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Semiclassical calculation of heavy-ion scattering in the chaotic regime
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The semiclassical approach has proven to be a most valuable tool for the construction of the scattering matrix
and accurate evaluation of cross sections in a large variety of heavy-ion collision problems. In its familiar
implementation, however, its use is restricted to what is now known as the “regular regime”, as it makes use of
classical reaction functions that must be continuous and interpolable. In this paper we identify what version of
the semiclassical formalisms may be especially suitable for extension into the chaotic regime that develops at
energies close to the Coulomb barrier. We also show the crucial role of the absorptive part of the ion-ion potential
to retain the usefulness of the semiclassical methods under conditions of irregularity.
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I. INTRODUCTION

The way to effectively compute scattering quantities within
the semiclassical approximation in the regular regime has
been known for many years. The semiclassical S-matrix
construction of Miller [1] achieves the goal of expressing
the S-matrix elements purely in terms of classical scatter-
ing trajectories with given boundary conditions. The main
quantum mechanical effect incorporated in this kind of
calculations is the interference between different trajectories
and this simple feature allows accurate calculations of many
reactions in the atomic, molecular [1] and nuclear [2] realms.
In the regular regime the only issue is the validity of the
semiclassical approximation itself and the accurate numerical
calculation of classical trajectories. When the scattering is
chaotic—an almost inevitable occurrence if a reaction barrier
is present—many new features arise. From the numerical point
of view, however, the main difficulty lies in the fact that a
very large number of scattering trajectories can be found to
fulfill the boundary conditions specifying a given reaction
channel and it is not at all straightforward to expect that
their interference will result in the reliable computation of
observables.

In this paper we apply Miller’s method to the semiclassical
calculation of the scattering of heavy ions when the radial
motion is coupled to a vibrational shape degree of freedom. We
have previously explored [3,4] several aspects of this problem,
both classical and quantum mechanical, in the context of
a simple model that sets correctly the nuclear sizes and
interaction scales.

This paper is organized as follows. In Sec. II we recall the
model that was used in Refs. [3,4] and in Sec. III we provide
an overview of its classical characteristics. The semiclassical
procedures are presented in Sec. IV, where we utilize the
initial value representation (IVR) [5] to compute the S-matrix
stressing the role of the absorption as a regularizing factor
in the chaotic regime. A summary and conclusions close the
paper in Sec. V.

II. THE MODEL

The relative motion of two heavy ions is described in
first approximation by a potential model whose more relevant
feature is the barrier created by the balance between Coulomb
and centrifugal repulsion and the nuclear attraction. When
shape degrees of freedom of the nuclear surface are considered,
the relative motion interacts with their dynamics and the
scattering is then described by a set of coupled equations.
The deformations of the nuclear shape are described by the
macroscopic variables αλµ which characterize deviations from
the equilibrium surface according to

R(θ, ϕ) = R◦


1 +

∑
λµ

αλµY ∗
λµ(θ, ϕ)


 . (2.1)

The intrinsic degrees of freedom associated with these vari-
ables can be significantly excited in peripheral collisions [6].
Consequently, they play an important role in the modulation
of the ion-ion interaction that affects barrier processes, such
as those leading to fusion [7].

As a simple model we consider the coupling of the relative
motion of two ions to an intrinsic harmonic mode, expressed
by an effective Hamiltonian of the form

H (�)(r, p, α,�) = H
(�)
rel (r, p) + Hint(α,�) + Vcoup(α, r).

(2.2)

Here r is the distance between the centers of mass of the
colliding systems and α is a dimensionless variable that
measures the (small) amplitude of the vibrational motion. The
variables p,� are, respectively, their conjugate momenta. We
take

H
(�)
rel (r, p) = p2

2m
+ �(� + 1)h̄2

2mr2
+ U (r), (2.3)

Hint(α,�) = Cα2

2
+ �2

2D
, (2.4)
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where m is the reduced mass, � is the angular momentum
and C and D the restoring force and mass parameters of the
collective vibration. These last two quantities are related to the
energy h̄ω and deformation parameter β of the mode by

C = h̄ω

2β2
, D = h̄

2ωβ2
. (2.5)

The real potential U (r) represents the combined effects of
the nuclear and Coulomb interactions. For concreteness the
nuclear potential is taken as a Woods-Saxon version of the
Christensen-Winther empirical potential of [8]. The Coulomb
potential is screened at large distances. The term that couples
the intrinsic and relative motion variables, Vcoup, arises from
the Coulomb and surface-surface nuclear interactions between
projectile and target. In leading order both these contributions
are proportional to the deformation amplitudes. If a low
multipolarity λ for the mode is specified, it is possible within
the present scheme to introduce an effective Coulomb form
factor that reproduces a more appropriate radial dependence,

Vcoup(r, α) ≈
[
−R◦

∂V
N

∂r
+ 3Z1Z2e

2

(2λ + 1)

Rλ
◦

rλ+1

]
α. (2.6)

Note that the different µ-components of a mode of multi-
polarity λ have been combined in an effective “monopole”
amplitude. The actual multipolarity of the mode is therefore
taken into account through the radial dependence of the
Coulomb component of the form factor. This procedure,
justified in a coupled-channels approach because of their
degeneracy in energy, is also suitable for the head-on case
we treat below. However the main justification for these
considerations is to make possible a realistic classical analysis
that is not encumbered by the need to display many degrees of
freedom.

When the nuclear densities overlap significantly a large
number of channels open up that remove flux from the degrees
of freedom treated explicitly. This is routinely treated in
quantal calculations by adding an imaginary part to the ion-ion
potential. We use here an absorptive potential of Woods-Saxon
type

W (r) = − W0

1 + exp
r−R

W

a
W

. (2.7)

The parameters R
W

= 4 fm and a
W

= 1 fm have been chosen
so that the absorption acts mostly inside the potential pockets
but their values are otherwise not critical. With this fixed
geometry the strength of the absorption will be adjusted only
by the selected values of W0.

III. OVERVIEW OF CLASSICAL FEATURES

The classical scattering trajectories are better described in
the action-angle variables of the harmonic mode. They are
related to α,� by

α =
√

(2n + 1) h̄ωC−1 cos φ,

(3.1)
� =

√
(2n + 1) h̄ωD sin φ.

At this point n is a continuous variable, which will eventually
become discretized at integer values in the quantum treatment.

Incoming trajectories are determined at ri = ∞ by the
initial relative momentum pi = −

√
2m(E − (ni + 1

2 ) h̄ω) and
by the oscillator variables φi, ni . Thus at constant E the
scattering is characterized by the classical map ni, φi →
nf , φf .1

Using this model we have studied [3] the chaotic layer that
develops close to barrier energies and which brings drastic
consequences in the organization of the classical motion. We
summarize those results in Fig. 1, where we plot the reaction
function nf (Etot, φi) for a fixed ni = 0 at energies below and
above the Coulomb barrier. The two pictures give an idea
of the way in which the barrier region is disrupted by the
coupling. In the uncoupled case the picture would be uniformly
white (nf = ni = 0) and there would be a sharp straight line
corresponding to the singular trajectory at the top of the
barrier (E ≈ 56 MeV). This singularity reflects the fact that
the unstable point at the top of the barrier is a bound motion and
can only be reached asymptotically from the scattering region.
The important fact is that this singular trajectory sharply

1To remove the free rotation of the angle φ with frequency ω a
different variable φ → φ − ωt is used so that φi, φf are constant in
the asymptotic region.

FIG. 1. Overall structure of the
scattering map. The shades of gray give
the value of nf (white for nf = 0, black
for nf ≈ 8 ) for ni = 0. The left plot
corresponds to β = 0.01 and the right
one to β = 0.04.
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separates the classical motion that occurs above and below the
barrier. Small values of the coupling (β = 0.01) bring about the
possibility of excitation (nf �= ni) along with a mostly smooth
dependence on φi . The singular region is slightly distorted but
still provides a clear separation for trajectories that scatter
below or above the barrier. Larger values of the coupling
(β = 0.04) start to display the full complexity of the barrier
region. The “barrier” now extends over several MeV and is
characterized by regions of smooth dependence separated by
singular regions with structure on multiple scales. Well above
and well below this chaotic layer the reaction functions are
smooth and the trajectories have but one turning point either
outside or inside the potential pocket. Within the irregular layer
one finds smooth islands characterized by trajectories with
more turning points and of increasing complexity which are
responsible for the resulting fractal structures in the reaction
functions.

IV. SEMICLASSICAL APPROXIMATION

The classical scattering map has as an exact quantization
the unitary S-matrix 〈nf |S(E)|ni〉 that yields the amplitude
for populating the oscillator state nf , when the incoming
projectile is prepared in the state ni . Both states are now
labeled by integers ni, nf . The calculation of the quantal
S-matrix is done numerically by means of coupled channel
calculations that we have performed in [4]. These calculations
allow us to compare with the semiclassical results and
to judge the special difficulties encountered in the chaotic
region.

An expression for the semiclassical S-matrix was given by
Miller [1]

〈nf |S(E)|ni〉sc =
∑

γ

(
2π i

∂nf

∂φi

) 1
2

exp(iγ (nf , ni)), (4.1)

where

γ (nf , ni) = −νγ

π

2
−

∫
γ

(
rdp

h̄
+ φdn

)
(4.2)

and νγ is the additional Maslov integer that takes into account
the points where the prefactor amplitude diverges. The sum
involves all trajectories γ that satisfy Hamilton’s equations
with the boundary conditions appropriate to the reaction
channels: total energy E, initial and final values ni, nf of
the action variable for the oscillator. All quantities can be
calculated for each scattering trajectory entirely in terms of
classical mechanics. These quantities, although not routinely
calculated in classical reaction codes, are easily incorporated
along with the integration of trajectories.

This approach has two important drawbacks when one
wants to apply it to irregular scattering. One is the search of
trajectories that satisfy boundary—and not initial—conditions,
and the second is that it diverges at the classical rainbows,
and cannot provide reliable values in the classically forbidden
regions. In the regular regime there are only a few (mostly two)
independent trajectories contributing, the numerical search is
quite feasible and the method has yielded precise estimates of
excitation probabilities for rotational bands [9–11].

It is now clear what is the essential additional difficulty that
the presence of chaotic behavior represents for this type of
calculations. The very erratic nature of the reaction function
means that the number of classical trajectories that satisfy
the boundary conditions nf , ni is not well defined (it will
increase as we increase the number of trajectories per interval
of φi). The search for these trajectories is increasingly delicate
numerically and the presence of many rainbows will make this
calculation inaccurate at many points. More crucially the sum
in Eq. (4.1) will have to take into account the interference
of many trajectories with widely different actions. Questions
about the convergence and reliability of this procedure are
very severe. From the practical side it is certainly not very
economical to have to compute and add an exponentially
increasing number of scattering trajectories to come up with
a number that is at best an approximation to the quantum
result. This state of affairs is quite similar to what happens
for the computation of energy levels from periodic orbits
[12] where an exponentially increasing number of periodic
trajectories have to be added to obtain a reasonable description
of the spectrum of bound systems in terms of classical
mechanics.

Another semiclassical approach that mitigates some of
these problems is the initial value representation of the
S-matrix [1,5]:

〈nf |S(E)|ni〉 = 1

2π

∫ 2π

0
dφi

(
∂φf

∂φi

) 1
2

exp(iF (φi, ni)), (4.3)

where F (φi, ni) is a new phase function

F (φi, ni) = −
∫ (

φṅ + rṗ

h̄

)
dt + φf (φi, ni)

× [nf (φi, ni) − nf ] − µ
π

2

and µ another topological integer index associated with the
trajectory. The phase F (φi, ni) can be readily calculated from
a classical integration of Hamilton’s equations.

The integral in Eq. (4.3) can be performed analytically by
stationary phase provided the saddle points are sufficiently
separated, in which case each point contributes one term
in the sum in Eq. (4.1). Close to the rainbows, two saddle
points coalesce and the integral yields an Airy correction to
the divergent prefactor, thus providing reliable amplitudes
also in the forbidden region. If, on the other hand, the
integral is calculated numerically by a uniform sampling of
the interval φi = 0, . . . , 2π with many trajectories the Airy
pattern emerges automatically. The fundamental advantage of
the IVR is then that the search problem has been avoided,
the divergence at the rainbows has been regularized in
exchange of a uniform sampling of the initial unobservable
angle φi . However, the essential difficulty arising from the
addition of a large number of interfering trajectories subsists
unabated.

We show in Fig. 2 the differences between the two semiclas-
sical methods, as they apply to this model in the regular region,
and how they compare with the exact coupled-channel results.
The IVR was obtained sampling φi with ≈2000 trajectories. As
expected, the only significant differences occur near the edges
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FIG. 2. (Color online) Comparison of the two semiclassical
approximations with the exact results in the regular region. The
shaded area is the semiclassical result using the IVR. The two Miller’s
S-matrix computed as a continuous function of nf to show more
clearly the resulting interference pattern. At integer values it can be
compared to the quantum results (heavy dots).

of the allowed region and the IVR is almost indistinguishable
from the exact result, even in the forbidden region.

The IVR method has yielded excellent results in calcu-
lations in atomic and molecular physics and interest in it
has revived in recent years in connection to its applica-
tion to complex molecular structures. For a recent review
of the method and its applications see [5]. This is then
the method we propose for calculations in the chaotic
regime. To sample the extreme variety of trajectories we
estimate the integral in Eq. (4.3) by discretizing φi and
propagating up to 20000 trajectories. Figure 3 illustrates the
advantages and the difficulties of this semiclassical procedure.

It shows results in the regular and the chaotic regimes at E =
84 MeV and at E = 74.5 MeV with β = 0.04. The top
part shows how the initial set of conditions ni = 4, φi =
0, . . . , 2π is mapped by the scattering process into the curve
nf , φf . (Notice that, just as it was also done in Refs. [3,4],
unrealistic boundary conditions have been chosen to improve
the pedagogical value of the illustration.) The bottom part
gives the IVR result for the excitation probabilities together
with the quantum results from a coupled-channel calcula-
tion. The purely classical result obtained by simply adding
probabilities is also shown. In this part of the calculation
there is no absorption (W0 = 0) and therefore the S-matrix
is unitary within the populated channels and in the classi-
cal and semiclassical calculations all trajectories contribute
uniformly.

In the regular case the scattering occurs well above the
barrier and the trajectories have a single turning point. The
results can be well understood in terms of the interference of
just two trajectories which produce the interference pattern
superimposed on the classical result. The Airy pattern arising
from the interferences near the rainbows is clearly visible. The
agreement with the results of a coupled channel calculation is
systematically excellent.

In the chaotic case at E = 74.5 MeV the situation is
radically different. The IVR result is essentially random and no
agreement can be discerned with the exact results. The reason
appears as soon as one looks at the classical organization of
the scattering trajectories: each scattering channel is fed by
a large amount of trajectories all with different phases and
amplitudes. Because of the finite sampling of initial trajectories
it is impossible to describe well the complicated interference
pattern.

To circumvent these difficulties we take advantage of the
fact that no realistic ion-ion potential is purely real. The

FIG. 3. (Color online) Semiclassi-
cal calculation of the excitation proba-
bilities for the different reaction chan-
nels in the absence of absorption, W =
0 MeV. The reaction considered is
40Ca + 40Ca and the initial state of
the harmonic mode with h̄ω = 2 MeV
and β = 0.04 is specified by ni = 4.
The two frames to the left correspond
to a total energy of E = 82.0 MeV
(regular regime) while the two frames
to the right are for E = 74.5 MeV
(chaotic regime). In each column the
top frame shows the initial values
φi[0, 2π ], ni = 4 mapped to the final
ones φf , nf . The lower frames show
the classical distribution of probability
(unshaded histogram) and the IVR
result (shaded histogram). The dots
give the quantal results from a full
coupled-channel calculation.
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FIG. 4. (Color online) Semiclassical
calculation of the excitation probabilities
for the different reaction channels in the
presence of absorption. This figure is
analogous to Fig. 3, except for the value of
W0 = 6 MeV. The effect of the absorption
is represented by drawing each point
with an area proportional to its survival
probability ργ .

complex optical potential is readily incorporated into standard
heavy-ion coupled channel reaction codes and results in non
unitary scattering matrices. Classically—and in leading order
in W0—it is customary to incorporate the effects of absorption
by assigning to each classical trajectory a survival probability

ργ = exp

[
2

h̄

∫ ∞

−∞
W (rγ (t))dt

]
, (4.4)

where W (r) is the imaginary potential in Eq. (2.7). Changing
the value of W0 results in a selective removal of the more
complicated trajectories that have long dwell times in the
interaction region. In fact, the role of W0 is quite analogous
to that of a small imaginary part in the energy for bound
state calculations in the chaotic regime. It regularizes the
periodic orbit sums at the expense of introducing an energy
smoothing. Here it appears naturally as a result of a physical
mechanism and its strength in a given situation is a measure
of the observability of chaotic effects.

In Fig. 4 we show the same results as in Fig. 3 but now with
an added absorptive potential with strength W0 = 6 MeV. We
have translated its effect by drawing the point corresponding
to each trajectory with an area proportional to the survival
probability ργ . In the regular case all trajectories are well
above barrier and they all share a similar portion in the radial
region where the absorption is active. Thus they are all damped
essentially by the same factor. Therefore the whole interference
pattern is simply scaled by this factor. This is clearly seen
in the pattern of excitation probabilities, which is almost
identical to that in Fig. 3, just reduced by a constant factor. The
agreement with the quantum calculation, which now includes
the imaginary part of the optical potential, remains excellent.

Absorption acts in a very different way in the chaotic case.
The trajectories that feed one given channel are now of widely
different nature, the simpler just exploring the interaction

region once, while the more complicated can have many
turning points and spend long times in it. They are therefore
damped with very different factors, thus changing substantially
the resulting amplitude. We clearly observe this fact in the top
right part of Fig. 4 where the complicated trajectories are now
absent. As the strength of W (r) increases, out of the many
trajectories feeding one given channel and interfering with
almost random patterns only the simplest survive the damping.
The interference is mainly produced by two simple branches
but some channels are still fed by the remaining irregular
trajectories. The resulting patterns are now in good agreement
with the coupled-channel calculation.

V. CONCLUSIONS

The lesson to be learned from this exercise is twofold. From
the point of view of the semiclassical computability of chaotic
scattering we conclude that the straightforward superposition
of scattering trajectories, even with the improvements intro-
duced by the IVR, cannot yield even semiquantitative results
in the chaotic regime. Whether more sophisticated techniques
involving resummations [13] can yield better results in this
case remains an open challenge, but probably of very limited
practical use for realistic nuclear reactions. On the other hand
we have shown that absorption—strongly present in nuclear
heavy ion reactions – provides a natural way of selectively
damping the more irregular trajectories, thus regularizing
the scattering trajectory sum and restoring the feasibility
of semiclassical calculations. One could argue that strictly
speaking the most severe aspects of chaos have been eliminated
by introducing absorption, and that what remains is a finite
collection of scattering trajectories which will be more or
less complicated according to the strength of the imaginary
potential. We think that this is indeed the right (and practical)
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way to think about this issue in the context of nuclear reactions,
and that the presence of special “transparency windows” [14]
in some selected reactions provide opportunities to observe
it [15–17].
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