WEAKLY COERCIVE MAPPINGS SHARING A VALUE

J. M. SORIANO, Sevilla

(Received July 7, 2009)

Abstract. Some sufficient conditions are provided that guarantee that the difference of a compact mapping and a proper mapping defined between any two Banach spaces over \mathbb{K} has at least one zero. When conditions are strengthened, this difference has at most a finite number of zeros throughout the entire space. The proof of the result is constructive and is based upon a continuation method.

Keywords: zero point, continuation method, C¹-homotopy, surjective implicit function theorem, proper mapping, compact mapping, coercive mapping, Fredholm mapping

MSC 2010: 58C30, 65H10

1. Preliminaires

Let X and Y be two Banach spaces. If $u: D(F) \subseteq X \to Y$ is a continuous mapping, then one way of solving the equation

$$(1) u(x) = 0$$

is to embed (1) in a continuum of problems

(2)
$$H(x,t) = 0 \quad (0 \le t \le 1),$$

which can easily be resolved when t = 0. When t = 1, the problem (2) becomes (1). In the case when it is possible to continue the solution for all t in [0,1] then (1) is solved. This method is called continuation with respect to a parameter [1]–[9].

In this paper some sufficient conditions are provided in order to guarantee that the difference of a compact and a proper weakly coercive C^1 -mapping has at least

This work is partially supported by D.G.E.S. Pb 96-1338-CO 2-01 and the Junta de Andalucia.

one zero. If these conditions are conveniently strengthened this difference has at most a finite number of zeros on X. Other conditions, sufficient to guarantee the existence of fixed points, have been given by the author in a finite-dimensional setting, see for example [7], and in an infinite-dimensional setting, see for example [8]. A continuation method was used in the proofs of these papers. The proofs supply the existence of implicitly defined continuous mappings whose ranges reach zero points [1]–[9]. A continuation method is also used here. The key is the use of the surjective implicit function theorem [10], and the properties of proper and Fredholm C^1 -mappings (see [9]).

We briefly recall some theorems and concepts to be used.

Definitions [26], [27]. Henceforth we will assume that X and Y are Banach spaces over \mathbb{K} , where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

A mapping $F \colon D(F) \subseteq X \to Y$ is called *weakly coercive* if and only if $||F(x)|| \to \infty$ as $||x|| \to \infty$.

A mapping $F \colon D(F) \subseteq X \to Y$ is said to be *compact* whenever it is continuous and the image F(B) is relatively compact (i.e. its closure $\overline{F(B)}$ is compact in Y) for every bounded subset $B \subset D(F)$.

A mapping F is said to be *proper* whenever the pre-image $F^{-1}(K)$ of every compact subset $K \subset Y$ is also a compact subset of D(F).

The symbol dim means dimension, codim means codimension, ker means kernel, R(L) stands for the range of the mapping L.

That $L\colon X\to Y$ is a linear Fredholm mapping means that L is linear and continuous and both the numbers $\dim(\ker(L))$ and $\operatorname{codim}(R(L))$ are finite, and therefore $\ker(L)=X_1$ is a Banach space and has the topological complement X_2 , since $\dim(X_1)$ is finite. The integer number $\operatorname{Ind}(L)=\dim(\ker(L))-\operatorname{codim}(R(L))$ is called the index of L.

Let $F: D(F) \subseteq X \to Y$. If D(F) is open, then the mapping F is said to be a Fredholm mapping if and only if F is a C^1 -mapping and $F'(x): X \to Y$ is a Fredholm linear mapping for all $x \in D(F)$. If $\operatorname{Ind}(F'(x))$ is constant with respect to $x \in D(F)$, then we call this number the index of F and write it as $\operatorname{Ind}(F)$.

X, Y are called *isomorphic* if and only if there is a linear homeomorphism (*isomorphism*) $L \colon X \to Y$.

Let $\mathcal{F}(X,Y)$ denote the set of all linear Fredholm mappings $A\colon X\to Y$.

Let $\mathcal{L}(X,Y)$ denote the set of all linear continuous mappings $L\colon X\to Y$.

Let Isom(X,Y) denote the set of all isomorphisms $L\colon X\to Y$.

Let $F: D(F) \subseteq X \to Y$ with D(F) open be a C^1 -mapping. The point $u \in X$ is called a regular point of F if and only if $F'(u) \in \mathcal{L}(X,Y)$ maps onto Y. A point

 $v \in Y$ is called a regular value of F if and only if the pre-image $F^{-1}(v)$ is empty or consists solely of regular points.

Theorem 1. The Surjective Implicit Function Theorem. [10, Section 4–13, Theorem 4–H]. Let X, Y, Z be Banach spaces over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and let

$$F \colon U(u_0, v_0) \subseteq X \times Y \to Z$$

be a C^1 -mapping on an open neighbourhood of the point (u_0, v_0) . Suppose that

- (i) $F(u_0, v_0) = 0$, and
- (ii) $F_v(u_0, v_0)$: $Y \to Z$ is surjective.

Then the following assertion is true:

Let r > 0. There is a number $\varrho > 0$ such that, for each given $u \in X$ with $||u - u_0|| < \varrho$, the equation

$$F(u,v) = 0$$

has a solution v such that $||v - v_0|| < r$.

Theorem 2 [9, Section 7–9, Theorem 7–33]. Let $g: D(g) \subseteq X \to Y$ be a compact mapping, where $a \in D(g)$ and D(g) is open. If the derivative g'(a) exists, then $g'(a) \in \mathcal{L}(X,Y)$ is also a compact mapping.

Theorem 3 [9, Section 8–4, Example 8–16]. Let $S \in \mathcal{F}(X,Y)$. The perturbed mapping S+C verifies $S+C \in \mathcal{F}(X,Y)$ and $\mathrm{Ind}(S+C)=\mathrm{Ind}(S)$ provided $C \in \mathcal{L}(X,Y)$ and C is a compact mapping.

2. Weakly coercive mappings sharing a value

Clearly, if we define u := f - g, then u has a zero if and only if f and g share a value, that is, there is $x \in X$ with f(x) = g(x). We thereby establish our result in terms of f, g.

Theorem 4. Let $f,g: D \subseteq X \to Y$ be two C^1 -mappings, where X and Y are two Banach spaces over $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$, and D is open.

We assume

- (i) f is a compact mapping, g is a proper mapping and tf(x) g(x) is weakly coercive, jointly in both coordinates.
- (ii) The mapping g has a zero, x_0 .
- (iii) For any fixed t, belonging to [0,1], the zero of Y is a regular value of the mapping tf(x) g(x).

Then the following assertion holds

(a) f and g share at least one value, i.e., there is at least one x^* such that $f(x^*) = g(x^*)$.

If in addition the condition

- (iv) g is a Fredholm mapping of index zero is satisfied, then in addition we have
 - (b) f and g share at most a finite number of values on D, and at least one value.

Proof.

- (a) Conclusion (a) will be proved in this section.
- (a1) Let us define a mapping

$$H \colon D \times [0,1] \subseteq X \times [0,1] \to Y$$
, where $H(x,t) := tf(x) - g(x)$.

We will prove here that H is a proper mapping, which will imply that $H^{-1}(0)$ is a compact set, since $\{0\} \subset Y$ is a compact set and H is proper.

Let \mathcal{C} be any fixed compact subset of Y, and let a sequence be fixed such that $(H(x_n, t_n))_{n \geqslant 1}$ belongs to \mathcal{C} . It suffices to show that the sequence $((x_n, t_n))_{n \geqslant 1}$ contains a convergent subsequence $((x_{n'''}, t_{n'''}))_{n''' \geqslant 1}$, which will imply that $H^{-1}(\mathcal{C})$ is relatively compact, and since

$$(x_{n'''}, t_{n'''}) \to (u, t)$$
 as $n''' \to \infty$,

H is continuous and C compact, therefore $H(u,t) \in C$, that is, $(u,t) \in H^{-1}(C)$, and hence $H^{-1}(C)$ is compact.

Since the set C is bounded and the mapping H is weakly coercive, $((x_n, t_n))_{n\geqslant 1}$ is a bounded sequence. Consequently $(x_n)_{n\geqslant 1}$ and $(t_n)_{n\geqslant 1}$ are bounded sequences. Since f is a compact mapping and $(x_n)_{n\geqslant 1}$ a bounded sequence, there exists a subsequence $(x_{n'})_{n'\geqslant 1}$ such that

$$f(x_{n'}) \to w'$$
 as $n' \to \infty$

for some $w' \in Y$, and furthermore, since $(t_n)_{n \ge 1}$ is a bounded sequence of real numbers, there is $t \in \mathbb{R}$ with

$$t_{n'} \to t$$
 as $n' \to \infty$.

Therefore

$$t_{n'}f(x_{n'}) \to tw' := w \quad \text{as} \quad n' \to \infty$$

for some $w \in Y$.

All $H(x_{n'}, t_{n'})$, $n' \ge 1$ lie in the compact set \mathcal{C} and therefore, there is a subsequence $(H(x_{n''}, t_{n''}))_{n'' \ge 1}$ such that

$$H(x_{n''}, t_{n''}) \to v$$
 as $n'' \to \infty$

for some $v \in \mathcal{C}$. Therefore

$$g(x_{n''}) \to w - v$$
 as $n'' \to \infty$.

Since g is proper, $(x_{n''})$ has a convergent subsequence

$$x_{n'''} \to u$$
 as $n'' \to \infty$.

On the other hand,

$$t_{n'''} \to t$$
 as $n''' \to \infty$,

hence

$$(x_{n'''}, t_{n'''}) \to (u, t)$$
 as $n''' \to \infty$

as required.

(a2) Let us suppose that

$$(3) H(x_a, t_a) = 0$$

for a fixed (x_a, t_a) . We will prove that there is $\varrho > 0$ such that for any $t \in (t_a - \varrho, t_a + \varrho)$, there exists x = x(t) such that H(x(t), t) = 0.

Since zero is a regular value for the mappings $\{tf(x) - g(x)\}\$ by hypothesis (iii),

$$H_x(x,t) = tf'(x) - g'(x) \in \mathcal{L}(X,Y)$$

is surjective for every pair (x,t) such that H(x,t)=0. In particular, the mapping

$$H_x(x_a, t_a) = t_a f'(x_a) - g'(x_a) \in \mathcal{L}(X, Y)$$

is surjective, which together with identity (3) and Theorem 1 implies the existence of $\varrho > 0, r > 0$ such that for any $t \in (t_a - \varrho, t_a + \varrho)$ there is x(t) with H(x(t), t) = 0 and $||x(t) - x_a|| < r$.

(a3) We will prove that for every t in [0,1] there exists x(t) such that H(x(t),t)=0. Let M denote the set of all t such that there is a solution x(t). By assumption (ii) this set is not empty. By (a2), the set is relatively open. Finally, since the set is the projection of $H^{-1}(0)$ into the second component (i.e. the t component), and since the set is the image of a compact set by the continuous function projection, it is therefore compact, and hence also closed. However, a relatively open, closed, non-empty subset of [0,1] is the whole interval, since [0,1] is connected.

Thus

$$H(x(1), 1) = f(x(1)) - g(x(1)) = 0 \Rightarrow f(x(1)) = g(x(1)),$$

which is conclusion (a) of the theorem, where $x^* := x(1)$.

- (b) We include the hypothesis (iv) in Section (b).
- (b1) We will see that the C^1 -mapping $u \colon D \subseteq X \to Y$, u := f g is a proper Fredholm mapping of index zero.

Since f is a compact mapping, Theorem 2 implies that for each $x \in X$, the mapping $f'(x) \in \mathcal{L}(X,Y)$ is also a compact mapping.

Since f'(x) is a linear compact mapping and given that g'(x) is a linear Fredholm mapping of index zero, Theorem 3 implies that

$$u'(x) = f'(x) - g'(x) \in \mathcal{L}(X, Y), \quad \forall x \in D$$

is a Fredholm linear mapping and $\operatorname{Ind}(u'(x)) = \operatorname{Ind}(g'(x)) = 0, \forall x \in D$. Therefore the non-linear C^1 -mapping u is a Fredholm mapping of index zero.

Furthermore, Section (a1) implies that u is a proper mapping. In fact, this is the particular case in which t = 1, i.e. u(x) = H(x, 1).

(b2) We will see that, if any $x \in D$ exists which verifies u(x) = 0, then u is a local C^1 -diffeomorphism at x.

Let $x \in D$ exist such that u(x) = 0. Since zero is a regular value of u, the linear Fredhom mapping u'(x) maps onto Y, and since $\operatorname{Ind}(u'(x)) = 0$, therefore $\dim(\ker(u'(x))) = 0$. Thus $u'(x) \in \operatorname{Isom}(X,Y)$. By the Local Inverse Theorem [10], u is a local diffeomorphism at x.

(b3) We will prove here that f and g share at most a finite number of values on D. Since u is proper, $u^{-1}(0)$ is a compact set. If there were an infinite sequence

$$(x_n)_{n\geqslant 1}\subset D$$
 with $x_n\neq x_m$ when $n\neq m$

verifying $u(x_n) = 0, \forall n \in \mathbb{N}$, there would be a subsequence $(x_{n'})_{n' \geqslant 1} \subset u^{-1}(0)$, which would converge at a point $x \in u^{-1}(0)$, and x would be an non-isolated zero of u. However, since u is a local diffeomorphism at x, given in Section (b2), x is an isolated zero of u. This is a contradiction. Hence there is not an infinite number of zeros of u on D. Thus f and g share at most a finite number of values on D.

Example. Let us consider an integral mapping

$$(Au)(x) = \int_a^b F(x, y, u(y)) dy, \quad \forall x \in [a, b],$$

where $-\infty < a < b < +\infty$. Define

$$Q := \{(x, y, u) \in \mathbb{R}^3 \colon x, y \in [a, b] \text{ and } |u| < r \text{ for fixed } r > 0\}.$$

Suppose that the function

$$F: \{(x, y, u) \in \mathbb{R}^3 \colon x, y \in [a, b] \text{ and } |u| \leqslant r\} \to \mathbb{R}$$

is twice continuously differentiable. Define X:=C[a,b] and $M:=\{u\in X:\|u\|< r\}$, where $\|u\|=\max_{a\leqslant y\leqslant b}|u(y)|$. It can be easily proved that the mapping $A\colon M\to X$ is compact, and it is twice cotinuously differentiable.

Let B be the mapping $B \colon M \times [0,1] \to X$, B(u,t) = u which is $C^{\infty}(M \times [0,1], X)$, is proper, has a zero, and since it is defined only on a bounded set, it is trivially weakly coercive.

The mapping H(u,t) = t(Au) - (Bu): $M \times [0,1] \to X$ is weakly coercive, since it is defined only on a bounded set. Theorem 4 implies that if zero is a regular value, then there is $u \in M$ such that

$$(Au)(x) = (Bu)(x), \ \forall x \in [a, b].$$

If we do not know that zero is a regular value, it is possible to prove the existence of $u \in M$ with (Au)(x) as near to $u(x), \forall x \in [a, b]$ as wanted in the following way:

Since $B'(u,t) \in \mathcal{L}(X \times \mathbb{R}, X)$ is surjective and $\dim(\ker(B'(u,t))) = 1$ for $\forall (u,t) \in M \times [0,1]$, B is a Fredholm mapping of index one.

Define a mapping $A^* \colon M \times [0,1] \to X$, $A^*(u,t) := t(Au)$ that is differentiable and compact. Theorem 2 implies that $(A^*)'(u,t)$ is compact. Theorem 3 implies that H'(u,t) is a linear Fredholm mapping of index one for $\forall (u,t) \in M \times [0,1]$, and hence H(u,t) is a Fredholm mapping of index one. Thus we obtain from the Sard-Smale theorem [9, Theorem 4.K] that the set of regular values of the proper mapping H is open and dense in X.

Acknowledgment. I am deeply indebted to the referee for helpful suggestions.

References

1	E. L. Allgower: A survey of homotopy methods for smooth mappings. Allgower, Glashoff,	
	and Peitgen (eds.) Springer-Verlag, Berlin, 1981, pp. 2–29.	zbl
[2]	E. L. Allgower, K. Glashoff and H. Peitgen (eds.): Proceedings of the Conference on Nu-	
	merical Solution of Nonlinear Equations. Bremen, July 1980, Lecture Notes in Math.	
	878. Springer-Verlag, Berlin, 1981.	zbl
[3]	E. L. Allgower and K. Georg: Numerical Continuation Methods. Springer Series in Com-	
	putational Mathematics 13, Springer-Verlag, New York, 1990.	zbl
[4]	J. C. Alexander and J. A. York: Homotopy Continuation Method: numerically imple-	
	mentable topological procedures. Trans. Amer. Math. Soc. 242 (1978), 271–284.	
[5]	C. B. Garcia and T. I. Li: On the number of solutions to polynomial systems of non-linear	
	equations. SIAM J. Numer. Anal. 17 (1980), 540–546.	zbl
[6]	C.B. Garcia and W.I. Zangwill: Determining all solutions to certain systems of non-	
	linear equations. Math. Operations Research 4 (1979), 1–14.	zbl
[7]	J. M. Soriano: Global minimum point of a convex function. Appl. Math. Comput. 55	
	(1993), 213–218.	zbl
[8]	J. M. Soriano: Continuous embeddings and continuation methods. Nonlinear Anal. The-	
	ory Methods Appl. 70 (2009), 4118–4121.	zbl
[9]	E. Zeidler: Nonlinear Functional Analysis and its applications I. Springer-Verlag, New	
	York, 1992.	zbl
10]	E. Zeidler: Applied Functional Analysis. Springer-Verlag, Applied Mathematical Sci-	
	ences 109, New York, 1995.	zbl

Author's address: J. M. Soriano, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, Sevilla 41080, Spain, e-mail: soriano@us.es.