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Abstract. A complete convergence theorem for arrays of rowwise inde-
pendent random variables was proved by Sung, Volodin, and Hu [14]. In
this paper, we extend this theorem to the Banach space without any geo-
metric assumptions on the underlying Banach space. Our theorem also
improves some known results from the literature.

1. Introduction

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins [5] as follows. A sequence {Un, n ≥ 1} of
random variables converges completely to the constant θ if

∞∑
n=1

P (|Un − θ| > ε) < ∞ for all ε > 0.

In view of the Borel-Cantelli lemma, this implies that Un → θ almost surely.
The converse is true if {Un, n ≥ 1} are independent random variables. Hsu and
Robbins [5] proved that the sequence of arithmetic means of independent and
identically distributed random variables converges completely to the expected
value if the variance of the summands is finite. Erdös [2] proved the converse.
We refer to Gut [3] for a survey on results on complete convergence related to
strong laws and published before the nineties.

The result of Hsu-Robbins-Erdös has been generalized and extended in sev-
eral directions. Some of these generalizations are in a Banach space setting.
A sequence of Banach space valued random elements is said to converge com-
pletely to the 0 element of the Banach space if the corresponding sequence of
norms converges completely to 0.

Recently, Sung et al. [14] proved the following complete convergence theorem
for arrays of rowwise independent random variables.
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Theorem 1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent
random variables, {kn, n ≥ 1} a sequence of positive integers and {an, n ≥ 1}
a sequence of positive constants. Suppose that for every ε > 0 and some δ > 0:

(i)
∑∞

n=1 an

∑kn

i=1 P (|Xni| > ε) < ∞,
(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

EX2
niI(|Xni| ≤ δ)

)J

< ∞,

(iii)
∑kn

i=1 EXniI(|Xni| ≤ δ) → 0 as n →∞.

Then
∑∞

n=1 anP (|∑kn

i=1 Xni| > ε) < ∞ for all ε > 0.

Theorem 1 was first presented by Hu et al. [8]. Hu and Volodin [9] imposed
one additional condition in addendum to the paper. Many people tried to prove
Theorem 1 without the additional condition (for random variables, see Hu et
al. [6] and Kuczmaszewska [11], and for random elements, see Hu et al. [7]).

The following theorem is a version of Banach space setting of Theorem 1
and is due to Hu et al. [7]. No assumptions are made concerning the geometry
of the underlying Banach space.

Theorem 2. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent
random elements, {kn, n ≥ 1} a sequence of positive integers and {an, n ≥ 1}
a sequence of positive constants. Suppose that for every ε > 0 and some δ > 0:

(i)
∑∞

n=1 an

∑kn

i=1 P (||Xni|| > ε) < ∞,
(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

E||Xni||2I(||Xni|| ≤ δ)
)J

< ∞,

(iii)
∑kn

i=1 P (||Xni|| > δ) = o(1),
(iv) ||∑kn

i=1 Xni|| → 0 in probability.

Then
∑∞

n=1 anP (||∑kn

i=1 Xni|| > ε) < ∞ for all ε > 0.

In this paper, we extend Theorem 1 to the Banach space without any geo-
metric assumptions on the underlying Banach space. Our result also improves
Theorem 2. More precisely, Theorem 2 holds without condition (iii).

We state our first theorem which shows that o(1) in condition (iii) of Theo-
rem 2 can be replaced by O(1). The proof will appear in Section 3.

Theorem 3. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent
random elements, {kn, n ≥ 1} a sequence of positive integers and {an, n ≥ 1}
a sequence of positive constants. Suppose that for every ε > 0 and some δ > 0:

(i)
∑∞

n=1 an

∑kn

i=1 P (||Xni|| > ε) < ∞,
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(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

E||Xni||2I(||Xni|| ≤ δ)
)J

< ∞,

(iii)
∑kn

i=1 P (||Xni|| > δ) = O(1),
(iv) ||∑kn

i=1 Xni|| → 0 in probability.

Then
∑∞

n=1 anP (||∑kn

i=1 Xni|| > ε) < ∞ for all ε > 0.

The following theorem is our main result which shows that condition (iii) of
Theorem 2 can be removed. The proof will appear in Section 3.

Theorem 4. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent
random elements, {kn, n ≥ 1} a sequence of positive integers and {an, n ≥ 1}
a sequence of positive constants. Suppose that for every ε > 0 and some δ > 0:

(i)
∑∞

n=1 an

∑kn

i=1 P (||Xni|| > ε) < ∞,
(ii) there exists J ≥ 2 such that

∞∑
n=1

an

( kn∑

i=1

E||Xni||2I(||Xni|| ≤ δ)
)J

< ∞,

(iii) ||∑kn

i=1 Xni|| → 0 in probability.

Then
∑∞

n=1 anP (||∑kn

i=1 Xni|| > ε) < ∞ for all ε > 0.

As an application of Theorem 4, we have the following corollary, which will
be proved in Section 3.

Corollary 1. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent
random elements which are weakly mean dominated by a random variable X,
that is, there exists a constant C > 0 such that 1

n

∑n
i=1 P (||Xni|| > x) ≤

CP (|X| > x) for all x ≥ 0 and n ≥ 1. Let α and φ be nondecreasing functions
defined on (0,∞) satisfying

0 < α(x) ↑ ∞ and 0 < φ(2x) ≤ Dφ(x) for all x > 0,

where D > 0 is a constant. Suppose that Eφ(|X|) < ∞, E|X|s < ∞ for some
1 ≤ s ≤ 2, ||∑n

i=1 Xni||/α(n) → 0 in probability, and there exists J ≥ 2 such
that

∞∑
n=1

φ(α(n))− φ(α(n− 1))
n

(
n

αs(n)

)J

< ∞.

Then
∞∑

n=1

φ(α(n))− φ(α(n− 1))
n

P (||
n∑

i=1

Xni|| > εα(n)) < ∞ for all ε > 0.
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2. Preliminary lemmas

Let B be a real separable Banach space with norm || · ||. Let (Ω,F , P )
be a probability space. A random element (or B-valued random element) is
defined to be a F-measurable mapping from Ω to B equipped with the Borel
σ-algebra (the σ-algebra generated by the open sets determined by || · ||). The
expected value of a random element X is defined to be Bochner integral (when
E||X|| < ∞) and is denoted by EX.

The following lemma is an iterated form of Hoffmann-Jφrgensen [4] inequal-
ity and is due to Jain [10].

Lemma 1. If X1, . . . , Xn are independent symmetric random elements, then
for every integer j ≥ 1 and every t > 0

P (||Sn|| > 3jt) ≤ CjP ( max
1≤i≤n

||Xi|| > t) + Dj

(
P (||Sn|| > t)

)2j

,

where Cj and Dj are positive constants depending only on j, and Sn =
∑n

i=1 Xi.

The following lemma gives us a useful contraction principle and can be found
in Lemma 6.5 of Ledoux and Talagrand [13].

Lemma 2. Let {Xi, i ≥ 1} be a sequence of symmetric random elements. Let
further {ξi, i ≥ 1} and {ζi, i ≥ 1} be real random variables such that ξi =
φi(Xi), where φi : B → R is symmetric (even), and similarly for ζi. Then, if
|ξi| ≤ |ζi| almost surely for every i, for every t > 0

P (||
∑

i

ξiXi|| > t) ≤ 2P (||
∑

i

ζiXi|| > t).

In particular, this inequality applies when ξi = I{Xi∈Ai} ≤ 1 ≡ ζi where the
sets Ai are symmetric in B (in particular Ai = {||x|| ≤ ai}).

The next lemma is a modification of a result of Kuelbs and Zinn [12] concern-
ing the relationship between convergence in probability and mean convergence
for sums of independent bounded random variables. We refer to Lemma 2.1 of
Hu el al. [7] for the proof.

Lemma 3. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent
symmetric random elements. Suppose there exists δ > 0 such that ||Xni|| ≤ δ

almost surely for all 1 ≤ i ≤ kn, n ≥ 1. Put Sn =
∑kn

i=1 Xni. If Sn → 0 in
probability, then E||Sn|| → 0 as n →∞.

The following inequality is a Banach space analogue of the classical Marcink-
iewicz-Zygmund inequality and is due to de Acosta [1]. When p = 2, C2 can
be taken to be 4.

Lemma 4. Let {Xi, 1 ≤ i ≤ n} be a sequence of independent random elements.
Then for 1 < p ≤ 2, there is a positive constant Cp depending only on p such
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that

E
∣∣||Sn|| − E||Sn||

∣∣p ≤ Cp

n∑

i=1

E||Xi||p,

where Sn =
∑n

i=1 Xi.

Finally, we need the following lemma. The proof is standard and is omitted.

Lemma 5. If X and Y have the same distribution, then for every t > 0

E||X − Y ||2I(||X − Y || ≤ t) ≤ 8E||X||2I(||X|| ≤ t

2
) + 2t2P (||X|| > t

2
).

3. Proofs

Proof of Theorem 3. Let {Xs
ni, 1 ≤ i ≤ kn, n ≥ 1} be an array of the sym-

metrized version of {Xni, 1 ≤ i ≤ kn, n ≥ 1}, i.e., Xs
ni = Xni − X∗

ni, where
Xni and X∗

ni are independent and have the same distribution. Let µn be a
median of ||∑kn

i=1 Xni||. By (iv), µn → 0 as n →∞. Then we have by the weak
symmetrization inequality that for all large n

P (||
kn∑

i=1

Xni|| > ε) ≤ P (||
kn∑

i=1

Xni|| − µn >
ε

2
) ≤ 2P (||

kn∑

i=1

Xs
ni|| >

ε

2
)

≤ 2P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
) + 2P (||

kn∑

i=1

Xs
niI(||Xs

ni|| > 2δ)|| > ε

4
)

≤ 2P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
) + 2

kn∑

i=1

P (||Xs
ni|| > 2δ)

≤ 2P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
) + 4

kn∑

i=1

P (||Xni|| > δ).

By (i), it is enough to prove that

∞∑
n=1

anP (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
) < ∞.

By Lemma 2 and (iv), we have that

P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
)

≤ 2P (||
kn∑

i=1

Xs
ni|| >

ε

4
)



472 SOO HAK SUNG, MANUEL ORDÓÑEZ CABRERA, AND TIEN-CHUNG HU

≤ 2P (||
kn∑

i=1

Xni||+ ||
kn∑

i=1

X∗
ni|| >

ε

4
)

≤ 4P (||
kn∑

i=1

Xni|| > ε

8
) → 0.

Noting that ||Xs
niI(||Xs

ni|| ≤ 2δ)|| ≤ 2δ, it follows by Lemma 3 that

E||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| → 0

as n →∞. Take an integer j such that 2j ≥ J. Then we have by Lemma 1 that

P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4
)

≤ CjP ( max
1≤i≤kn

||Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j
)

+ DjP

(
||

kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j

)2j

≤ CjP ( max
1≤i≤kn

||Xs
ni|| >

ε

4 · 3j
)

+ DjP

(
||

kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j

)J

≤ 2Cj

kn∑

i=1

P (||Xni|| > ε

8 · 3j
)

+ DjP

(
||

kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j

)J

.

Thus, by (i), it suffices to prove that

∞∑
n=1

anP

(
||

kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j

)J

< ∞.

Since E||∑kn

i=1 Xs
niI(||Xs

ni|| ≤ 2δ)|| → 0, it follows by Lemma 4 and Lemma 5
that for all large n

P (||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε

4 · 3j
)

≤ P (
∣∣||

kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| − E||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)||∣∣ >
ε

8 · 3j
)
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≤ (
8 · 3j

ε
)2E

∣∣∣∣||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)|| − E||
kn∑

i=1

Xs
niI(||Xs

ni|| ≤ 2δ)||
∣∣∣∣
2

≤ 4(
8 · 3j

ε
)2

kn∑

i=1

E||Xs
ni||2I(||Xs

ni|| ≤ 2δ)

≤ 4(
8 · 3j

ε
)2

kn∑

i=1

{
8E||Xni||2I(||Xni|| ≤ δ) + 8δ2P (||Xni|| > δ)

}
.

Noting that
( ∑kn

i=1 P (||Xni|| > δ)
)J

≤ O(1)
∑kn

i=1 P (||Xni|| > δ) by (iii), the

cr-inequality implies that
∑∞

n=1 anP

(
||∑kn

i=1 Xs
niI(||Xs

ni|| ≤ 2δ)|| > ε
4·3j

)J

<

∞ by (i) and (ii). Thus the proof is complete. ¤

Proof of Theorem 4. Let A = {n|∑kn

i=1 P (||Xni|| > δ) ≤ 1}. Define a sequence
{un, n ≥ 1} of positive integers by

un =
{

kn, if n ∈ A,
1, if n /∈ A.

Define an array {Yni, 1 ≤ i ≤ un, n ≥ 1} of random elements by

Yni =
{

Xni, if n ∈ A,
0, if n /∈ A.

Then {Yni, 1 ≤ i ≤ un, n ≥ 1} satisfies all conditions of Theorem 3 and so we
have that

∑

n∈A

anP (||
kn∑

i=1

Xni|| > ε) =
∞∑

n=1

anP (||
un∑

i=1

Yni|| > ε) < ∞.

Observe that

∞∑
n=1

an

kn∑

i=1

P (||Xni|| > δ) =
∑

n∈A

an

kn∑

i=1

P (||Xni|| > δ)

+
∑

n/∈A

an

kn∑

i=1

P (||Xni|| > δ)

≥
∑

n∈A

an

kn∑

i=1

P (||Xni|| > δ) +
∑

n/∈A

an.
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It follows by (i) that
∑

n/∈A an < ∞. Thus we obtain that
∞∑

n=1

anP (||
kn∑

i=1

Xni|| > ε) =
∑

n∈A

anP (||
kn∑

i=1

Xni|| > ε)

+
∑

n/∈A

anP (||
kn∑

i=1

Xni|| > ε)

≤
∑

n∈A

anP (||
kn∑

i=1

Xni|| > ε) +
∑

n/∈A

an < ∞.

¤
Proof of Corollary 1. We will apply Theorem 4 with an = (φ(α(n)) −φ(α(n−
1)))/n, n ≥ 1 and Xni replaced by Xni/α(n), 1 ≤ i ≤ n, n ≥ 1. We only need
to verify that conditions (i) and (ii) of Theorem 4 hold. By the weak mean
domination hypothesis, we have that

∞∑
n=1

an

n∑

i=1

P (|| Xni

α(n)
|| > ε) ≤ C

∞∑
n=1

annP (
|X|
ε

> α(n))

= C

∞∑

i=1

P (α(i) <
|X|
ε
≤ α(i + 1))

i∑
n=1

nan

≤ CEφ(
|X|
ε

) < ∞,

since Eφ(|X|) < ∞ and φ(2x) ≤ Dφ(x). Hence condition (i) holds.
To establish condition (ii), note that

∞∑
n=1

an

( n∑

i=1

E|| Xni

α(n)
||2I(|| Xni

α(n)
|| ≤ δ)

)J

≤ δJ(2−s)
∞∑

n=1

an

( n∑

i=1

E|| Xni

α(n)
||s

)J

≤ δJ(2−s)
∞∑

n=1

an

(
nCE|X|s

αs(n)

)J

,

since
∑n

i=1 E||Xni||s ≤ nCE|X|s by the weak mean domination. Hence con-
dition (ii) holds. ¤

A sequence {Un, n ≥ 1} of random variables is bounded in probability if for
every ε > 0 there exists a constant C > 0 such that P (|Un| > C) < ε for all
n ≥ 1.

Remark 1. Let {Un, n ≥ 1} be a bounded in probability. Let {βn, n ≥ 1} be a
sequence of positive real numbers such that βn → 0 as n →∞. Then βnUn → 0
in probability.
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Proof. Let ε > 0 and δ > 0 be given. Since {Un, n ≥ 1} is bounded in proba-
bility, there exists a constant C > 0 such that P (|Un| > C) < ε for all n ≥ 1.
Since βn → 0 as n →∞, there exists a positive integer N such that βn < δ/C
if n > N. For n > N, P (|βnUn| > δ) ≤ P (|Un| > C) < ε. Hence the proof is
complete. ¤

Remark 2. Let {γn, n ≥ 1} be a sequence of positive real numbers such that
limn→∞ α(n)/γn = ∞, and {||∑n

i=1 Xni||/γn, n ≥ 1} is bounded in probability.
By Remark 1, ||∑n

i=1 Xni||/α(n) → 0 in probability. When θ(x) = |x|s for
some s > 0,

n

αs(n)
<

1
r

(
rn + θ(γn)

θ(α(n))

)
for any r > 0.

It follows that Corollary 1 improves Theorem 3.1 of Tómács [15] when θ(x) =
|x|s for some 1 ≤ s ≤ 2.
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