An evolutionary approach to estimating software development projects™

Jests S. Aguilar-Ruiz™, Isabel Ramos, José C. Riquelme, Miguel Toro

Departamento de Lenguajes y Sistemas Informdticos, Universidad de Sevilla, Adva. Reina Mercedes s/n, 41012 Sevilla, Spain

1. Introduction

The use of dynamic models and simulation environments
(Stella, Vensim, iThink, Powersim, etc.) in connection with
software projects paved the way for tools that allow us to
simulate the behaviour of such projects at the start of the
1990s. With these tools, which are named Software Project
Simulators (SPS), the project manager could experiment
with different management policies at no cost, in order to
take a decision that might be the most suitable and accurate.
Questions such as “what would happen if...?” or “what is
happening...?” or “what would have happened if ...?” are
sometimes crucial.

The achievement of the goals of a software project
depends on three factors:

¢ The initial estimations of the necessary resources.

e The management policies to be applied.

e The characteristics of the organization: maturity level,
experience, availability of resources, etc.

The dynamic models for software projects have a set of

* The research was supported by the Spanish Research Agency CICYT
under grant TIC99-0351.
* Corresponding author.
E-mail addresses: aguilar@lsi.us.es (J.S. Aguilar-Ruiz), isabel.ra-
mos@Isi.us.es (I. Ramos), riquelme @lsi.us.es (J.C. Riquelme), miguel.tor-
0@lsi.us.es (M. Toro).

initial parameters that define the management policies to be
applied. These policies are associated with the organization
(maturity level, average delay, turnover of the project’s
work force, etc.) and the project (number of tasks, time,
cost, number of technicians, software complexity, etc.).
The use of an SPS [10] will be complex if the number of
parameters is very large. For example, the dynamic model
shown in Ref. [1] has about 60 parameters. Therefore, the
impact on the project of 60 different features could be
known. The more parameters the model has, the more
complex the development of the project and the use of the
model. If someone asked the project manager “what will be
the averaged dedication of the technicians?”, the answer
would probably be “from 70 to 80%”, or something like
that. Greater precision is unlikely (for example, an answer
like “76%’). The project manager usually adds contingency
factors. Machine learning techniques avoid some of these
problems by using intervals instead of simple values. In
general, these techniques produce decision rules. When
decision rules are used as management policies, they are
called management rules.

Management rules are obtained by following the steps
shown in Fig. 1.

Decisions made in any organizational setting are based on
what information is actually available to the decision-
makers. The computer simulation tools of dynamical
systems provide us with the possibility of changing one or
several factors while the remaining ones are kept
unchanged. The implications of managerial policies on the

Defining intervals
for the parameters
of the model

Software
Project
Simulator

-

Database

=

Evolutionary
Algorithm

=

Management
Rules

Fig. 1. Automatic generation of management rules.

software development process could be analysed to infer the
best decision.

However, a knowledge-based system might help us to
determine a subset of decisions more accurately. The
simulation of the project produces this knowledge with
the database. Then, we only have to extract that knowledge
in a comprehensible way, for example, decision lists or
decision trees. In these data structures we can find an
easy-to-understand action to match the actual project results
with the project estimations. The search for good decisions
from the database generated by simulation is a highly
complex task. Evolutionary algorithms provide us with a
method for finding good solutions (in our case, decision
rules) in a complex search space (database generated by
an SPS) where parameters do not have an obvious relation-
ship.

Other modelling techniques have been applied for
estimating effort or cost of software projects: ordinary
least-squares ~ regression, analogy-based estimation
[5,13,15], genetic programming [3].

2. Decision trees: C4.5

Decision trees are a particularly useful technique in the
context of supervised learning. A decision tree is a classifier
with the structure of a tree, where each node is a leaf indi-
cating a class, or an internal decision node that specifies
some test to be carried out on a single attribute value, and
one branch and subtree for each possible outcome of the
test. The main advantage of decision trees is their immediate
conversion to rules easily meaningful by humans. However,
classification trees with univariate threshold decision
boundaries might not be suitable for problems where the
correct decision boundaries are non-linear multivariate
functions.

The most commonly used tool is C4.5 [9], which basi-
cally consists in a recursive algorithm with divide and
conquer technique that optimises the tree construction on
basis to gain information criterion. The program output is a
graphic representation of the found tree, a confusion matrix
from classification results and an estimated error rate. C4.5
is very easy to set up and run; it only needs a declaration for

the types and range of attributes in a separate file of data and
it is executed with UNIX commands with very few para-
meters.

3. Evolutionary algorithm

Evolutionary algorithms (EA) are a family of computa-
tional models inspired by the concept of evolution. These
algorithms employ a randomised search method to find solu-
tions to a particular problem [6]. This search is quite differ-
ent from the other learning methods. An EA is any
population-based model that uses selection and recombina-
tion operators to generate new sample examples in a search
space. The main task in applying EAs to any problem
consists in selecting an appropriate representation (coding)
and an adequate evaluation function (fitness). In classical
EA, the members of the population (typically maintaining a
constant size) are represented as fixed-length strings of
binary digits. The length of the strings and the population
size P are completely dependent on the problem. The popu-
lation simulates the natural behaviour, since the relatively
‘good’ solutions produce offspring which replace the rela-
tively ‘worse’ ones, retaining many of the features of their
parents. The estimate of the quality of a solution is based on
a fitness function, which determines how good an individual
is within the population in each generation. New individuals
(offspring) for the next generation are formed by using
(normally) two genetic operators: crossover and mutation.
Crossover combines the features of two individuals to create
several (commonly two) individuals. Mutation operates by
randomly changing several components of a selected indi-
vidual.

Our system used an EA to search the best solutions and
produced a hierarchical set of rules [11]. The hierarchy
follows that an example will be classified by the ith rule if
it does not match the conditions of the (i — 1)th precedent
rules. The rules are sequentially obtained until the space is
totally covered. The behaviour is similar to a decision list
[12]. The structure of the set of rules will be as shown in Fig.
2.

As mentioned in Ref. [4], one of the primary motivations
for using real-coded EAs is the precision to represent

If conditions Then class
Elsc If conditions Then class
Else If conditions Then class

Else “unknown class”

Fig. 2. Hierarchical set of rules.

attributes values and another is the ability to exploit the
gradualness of functions of continuous attributes. For that
reason our algorithm uses real coding.

3.1. Coding

In order to apply EAs to a learning problem, we need to
select an internal representation of the space to be searched
and define an external function that assigns fitness to candi-
date solutions. Both components are critical for the success-
ful application of the EAs to the problem of interest.

The representation of an individual takes the form shown
in Fig. 3, where /; and u; are values representing an interval
for the attribute. The last position (class) is the value for the
class. The number of classes determines the set of values to
which it belongs, i.e. if there are five classes, the value will
belong to the set 0, 1, 2, 3, 4.

Each rule will be obtained from this representation, but
when /; = min(a;) or u; = max(q;), where a; is an attribute,
the rule will not have that value. For example, in the first
case the rule would be [—,v] and in the second case [v,—], v
being any value within the range of the attribute. If both
values are equal to the boundaries, then the rule [—,—] arises
for that attribute, which means that it is not relevant. Under
these assumptions, some attributes might not appear in the
set of rules.

3.2. Algorithm

The algorithm is a typical sequential covering EA [7]. It
chooses the best individual of the evolutionary process,
transforming it into a rule which is used to eliminate data
from the training file [14]. In this way, the training file is
reduced for the following iteration. A termination criterion
could be reached when more examples to cover do not exist.
The method of generating the initial population consists in
randomly selecting an example from the training file for
each individual of the population. Afterwards, an interval
to which the example belongs is obtained by adding and
subtracting a small random quantity from the values of the
example.

3.3. Fitness function

The fitness function must be able to discriminate between

| u class

Fig. 3. Representation of an individual of the genetic population.

Table 1
Parameters and variables of the environment of the project and organization

Name Interval Description Estimated value
ADMPPS (0.3-1) Average daily manpower per 0.4
staff (day/day)

AQADLY (5-15) Average delay for quality 5
assurance (days)

HIASDY (5-100) Average hiring and 20
assimilation delay (days)

INUDST (0.3-1) Initial understaffing factor 1
(dimensionless)

MNHPXS (1-4) Most new hires per 1.5
experienced staff (tech./tech.)

MXSCDX (1-1E6) Maximum schedule 5
completion date extension
(dim.)

TRNSDY (1-15) Time delay to transfer people 1
out (days)

DLINCT (5-15) Average delay in incorporating 5

discovered tasks (days)
AVEMPT (500-1000) Average employment time 1000

(days)

TRPNHR (0.1-0.4) Number of trainers per new 0.15
employee (dimensionless)

UNDESM (0-50) Man-days underestimation 48

fraction (dimensionless)
Tasks underestimation fraction 15
(dimensionless)

UNDEST (0-50)

correct and incorrect classifications of examples. Finding an
appropriate function is not a trivial task, due to the noisy
nature of most databases. The evolutionary algorithm maxi-
mizes the fitness function ffor each individual. It is given by
Eq. (1)

f(@@) = 2(N — CE(i)) + G(i) + coverage(i) (D)

where N is the number of examples being processed; CE(7)
is the class error, which is produced when the example i
belongs to the region defined by the rule but does not have
the same class; G(i) is the number of examples correctly
classified by the rule; and the coverage of the ith rule is
the proportion of the search space covered by such rule.
Each rule can be quickly expanded to find more examples,
thanks to the coverage in the fitness function.

4. Post-mortem analysis of a software project

The project selected for study in this paper is a personnel
management system project which was carried out jointly
by two local software companies. The data pertains to the
design, coding and test phases. Therefore, the analysis phase
and other final activities are not considered. The data for
initialising the parameters of the SPS were collected from
the tracking documents of the original project and the
experience of the project manager.

Initially, the effort expended on the project was estimated
to require 208 man-days and the project was estimated to be

Table 2

Qualitative description of the parameters

Name Numeric interval Qualitative description
ADMPPS (0.3-0.5) Low
(0.5-0.75) Average
(0.75-1.0) High
UNDESM (0-15) Low
UNDEST (15-35) Average
(35-50) High
TRPNHR (0.1-0.15) Low
(0.15-0.25) Average
(0.25-0.40) High

2, were assigned to each parameter, depending on its range
of numeric values. This information was provided by the
project manager.

4.1. Project simulation

The evolution of the necessary effort, delivery time and
pending tasks required in order to complete the personnel
management system obtained by the SPS is illustrated in
Fig. 4. If the results are compared with the real values, we
can observe that, in the simulation the estimated delivery
time is 151 days (instead of 141) and the estimated effort is
410 man-days (instead of 404). This means that the absolute

completed in 101 days. The actual figures were 404 man-days
and 141 days, respectively. Therefore, the underestimations of
effort and time for this project were 48 and 28%, respectively.
The average number of technicians involved in the project was
six and the number of lines of code (LOC) was 67,800. The
project manager defined a task as 270 LOC.

The real effort spent on the activities of development
(design and coding) was 85% (404 X 0.85 = 343), the rest
being spent on tests. Assuming that the 10% of the effort
expended on development (343 X 0.1 = 34) was used for
revision activities, the total effort of development was
309 man-days (343 — 34 = 309).

Thus, the development productivity for this project was
as follows:

size in LOC
development effort

software development productivity =

67,800

300 219.4 LOC/man-days

Some interesting data from the project are shown in Table
1. Each row contains the name of the parameter in the
model, the range of values it can assume, a brief description
of its meaning and the estimated value at the beginning of
the project. (This notation is the one used in the works of
Abdel-Hamid [1].)

Several qualitative labels, which are illustrated in Table

percentage error was about 6.62 and 1.46%, respectively. If
an SPS had been used at first, we would have known the
behaviour of the project, and the absolute percentage error
might have been smaller. In addition, in Fig. 4 it is possible
to note that the first adjustments were made near the middle
of the project (around 70 days) when it was detected that the
number of pending tasks was greater than that expected. The
decision coincided with the real evolution of the personnel
management system, since more than half of the estimated
time had been spent when more than half of the pending
tasks remained unfinished. Time and final effort might
increase if the gradient of the pending tasks does not change.
Two additional considerations can be observed in Fig. 4:
first, the estimated initial effort is modified before the
time, as is usual in the majority of the projects being devel-
oped by the two local software-development companies;
and second, the changes applied to effort and time are
made simultaneously.

Data from the real evolution of the project were not
collected by the companies. We only know the initial and
final data provided by the project manager. Therefore, if
both simulated and real behaviours are compared (this
was possible, thanks to the help of the project manager),
we could only see that the final estimated time and effort
obtained by means of simulation are in agreement with the
reality. This is especially true in two respects:

e The early revisions were done when half of the time had
been spent.

<«<———— Designphase —————=><= Coding phase Testing
500 med
200 days
B0 tasks — . <~ Time and final effort might

e increase if the gradient of the
B anic-C pending tasks does not change. 410 m-d (simulated)
350 md i 404 m-d (real)
v .
150 days : 151 d (simulated)
125 tasks 141 d (real)
Adjustment
200 med
100 days
0 tasks _— el o

30 40 50 6] 70

80 90 100 10 120 130 140 150

Time (days)

Necessary Effort
Delivery Time

Pending Tasks 3

Fig. 4. Evolution of the necessary effort, delivery time and pending tasks for the personal management software (nominal simulation), obtained by the SPS.

ADMPPS > 0.52, TRPNHR < 0.38, UNDESM > 6

UNDEST < 48, INUDST < 0.96, HIASDY < 32 (Rule 1, 21)
TRPNHR < 0.15, UNDESM < 37, 15 < HIASDY < 33 (Rule 2, 7)
ADMPPS > 0.75, UNDESM < 15

INUDST > 0.82, 34 < HIASDY < 45 (Rule 3, 6)
0.55 < ADMPPS < 0.7, TRPNHR < 0.2, UNDEST > 14

INUDST > 0.47, 16 < HIASDY < 68 (Rule 4, 3)

Fig. 5. Management rules obtained by the evolutionary algorithm for estimating good results for the necessary effort and delivery time simultaneously.

e The revisions that were carried out to adjust the detected
deviations affected both the time and the effort simulta-
neously.

The utility of an SPS in analysing the evolution of
projects carried out by our local software-development
companies has been demonstrated, and generally any
project could be analysed in the same way [1].

5. Management rules
5.1. The goals of the project

Two goals of the management rules that we are going to
obtain are the following:

e We would wish that the values for effort were less than or
equal to the value obtained by the simulation (410 man-
days). These possible values are labelled as GOOD. The
values greater than 410 man-days are labelled as BAD.

e We would wish that the development time were less than
or equal to the value obtained by the nominal simulation
(151 days). These values are labelled as GOOD. The
values greater than 151 are labelled as BAD.

5.2. Management rules from the evolutionary algorithm

Management rules are obtained by the following steps
(Fig. 1):

e Define the intervals of values for the parameters of the
dynamic model (Table 1).

e Define the goals of the project (values for time and cost).

e Generate the database automatically. Each simulation
produces a record with the values of the parameters and

if ADMPPS > 0.52 and INUDST < 0.96 (Rule 1, 21)
if UNDESM < 37 (Rule 2, 7)
if ADMPPS > 0.75 and

UNDESM < 15 and 34 < HIASDY < 45 || (Rule 3, 6)
if 0.55 < ADMPPS < 0.7 (Rule 4, 3)

Fig. 6. Final hierarchical set of management rules.

the values of the variables (cost and time) and this record
is saved in a file.

e From the file generated in the preceding step, a set of
management rules is provided automatically for the deci-
sion-making task.

It is important to note that the first two steps aforemen-
tioned are performed by the project manager and the next
two items are executed automatically. The management
rules obtained by evolutionary algorithms for estimating
simultaneously GOOD results for both time and effort are
shown in Fig. 5. The number of the rule and the number of
records from the database covered by the rule are shown
respectively, in brackets.

The rules chosen to analyse the project are rules 1 and
2, since rule 1 covers more than half the cases forecast
as GOOD and rule 2 has the smaller number of para-
meters. Another good criterion for selecting the most
adequate decision rule is choosing the rule having
parameters which are easier to modify and control and,
if possible, the rule involving the smallest number of
parameters. Once the rule set is obtained, we have to
select which parameters do not match the initial values.
Observing Table 1, we could rewrite the management-
rule set by eliminating the conditions that are matched
with the initial values. The new management-rule set is
illustrated in Fig. 6.

For example, in the rule 1 from Fig. 5 the values of the
parameters TRP-NHR, UNDESM, UNDEST and HIASDY
were initially estimated as belonging to the interval defined
by the rule (Table 1), so that the parameters ADMPPS and
INUDST must be the only ones to be modified in order to
obtain good results (Fig. 6), since the project is already
finished.

Analysing the rules, we could state the following:

e Rule 1: if the average daily manpower per staff
(ADMPPS) was greater than 52% and the initial under-
staffing factor (INUDST) was less than 96%, then the
project tended to be towards GOOD.

e Rule 2: if the man-days underestimation fraction
(UNDESM) was less than 37%, then the project tended
to be towards GOOD (if the error in the initial necessary
effort had been less than that estimated; in this project the
value of UNDESM was 48%).

200 days

500 m-d
400 tasks i
}"/7 384 m-d
H‘-'-'“-'-"‘""'-‘ i - - 151 days
C T g I
- """_ TTr— P - 1 138 days
» A
100 days
200 m-d i*-, i
0 tasks e ~o
Yo
: 30 60 90 120 150

Nominal Time

e

Nominal Effrort

Nominal Pending Tasks

Time Rule 2

Effort Rule 2

Pending Tasks Rule 2 — et — — —

Fig. 7. Results obtained by applying rule 2.

Although each rule permits good estimates, the SPS
allows us to compare the results of the simulation with
those which would be obtained by applying each manage-
ment rule.

For example, the results obtained by the application of
rule 2 are shown in Fig. 7. Both effort and time are remark-
ably lower than those obtained from the simulation. In
concrete terms, the necessary effort and time would be
reduced to 26 man-days and 13 days, respectively, if rule
2 had been applied. With this information, the project
manager decides which rule is more appropriate for achiev-
ing the aims.

The SPS plays an important role in the decision-making
task: first, post-mortem projects can be analysed in order to
infer which actions could improve the results; second, an a
priori analysis would indicate the intervals within which the
values of the parameters have a tendency to achieve the
aims of the project.

Taking an effective decision is a very complex task. Some
criteria are contradictory. For example, in general, keeping
to the project deadline has highest priority, i.e. if the project
schedule is at risk, more manpower will be added to the
project [8]. However, the Brooks’ law states that adding
more people to a late software project makes it further
delayed [2].

5.3. Management rules from C4.5

The management rules obtained by the C4.5 tool to esti-
mate simultaneously GOOD results for both effort and time
are shown in Fig. 8.

Those rules involving less number of parameter are easier
to study. Analysing rule 1, GOOD results could be obtained
if the number of trainers per new employee is less than 11%,
the man-days underestimation fraction is less than 31 and
the average hiring and assimilation delay is less than
69 days. Now we select the parameters that do not match
the initial values. As we did with the rules generated by the
evolutionary algorithm, we could rewrite the management-
rule set by eliminating the conditions that are matched with
the initial values from Table 1. The new management-rule
set is shown in Fig. 9.

5.4. Comparing the results obtained by the evolutionary
algorithm and C4.5

In general, the evolutionary algorithm is more accurate in
finding solutions in the search space. This can be observed
examining the number of examples from the database that
have been covered and the percentage over the total number
of GOOD examples (Table 3).

TRPNHR < 0.11, UNDESM < 31, HIASDY < 69 (Rule 1, 5)
ADMPPS > 0.91, TRPNHR < 0.11, 14 < HIASDY < 36 (Rule 2, 6)
0.4 < ADMPPS > 0.91, 0.11 < TRPNHR < 0.36
0.22 < INUDST > 0.32, 15 < HIASDY < 36 (Rule 3, 5)
0.4 < ADMPPS > 0.91, 0.11 < TRPNHR < 0.36
0.32 < INUDST > 0.96, 18 < HIASDY < 36, UNDEST > 37 || (Rule 4, 5)
0.4 < ADMPPS > 0.91, 0.11 < TRPNHR < 0.16
0.32 < INUDST > 0.96, 18 < HIASDY < 34, UNDEST > 34 || (Rule 5, 5)

Fig. 8. Management rules obtained by the C4.5 tool for estimating good results for the necessary effort and delivery time simultaneously.

TRPNHR < 0.11, UNDESM < 31 (Rule 1, 5)
ADMPPS > 0.91, TRPNHR < 0.11 (Rule 2, 6)
0.22 < INUDST < 0.32 (Rule 3, 5)
0.32 < INUDST < 0.96, UNDEST > 37 || (Rule 4, 5)
0.32 < INUDST < 0.96, UNDEST > 34 || (Rule 5, 5)

Fig. 9. Final set of management rules obtained by C4.5.

Table 3
Comparing the number of examples covered by the rules

Rule 1 2 3 4 5 Total
C4.5 5(12%) 6(14%) 5(12%) 5(12%) 5(12%) 26(63%)
EA 21(51%) 7(17%) 6(14%) 3(7%) - 37(90%)

The best rule obtained by C4.5 contains 6 (GOOD) exam-
ples. However, the best of the evolutionary algorithm
contains 21 (GOOD) examples. For our analysis, the more
accurate rule is that which is capable of covering greater
number of GOOD examples. Therefore, rule 1 from the
evolutionary algorithm is much better than any rule
obtained by C4.5. In addition, the total number of GOOD
examples covered by the evolutionary algorithm is about
90% with four rules, in comparison to the five rules required
by C4.5 to cover about 63%.

6. Another approach

In Section 5, we saw how an evolutionary algorithm auto-
matically provides management rules from a database
generated by an SPS. Another interesting approach consists
in presenting graphically the relationship between two para-
meters in the cases in which good results were obtained.
These graphics inform the project manager about the
range of values for the parameters being analysed. An exam-
ple of this kind of analysis is shown in Fig. 10, where the
parameters TRPNHR and ADMPPS are compared, indicat-
ing when the effort and the time are simultaneously good. In
Fig. 10, each axis is a parameter of the model and each case
labelled as GOOD (in the database) is represented by a point

(in the figure). In most of the cases in which the necessary
effort and the delivery time are simultaneously GOOD, the
number of trainers per new employee (TRPNHR) is less
than 25% and the average daily manpower per staff
(ADMPPS) is greater than 75%.

Logically, this information is not obtained automatically,
and we could not know whether the parameters that are
represented have an influence on the results.

7. Conclusions

The use of simulators and systems that learn decision
rules helps to estimate software projects and to produce
management rules automatically for the decision-making
task. These management rules could be applied:

e Before the project has begun: defining more adequate
managerial policies.

e After the project has finished: doing a post-mortem
analysis.

e When the project is running: taking immediate decisions
(monitoring).

Management rules make it possible to:

e obtain values considered as good (very good, normal,
bad, etc.) for any variable of interest (time, effort, quality,
number of technicians, etc.), independently or together
with other variables;

e analyse managerial policies capable of achieving the
aims of the project;

e know to which range of values the parameters must
belong in order to obtain good results.

In short, it is possible to generate management rules auto-
matically for any software project and to know the manage-
rial policies that ensure the achievement of the initial aims.
The deviations from the initial forecast could be detected
(monitoring) and the behaviour of the process is well under-
stood through the management-rule set.

Evolutionary computation provides an interesting approach
for dealing with the problem of extracting knowledge from

Low Average High
0.40
High
14 0.30
I
z
& * * *
- 0.20 * Q“ & Average
P L R 4 ¢ ® .’ ¢ Low
0.10
030 040 050 060 070 0.80 0.90 1.00
ADMPPS

Fig. 10. Relationship between the average daily manpower per staff and the number of trainers per new employee.

databases generated by SPS. The quality of the set of rules
produced by the evolutionary algorithm has been compared
to those generated by C4.5. The results demonstrate that our
approach find better solutions in the search space, covering
more GOOD examples with less number of rules. And, what
is more important, is that the results (management rules) are
applicable and beneficial.

The authors consider that this technique contributes to
coping with the complex problem of decision-making
within the software project development framework, and
it facilitates the use of dynamic models, since the project
manager only has to provide the aims of the project and the
range of the parameters, especially for those having a high
degree of uncertainty. We are currently working on the
application of other machine learning techniques (fuzzy
logic, association rules, etc.) to the databases generated by
the SPS.

Acknowledgements

The authors are grateful to J.J. Dolado for helpful
comments and to the reviewers for their suggestions.

References

[1] T.K. Abdel-Hamid, Software Project Dynamics: An Integrated
Approach, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[2] F.P. Brooks, The Mythical Man Month, Addison-Wesley, Reading,
MA, 1978.

[3] J.J. Dolado, On the problem of the software cost function, Information
and Software Technology 43 (2001) 61-72.

[4] LJ. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and
interval-schemata, Foundations of Genetic Algorithms 2 (1993)
187-202.

[5] G.R. Finnie, G.E. Wittig, J.-M. Desharnais, A comparison of software
effort estimation techniques: using function points with neural
networks, case-based reasoning and regression models, Journal of
Systems and Software 39 (3) (2000) 281-289.

[6] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

[7] T. Mitchell, Machine Learning, McGraw Hill, New York, 1997.

[8] D. Pfahl, K. Lebsanft, Using simulation to analyse the impact of
software requirement volatility on project performance, Information
and Software Technology 42 (2000) 1001-1008.

[9] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, California, 1993.

[10] I. Ramos, J.S. Aguilar-Ruiz, J.C. Riquelme, M. Toro, A new method
for obtaining software project management rules, Proceedings of VIII
Software Quality Management (2000) 153—164.

[11] J.C. Riquelme, J.S. Aguilar-Ruiz, M. Toro, Discovering hierarchical
decision rules with evolutive algorithms in supervised learning, Inter-
national Journal of Computers, Systems and Signals 1 (1) (2000) 73—
84.

[12] R.L. Rivest, Learning decision lists, Machine Learning 1 (2) (1987)
229-246.

[13] M. Shepperd, C. Schofield, Estimating software project effort using
analogies, IEEE Transactions on Software Engineering 23 (12) (2000)
736-743.

[14] G. Venturini, Sia: a supervised inductive algorithm with genetic
search for learning attributes based concepts, Proceedings of
European Conference on Machine Learning (1993) 281-296.

[15] F. Walkerden, R. Jeffery, An empirical study of analogy-based soft-
ware effort estimation, Empirical Software Engineering 42 (1999)
135-158.

