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Abstract In this work we study a model for virus dynamics with a random immune
response and a random production rate of susceptible cells from cell proliferation.
In traditional models for virus dynamics, the rate at which the viruses are cleared by
the immune system is constant, and the rate at which susceptible cells are provided is
constant or a function depending on the population of all cells. However, the human
body in general is never stationary, and thus these rates canbarely be constant. Here
we assume that the human body is a random environment and models the rates
by random processes, which result in a system of random differential equations.
We then analyze the long term behavior of the random system, in particular the
existence and geometric structure of the random attractor,by using the theory of
random dynamical systems. Numerical simulations are provided to illustrate the
theoretical result.
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1 Introduction

Basic models for virus dynamics were introduced in the classic text by May and
Nowak [12]. The assumption for simplest models is that the body is modeled as a
“well stirred” chemostat containing the virus and two kindsof cells, uninfected but
susceptible cells and cells infected by virus. In a chemostat, microorganisms grow
by feeding on nutrients in the culture vessel, and are flushedout to the collecting
vessel. Similarly in the human body, the virus grows from dead infected cells and is
cleared by the immune system. Modeling chemostats by systems of nonautonomous
or random differential equations is fully justified (see, e.g., [6, 7]), as the environ-
ment for a chemostat usually varies in time (either deterministically or randomly).
Using the argument that the human body also varies in time, wewill model the virus
dynamics by a system of random differential equations in this work.

Denote byv the population size of free virus,x the population size of uninfected
cells (food for virus), andy the population size of infected cells. First uninfected
cells are produced by cell proliferation at a constant rateΛ , live for an average
lifetime and die at an average death rateγ1. Second, virus infects susceptible cells
to produce infected cells, with an “efficiency”,β . Since cells are infected by contact
with viruses, the infection can be modeled as a simple mass action reaction

x+v
β

−→ y.

Third, infected cells die at an average rateγ2 and release new viruses at a rateκ . At
the same time these viruses are cleared by the immune system at a rateα. Then we
arrive at the basic model of virus dynamics:

dx(t)
dt

= Λ − γ1x−βxv, (1)

dy(t)
dt

= βxv− γ2y, (2)

dv(t)
dt

= κy−αv. (3)

The ordinary differential equation system (1) – (3) can be used to describe the
dynamics of various type of virus, healthy and infected cells, but with limitations.
First, the model assumes that the contribution of the immuneresponse (to the death
of infected cells or free virus and to reducing the rate of infection of new cells) is
constant over time. Second, the dynamics of the susceptiblecell population assumes
a constant production rate from a pool of precursors. These assumptions may be
justified for stationary environments, within a short term of time span. However, in
the long term, the human body is never a stationary environment – it varies over time
in principle and hence system (1) – (3) is not adequate to explain the real dynamic
of virus and the immune response.
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In this work, we will assume that the human body is a random environment, that
varies randomly with respect to time. Due to this random variation, the contribu-
tion of the immune response and the production rate of susceptible cells from cell
proliferation will also fluctuate randomly with respect to time. More precisely, we
assume that parametersΛ andα are perturbed by real noise, i.e.,Λ = Λ(θtω) and
α = α(θtω) are continuous and essentially bounded:

Λ(θt ω) ∈ λ · [1− δ1,1+ δ1], λ > 0, 0 < δ1 < 1, (4)

α(θt ω) ∈ a · [1− δ2,1+ δ2], a > 0, 0 < δ2 < 1. (5)

Then system (1) – (3) becomes

dx(t,ω)

dt
= Λ(θtω)− γ1x−βxv, (6)

dy(t,ω)

dt
= βxv− γ2y, (7)

dv(t,ω)

dt
= κy−α(θtω)v, (8)

whereγ1, γ2, β , κ are positive constants, andΛ(θtω) andα(θt ω) are defined as in
(4) and (5), respectively.

Bounded noise can be modeled in various ways. For example in [2], given a
stochastic processZt such as an Ornstein-Uhlenbeck (OU) process, the stochastic
process

ζ (Zt) := ζ0

(

1−2ε
Zt

1+Z2
t

)

, (9)

whereζ0 andε are positive constants withε ∈ (0,1), takes values in the interval
ζ0[1− ε,1+ ε] and tends to peak aroundζ0(1± ε). It is thus suitable for a noisy
switching scenario. In another example, the stochastic process

η(Zt) := η0

(

1−
2ε
π

arctanZt

)

, (10)

whereη0 andε are positive constants withε ∈ (0,1) takes values in the interval
η0[1− ε,1+ ε] and is centered onη0. In the theory of random dynamical systems
the driving noise processZt(ω) is replaced by a canonical driving systemθtω . This
simplification allows a better understanding of the path-wise approach to model
noise: a system influenced by stochastic processes for each single realizationω can
be interpreted as wandering along a pathθtω in Ω and thus may provide additional
statistical information to the modeler.

In the paper we will study the properties of solutions to (6) –(8). In particular,
we are interested in the long term behavior of solutions to (6) – (8), characterized by
a global random attractor. The rest of the paper is organizedas follows. In Section
2 we provide preliminaries on the theory of random dynamicalsystems. In Section



4 Y. Asai, T. Caraballo, X. Han & P. Kloeden

3 we prove the existence and uniqueness of a positive boundedsolution to (6) –
(8), and show that the solution generates a random dynamicalsystem. In section 4
we prove the existence and uniqueness of a global random attractor to the random
dynamical system generated by the solution to (6) – (8), and also investigate the
conditions under which the global random attractor consists of a singleton axial so-
lution (endemic), or nontrivial component sets (pandemic). Numerical simulations
are provided in Section 6, to illustrate the conditions for the endemic and pandemic
of system (6) – (8).

2 Preliminaries on random dynamical systems

In this section we first present some concepts (from [1]) related to general random
dynamical systems (RDSs) and random attractors that we require in the sequel. Our
situation is, in fact, somewhat simpler, but to facilitate the reader’s access to the
literature we give more general definitions here.

Let (X,‖ · ‖X) be a separable Banach space and let(Ω ,F ,P) be a probability
space whereF is theσ−algebra of measurable subsets ofΩ (called “events”) and
P is the probability measure. To connect the stateω in the probability spaceΩ at
time 0 with its state after a time oft elapses, we define a flowθ = {θt}t∈R on Ω
with eachθt being a mappingθt : Ω → Ω that satisfies

(1)θ0 = IdΩ ,
(2)θs◦θt = θs+t for all s, t ∈ R,
(3)the mapping(t,ω) 7→ θtω is measurable and
(4)the probability measureP is preserved byθt , i.e.θtP = P.

This set-up establishes a time-dependent familyθ that tracks the noise, and(Ω ,F ,P,θ )
is called ametric dynamical system[1].

Definition 1. A stochastic process{S(t,ω)}t≥0,ω∈Ω is said to be a continuous
RDS over(Ω ,F ,P,(θt )t∈R) with state spaceX if S : [0,+∞)× Ω × X → X is
(B[0,+∞)× F ×B(X), B(X))- measurable, and for eachω ∈ Ω ,

(1)the mappingS(t,ω) : X → X, x 7→ S(t,ω)x is continuous for everyt ≥ 0;
(2)S(0,ω) is the identity operator onX;
(3)(cocycle property)S(t +s,ω) = S(t,θsω)S(s,ω) for all s,t ≥ 0.

Definition 2. (1)A set-valued mappingB : ω → 2X\ /0 is said to be a random set if
the mappingω 7→ distX(x,B(ω)) is measurable for anyx∈ X.

(2)A random setB(ω) is said to be bounded ifB(ω) is bounded for a.e.ω ∈ Ω ;
a random setB(ω) is said to be compact ifB(ω) is compact for a.e.ω ∈ Ω ; a
random set is said to be closed ifB(ω) is closed for a.e.ω ∈ Ω .
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(3)A bounded random setB(ω) ⊂ X is said to be tempered with respect to(θt)t∈R

if for a.e.ω ∈ Ω ,

lim
t→∞

e−β t sup
x∈B(θ−tω)

‖x‖X = 0, for all β > 0;

a random variableω 7→ r(ω) ∈ R is said to be tempered with respect to(θt)t∈R

if for a.e.ω ∈ Ω ,

lim
t→∞

e−β t sup
t∈R

|r(θ−t ω)| = 0, for all β > 0.

In what follows we useD(X) to denote the set of all tempered random sets ofX.

Definition 3. A random setK(ω) ⊂ X is called a random absorbing set inD(X) if
for anyB∈ D(X) and a.e.ω ∈ Ω , there existsTB(ω) > 0 such that

S(t,θ−tω)B(θ−tω) ⊂ K(ω), ∀t ≥ TB(ω).

Definition 4. Let {S(t,ω)}t≥0,ω∈Ω be an RDS over(Ω ,F ,P,(θt )t∈R) with state
spaceX and letA (ω)(⊂ X) be a random set. ThenA (ω) is called a global random
D attractor (or pullbackD attractor) for{S(t,ω)}t≥0,ω∈Ω if ω 7→ A (ω) satisfies

(1)(random compactness)A (ω) is a compact set ofX for a.e.ω ∈ Ω ;
(2)(invariance) for a.e.ω ∈ Ω and allt ≥ 0, it holds

S(t,ω)A (ω) = A (θtω);

(3)(attracting property) for anyB∈ D(X) and a.e.ω ∈ Ω ,

lim
t→∞

distX(S(t,θ−tω)B(θ−tω),A (ω)) = 0,

where
distX(G,H) = sup

g∈G
inf
h∈H

‖g−h‖X

is the Hausdorff semi-metric forG,H ⊆ X.

Proposition 1. [5, 9, 10] Let B∈ D(X) be an absorbing set for the continuous ran-
dom dynamical system{S(t,ω)}t≥0,ω∈Ω which is closed and satisfies the asymptotic
compactness condition for a.e. ω ∈ Ω , i.e., each sequence xn ∈S(tn,θ−tn,B(θ−tnω))
has a convergent subsequence in X when tn → ∞. Then the cocycle S has a unique
global random attractor with component subsets

A (ω) =
⋂

τ≥tB(ω)

⋃

t≥τ
S(t,θ−tω)B(θ−tω).

If the pullback absorbing set is positively invariant, i.e., S(t,ω)B(ω) ⊂ B(θtω) for
all t ≥ 0, then
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A (ω) =
⋂

t≥0

S(t,θ−tω)B(θ−tω).

For state spaceX = R
d as in this paper, the asymptotic compactness follows trivially.

Note that the random attractor is pathwise attracting in thepullback sense, but need
not be pathwise attracting in the forward sense, although itis forward attracting in
probability, due to some possible large deviations, see e.g., Arnold [1].

When the cocycle mapping is strictly uniformly contracting[8, 11], i.e., there
existsK > 0 such that

‖S(t,ω)x0−S(t,ω)y0‖X ≤ e−Kt ‖x0−y0‖X

for all t ≥ 0, ω ∈ Ω andx0, y0 ∈ X, then the random attractor consists of single-
ton subsetsA (ω) = {A(ω)}. It is thus essentially a single stochastic process with
sample pathsA(θtω) for all t ∈ R. The proof uses a Cauchy sequence rather than
compactness argument. In this case the random attractor is pathwise attracting in
both the pullback and forward senses.

3 Properties of solutions

In this section we will prove the existence, uniqueness and boundedness of positive
solutions to (6) – (8). In addition we prove that the solutiongenerates a random
dynamical system. Denote by

R
3
+ = {(x,y,v) ∈ R

3 : x≥ 0,y≥ 0,v≥ 0},

and for simplicity we writeu(t,ω) = (x(t,ω),y(t,ω),v(t,ω))T .

Theorem 1.For any ω ∈ Ω , t0 ∈ R and initial data u0 = (x(t0),y(t0),v(t0))T ∈
R

3
+, system(6) – (8) has a unique non-negative bounded solutionu(·; t0,ω ,u0) ∈

C
(

[t0,∞),R3
+

)

, with u(t0; t0,ω ,u0) = u0. Moreover, the solution generates a ran-
dom dynamical systemϕ(t,ω)(·) defined as

ϕ(t,ω)u0 = u(t;0,ω ,u0), ∀t ≥ 0, u0 ∈ R
3
+, ω ∈ Ω .

Proof. Write

L(θtω) =





−γ1 0 0
0 −γ2 0
0 κ −α(θtω)



 and f (θt ω ,u) =





Λ(θt ω)−βxv
βxv
0



 ,

then equations (6) – (8) become

du(t,ω)

dt
= L(θtω)u+ f (θtω ,u). (11)
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First, sinceα(θtω) is bounded, the operatorL generates an evolution system onR
3.

Second, sinceΛ(θt ω) is continuous with respect tot, function f is continuous with
respect tot and locally Lipschitz with respect tou. Hence system (11) has a unique
local solutionu(·; t0,ω ,u0) ∈ C

(

[t0,T),R3
)

.

By continuity of solutions, each solution has to take value 0before it reaches a
negative value. Notice that

dx(t,ω)

dt

∣

∣

∣

∣

x=0,y≥0,v≥0
= Λ(θt ω) > 0,

dy(t,ω)

dt

∣

∣

∣

∣

x≥0,y=0,v≥0
= βxv≥ 0,

dv(t,ω)

dt

∣

∣

∣

∣

x≥0,y≥0,v=0
= κy≥ 0,

we havex(t) strictly increasing atx = 0, y(t) andv(t) non-decreasing aty = 0 and
v = 0, respectively. This implies thatu(t) ∈ R

3
+ for t ∈ [t0,T).

Foru(t) ∈ R
3
+, define

‖u(t)‖1 := x(t)+y(t)+v(t).

Let s(t) = 2κx(t)+2κy(t)+ γ2v(t), then

‖u(t)‖1 ≤
s(t)

min{2κ ,γ2}
.

On the other hand by (6) – (8) we have

ds(t,ω)

dt
= 2κΛ(θtω)−2κγ1x−κγ2y− γ2α(θtω)v

≤ 2κλ (1+ δ1)−2κγ1x−κγ2y− γ2a(1− δ2)v

≤ 2κλ (1+ δ1)− µ1s(t), (12)

where
µ1 = min{γ1,γ2/2,a(1− δ2)} > 0. (13)

For s(t0) ≥ 2κλ (1+ δ1)/µ1, s(t) will be non-increasing fort ≥ t0 and thuss(t) ≤
s(t0). Otherwise, fors(t0) ≤ 2κλ (1+ δ1)/µ1, s(t) will stay ≤ 2κλ (1+ δ1)/µ1. In
summary,

0≤ ‖u‖1 ≤
s(t)

min{2κ ,γ2}
≤

max{2κx(t0)+2κy(t0)+ γ2v(t0),2κλ (1+ δ1)/µ1}

µ2
,

where
µ2 = min{2κ ,γ2}. (14)
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This implies that system (11) has a unique positive and bounded global solution
u(·; t0,ω ,u0) ∈ R

3
+.

It is straightforward to check that

u(t + t0; t0,ω ,u0) = u(t;0,θt0ω ,u0)

for all t0 ∈ R, t ≥ t0,ω ∈ Ω and u0 ∈ R
3
+. This allows us to define a mapping

ϕ(t,ω)(·):

ϕ(t,ω)u0 = u(t;0,ω ,u0), ∀t ≥ 0, u0 ∈ R
3
+, ω ∈ Ω . (15)

From now on, we will simply writeu(t;ω ,u0) instead ofu(t;0,ω ,u0).

For anyu0 ∈R
3
+, solutionu(·;ω ,u0)∈R

3
+ for t ∈ [0,∞). Since functionf (u,θtω)=

f (u, t,ω) is continuous inu, t, and is measurable inω , u : [0,∞)× Ω ×R
3
+ →

R
3
+, (t;ω ,u0) 7→ u(t;ω ,u0) is (B[0,∞)×F0 ×B(R3

+),B(R3
+))-measurable. It

then follows directly that (11) generates a continuous random dynamical system
ϕ(t,ω)(·) defined by (15). This completes the proof.

4 Existence and geometric structure of global random attractors

In this section we will first prove the existence of a global random attractor for the
random dynamical system{ϕ(t,ω)}t≥0,ω∈Ω . In addition, we will investigate the
geometric structure of this random attractor.

Theorem 2.The random dynamical system generated by system(11) possesses a
unique global random attractorA = {A(ω) : ω ∈ Ω}.

Proof. We first prove that forω ∈ Ω , there exists a tempered bounded closed ran-
dom absorbing setK(ω)∈D(R3

+) of the random dynamical system{ϕ(t,ω)}t≥0,ω∈Ω
such that for anyB∈ D(R3

+) and eachω ∈ Ω , there existsTB(ω) > 0 yielding

ϕ(t,θ−tω)B(θ−tω) ⊂ K(ω) ∀t ≥ TB(ω).

In fact, recall thatu(t;ω ,u0) = ϕ(t,ω)u0 denotes the solution of system (11)
satisfyingu(0;ω ,u0) = u0. Then for anyu0 := u0(θ−tω) ∈ B(θ−tω),

‖ϕ(t,θ−tω)u0‖1 = ‖u(t;θ−tω ,u0(θ−tω))‖1 ≤
1
µ2

·s(t;θ−tω ,s0(θ−tω)).

Using inequality (12) and substitutingω by θ−tω we obtain

s(t;θ−t ω ,s0(θ−tω)) s0 ≤ e−µ1t +
2κλ (1+ δ1)

µ1

≤ e−µ1t sup
(x,y,v)∈B(θ−tω)

(2κx+2κy+ γ2v)+
2κλ (1+ δ1)

µ1
.
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Therefore for anyε > 0, andu0 ∈ B(θ−tω), there existsTB(ω) such that when
t > TB,

‖ϕ(t,θ−tω)u0‖1 ≤
1
µ2

·s(t;θ−tω ,s0(θ−tω))

≤
1
µ2

·
2κλ (1+ δ1)

µ1
+ ε,

Define

Kε(ω) =

{

(x,y,v) ∈ R
3
+ : x+y+v≤

1
µ2

·
2κλ (1+ δ1)

µ1
+ ε

}

. (16)

ThenKε (ω) is positively invariant and absorbing inR3
+.

It follows directly from Proposition 1, that the random dynamical system gen-
erated by system (6) – (8) possesses a random attractorA = {A(ω) : ω ∈ Ω},
consisting of nonempty compact random subsets ofR

3
+ contained inKε(ω). This

completes the proof.

Next we will investigate details of the random attractorA .

Theorem 3.The random pullback attractorA = {A(ω) : ω ∈ Ω} for the random
dynamical system generated by system(6) – (8) has singleton component sets A(ω)
= {(x∗(ω),0,0)} for everyω ∈ Ω , provided that

κ
γ2

≤ 1 and
β λ (1+ δ1)

µ1a(1− δ2)
< 1. (17)

Proof. Sum (7) and (8) we obtain

d(y+v)
dt

= −(γ2−κ)y− (α(θtω)−βx)v.

Recall that due to (16), for anyε > 0, there existsTB(ω) such that whent > TB,

x(t) ≤ ‖u(t)‖1 ≤
1
µ2

·
2κλ (1+ δ1)

µ1
+ ε.

By definition ofµ2 in (14), we have that 2κ/µ2 ≤ 1. Then pickε small enough we
have

α(θt ω)−βx > α(1− δ2)−β ·
1
µ2

·
2κλ (1+ δ1)

µ1

≥ α(1− δ2)−β ·
λ (1+ δ1)

µ1
> 0,

which implies thaty+v decreases to 0 ast approaches∞.

Lettingy = v = 0 in equation (6), we obtain
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dx
dt

= Λ(θtω)− γ1x. (18)

Solving equation (18) gives

x(t;ω ,x0) = x0e−γ1t +

∫ t

0
Λ(θsω)eγ1(t−s)ds,

and consequently

x(t;θ−t ω ,x0) = x0e−γ1t +

∫ 0

−t
Λ(θsω)e−γ1sds

t→∞
−→

∫ 0

−∞
Λ(θsω)e−γ1sds := x∗(ω).

This completes the proof.

Theorem 3 implies that(x∗(θt ω),0,0) is asymptotically stable ast → ∞, i.e.,
endemic occurs when the parameters satisfy (17). We next investigate the conditions
under which epidemic occurs.

Theorem 4.The random pullback attractorA = {A(ω) : ω ∈ Ω} for the random
dynamical system generated by system(6) – (8) possesses nontrivial component sets
which include(x∗(ω),0,0) and strictly positive points provided that

β λ (1+ δ1)

µ1a(1+ δ2)
>

γ2

κ
. (19)

Proof. First notice that the equation (7) is deterministic, and implies that the surface
y = β

γ2
xv is invariant. The dynamics ofx andv restricted on this invariant surface

satisfy

dx(t,ω)

dt
= Λ(θtω)− γ1x−βxv, (20)

dv(t,ω)

dt
=

κβ
γ2

xv−α(θtω)v. (21)

Define the regionΓε by

Γε :=

{

(x,v) ∈ R
2
+ : x≥

a(1+ δ2)γ2

κβ
+ ε,v≥ ε,

κ
γ2

x(t)+v(t)≤
κλ

µ1γ2
(1+ δ1)+ ε

}

.

For any(x,v) ∈ Γε we have

dv
dt

=

(

κβ
γ2

x−α(θtω)

)

v >

(

κβ
γ2

·
a(1+ δ2)γ2

κβ
−a(1+ δ2)

)

v≥ 0.

On the other hand, we have
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d
dt

(

κ
γ2

x(t)+v(t)

)

=
κ
γ2

Λ(θt ω)− γ1
κ
γ2

x−α(θtω)v

≤
κλ
γ2

(1+ δ1)− γ1
κ
γ2

x−a(1− δ2)v

≤
κλ
γ2

(1+ δ1)− µ1

(

κ
γ2

x(t)+v(t)

)

,

whereµ1 is as defined in (13). This implies that

κ
γ2

x(t)+v(t)≤
κλ

µ1γ2
(1+ δ1)+ ε

for t large enough. Assumption (19) ensures thatΓε is a nonempty compact positive
invariant absorbing set, which then ensures the existence of a nontrivial pullback
attractorAε = {Aε(t) : t ∈ R} in Γε . This completes the proof.

5 Numerical simulations

In this section, we will simulate the system (6) – (8) numerically and verify that
conditions (17) and (19) give rise to an endemic state (all infected cells and viruses
are cleared) and a pandemic state (susceptible cells, infected cells, and viruses co-
exist) of system (6) – (8), respectively.

First we transform the system (6) – (8) and two OU processesZ1(t),Z2(t) into
a system of random ordinary differential equation (RODE) - stochastic ordinary
differential equation (SODE) pair [2, 4]:

d



















x(t)

y(t)

v(t)

Z1(t)

Z2(t)



















=



















Λ(Z1)− γ1x−βxv

βxv− γ2y

κy−α(Z2)

θ11−θ12Z1

θ21−θ22Z2



















dt+



















0

0

0

θ13

θ23



















dWt .

The OU processesZ1(t) andZ2(t) can be generated independently and we solve
only the RODE part, i.e.,x, y andv compartments, of the RODE-SODE system. The
system is assumed to be stiff and the implicit 1.5-order RODE-Taylor scheme in [2]
is applied here.

In the following simulation, we suppose that the cell proliferation rateΛ(Z1) has
a switching effect and the loss rate of virusesα(Z2) is distributed in a finite interval.
They are randomized by the equations (9) and (10), respectively and given by
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Λ(Z1) = λ
(

1−2δ1
Z1

1+Z2
1

)

,

α(Z2) = a

(

1−
2δ2

π
arctanZ2

)

,

which satisfy (4) and (5).

Initial conditions forx, y andv compartments are set asx0 = 2×105, y0 = 1×105

andv0 = 1× 106. The coefficients for the OU processes are fixed toθ11 = 1, θ12

= 3, θ13 = 0.8, θ21 = 0, θ22 = 1 andθ23 = 0.5 for all examples. We will choose
different set of parameters that satisfy assumption (17) orassumption (19).

Example 1

In this example we set the parameters to beγ1 = 0.25,γ2 = 0.5, β = 1×10−5, λ =
4×104, a = 3, δ1 = 0.45,δ2 = 0.2, andκ = 0.2. Assumptions (17) is satisfied by
this set of parameters. Figure 1 shows that they andv compartments go to zero after
enough amount of time and onlyx compartment remains non zero, which means
that the endemic state is achieved for parameters satisfying (17).
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Fig. 1 With parametersγ1 = 0.25, γ2 = 0.5, β = 1×10−5, λ = 4×104, a = 3, δ1 = 0.45, δ2 =
0.2, andκ = 0.2 satisfying assumption (17), both infect cells and virusesare cleared; only healthy
cells remain.
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Example 2

In this example we set the parameters to beγ1 = 0.25,γ2 = 0.5, β = 1×10−5, λ =
4×104, a = 3, δ1 = 0.45,δ2 = 0.2, andκ = 2. Assumptions (19) is satisfied by this
set of parameters. Figure 2 shows thatx, y andv all remain non zero for a time long
enough, which means that the pandemic state is achieved for parameters satisfying
(19).
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Fig. 2 With parametersγ1 = 0.25, γ2 = 0.5, β = 1×10−5, λ = 4×104, a = 3, δ1 = 0.45, δ2 =
0.2, andκ = 2 satisfying assumption (19), infected cells, susceptiblecells and viruses coexist.

Notice that the only parameter that has different values in Example 1 and Exam-
ple 2 isκ . This implies that the rate at which virus is generated by dead susceptible
cells is critical. A series of numerical simulations with different parameters were
done to support this argument, among which we picked one moreexample to present
below. In the following example, the parameters are chosen to beγ1 = 0.4, γ2 = 0.5,
β = 5×10−5, λ = 105, a = 5, δ1 = 0.4, δ2 = 0.2. Whenκ = 0.3, assumption (17)
is satisfied and we obtain an endemic state (see Figure 3). When κ = 3, assumption
(19) is satisfied and we obtain a pandemic state (see Figure 4).
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Fig. 3 With parametersγ1 = 0.4, γ2 = 0.5, β =
5×10−5, λ = 105, a = 5, δ1 = 0.4, δ2 = 0.2 and
κ = 0.3 satisfying assumption (17), both infect
cells and viruses are cleared; only healthy cells
remain.
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Fig. 4 With parametersγ1 = 0.4, γ2 = 0.5, β =
5×10−5, λ = 105, a = 5, δ1 = 0.4, δ2 = 0.2 and
κ = 3 satisfying assumption (19), infected cells,
susceptible cells and viruses coexist.
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