A random model for immune response to virus
in fluctuating environments
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Abstract In this work we study a model for virus dynamics with a randommune
response and a random production rate of susceptible cettsdell proliferation.
In traditional models for virus dynamics, the rate at whioh viruses are cleared by
the immune system is constant, and the rate at which subteptills are provided is
constant or a function depending on the population of alscelowever, the human
body in general is never stationary, and thus these ratelsazaty be constant. Here
we assume that the human body is a random environment andisrbéerates
by random processes, which result in a system of randomreliffel equations.
We then analyze the long term behavior of the random systerpaiticular the
existence and geometric structure of the random attralsyousing the theory of
random dynamical systems. Numerical simulations are gealito illustrate the
theoretical result.
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1 Introduction

Basic models for virus dynamics were introduced in the atatext by May and
Nowak [12]. The assumption for simplest models is that théyie modeled as a
“well stirred” chemostat containing the virus and two kiraf<ells, uninfected but
susceptible cells and cells infected by virus. In a chempsteroorganisms grow
by feeding on nutrients in the culture vessel, and are flusheedo the collecting
vessel. Similarly in the human body, the virus grows fromddiedected cells and is
cleared by the immune system. Modeling chemostats by sgsténonautonomous
or random differential equations is fully justified (seeg.e[6, 7]), as the environ-
ment for a chemostat usually varies in time (either deteistizally or randomly).
Using the argument that the human body also varies in timeyiWwmodel the virus
dynamics by a system of random differential equations is work.

Denote by the population size of free virugthe population size of uninfected
cells (food for virus), ang the population size of infected cells. First uninfected
cells are produced by cell proliferation at a constant ratdive for an average
lifetime and die at an average death rgteSecond, virus infects susceptible cells
to produce infected cells, with an “efficiency3, Since cells are infected by contact
with viruses, the infection can be modeled as a simple mdssaeaction

x+vi>y.

Third, infected cells die at an average rgeand release new viruses at a rateit
the same time these viruses are cleared by the immune systerataa. Then we
arrive at the basic model of virus dynamics:

% =N — yiX—PBxv, 1)
O _ vy @
dv(t) _

& Ky — QV. 3)

The ordinary differential equation system (1) — (3) can bedu® describe the
dynamics of various type of virus, healthy and infecteds;cddut with limitations.
First, the model assumes that the contribution of the immnmasponse (to the death
of infected cells or free virus and to reducing the rate oéatibn of new cells) is
constant over time. Second, the dynamics of the suscepthlpopulation assumes
a constant production rate from a pool of precursors. Thesenaptions may be
justified for stationary environments, within a short terftime span. However, in
the long term, the human body is never a stationary environmig varies over time
in principle and hence system (1) — (3) is not adequate toa@xpthe real dynamic
of virus and the immune response.
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In this work, we will assume that the human body is a randonirenment, that
varies randomly with respect to time. Due to this randomatam, the contribu-
tion of the immune response and the production rate of stibbepells from cell
proliferation will also fluctuate randomly with respect tmé. More precisely, we
assume that parametefsanda are perturbed by real noise, i.&.,= A (6 w) and
a = a(6w) are continuous and essentially bounded:

ANBw)eA-[1-9,1+&], A>0, 0<d <], 4)
a(w)ca[1-6,1+%], a>0 0<H<l (5)

Then system (1) — (3) becomes

KL _ A @w) - yux— ey ©
VD) vy )
D) — ky— a(aon ®

wherey, ¥, 3, K are positive constants, ard 6 w) anda (6 w) are defined as in
(4) and (5), respectively.

Bounded noise can be modeled in various ways. For examplg]jrgiven a
stochastic procesg such as an Ornstein-Uhlenbeck (OU) process, the stochastic
process

2z = to(1- 262 (9)
1+22)°
where{p ande are positive constants with € (0,1), takes values in the interval
{o[1—¢€,1+ €] and tends to peak aroudd(1+ €). It is thus suitable for a noisy
switching scenario. In another example, the stochasticga®

n(Z):=no (1— 2—; arctarZ), (20)

whereng and e are positive constants with € (0,1) takes values in the interval
no[l—€,1+ €] and is centered ono. In the theory of random dynamical systems
the driving noise procesi(w) is replaced by a canonical driving systéhow. This
simplification allows a better understanding of the patsenapproach to model
noise: a system influenced by stochastic processes for agmth eealizatiornw can

be interpreted as wandering along a p@to in Q and thus may provide additional
statistical information to the modeler.

In the paper we will study the properties of solutions to (8} In particular,
we are interested in the long term behavior of solutionse-(®), characterized by
a global random attractor. The rest of the paper is orgarasgdllows. In Section
2 we provide preliminaries on the theory of random dynansgatems. In Section
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3 we prove the existence and uniqueness of a positive bowulation to (6) —
(8), and show that the solution generates a random dynasyiss@m. In section 4
we prove the existence and uniqueness of a global randoactattrto the random
dynamical system generated by the solution to (6) — (8), dsul iavestigate the
conditions under which the global random attractor coasitt singleton axial so-
lution (endemic), or nontrivial component sets (pandeniiz)merical simulations
are provided in Section 6, to illustrate the conditions far €ndemic and pandemic
of system (6) — (8).

2 Preliminaries on random dynamical systems

In this section we first present some concepts (from [1])teeléo general random
dynamical systems (RDSs) and random attractors that wéresiquhe sequel. Our
situation is, in fact, somewhat simpler, but to facilitate treader’s access to the
literature we give more general definitions here.

Let (X, - [|x) be a separable Banach space and@®t%, %) be a probability
space whereZ is theo—algebra of measurable subsetdb{called “events”) and
Z is the probability measure. To connect the statim the probability spac® at
time 0 with its state after a time dfelapses, we define a flof/= {6 };cg on Q
with each; being a mappind : Q — Q that satisfies

(1)6 = Idg,

(2)Bs0 6 = 65, for all s;t € R,

(3)the mappindt, w) — 6 w is measurable and

(4)the probability measur&”’ is preserved by, i.e. 6.7 = Z.

This set-up establishes a time-dependent fafhilyat tracks the noise, ani@, %, &2, 0)
is called ametric dynamical systef].

Definition 1. A stochastic proces$S(t, w)}t>0wco iS said to be a continuous
RDS over(Q,.#,P, (6 )icr) With state space&X if S: [0,+») x Q x X — X is
(A[0,4+0) x F x B(X), B(X))- measurable, and for eache Q,

(1)the mappind(t, w) : X — X, x+— S(t, w)x is continuous for every> 0;
(2)S(0, w) is the identity operator oKX;
(3)(cocycle propertyy(t + s, w) = S(t, Bsw)S(s, w) for all s,;t > 0.

Definition 2. (1)A set-valued mapping : w — 2X\0 is said to be a random set if
the mappingo — distx (x, B(w)) is measurable for any< X.

(2)A random seB(w) is said to be bounded B(w) is bounded for a.ew € Q;
a random seB(w) is said to be compact B(w) is compact for a.ew € Q; a
random set is said to be closedifw) is closed for a.ew € Q.



Random immune response 5

(3)A bounded random s@&(w) C X is said to be tempered with respect®):cr
if fora.e.we Q,

ime P sup |x|x=0, forallB>0;
oo XEB(6_tw)

a random variablev — r(w) € R is said to be tempered with respect(t);cr
if fora.e.w e Q,

lim e P'sup|r(6_tw)| =0, forall B> 0.
oo teR

In what follows we use?(X) to denote the set of all tempered random sets.of

Definition 3. A random seK(w) C X is called a random absorbing set#(X) if
foranyB € 2(X) and a.ew € Q, there existdg(w) > 0 such that

S(t, 0-1w)B(0_tw) C K(w), vVt > Te(w).

Definition 4. Let {S(t, w) }t>0,wco be an RDS ove(Q,.7 P, (& )icr) With state
spaceX and lete7 (w)(C X) be arandom set. Thew (w) is called a global random
2 attractor (or pullback attractor) for{S(t, w)}t>0,wcq if W— o7 (w) satisfies

(1)(random compactness) (w) is a compact set of for a.e.w € Q;
(2)(invariance) for a.ew € Q and allt > 0, it holds

St, w) o (w) = 7 (G w);
(3)(attracting property) for ang € 2(X) and a.ew € Q,
tIim distx (S(t, 0_1w)B(0_tw), 7 (w)) = 0,
where
distx (G,H) = supinf ||g— h||x
geGheH
is the Hausdorff semi-metric fd@B,H C X.

Proposition 1. [5, 9, 10] Let Be Z(X) be an absorbing set for the continuous ran-
dom dynamical systefi§(t, ) }>0,0cq Which is closed and satisfies the asymptotic
compactness condition foraw € Q, i.e., each sequencg & S(tn, 6_t,, B(6_t,w))

has a convergent subsequence in X when to. Then the cocycle S has a unique
global random attractor with component subsets

(W)= ] St 6-1w)B(6_1w).

>tg(w) 12T

If the pullback absorbing set is positively invariant, 1.8, w)B(w) C B(6 w) for
allt > 0, then
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o (w) =[] S(t, 0-1w)B(6_1w).

t>0

For state spacé = RY as in this paper, the asymptotic compactness follows tiyvia
Note that the random attractor is pathwise attracting irptiiback sense, but need
not be pathwise attracting in the forward sense, althoughfdrward attracting in
probability, due to some possible large deviations, see Acgold [1].

When the cocycle mapping is strictly uniformly contractiigg 11], i.e., there
existsK > 0 such that

IS(t, w)xo — S(t, w)yollx < & x0—Yollx

forallt > 0, w € Q andxg, Yo € X, then the random attractor consists of single-
ton subsets? (w) = {A(w)}. It is thus essentially a single stochastic process with
sample pathé&\(6 w) for all t € R. The proof uses a Cauchy sequence rather than
compactness argument. In this case the random attractathsvise attracting in
both the pullback and forward senses.

3 Properties of solutions

In this section we will prove the existence, uniqueness anthbedness of positive
solutions to (6) — (8). In addition we prove that the solutgenerates a random
dynamical system. Denote by

RY ={(xyv) eR®:x=0y>0,v>0},
and for simplicity we writeu(t, w) = (X(t, ), y(t, w), v(t, w))T.

Theorem 1.For any w € Q, to € R and initial dataug = (X(tp),Y(to), V(to))" €
R3, system(6) — (8) has a unique non-negative bounded solutignto, w, Up) €

% ([to, ), R3 ), with u(to;to, w, Ug) = Up. Moreover, the solution generates a ran-
dom dynamical system(t, w)(-) defined as

t,w)Uug = u(t;0,w,Up), Vt>0,upeR3, we Q.
¢(t, w) ( b

Proof. Write
-y 0 0 N (G w) — Bxv
LBw)=] 0 —p 0 and f(6ow,u) = Bxv ,
0 kK —a(bw) 0

then equations (6) — (8) become

du(t, w)
dt

=L(Bw)u+ f(Gw,u). (11)
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First, sincea (& w) is bounded, the operathrgenerates an evolution systemR#
Second, sincé (6 w) is continuous with respect tofunction f is continuous with
respect td and locally Lipschitz with respect t@. Hence system (11) has a unique
local solutionu(-;to, @, Ug) € % ([to, T),R3).

By continuity of solutions, each solution has to take valuzefore it reaches a
negative value. Notice that

dx(t, w)

=A(6w) >0,
ot x=0,y>0,v>0
dy(t,w) =Bxv>0
ot x>0,y=0,v>0 7
dv(t, w) —ky>0
ot x>0,y>0,v=0 7

we havex(t) strictly increasing ak = 0, y(t) andv(t) non-decreasing at= 0 and
v =0, respectively. This implies thatt) € R3 fort € [to, T).

Foru(t) € R3, define
[u(t)[la:=x(t) +y(t) + v(t).
Lets(t) = 2kx(t) + 2ky(t) + yov(t), then

s(t)
min{2k, >}’

On the other hand by (6) — (8) we have

[u®)lls <

ds(t, ) = 2KN (B w) — 2K y1X — Koy — oo (B w)v
< 2KA (14 01) — 2K yiX— Koy — yoa(1l— )V
< 2KA (1+ &) — pus(t), (12)

where
1 =min{y1,¥2/2,a(1— &)} > 0. (13)

Fors(tp) > 2kA(1+ 1)/ 11, S(t) will be non-increasing fot > to and thuss(t) <
S(tp). Otherwise, fors(ty) < 2kA (14 1)/ 1, S(t) will stay < 2kA (14 &)/ua. In
summary,

s(t) - max{ 2k X(to) + 2K Y(to) + YoV(to), 2Kk A (1+ d1) /1 }

< <
0= M= iy = b

where
U2 = min{2K, y,}. (14)
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This implies that system (11) has a unique positive and bedmiobal solution
u(-;to, w,Up) € R2.

It is straightforward to check that
u(t +to; to, w, Ug) = u(t; 0, B, w, ug)

forall tg e R;t > tg,w € Q andug € Ri’. This allows us to define a mapping

¢t w)():
¢(t,w)ug =u(t;0,w,up), Vt>0,upeR3, we Q. (15)

From now on, we will simply writeu(t; w, ug) instead ofu(t; 0, w, up).

For anyug € R3, solutionu(-; w, up) € R2 fort € [0, ). Since functiorf (u, & w) =
f(u,t,w) is continuous inu, t, and is measurable iw, u : [0,00) x Q x R3 —
R3, (t;w,up) — u(t;w,Ug) is (#B[0,00) x Fo x B(R3), B(R3))-measurable. It
then follows directly that (11) generates a continuous oamdlynamical system
¢ (t,w)(-) defined by (15). This completes the proof.

4 Existence and geometric structure of global random attrators

In this section we will first prove the existence of a globaidam attractor for the
random dynamical systef (t,w) }i>0.0co- IN addition, we will investigate the
geometric structure of this random attractor.

Theorem 2.The random dynamical system generated by sy¢ldimpossesses a
unique global random attracto#’ = {A(w) : w € Q}.

Proof. We first prove that forw € Q, there exists a tempered bounded closed ran-
dom absorbing sét(w) € 2(R? ) of the random dynamical systef (t, ) }+>0.we
such that for an € 2(R?) and eactw € Q, there existdg(w) > 0 yielding

P (t,0_tw)B(6_tw) C K(w) ¥t > Te(w).

In fact, recall thatu(t; w,up) = ¢(t,w)ug denotes the solution of system (11)
satisfyingu(0; w,up) = Ug. Then for anyup := up(O_tw) € B(6_tw),

1
19(2.8-1)uo]; = [t B-10.Uo(B-10)); < 1 -5t:6-10.5(61))

Using inequality (12) and substitutirig by 6_ w we obtain

N 2KA(1+ &1)

S(t; 0 1w, 50(0_1w)) so < e Mt p
1

< et sup  (2kx+2Kky+ yzv)+M.

(x,y,v)eB(0_tw) M1
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Therefore for anye > 0, andup € B(6_tw), there existslg(w) such that when
t > Tg,

1
9(t,6-tw)uoll1 < E -S(t; 61, 5(0-1w))

2kA(1+01)

1
< — +e,
H2 Ha

Define

elw) = { ooy B xryrvs 2 ZA0EN o,

16
U2 H1 (16)

ThenK¢(w) is positively invariant and absorbingRﬁ.

It follows directly from Proposition 1, that the random dymiaal system gen-
erated by system (6) — (8) possesses a random attracter {A(w) : w € Q},
consisting of nonempty compact random subset®bfcontained inKg (w). This
completes the proof.

Next we will investigate details of the random attractar

Theorem 3.The random pullback attractor’ = {A(w) : w € Q} for the random
dynamical system generated by sys{én- (8) has singleton component set&f)
= {(Xx"(w),0,0)} for everyw € Q, provided that

%gl ang PALTO) 4 17)

taa(l— &)
Proof. Sum (7) and (8) we obtain

dy+v)
dt

=—(Y—K)y—(a(6w) - Bx)v.
Recall that due to (16), for arg/> 0, there existdg(w) such that when > Tg,

1 2kA(1+01)

x(t) < [u®)]s < = +e.
) <l = - 0

By definition of i, in (14), we have thatR/p, < 1. Then picke small enough we
have

a(8)— fx> a(1-&) - ZAL L
> a(1-&)-p- 2 W w0

which implies that/+ v decreases to 0 aspproaches.
Lettingy = v= 0 in equation (6), we obtain
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& A(Bw) -y (18)

Solving equation (18) gives
't
X(t; 0, Xg) :xoe*V1t+/ A(Bsw)ert9ds,
JO
and consequently
0 o [0
X(t: 610, %) :xoe*ﬂhr/ /\(Gsw)e’ylsds—>/ A(Bsw)e s = x* (w).
—t J —o00

This completes the proof.

Theorem 3 implies thatx*(6 w),0,0) is asymptotically stable as— o, i.e.,
endemic occurs when the parameters satisfy (17). We nexdtiigate the conditions
under which epidemic occurs.

Theorem 4.The random pullback attractor” = {A(w) : w € Q} for the random
dynamical system generated by sys(é)n- (8) possesses nontrivial component sets
which include(x*(w),0,0) and strictly positive points provided that

BA(1+ 1) LY

mal &) K (19)

Proof. First notice that the equation (7) is deterministic, andliegthat the surface

y= B yvis invariant. The dynamics of andv restricted on this invariant surface
satis

D) _ ) - yx-Brv (20)
dv(t,w) kB
i Exv—or(G[oo)v. (21)

Define the regiorfy by

[e:= {(x,v) €R2 : x> %—i—e,vz e,%x(t)—w(t) < %(1+61)+£}.

For any(x,v) € I; we have

%V = <%x— a(aw)) V> (% . % —a(l+ 52)) v>0.

On the other hand, we have
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& (X090 = £A(B0) - x-a(@aw

dt
%(H 61)—y1%x—a(1—62)v

IN

KA K
<My - (—xt Tyt )
" ( ) — M1 ” () +v(t)
wherep; is as defined in (13). This implies that

K KA

— X +vit) < —(1+ ) +¢

" (t) +v(t) IJlVZ( )
for t large enough. Assumption (19) ensures fhids a nonempty compact positive
invariant absorbing set, which then ensures the existehaenontrivial pullback
attractorez; = {A¢(t) :t € R} in . This completes the proof.

5 Numerical simulations

In this section, we will simulate the system (6) — (8) numaficand verify that
conditions (17) and (19) give rise to an endemic state (&lited cells and viruses
are cleared) and a pandemic state (susceptible cellstédfeells, and viruses co-
exist) of system (6) — (8), respectively.

First we transform the system (6) — (8) and two OU procegsés, Z»(t) into
a system of random ordinary differential equation (RODEj}ochkastic ordinary
differential equation (SODE) pair [2, 4]:

X(t) A(Z1) — yix— Bxv
y(t) Bxv—yoy
d| vit) | = Ky—a(Zz) dt+ | O | dw.
Z(t) 011 — 01223 013
Z,(t) 621 — 02222 623

The OU processes; (t) andZ,(t) can be generated independently and we solve
only the RODE part, i.ex, y andv compartments, of the RODE-SODE system. The
system is assumed to be stiff and the implicit 1.5-order RORfHor scheme in [2]

is applied here.

In the following simulation, we suppose that the cell peiétion rate\ (Z;) has
a switching effect and the loss rate of virusg®y) is distributed in a finite interval.
They are randomized by the equations (9) and (10), resgdctind given by
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A@) = (1-2872, ).
1

a(Z;) =a (1— % arctarzz) ,

which satisfy (4) and (5).

Initial conditions forx, y andv compartments are setgs=2 x 10°, yg = 1 x 10°
andvp = 1 x 10P. The coefficients for the OU processes are fixed@ip= 1, 61,
=3,613=0.8,6,1 =0, 6, =1 and6B,3 = 0.5 for all examples. We will choose
different set of parameters that satisfy assumption (1@ssumption (19).

Example 1

In this example we set the parameters tope: 0.25,15 = 0.5, =1x 105, A =

4% 10 a= 3,8, = 0.45,5, = 0.2, andk = 0.2. Assumptions (17) is satisfied by
this set of parameters. Figure 1 shows thatthadv compartments go to zero after
enough amount of time and onkycompartment remains non zero, which means
that the endemic state is achieved for parameters satisfyir).

o
o
n O |
L O
3 — Healthy cells
= i —— Infected cells
B Viruses
T 9
S 38
° 3
5
Q
E -
=}
b4
o
o
o —
o
[Te)
o |
T T T T T T
0 5 10 15 20 25

Days
[ht]

Fig. 1 With parametergy = 0.25,15 = 05,8 =1x105 X =4x 10", a= 3,5, = 0.45,5, =
0.2, andk = 0.2 satisfying assumption (17), both infect cells and virusescleared; only healthy
cells remain.
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Example 2

In this example we set the parameters tope- 0.25,y» = 0.5, = 1x 1075, A =
4x10% a=3,8, =0.45,8, = 0.2, andk = 2. Assumptions (19) is satisfied by this
set of parameters. Figure 2 shows that andv all remain non zero for a time long
enough, which means that the pandemic state is achievedfameters satisfying
(29).

wn
o
F
[}
N
1]
@ il
)
=
=
-~ o
B35
E iy}
> 3
3 ¥
E &
>
=4
— Healthy cells
S — Infected cells
& 7 Viruses
ol T T T T T T
0 20 40 60 80 100

Days
[ht]

Fig. 2 With parametergy, = 0.25,)» =0.5,8 =1x 102 A =4x 10", a=3,5 =0.45,5 =
0.2, andk = 2 satisfying assumption (19), infected cells, susceptibles and viruses coexist.

Notice that the only parameter that has different valuesdaniple 1 and Exam-
ple 2 isk. This implies that the rate at which virus is generated byldeesceptible
cells is critical. A series of numerical simulations wittffdient parameters were
done to support this argument, among which we picked one example to present
below. In the following example, the parameters are chaséey; = 0.4, , = 0.5,
B=5x10"°A=10°,a=5,8, = 0.4, 5 = 0.2. Whenk = 0.3, assumption (17)
is satisfied and we obtain an endemic state (see Figure 3nWhe3, assumption
(19) is satisfied and we obtain a pandemic state (see Figure 4)
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Fig. 3 With parametery;s = 0.4, = 05,3 = Fig. 4 With parameteryys = 0.4, = 05,3 =

5x105 A =10°,a=568=04,5=02and 5x10°A =10 a=5,8 =045 =02and

k = 0.3 satisfying assumption (17), both infect «k = 3 satisfying assumption (19), infected cells,

cells and viruses are cleared; only healthy cells susceptible cells and viruses coexist.

remain.
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