length is limited. During the first three sessions, 
subjects apply one technique to one program. Subjects 
work in pairs as there are not enough computers for all 
subjects. Subjects apply the same technique to different 
programs in each session, since training has to be 
interleaved with experiment operation. As session length 
is limited, subjects run test cases for one of the programs 
that they have tested with a dynamic technique in the 
fourth session. As subjects are already acquainted with the 
techniques, training consists of three brief two-hour 
tutorials. Each tutorial is held before technique 
application. 

• UPV: As there are time constraints, code reading by 
stepwise abstraction is omitted, but all three programs are 
used. The experiment is run in three two-hour sessions 
because session length is limited. As there are enough 
computers, subjects individually apply one technique to 
one program during the first two sessions. As training has 
to be interleaved with experiment operation, subjects 
apply the same technique to different programs in each 
session. Subjects run test cases for one of the programs 
that they have tested with a dynamic technique in session 

3. As subjects are already acquainted with the techniques, 
training consists of two brief two-hour tutorials. Each 
tutorial is held before technique application. 

• ORT: As there are time constraints, code reading by 
stepwise abstraction and the ntree program are omitted. 
The experiment is run in one session. As session length is 
unlimited, subjects individually apply the two techniques 
to the two programs. Subjects apply techniques to 
different programs and in different orders to cover all four 
possible application orders (EP/cmdline-BT/nametbl, 
EP/nametbl-BT/cmdline, BT/cmdline-EP/nametbl, and 
BT/nametbl-EP/cmdline). Subjects never run test cases, 
since they do not have access to computers. Subjects 
receive three four-hour training sessions to learn how to 
apply the techniques before the experiment is run. 
Subjects are not very skilled with programming issues. 

TABLE II gives a brief description of each replication. 

TABLE II. DESCRIPTION OF EACH REPLICATION. 

Site 
Techniques 
Programs 

Subjects 

Technique 
application 
Training 

Sessions 
Techniques 
& programs 
per session 
Session 
workload 
Test case 
execution 

UPM 
EP, BT, CR 
cmdline 
nametbl 
ntree 
S^-year 
computing 
students 

Individual 

Full course 
on 
techniques 
3 

1 program 
3 techniques 

1 technique 

Same 
session 

UdS 
EP, BT, CR 
cmdline 
nametbl 
ntree 
S^-year 
computing 
students 

Pairs 

Refresher 
tutorial 

4 

1 technique 
3 programs 

1 technique 

Separate 
session 

UPV 
EP, BT 
cmdline 
nametbl 
ntree 
S^-year 
computing 
students 

Individual 

Refresher 
tutorial 

3 

1 technique 
3 programs 

1 technique 

Separate 
session 

ORT 
EP, BT 

cmdline 
nametbl 

2nd-year 
computing 
students 

Individual 

Full course 
on 
techniques 
1 

2 techniques 
2 programs 

2 techniques 

None 

SPSS statistical package has been used for the data 
analysis. We use analysis of variance (ANOVA) to analyze 
the data collected in the experiment [26]. We want to find 
out if a given factor (or combination of factors) is significant 
at a 0.05 significance level. We can apply ANOVA because 
the samples of all the replications meet the requirements of 
normality and homogeneity of variances3. We use the 
Bonferroni multiple comparison test to study the effect of 
the factor levels on the response variable at a 0.05 
significance level. Finally, based on the results of the five 
UPM replications (where there were no contextual 
variations), we set a reference value for the mean and 
standard deviation to determine whether the values of a 
replication are abnormally high/low. As with outlier 
detection [57], values that do not fall within the range of the 
mean ±3 standard deviations are considered to be different 
(higher/lower) from the reference value. 

The complete results of the statistical analyses of can be found at 
http://www.grise.upm.eS/sites/extras/4. 

http://www.grise.upm.eS/sites/extras/4


TABLE III. ANOVA SIGNIFICANCE LEVELS (P-

Model 
Model power 
Program 
Technique 
Version 
Fault 
Program * Fault 
Technique * Fault 
Version * Fault 
Program * Technique 
Program * Version 
Technique * Version 
Program * Technique * Fault 
Program * Version * Fault 
Technique * Version * Fault 
Program * Technique "Version 

U P M 0 1 
0.000 

1.000 
0.041 
0.000 

0.153 

0.071 

0.000 
0.001 

0.491 
0.013 

0.295 
0.074 

0.094 

0.125 

0.348 
0.410 

U P M 0 2 
0.005 

0.993 
0.390 
0.000 

0.095 

0.316 

0.041 

0.269 
0.152 
0.017 

0.590 

0.539 
0.564 

0.708 

0.888 
0.646 

U P M 0 3 
0.004 

0.995 
0.163 
0.000 

0.123 

0.882 

0.057 
0.032 

0.044 
0.005 

0.811 

0.459 
0.102 

0.242 

0.847 
0.752 

VALUES) FOR ALL REPLICATIONS. 

U P M 0 4 
0.014 

0.979 
0.907 
0.000 

0.323 

0.009 
0.002 
0.472 

0.361 
0.048 

0.156 
0.904 

0.113 

0.075 

0.779 
0.800 

U P M 0 5 
0.002 

0.998 
0.002 
0.000 

0.361 

0.215 

0.000 
0.028 

0.670 
0.040 

0.061 
0.236 

0.060 

0.245 

0.674 
0.275 

UdS05 
0.008 

0.982 

0.009 
0.000 

0.070 

0.046 

0.023 
0.037 

0.078 
0.141 

0.760 
0.034 

0.172 

0.212 

0.210 
0.230 

UPV05 
0.036 

0.862 
0.026 
0.765 

0.387 

0.013 

0.021 
0.255 

0.014 
0.022 

0.054 

0.039 
0.066 

0.412 

0.516 

0.999 

ORT05 
0.004 

0.992 
0.003 
0.003 

0.635 

0.000 

0.001 
0.264 

0.092 
0.014 

0.710 
0.221 

0.028 

0.019 

0.309 
0.896 

Finally, at a meeting with the researchers responsible for 
running the experiments, we examined possible deviations 
of real from planned experiment execution and incidents. 

Our study has some validity threats that indicate that 
we have to be careful about how the results are used, as: 
• Results have been obtained from junior testers. If the 

subjects were experienced practitioners, results could be 
different. 

• Results have been obtained from three programs written in 
C. Were the programs to be larger, or written in a different 
programming language, results could be different. 

• Results have been obtained from a certain mode of 
applying the techniques. For instance, no dynamic 
analyser is used to apply branch testing. 

• The variables identified during the meeting with 
researchers running the experiments that could have a 
possible influence on results should be further explored in 
future experiments to check whether they do or do not 
have an influence. 

V. EXPERIMENT RESULTS 

TABLE III illustrates the significance level (p-value) of 
the ANOVA for each replication, as outputted by SPPSS. 
The first two rows in TABLE III respectively denote that 
the ANOVA model is valid (its value is less than 0.05 in all 
cases) and its statistical power is high (its value is greater 
than 0.8 in all cases). The shaded cells indicate the 
significant factors or combination of factors, that is, factors 
whose value is lower than 0.05. 

To interpret the results of the eight replications jointly, 
we label each factor or combination of factors with a value 
that summarizes its significance trend. A factor or 
combination of factors has a significant trend if it is 
significant in 67%-100% of the replications (6-8); has an 
ambiguous trend when it is significant in 34%-66% of the 
replications (3-5); and does not have a significant trend if it 
is significant in 0%-33% of the replications (0-2). TABLE 
IV shows the significance trends. We decided to use this 
approach and not meta-analysis, because the raw data of the 
experiment was available. This approach would allow us to 
get more insights on the results than just examining means 

and standard deviations (as meta-analysis does). Let us 
discuss significant and ambiguous factors or combinations 
of factors. 

TABLE IV. SIGNIFICANCE TRENDS. 

Significant 
(67%-100%) 

Technique 
Technique*Program 
Program*Fault 

Ambiguous 
(34%-66%) 

Program 
Fault 
Technique*Fault 

Not significant 
(0%-33%) 

Version 
Program*Version 
Technique*Version 
Fault*Version 
Three-way interactions 

A. Factors and Combinations with a Significant Trend 

The factors that have a significant trend are technique, 
and technique*program and program*fault combinations. 

Figure 1 shows the mean effectiveness value for each 
technique at a 95% confidence level in each replication. 
The statistical analyses show that: 

Figure 1. Technique effectiveness values. 

• Even in a best-case scenario, none of the techniques 
comes close to 100% effectiveness, where the mean 
effectiveness among replications is 79.26% for 
equivalence partitioning, 78.43% for branch testing and 
47.23% for code reading by stepwise abstraction. 

• Code reading by stepwise abstraction is less effective than 
equivalence partitioning and branch testing in all the 
replications that exercise the reading technique. 



Cmdline 

UPMDl UPM02 UPMD3 UPMD4 UPMD5 UDSD5 UPVD5 0RTD5 

Nametbl 

UPMDl UPM02 UPMD3 UPMD4 UPMD5 UDSD5 UPVD5 0RTD5 

Ntree 

UPMDl UPM02 UPMD3 UPMD4 UPMD5 UDSD5 UPVD5 

•Equivalence Partitioning •Branch Testing »CR Stepwise Abstraction 

Figure 2. Technique effectiveness values by program. 

• The effectiveness of equivalence partitioning and branch 
testing is similar, except in ORT05. 

Some low effectiveness values (calculated as explained 
in Section 4) are circled in Figure 1: equivalence 
partitioning in UdS05 and UPV05, and branch testing in 
UPV05 and ORT05. This could be a sign that the site has 
some sort of influence on technique effectiveness. 

Figure 2 shows the mean value of technique 
effectiveness by program in each replication. The 
technique *pro gram interaction is significant in all 
replications except UdS05. The interaction is ordinal 
(treatment effects are not equal across all levels of another 
treatment, but they are always in the same direction [22]), 
meaning that the main effects can be interpreted. The 
statistical analyses show that: 
• Code reading by stepwise abstraction behaves worse than 

equivalence partitioning and branch testing for all 
programs, where effectiveness is much worse for cmdline 
and nametbl and only slightly worse for ntree. 

• Equivalence partitioning and branch testing tend to behave 
equally for all programs, except for cmdline in UPM05 
and UPV05, and nametbl in ORT05. 

• Some low effectiveness values for cmdline are circled in 
Figure 2: branch testing in UdS05 and ORT05, and 
equivalence partitioning in UPV05. 

The program* fault interaction is disordinal (the 
differences between the levels of one treatment change 
depending on how they are combined with levels of another 
treatment [22]), and the main effects of the interaction 
cannot be interpreted separately. The disordinal interaction 
signifies that two identical faults do not follow the same 
pattern in two different programs. Nonetheless, we looked 
for a behavioral pattern for the program* fault interaction 
across the different replications. 

Again we were unsuccessful. The only plausible 
explanation for this disordinal interaction is that the fault 
classification used in the experiment is not discriminative. 
Even though we take care to use the same type of faults 
(e.g., omission, control), they behave differently in 
combination with the techniques across programs. The 
techniques are able to detect the defects in some cases and 
not in others, for which there is no plausible fault type-
related explanation. 

B. Factors and Combinations with an Ambiguous Trend 
The factors that do not have a clearly significant or not 

significant trend are program, fault and the technique*fault 
interaction. 

Figure 3 shows the mean effectiveness value for each 
program for a 95% confidence interval in each of the 
replications. As the program*fault interaction is disordinal, 
the findings are limited. The program is significant in the 
UPM01, UPM05, UdS05, UPV05 and ORT05 replications. 
However, the multiple comparison tests reveal that the three 
programs behave equally in UPM01 and UPV05. Even 
though the significance level is less than 0.05, the high 
variability in program behavior at the above sites means that 
no differences are found among the programs. Consequently 
we find differences in program behavior in only three out of 
the eight replications: UPM05, UdS05 and ORT05. We find 
that: 

85,00 

50,00 

UPM01 UPM02 UPM03 UPM04 UPM05 UDS05 UPV05 ORT05 

•^^cmdl ine ""^"nametbl " "^"nt ree 

Figure 3. Program effectiveness values. 

• There does not appear to be a behavioral pattern in 
replications in which the relative effectiveness of the 
programs is significant. 

• There is a low effectiveness value circled in Figure 3: 
cmdline in UdS05. 

Fault was significant in the UPM04, UdS05, UPV05 
and ORT05 replications. As the program*fault interaction is 
disordinal, the findings are again limited. However, the 
multiple comparison tests reveal that faults behave equally 
in UPM04 and UdS05. Even though the significance level is 
less than 0.05, the high variability in program behavior at 



Fl F2 F3 

N^ 

F4 

K^V\<y: 

F5 F6 F7 
• Equivalence Partitioning 

• Branch Testing 

•CR Stepwise Abstraction 

Figure 4. Technique effectiveness values by fault. 

the above sites means that no differences are found among 
the programs. Consequently, we find differences in program 
behavior in only two out of the eight replications: UPV05 
and ORT05. Note that the fault trend is no longer 
ambiguous, it is not significant. Therefore it makes no sense 
to analyze this trend. 

Figure 4 illustrates the mean value of technique 
effectiveness by fault in each replication. The interaction is 
significant in the UPM01, UPM03, UPM05, and UdS05 
replications. From multiple comparison tests we find that: 
• Equivalence partitioning and branch testing are equally 

effective irrespective of the fault type. 
• Code reading by stepwise abstraction is causing the 

interaction, as it does not behave equally for all faults in all 
replications. We find that there is a tendency for faults Fl 
(cosmetic, omission), F3 (initialization, omission), F5 
(control, commission) and F7 (computation, commission) 
to be more effective than faults F2 (cosmetic, commission), 
F4 (initialization, commission) and F6 (control, omission). 

• There are some extreme effectiveness values for all faults 
except F3 and F4. However, there is no clear behavioral 
pattern. 

TABLE V summarizes the relevant results. 

TABLE V. SUMMARY OF RELEVANT RESULTS. 

Tech. 

Tech. x 
Prog. 

Tech. x 
Fault 

UPM 
(EP=BT) > C R 

(EP=BT) > CR 
nt: C R f 

UPM05: BT>EP 

UdS 
(EP=BT) > CR 

EPvP 

(EP=BT) > CR 
nt: C R f 

cm: BT4* 

UPV 
EP=BT 

EP \l>, BT4< 

cm: EP<BT 
na, nt: EP=BT 

cm: EP4* 

ORT 
EP>BT 
BTVP 

cm: EP=BT 
na: EP>BT 

cm: BT4* 
EP-BT irrespective of fault type 

CR: (Fl, F3, F5, F7) > (F2, F4, F6) 

LEGEND: cm cmdline, na nametbl, nt ntree, 
EP Equivalence partitioning, BT Branch testing, CR: CR stepwise abs. 

NAdrops, ^increases, = equal, > better, < worse 

VI. DIFFERENCES OF CONTEXT 

From the analysis of the changes in the replication 
designs, we find that the following variables could be 
influencing the results. 

• Copying. Subjects apply the same technique to different 
programs in each experimental session at UdS and UPV. 
As a result, subjects might swap information about the 
programs and their faults at the end of each session. As a 
result of copying, the techniques applied in sessions 2 and 
3 could be more effective at UdS and UPV than at other 
sites. 

• Experience in programming issues. At ORT, experimental 
subjects have hardly any programming experience. Branch 
testing generates test cases from source code, whereas 
equivalence partitioning generates them from the 
specification. As a result of programming experience, 
branch testing could be less effective at ORT than at other 
sites. 

• Tiredness. At ORT, subjects complete the whole 
experiment in a single session, where they have to apply 
two techniques. Subjects could be tired by the time they 
come to apply the second technique. This effect is 
cancelled out by considering all possible application 
orders. As a result of tiredness, however, techniques could 
be less effective at ORT than at other sites. 

• Work in pairs. At UdS, subjects apply the techniques in 
pairs rather than individually. As a result of pair work, 
techniques could be more effective at UdS than at other 
sites. 

From the post-execution meetings held with researchers 
present during the experiment execution, we identified the 
following variables that could be influencing the observed 
results. For a detailed description of how all these variables 
have been obtained, see [49]: 
• Training. At UdS and UPV, the subjects are familiar with 

the technique and receive only a refresher tutorial. At UPM 
and ORT, subjects receive a full course. We discovered 
that the tutorials did not ensure that subjects were equally 
knowledgeable about the techniques. As a result of 
training, techniques could less effective at UdS and UPV 
than at other sites. 

• Motivation. Subjects at UdS and UPV are not as highly 
motivated because the experiment has hardly any impact 
on the grade for the course they are taking. At UPM and 
ORT subjects are graded on the experimental tasks. As a 



result of motivation, techniques could be less effective at 
UdS and UPV than at other sites. 

• Time pressure. UPV subjects did not have enough time to 
apply branch testing. It was the first technique applied, and 
some time was spent on explaining the experiment 
procedure to the subjects. Subjects were working under 
pressure to get the task done on time. As a result of time 
pressure, branch testing could be less effective at UPV than 
at other sites. 

TABLE VI summarizes the values at each site for the 
possible influencing variables. 

TABLE VI. POSSIBLE INFLUENTIAL VARIABLES. 

Training 

Motivation 
Time 
pressure 
Copying 
Experience in 
programming 
Tiredness 
Work in pairs 

UPM 

Full course 

High 

No 

No 

Yes 

No 
Individual 

UdS 
Refresher 

tutorial 
Low 

No 

Yes 

Yes 

No 
Pair 

UPV 
Refresher 
tutorial 

Low 

Yes (BT) 

Yes 

Yes 

No 
Individual 

ORT 

Full course 

High 

No 

No 

No 

Yes 
Individual 

These variables can be grouped into three categories 
depending on the type of influence they have on the results: 
variables that influence all techniques; variables that 
influence a particular technique, and variables that have no 
influence. General-purpose guidelines on how to apply V&V 
to improve performance can be formulated from variables 
that influence either all or none of the techniques. Guidelines 
about how to select the best technique(s) for a given project 
context can be formulated from variables that influence a 
particular technique. 

VII. FINDINGS 

We group our findings by their source: experiment 
results, and combination of experiment results with 
contextual variables. Depending on the reliability of the 
results, they are also classed as evidence or signs. 

A. Experimental Results 

We have found statistical evidence that: 
• Equivalence partitioning and branch testing are equally 

effective. Effectiveness is similar in seven out of the eight 
replications (the exception being 0RT05). 

• Equivalence partitioning and branch testing are more 
effective when different subjects apply the same 
technique than when the same subject applies different 
techniques. Techniques are not 100% effective (theoretical 
likelihood) in any of the replications. 

• Equivalence partitioning and branch testing 
effectiveness is not dependent on the program. This is 
true in five out of the eight replications (the exceptions 
being UPV05, UPV05 and ORT05). 

• Equivalence partitioning and branch testing are more 
effective than code reading by stepwise abstraction. 
Code reading by stepwise abstraction behaves worse than 

equivalence partitioning and branch testing in all six 
replications evaluating this technique. 

• Code reading by stepwise abstraction should be applied 
in conjunction with equivalence partitioning or branch 
testing, as the effectiveness of code reading by stepwise 
abstraction is fault dependent. Fl (cosmetic, omission), F3 
(initialization, omission), F5 (control, commission) and F7 
(computation, commission) generally tend to behave better 
than F2 (cosmetic, commission), F4 (initialization, 
commission) and F6 (control, omission) in all replications, 
although the difference varies from one replication to 
another. 

• Fault detection effectiveness appears to be program 
dependent. The program was influential in seven out of 
the eight replications, although we were unable to find a 
behavioral pattern. This suggests that the fault 
classification that we used was not discriminative, as 
supposedly identical faults (all Fls, all F2s, etc.) did not 
behave equally in all the programs. An alternative fault 
classification scheme is required to study effectiveness. 
Neither is fault behavior consistent across replications. 
Faults that subjects found very easy (very hard) to detect in 
one replication were not in others. This suggests that fault 
behaviors are unrepeated and erratic, and there is no 
pattern. 

• Program appears to influence the behavior of code 
reading by stepwise abstraction. In all six replications 
examining this technique, it is more effective with ntree 
than with the other two programs. A detailed analysis of 
ntree does not reveal any special feature that might single it 
out. Whereas cmdline might be expected to behave 
differently, nametbl and ntree are in many respects alike: 
both are programs that implement a data structure, etc. The 
difference is more likely to be due to the faults seeded in 
ntree code, which, for some, as yet unknown, reason, are 
easier for subjects to find than others. It is surprising that 
the effectiveness results for code reading by stepwise 
abstraction were different even with extremely similar 
programs. This would suggest that the technique is highly 
sensitive to program or fault characteristics. 

• Technique effectiveness is independent of the fault type 
in all replications. However, subjects do not detect the 
same faults, since all faults are being detected by some 
subjects. 

B. Experimental Results and Context 

There are signs that: 
• Programming inexperience decreases the effectiveness 

of branch testing. In ORT05, branch testing was less 
effective than equivalence partitioning. ORT05 subjects 
were not experienced with programming issues. This 
difference is greater for the cmdline program, which is the 
program with the greatest cyclomatic complexity. 

• Technique knowledge could affect technique 
effectiveness. Subject training in UPV05 and UdS05 is not 
as thorough as at UPM and in ORT05. This could explain 
why both techniques are less effective in UPV05, and 
equivalence partitioning underperforms in UdS05. 



• Techniques might be less effective if subjects are not 
motivated. The subjects in UPV05 and UdS05 are less 
motivated than UPM and ORT05 subjects. This could 
explain why equivalence partitioning and branch testing 
are less effective in UPV05, and equivalence partitioning 
underperforms in UdS05. 

• Techniques are more effective with pair work. Although 
motivation and training could be having a negative 
influence, only equivalence partitioning behaves worse in 
UdS05 than in the other replications. This suggests that 
pair work might be offsetting any effects that motivation 
and training have on branch testing and code reading by 
stepwise abstraction that were applied in pairs (not so in 
the case of equivalence partitioning). 

• Time pressure does not appear to influence branch 
testing effectiveness. The effectiveness of equivalence 
partitioning and branch testing is similar in UPV05. If 
work under pressure had been influential, branch testing 
should have been less effective since subjects had less time 
to apply this technique than equivalence testing. 

• Tiredness does not appear to influence technique 
effectiveness. If tiredness were to affect effectiveness, the 
techniques should have been less effective in ORT05, but 
they were not. 

• Privileged information about the program does not 
appear to influence technique effectiveness. In UPV05 
and UdS05 subjects had the chance to swap information on 
the programs at the end of each session. If privileged 
information were to be influential, equivalence partitioning 
should have behaved better than branch testing in UPV05 
and UdS05, and code reading by stepwise abstraction 
better than the dynamic techniques in UdS05. 

VIII. CONCLUSIONS 

We have run eight replications of the same experiment 
(some at other sites) to try to understand the effectiveness of 
three V&V techniques: two dynamic techniques 
(equivalence partitioning and branch coverage) and one 
static technique (code reading by stepwise abstraction). We 
analyzed the results by jointly interpreting results. We also 
conducted a study of contextual differences between the 
different sites at which the replications were run. 

The findings reveal that equivalence partitioning and 
branch testing are similarly effective and more effective than 
code reading by stepwise abstraction. Likewise, we 
discovered that equivalence partitioning and branch testing 
are independent of the fault type. This suggests that it might 
be worthwhile combining subjects using the techniques to 
increase technique effectiveness. 

On the other hand, we identified contextual variables that 
could be influencing the results. Training, motivation, and 
pair work could have an effect on technique effectiveness, 
and programming language experience could have an effect 
on branch testing's effectiveness. Translating these results to 
industry, training, motivation and pair work could improve 
testing effectiveness, whereas language experience could 
influence the decision on whether to use equivalence 
partitioning or branch testing. 

More experiments with other techniques would show 
whether the behavior of equivalence partitioning and branch 
testing can be generalized to black-box and white-box testing 
techniques. 

REFERENCES 

[I] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. 
Sorumgard, M. V. Zelkowitz, The Empirical Investigation of 
Perspective Based Reading. Journal of Empirical Software 
Engineering. 1(2):133-164, 1996. 

[2] V.R. Basili, R.W. Selby. Comparing the Effectiveness of Software 
Testing Strategies. IEEE Transactions on Software Engineering, 
13(2):1278-1296. 1987. 

[3] B. Beizer. Software Testing Techniques. International Thomson 
Computer Press, Second Edition. 1990. 

[4] A. Bertolino. Guide to the Knowledge area of Software Testing. 
Software Engineering Body of Knowledge. IEEE Computer Society. 
2004. 

[5] J. Bible, G. Rothermel, D. Rosenblum. A Comparative Study of 
Coarse- and Fine-Grained Safe Regression Test Selection. ACM 
Transactions on Software Engineering and Methodology 10(2): 149-
183.2001. 

[6] J.M. Bieman, J.L. Schultz. An Empirical Evaluation (and 
Specification) of the All-du-paths Testing Criterion. Software 
Engineering Journal, January 1992, pp. 43-51. 

[7] S. Biffl, Analysis of the Impact of Reading Technique and Inspector 
Capability on Individual Inspection Performance. 7*1 Asia-Pacific 
Software Engineering Conference, pp. 136-145. 2000. 

[8] L.C. Briand, M. Penta, Y. Labiche. Assessing and Improving State-
Based Class Testing: A Series of Experiments. IEEE Transactions on 
Software Engineering. 30(ll):770-793. 2004. 

[9] T.Y. Chen, Y.T. Yu. On the Relationships between Partition and 
Random Testing. IEEE Transactions on Software Engineering. 
20(12): 977-980, 1994. 

[10] L.A. Clarke, A. Podgurski, D.J. Richardson, S.J. Zeil. A Formal 
Evaluation of Data Flow Path Selection Criteria. IEEE Transactions 
on Software Engineering. 15(11):1318-1332, 1989. 

[II] H. Do, S. Elbaum, G. Rothermel. Supporting Controlled 
Experimentation with Testing Techniques: An Infrastructure and its 
Potential Impact. Empirical Software Engineering. 10:405-435, 2005. 

[12] A. Dunsmore, M. Roper, M. Wood. Further Investigations into the 
Development and Evaluation of Reading Techniques for Object-
oriented Code Inspection. 24th International Conference on Software 
Engineering, pp. 47-57.2002. 

[13] J.W. Duran, S.C. Ntafos. An Evaluation of Random Testing. IEEE 
Transactions on Software Engineering. SE-10(4): 438—444, 1984. 

[14] S. Elbaum, A.G. Mailshevsky, G. Rothermel. Prioritizing Test Cases 
for Regression Testing. International Symposium on Software Testing 
and Analysis. 2000, pp. 102-112. 

[15] P.G. Frankl, Y. Deng. Comparison of Delivered Reliability of Branch, 
Data Flow and Operational Testing, a case study. International 
Symposium on Software Testing and Analysis. 2000. 

[16] P. Frankl, O. Iakounenko. Further Empirical Studies of Test 
Effectiveness. International Symposium on Foundations on Software 
Engineering. Pp 153-162. 1998 

[17] P.G.Frankl, S.N. Weiss. An Experimental Comparison of the 
Effectiveness of Branch Testing and Data Flow Testing. IEEE 
Transactions on Software Engineering, 19(8):774-787. 1993. 

[18] P.G. Frankl, S.N. Weiss, C. Hu. All-Uses vs Mutation Testing: An 



Experimental Comparison of Effectiveness. Journal of Systems and [39 
Software, 38:235-253. 1997. 

[19] P.G. Frankl, E.J. Weyuker. Assessing the Fault—Detecting Ability of 
Testing Methods. International Conference on Software for Critical 
Systems, pp. 77—91. 1991. [40 

[20] O.S. Gomez, N. Juristo, S. Vegas. Replication Types in Experimental 
Disciplines. International Symposium on Empirical Software 
Engineering and Measurement (ESEM'10). Pages 19-28. September [41 
16-17, 2010. Bolzano, Italy. 

[21] T.L. Graves, M.J. Harrold, J. Kim, A. Porter, G. Rothermel. An 
Empirical Study of Regression Test selection Techniques. ACM [42 
Transactions on Software Engineering and Methodology, 10(2): 184-
208.2001. 

[22] J.F. Hair, W.C Black, B.J. Babin, R.E. Anderson, R.L. Tatham. [43 
Multivariate Data Analysis 6th edition. Prentice Hall. 2006. 

[23] R. Hamlet. Probable correctness theory. Information Processing 
Letters. 25:17-25, 1987. [44 

[24] D. Hamlet, R. Taylor. Partition Testing does not Inspire Confidence. 
IEEE Transactions on Software Engineering. 16(12): 1402—1411, 
1990. 

[25] M. Hutchins, H. Foster, T. Goradia, T. Ostrand. Experiments on the 
[45; 

Effectiveness of Dataflow- and Controlflow-Based Test Adequacy 
Criteria. 16th International Conference on Software Engineering. Pp. 
191-200. 1994. [46 

[26] Juristo N, Moreno A.M. Basics of Software Engineering 
Experimentation. Kluwer. 2001. 

[27] N. Juristo, A.M. Moreno, S. Vegas, M. Solari. In Search of What We t4 7 

Experimentally Know about Unit Testing. IEEE Software. 23(6):72-
80. 2006. 

[28] E. Kamsties, CM. Lott. An Empirical Evaluation of Three Defect- L4°. 
Detection Techniques. Fifth European Software Engineering 
Conference. 1995. 

[29] J.M. Kim, A. Porter, G. Rothermel. An Empirical Study of t4 9 

Regression Test Application Frequency. 22nd International 
Conference on Software Engineering. Pp.126-135. 2000. 

[30] H. Lee, Y. Ma, Y. Kwon. Empirical Evaluation of Orthogonality of 
Class Mutation Operators. 11th Asia-Pacific Software Engineering L • 
Conference. 2004, pp. 512-518. 

[31] D. Leon, W. Masri, A. Podgurski. An Empirical Evaluation of Test 
Case Filtering Techniques Based on Exercising Complex Information L->J 
Flows. 27th International Conference on Software Engineering. 2005. 

[32] R.C. Linger, H.D. Mills, B.I. Witt. Structured Programming: Theory 
[52; 

and Practice. Addison-Wesley, 1979. 
[33] J. Maldonado, J. Carver, F. Shull, S. Fabbri, E. Doria, L. Martimiano, t5 3 

M. Mendonca, V. Basili. Perspective-based Reading: A Replicated 
Experiment Focused on Individual Reviewer Effectiveness. Empirical [54 
Software Engineering. 11 (1): 119-142, 2006. 

[34] G.J. Myers. A Controlled Experiment in Program Testing and Code [55 
Walkthroughs/Inspections. Communications of the ACM. 21(9): 760-
768, 1978. 

[35] Myers G.J. T. Badgett, C. Sandler. The Art of Software Testing. [56 
Wiley-Interscience. 2nd edition. 2004. 

[36] S. Ntafos. A comparison of some structural testing strategies. IEEE [57 
Transactions on Software Engineering. 14(6):368-874, 1988. 

[37] S.C. Ntafos. On Random and Partition Testing. International [58 
Symposium on Software Testing and Analysis, pp. 42-48. 1998. 

[38] A.J. Offutt, S.D. Lee. An Empirical Evaluation of Weak Mutation. 
IEEE Transactions on Software Engineering, 20(5):337-344. 1994. 

A.J. Offutt, A. Lee, G. Rothermel, RH. Untch, C. Zapf. An 
Experimental Determination of Sufficient Mutant Operators. ACM 
Transactions on Software Engineering and Methodology, 5(2):99-
118. 1996. 

A. Porter, L. Votta, V.R. Basili. Comparing Detection Methods for 
Software Requirements Inspection: A Replicated Experiment. IEEE 
Transactions on Software Engineering, 21(6): 563-575, 1995. 

S. Rapps, E. Weyuker. Selecting Software Test Data Using Data Flow 
Information. IEEE Transactions on Software Engineering. SE-
ll(4):367-375, 1985. 

M. Roper, M. Wood, J. Miller. An empirical evaluation of defect 
detection techniques. Information and Software Technology. 39:763-
775. 1997. 

D.S. Rosenblum, E.J. Weyuker. Using Coverage Information to 
Predict the Cost-Effectiveness of Regression Testing Strategies. IEEE 
Transactions on Software Engineering. 23(3):146—156, 1997. 

G. Rothermel, S. Elbaum, A.B. Malishevsky, P. Kallakuri, X. Qiu. On 
Test Suite Composition and Cost-Effective Regression Testing. ACM 
Transactions on Software Engineering and Methodology. 13(3):277-
331.2004. 

G. Rothermel, M.J. Harrold. Analyzing Regression Test Selection 
Techniques. IEEE Transactions on Software Engineering. 22(8): 529-
551,1996. 

G. Rothermel, M.J. Harrold. Empirical Studies of a Safe Regression 
Test Selection Technique. IEEE Transactions on Software 
Engineering. 24(6):401-419. 1998. 

G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold. Test Case 
Prioritization: An Empirical Study. International Conference on 
Software Maintenance. Pp. 179-188. 1999. 

T. Thelin, P. Runeson, C. Wohlin, T. Olsson, C. Andersson. 
Evaluation of Usage-Based Reading—Conclusions after Three 
Experiments. Empirical Software Engineering. 9:77—110, 2004. 

S. Vegas, N. Juristo, A.M. Moreno, M. Solari, P. Letelier. Analysis of 
the Influence of Communication between Researchers on Experiment 
Replication. International Symposium on Empirical Software 
Engineering. Pp. 28-37. 2006. 

F. Vokolos, P.G. Frankl. Empirical Evaluation of the Textual 
differencing Regression Testing Technique. International Conference 
on Software Maintenance. 1998. 

M.D. Weiser, J.D. Gannon, P.R. McMullin. Comparison of Structural 
Test Coverage Metrics. IEEE Software. 2(3):80-85, 1985. 

E.J. Weyuker. The Complexity of Data Flow Criteria for Test Data 
Selection. Information Processing Letters. 19(2):103-109. 1984. 

E.J. Weyuker. The Cost of Data Flow Testing: An Empirical Study. 
IEEE Transactions on Software Engineering. 16(2): 121-128, 1990. 

E.J. Weyuker, B. Jeng. Analyzing Partition Testing Strategies. IEEE 
Transactions on Software Engineering. 17(7): 703—711, 1991. 

W.E. Wong, J.R. Horgan, S. London, H. Agrawal. A Study of 
Effective Regression Testing in Practice. 8th International 
Symposium on Software Reliability Engineering. Pp.264-274. 1998 

E. Wong, A.P. Mathur. Fault Detection Effectiveness of Mutation and 
Data-flow Testing. Software Quality Journal, 4:69-83. 1995. 

T.W Wright. A Treatise on the Adjustment of Observations by the 
method of Least Squares. Van Nostrand. 1884. 

S.J. Zeil. Selectivity of Data—Flow and Control—Flow Path Criteria. 
2nd Workshop on Software Testing, Verification and Analysis, pp. 
215—222. 1988. 


