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Abstract. We show existence and uniqueness of solutions for a non-classical

and non-autonomous diffusion equation with infinite delay terms, analyzing the
asymptotic behaviour in the pullback sense and obtaining global exponential

decay to stationary solutions.

1. Introduction and theoretical framework. In this work we study the fol-
lowing non-classical diffusion equation with infinite delays, written in an abstract
functional formulation,

∂u

∂t
− γ(t)∆

∂u

∂t
−∆u = g(u) + f(t, ut) in (τ,+∞)× Ω,

u = 0 on (τ,+∞)× ∂Ω

u(t, x) = φ(t− τ, x), t ∈ (−∞, τ ], x ∈ Ω

(1)

where τ ∈ R is the initial time, Ω ⊂ Rn is a smooth bounded domain, γ : R →
(0,+∞) is a continuous bounded function with 0 < γ0 ≤ γ(t) ≤ γ1 < ∞, and the
non-linearity g is a function satisfying the following growth conditions:

g ∈ C1(R), lim sup
|a|→+∞

g(a)

a
≤ λ1

6
(2)

|g(a)− g(b)| ≤ c|a− b|(1 + |a|ρ−1 + |b|ρ−1), (3)
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with 1 < ρ < n+2
n−2 and λ1 the first eigenvalue of the Laplacian with Dirichlet bound-

ary conditions. The time-dependent delay term f(t, ut) represents, for instance, the
influence of an external force with some kind of delay, memory or hereditary char-
acteristics, although can also model some kind of feedback control. Here, ut denotes
a segment of the solution, that is, given a function u : (−∞,+∞)×Ω→ R, for each
t ∈ R we can define the mapping ut : (−∞, 0]× Ω→ R by

ut(θ, x) = u(t+ θ, x), for θ ∈ (−∞, 0], x ∈ Ω.

This abstract formulation allows to consider different kinds of delay terms like

F1(u(t− σ(t)),

∫ 0

−∞
F2(t, θ, u(t+ θ)) dθ, (4)

where Fi (i = 1, 2) are suitable functions, and σ : R → [0,+∞). Both can be
described by the following corresponding fi defined as

f1(t, ψ) = F1(ψ(−σ(t))), f2(t, ψ) =

∫ 0

−∞
F2(t, θ, ψ(θ)) dθ, (5)

where ψ : (−∞, 0]→ X (X denotes certain Banach or Hilbert space concerning the
spatial variable). Then, when we replace ψ by ut in (5), we obtain (4).

Nonclassical parabolic equations are used to model physical phenomena such as
non-Newtonian flow, soil mechanics, heat conduction, etc (see [1, 15, 16, 2, 4, 18,
21, 23, 24] and references therein). The asymptotic behaviour of the model without
the delay term and with constant coefficients is studied in [25]. It is shown there the
well-posedness of the problem and the existence of the global attractor in H1

0 (Ω)
and in H2(Ω), depending on the regularity of the initial data. However, there are
situations in which the model is better described if some terms containing delays
are considered in the equations.

The introduction of a time dependence in coefficient γ(t) represents the variability
of viscosity in time due to, for example, external environment temperatures. This
time dependence endows the system with a non-autonomous nature.

First of all we are going to introduce the framework for the study of the as-
ymptotic behaviour of our non-autonomous system. Although there exist different
kinds of framework like non-autonomous dynamical systems, skew-product semiflow
or evolution processes, we are interested in the existence of the pullback attractor for
(1), and to this end, we will first recall some theoretical results from the framework
of evolution processes.

Given a metric space (X , dX ) and two subsets A and B of X , the Hausdorff
semidistance between A and B is defined as

dist(A,B) = sup
a∈A

inf
b∈B

dX (a, b).

Definition 1.1. An evolution process in a metric space (X , dX ) is a family of
continuous maps {S(t, τ) : t ≥ τ} from X into itself with the following properties

i) S(t, t) = I, for all t ∈ R,
ii) S(t, τ) = S(t, s)S(s, τ), for all t ≥ s ≥ τ ,

iii) {(t, τ) ∈ R2 : t ≥ τ} × X 3 (t, τ, x) 7→ S(t, τ)x ∈ X is continuous.

Let P(X )denote the family of all nonempty subsets of X , and consider a family

of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X ). Let D be a nonempty class of

families parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X). The class D will be
called a universe in P(X).
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Definition 1.2. It is said that D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback
D−absorbing for the process {S(t, τ) : t ≥ τ} on X if for any t ∈ R and any

D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such that

S(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(t, D̂).

Definition 1.3. The family AD = {AD(t) : t ∈ R} is the D-pullback attractor for
the process {S(t, τ) : t ≥ τ} in X if:

1. for any t ∈ R, the set AD(t) is a nonempty compact subset of X .
2. AD is pullback D−attracting, i.e.,

lim
τ→−∞

dist(S(t, τ)D(τ),AD(t)) = 0

for all D̂ ∈ D,for t ∈ R,
3. AD is invariant, i.e.,

S(t, τ)AD(τ) = AD(t) for all τ ≤ t.

The family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a

family of closed sets such that for any D̂ = {D(t) : t ∈ R} ∈ D,
lim

τ→−∞
dist(S(t, τ)D(τ), C(t)) = 0,

then AD(t) ⊂ C(t).

Definition 1.4. Given a family parameterized in time, D̂ = {D(t) : t ∈ R} ⊂
P(X ), it is said that a process {S(t, τ) : t ≥ τ} on X is pullback D̂−asymptotically
compact if for any t ∈ R and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X bounded
satisfying τn → −∞ and xn ∈ D(τn) for all n, the sequence {S(t, τn)xn} is relatively
compact in X .

Definition 1.5. A process {S(t, τ) : t ≥ τ} on X is said to be pullbackD−asymptotically

compact if it is D̂-asymptotically compact for any D̂ ∈ D.

Theorem 1.6. Consider a process {S(t, τ) : t ≥ τ} in X , a universe D in P(X ),

a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X ) which is pullback D−absorbing and assume

also that the process is pullback D̂0−asymptotically compact.
Then, there exists the pullback attractor AD = {AD(t) : t ∈ R}.

In [22] the existence of the pullback attractor and its continuity under non-
autonomous perturbations without delay is showed, giving a concrete structure
under some assumptions on the non-linearity. The finite delay case was first studied
in [7], establishing the well-posedness of the problem when γ(t) ≡ γ constant,
showing the stability of the stationary solutions under some appropriate hypotheses
on the delay term. In [8] we studied the asymptotic behaviour of solutions within
the framework of pullback attractors’ theory for the time dependent perturbation
case. The infinite delay case started to be analyzed in [9], where we proved the
existence and uniqueness of solutions as well as the continuous dependence on the
initial values. In [14], Hu and Wang studied this equation with a specific variable
delay term with bounded derivative, showing the existence of the pullback attractor
in H1

0 and H2 without neither non-linearity nor variable coefficients.
The content of this paper is as follows. In Section 2 we prove the existence and

uniqueness of local solutions for (1). Section 3 is devoted to the study of the global
existence of solutions and the existence of a pullback absorbing family within the
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universe of global bounded families. Then, in Section 4 we show the existence of
a pullback attractor. Finally, the existence of stationary solutions of our problem
and the asymptotic behaviour of such stationary solutions are treated in Section 5.

2. Existence of solution. We consider the following usual spaces H = L2(Ω)
with inner product (·, ·) and associate norm |·| , and V = H1

0 (Ω) with scalar product
((u, v)) = (A1/2u,A1/2v), for u, v ∈ V, and associate norm ‖·‖ , where Au = −∆u
for any u ∈ D(A) with D(A) = {u ∈ V : Au ∈ H} = H1

0 (Ω) ∩H2(Ω).
One possibility to deal with infinite delays, and which we will use here (cf. [12, 13,
19]), is to consider, for any δ > 0, the space :

Cδ(V ) =

{
ϕ ∈ C((−∞, 0];H1

0 (Ω)) : ∃ lim
s→−∞

eδsϕ(s) ∈ H1
0 (Ω)

}
,

which is a Banach space with the norm

‖ϕ‖δ := sup
s∈(−∞,0]

eδs‖ϕ(s)‖.

For the delay term, we assume that f : R× Cδ(V )→ V and satisfies:

f1) is continuous in t,
f2) is locally Lipschitz in Cδ(V ) uniformly in time, that is, there exists a nonde-

creasing function Lf : R → R, such that for all R > 0 if ‖ξ‖δ, ‖η‖δ ≤ R,
then

‖f(t, ξ)− f(t, η)‖ ≤ Lf (R)‖ξ − η‖δ,
for all t ∈ R, and

f3) there exist a constant Cf > 0 and a nonnegative function ψ ∈ L1(τ, T ), for all
T > τ , such that, for any ξ ∈ Cδ(V ),

‖f(t, ξ)‖2 ≤ Cf‖ξ‖2δ + ψ(t), for all t > τ .

Finally, we suppose that φ ∈ Cδ(V ).

Proceeding as in [22], we can define operators B(t) = (I + γ(t)A)−1 and Ã(t) =
AB(t), where A = −∆ with Dirichlet boundary conditions and the functions

g̃(t, u) = B(t)g(u) and f̃(t, φ) = B(t)f(t, φ), ∀t ∈ R, ∀φ ∈ Cδ(V ).
Then, the equation in (1) can be written as

du

dt
= h(t, ut), (6)

with h : R×Cδ(V )→ V defined as h(t, ψ) = Ã(t)ψ(0)+ g̃(t, ψ(0))+ f̃(t, ψ), ∀t ∈ R,
∀ψ ∈ Cδ(V ), where operator Ã(t) can be written as

Ã(t) =
1

γ(t)

[
I − (1 + γ(t)A)−1

]
, (7)

for any t ∈ R, for any α > 0 and x ∈ D(Aα), AαÃ(t)x = Ã(t)Aαx. Moreover, we
have that this operator is uniformly bounded and its domain does not depend on
time.

Thanks to the continuity of the function R 3 t 7→ B(t) ∈ L(H1
0 (Ω)), we obtain

the following estimate (see [22] for more details)

‖Ã(t)− Ã(s)‖L(H1
0 (Ω)) ≤ C|γ(t)− γ(s)|,

for a constat C ∈ R.
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We can now state the existence of solution to our problem.

Theorem 2.1. For each φ ∈ Cδ(V ) and under assumptions (2), (3) and (f1-f2),
there exists ε > 0 such that in the interval (−∞, τ + ε) there is a unique solution
of problem (1). In other words, there exists a function u ∈ C((−∞, τ + ε);H1

0 (Ω))
with u(t, τ ;φ) = φ(t− τ) for all t ∈ (−∞, τ ] which satisfies

u(t, τ ;φ) = φ(0) +

∫ t

τ

h(r, ur)dr,

for all t ∈ [τ, τ + ε).

Proof. First of all we define the metric space where we apply the contraction map-
ping theorem. Then, for the given initial datum φ ∈ Cδ(V ), and for a time T > 0,
we define the following space

XT
φ =

{
u ∈ C

(
(−∞, T );H1

0 (Ω)
)

: u(t) = φ(t− τ) for all t ∈ (−∞, τ ],

and ‖u‖XTφ ≤ 2‖φ‖δ
}
,

(8)

where ‖u‖XTφ = supσ∈(−∞,T ) ‖u(σ)‖.
This space XT

φ is a complete metric space (since it is a closed subset of a Banach

space).
Now we consider the operator Φ : XT

φ → XT
φ given by

Φ(u)(t) =


φ(t− τ), t ∈ (−∞, τ ]

φ(0) +

∫ t

τ

h(r, ur)dr, t ∈ (τ, T ).

In [9] the well-possedness of Φ is proved.
Let us take u, v ∈ XT

φ . We have

‖Φ(u)(t)− Φ(v)(t)‖ ≤
∫ t

τ

‖h(r, ur)− h(r, vr)‖dr

≤
∫ t

τ

‖Ã(r)‖L(H1
0 )‖u(r)− v(r)‖dr

+

∫ t

τ

‖B(r) (g(u(r))− g(v(r)) + f(r, ur)− f(r, vr)) ‖dr.

Using the uniform bound in time for Ã(t) and B(t), that B(t)◦g is locally Lipschitz
in H1

0 (Ω), and (f2), taking into account that ‖u(t)‖, ‖v(t)‖ ≤ R for all t ∈ [s, T )
and that ‖ur‖δ ≤ 2‖φ‖δ, for all τ ≤ r ≤ t < T , we obtain

‖Φ(u)(t)− Φ(v)(t)‖ ≤ K1

∫ t

τ

‖u(r)− v(r)‖dr +K2

∫ t

τ

‖f(r, ur)− f(r, vr)‖dr

≤ K1

∫ t

τ

‖u(r)− v(r)‖dr

+K(R)

∫ t

τ

sup
θ∈(−∞,0]

‖u(r + θ)− v(r + θ)‖dr.

Taking supremum in [τ, T ) with T = τ + ε

‖Φ(u)−Φ(v)‖XTφ ≤ K1ε‖u−v‖XTφ +K(R)ε

(
sup

r∈[τ,T )

sup
θ∈(−∞,0]

‖u(r + θ)− v(r + θ)‖

)
,
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but, if u, v ∈ XT
φ ,

sup
r∈[τ,T )

sup
θ∈(−∞,0]

‖u(r + θ)− v(r + θ)‖ = sup
r∈(−∞,T )

‖u(r)− v(r)‖ = ‖u− v‖XTφ .

Therefore, for ε > 0 small enough, Φ is well defined and is a contraction in Xφ.
Then, by the contraction mapping principle and the Banach fixed point theorem,

there exists a unique fixed point for Φ, ensuring the existence of solution for (1).

3. Global solution and pullback absorbing family. In this section we will
prove that the local solution, whose existence has been proved in Theorem 2.1, is
in fact a global one. The way to prove it will provide us also with the existence of
pullback absorbing sets for the process generated by our model in the universe of
the families with bounded union.

For any ϕ ∈ H1
0 (Ω), taking into account (2) and arguing as in [11], for each ρ > 0

there is a constant Kρ > 0 such that∫
Ω

g(u)u ≤ ρ|u|2 +Kρ,∫
Ω

G(u) ≤ ρ|u|2 +Kρ

(9)

for all u ∈ L2(Ω), where G(r) =
∫ r

0
g(θ)dθ.

Let Lb(ϕ) be the following energy functional

Lb(ϕ) =
1

2

(
|ϕ|2 + b‖ϕ‖2

)
− b

∫
Ω

G(ϕ), (10)

with b ≥ 0. It is easy to prove that for ρ = λ1

6 ,

Lb(ϕ) ≥ b

3
‖ϕ‖2 − bKλ1

6
(11)

and for any ρ > 0,

Lb(ϕ) ≤ 1 + b(λ1 + 2ρ)

2λ1
‖ϕ‖2 + bKρ, (12)

with λ1 the first eingenvalue of A.
Taking a solution u(t, τ ;φ) of (1) and for b > 0,

d

dt
Lb(u) ≤ −

(
1− γ1ε1

2
− 2ρ+ ε2

2λ1

)
‖u‖2 +

ε2 + 1

2ε2
|f(t, ut)|2

+ γ(t)

(
1

2ε1
− b
)
‖du
dt
‖2 +Kδ,

for ε1, ε2, ρ > 0. Taking ε1 = 1
4γ1

, ε2 = λ1

4 , ρ = λ1

8 and b ≥ 1
2ε1

= 2γ1, we obtain

d

dt
Lb(u) ≤ −1

2
‖u‖2 +

(
λ1 + 4

2λ1

)
|f(t, ut)|2 +Kλ1

8

≤ −
(

λ1

1 + b(λ1 + 2ρ̃)

)
Lb(u) +

(
λ1 + 4

2λ1

)
|f(t, ut)|2

+

(
λ1

1 + b(λ1 + 2ρ̃)

)
Kρ̃ +Kλ1

8
,
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where ρ̃ is a fixed positive constant.

Denoting Cb =
(

λ1

1+b(λ1+2ρ̃)

)
, Cλ1

=
(
λ1+4
2λ1

)
and K̃b = CbKρ̃ +Kλ1

8
, we have that

d

dt

(
eCbtLb(u)

)
≤ eCbt(Cλ1

|f(t, ut)|2 + K̃b).

Integrating between τ and t, t ≥ τ, and using the hypothesis f3),

eCbtLb(u(t)) ≤ eCbτLb(φ(0)) + λ−1
1 Cλ1Cf

∫ t

τ

eCbr‖ur‖2δdr + λ−1
1 Cλ1

∫ t

τ

eCbrψ(r)dr

+
K̃b

Cb

(
eCbt − eCbτ

)
.

Taking into account (11) and (12), we obtain

b

3
eCbt‖u(t)‖2 ≤ eCbτ (C̃b‖φ(0)‖2 + bKρ2) + λ−1

1 Cλ1
Cf

∫ t

τ

eCbr‖ur‖2δdr

+ λ−1
1 Cλ1

∫ t

τ

eCbrψ(r)dr + eCbt

(
K̃b

Cb
+ bKλ1

6

)
,

where ρ2 > 0 is chosen and

C̃b =
1 + b(λ1 + 2ρ2)

2λ1
.

Consequently, if t ≥ τ , we have

eCbt‖u(t)‖2δ ≤ max

{
sup

θ∈(−∞,τ−t]
eCbte2δθ‖φ(t+ θ−τ)‖2,

sup
θ∈[τ−t,0]

3

b
eCbτe(2δ−Cb)θ(C̃b‖φ(0)‖2 + bKρ2)

+
3

b
λ−1

1 Cλ1Cfe
(2δ−Cb)θ

∫ t+θ

τ

eCbr‖ur‖2δdr

+
3

b
λ−1

1 Cλ1
e(2δ−Cb)θ

∫ t+θ

τ

eCbrψ(r)dr

+
3

b
e(2δ−Cb)θeCbt

(
K̃b

Cb
+ 2Kλ1

6

)}
,

and, taking 2δ > Cb, we deduce

b

3
eCbt‖ut‖2δ ≤ eCbτ

(
C̃b‖φ‖2δ + bKρ2

)
+ λ−1

1 Cλ1

∫ t

τ

eCbrψ(r)dr

+ eCbt

(
K̃b

Cb
+ bKλ1

6

)
+ λ−1

1 Cλ1
Cf

∫ t

τ

eCbr‖ur‖2δdr.

Assuming that
3

b
λ−1

1 Cλ1
Cf < Cb (13)

and calling β = 3
bλ
−1
1 Cλ1

Cf (it means β < Cb) and

α(t) =
3

b
eCbτ

(
C̃b‖φ‖2δ + bKρ2

)
+

3

b
λ−1

1 Cλ1

∫ t

τ

eCbrψ(r)dr+
3

b
eCbt

(
K̃b

Cb
+ bKλ1

6

)
,
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by the Gronwall Lemma we obtain that

eCbt‖ut‖2δ ≤ α(t) + β

∫ t

τ

α(r)eβ(t−r)dr.

Now,

β

∫ t

τ

α(r)eβ(t−r)dr ≤ 3

b
eCbτeβ(t−τ)

(
C̃b‖φ‖2δ + bKρ2

)
+

3

b

β

Cb − β

(
K̃b

Cb
+ bKλ1

6

)
eCbt

+
3

b
βλ−1

1 Cλ1e
βt

∫ t

τ

e(Cb−β)rψ(r)dr.

Then,

‖ut‖2δ ≤ e−Cbtα(t) +
3

b
e(Cb−β)(τ−t)

(
C̃b‖φ‖2δ + bKρ2

)
+

3

b

β

Cb − β

(
K̃b

Cb
+ bKλ1

6

)

+
3

b
βλ−1

1 Cλ1e
−(Cb−β)t

∫ t

τ

e(Cb−β)rψ(r)dr.

Assuming that there exists a η0 ≥ 0 such that for any η ∈ [0, η0],∫ t

−∞
eηrψ(r)dr < +∞, (14)

we have
‖ut‖2δ

τ→−∞−−−−−→ l(t), (15)

where

l(t) =
3

b

(
K̃b

Cb
+ bKλ1

6

)(
1 +

β

Cb − β

)
+

3

b
λ−1

1 Cλ1

(∫ t

−∞
eCbrψ(r)dr + βe−(Cb−β)t

∫ t

−∞
e(Cb−β)rψ(r)dr

)
.

Then, we have the global existence of any solution u(t, τ ;φ) of (1), i.e. for each
φ ∈ Cδ(V ), u(·, τ ;φ) ∈ C((−∞,+∞), H1

0 (Ω)) in Theorem 2.1, and, once we justify
that the solutions of our problem generate a non-autonomous dynamical system, this
also ensures the existence of a family of closed subsets

{
BCδ(V )(0, l

1/2(t)) : t ∈ R
}

which pullback attracts bounded subsets of Cδ(V ).
For a more detailed proof of this result the reader is referred to [9].

We also need a result on the continuous dependence on the initial data.

Proposition 1. Under assumptions of Theorem 2.1, any solution u(t, τ ;φ) of (1)
is continuous with respect to the initial condition φ ∈ Cδ(V ). More precisely, if ui,
for i = 1, 2, are the corresponding solutions to the initial data φi ∈ Cδ(V ), i = 1,
2, the following estimate holds:

max
r∈[τ,t]

‖u1(r)− u2(r)‖ ≤

(
‖φ1(0)− φ2(0)‖+

L̃(R)

δ
‖φ1 − φ2‖δ

)
eL̃(R)(t−τ), (16)

for all t ∈ [τ, T ), where L̃(R) = sup
t∈R
‖Ã(t)‖L(H1

0 ) + Lg(R) + b0Lf (R) and R ≥ 0 is

given by
R = max(2‖φ1‖δ, 2‖φ2‖δ).
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The detailed proof of this result can be found in [9].

4. Existence of the pullback attractor. In this section we will prove the ex-
istence of the pullback attractor in the universe Db of all families with bounded
union, that is, the family {D(t) : t ∈ R} is in Db if and only if

⋃
{D(t) : t ∈ R} is

bounded in Cδ(V ).
Assuming that f(t, 0) = 0 for all t ∈ R1, by estimates in Section 3, there exists

a pullback Db−absorbing family B̂0 = {B0(t) : t ∈ R} in Db.
By the previous results, will be able to construct a process S : Cδ(V ) → Cδ(V )

associated to (1), and can prove the existence of a pullback attractor for such process
S(t, τ) in Cδ(V ) defined as

S(t, τ)φ = ut(·; τ, φ) ∀t ≥ τ,
where φ ∈ Cδ(V ) and τ ∈ R.

It is not difficult to prove that S(·, ·) is a process and we can also write

(S(t, τ)φ)(θ) = ut(θ; τ, φ)

= u(t+ θ; τ, φ)

= T (t+ θ, τ)φ(0) +

∫ t+θ

τ

T (t+ θ, s)f̃(s, us)ds

+

∫ t+θ

τ

T (t+ θ, s)g̃(s, u)ds,

(17)

for all t ≥ τ and θ ∈ (−∞, 0], where T (t, τ) is the evolution process associated to
(1) with f = 0 and g = 0.

The following result gives a characterization of asymptotically compact processes,
useful in order to prove the existence of the pullback attractor.

Theorem 4.1. Let {S(t, τ) : t ≥ τ} be a process such that S(t, τ) = T (t, τ)+U(t, τ),
where U(t, τ) is compact and there exists a non-increasing function

k : R+ × R+ −→ R

with k(σ, r) → 0 when σ → ∞, and for all τ ≤ t and x ∈ CH with ‖x‖CH ≤ r,
‖T (t, τ)x‖CH ≤ k(t − τ, r). Then, {S(t, τ) : t ≥ τ} is Db-pullback asymptotically
compact.

Proof. Using the fact that any family D̂ of Db has bounded union, the result follows
from Theorem 2.8 in [6].

Since

T (t+ θ, τ)φ(0) +

∫ t+θ

τ

T (t+ θ, s)f̃(s, us)ds

tends to zero exponentially in Cδ(V ) (this fact easily follows by arguing as in Section
3, taking into account that f(t, 0) = 0 for all t ≥ τ), we only need to prove that
U(t, τ)B defined as

(U(t, τ)φ)(θ) =

∫ t+θ

τ

T (t+ θ, s)g̃(s, u(s, τ ;φ))ds,

is relatively compact for any bounded subset B ⊂ Cδ(V ),.

1This is not a real restriction as we can subtract such term to f(t, ·) and add it to the term g.
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To this end, for any bounded subset D ⊂ Cδ(V ), U(t, τ)D is pre-compact in
Cδ(V ) for any t ≥ τ, and to prove this we will apply the Azcoli-Arzelà theorem,
(see [8] for more details)

i) U(t, τ)D is bounded, ∀t ≥ τ.
ii) For each θ ∈ [−h, 0],

⋃
φ∈D

(U(t, τ)φ)(θ) is a compact subset of H1
0 (Ω).

iii) The set U(t, τ)D is equicontinuous (i.e., from all ε > 0, there exists a δ > 0
such that if |θ1 − θ2| ≤ δ, then ‖(U(t, τ)φ)(θ1) − (U(t, τ)φ)(θ2)‖ ≤ ε, for all
t ≥ τ , and for all φ ∈ D),

Assertion i) follows from the same estimates obtained in the proof of the existence
of the absorbing family and ii) is a consequence of the same analysis carried out in
[22], just using the fact that ρ < n+2

n−2 and, for any η ∈
(

1
2 , 1
)
, we have the following

chain of inclusions:

H1
0 ↪→ L

2n
n−2

g−→ L
2n
n+2η ↪→ H−η ⊂⊂ H−1 B(t)−→ H1

0 .

Finally, to prove iii) we need to estimate∣∣∣∣∣
∫ t+θ1

τ

T (t+ θ1, s)g̃(s, u(s, τ ;φ))ds−
∫ t+θ2

τ

T (t+ θ2, s)g̃(s, u(s, τ ;φ))ds

∣∣∣∣∣ .
Taking into account (3), the exponencial decay of ‖T (t, τ)‖L(CH), the fact that

any solution of (1) is in C((−∞, T ), H1
0 (Ω)), for all T > τ and the uniform bound

of operator Ã(t), following the ideas of [8] we obtain that∫ t+θ1

τ

|(T (t+ θ1, s)− T (t+ θ2, s))g̃(s, u(s, τ ;φ))| ds ≤ C |θ1 − θ2| ,

for a certain positive constant C ∈ R.
Therefore, by Theorem 4.1 and Theorem 1.6 there exists the Db-pullback attrac-

tor for our evolution process S(t, τ).

5. Stationary solutions and their stability. In this section we will prove that,
under additional assumptions, there exists a unique stationary solution of problem
(1) which is globally asymptotically exponentially stable.

From now on we assume that f : R × Cδ(V ) → V satisfies f1)–f3) with ψ(t) =
|ψ| ≥ 0 for all t ≥ τ , a constant function.

We also suppose that f is autonomous, in the sense that there exists a function
f0 : V → V such that

f4) f(t, w) = f0(w) for all (t, w) ∈ [τ,∞)× V,
where, with a slight abuse of notation, we identify every element w ∈ V with the
constant function in Cδ(V ) which is equal to w for any time t ∈ (−∞, τ ].
Moreover, we assume function g is globally Lipschitz in R, with Cg the Lipschitz
constant.

We consider the following equation,

d

dt
(u) + γ(t)

d

dt
(Au) +Au = g(u) + f0(ut) t > τ. (18)

A stationary solution to (18) will be an element u∗ ∈ V such that

((u∗, v)) = (g(u∗), v) + (f0(u∗), v) ∀v ∈ V. (19)
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Theorem 5.1.

a) Under the above assumptions and notation, the problem (18) admits at least

one stationary solution u∗ (which indeed belongs to D(A)) if λ1 > Cg +C
1/2
f .

Moreover, any such stationary solution satisfies the estimate

(λ1 − Cg − C1/2
f )‖u∗‖ ≤ ‖g(0)‖+ |ψ|1/2. (20)

b) If we have also
λ1 > Cg + Lf (R) (21)

where R =
‖g(0)‖+ |ψ|1/2

λ1 − Cg − C1/2
f

, then the stationary solution is unique.

Proof. First, we will obtain the estimate (20). If u∗ is a stationary solution, it must
verify

((u∗, v)) = (g(u∗), v) + (f0(u∗), v) ∀v ∈ V,
and, therefore, taking into account f3),

‖u∗‖2 ≤ |g(u∗)− g(0)||u∗|+ |g(0)||u∗|+ |f0(u∗)||u∗|
≤ λ

−1/2
1 Cg‖u∗‖|u∗|+ |g(0)||u∗|+ λ

−1/2
1 (C

1/2
f ‖u

∗‖δ + |ψ|1/2)|u∗|

≤ λ−1
1 Cg‖u∗‖2 + λ−1

1 ‖g(0)‖‖u∗‖+ λ
−1/2
1 (C

1/2
f ‖u

∗‖+ |ψ|1/2)|u∗|

≤ λ−1
1 Cg‖u∗‖2 + λ−1

1 ‖g(0)‖‖u∗‖+ λ−1
1 C

1/2
f ‖u

∗‖2 + λ−1
1 |ψ|1/2‖u∗‖

Now, it is easy to deduce (20).
As for the existence, let us consider {vj} ⊂ V, the orthonormal basis of H formed
by all the eigenfunctions of the operator A. For each integer m ≥ 1, let us denote
again Vm =span[v1, . . . , vm], with the inner product ((·, ·)) and norm ‖·‖. Define
the operators Rm : Vm → Vm, m ≥ 1, by

((Rmu, v)) = ((u, v))− (g(u), v)− (f0(u), v), ∀u, v ∈ Vm. (22)

Since the right hand side is a continuous linear map from Vm to R, by the Riesz
theorem, each Rmu ∈ Vm is well defined. We check now that Rm is continuous.

((Rmu−Rmũ, v)) = ((u− ũ, v))− (g(u)− g(ũ), v)− (f0(u)− f0(ũ), v)

≤ ‖u− ũ‖ ‖v‖+ λ−1
1 Cg ‖u− ũ‖ ‖v‖+ λ

−1/2
1 Lf (R)‖u− ũ‖δ|v|

≤ (1 + λ−1
1 Cg + λ−1

1 Lf (R)) ‖u− ũ‖ ‖v‖ , (23)

for all u, ũ, v ∈ Vm, where R = max{‖u‖, ‖ũ‖}.
Therefore,

‖Rmu−Rmũ‖ ≤
(
1 + λ−1

1 Cg + λ−1
1 Lf (R)

)
‖u− ũ‖ ,

for all u, ũ.
On the other hand, for all u ∈ Vm,

((Rmu, u)) = ((u, u))− (g(u), u)− (f0(u), u)

≥ ‖u‖2 − λ−1
1 Cg‖u‖2 − λ−1

1 ‖g(0)‖‖u‖ − λ−1
1 |ψ|1/2‖u‖ − λ

−1
1 C

1/2
f ‖u‖2 .

Thus, if we take

β =
λ−1

1 ‖g(0)‖+ λ−1
1 |ψ|1/2

1− λ−1
1 Cg − λ−1

1 C
1/2
f

=
‖g(0)‖+ |ψ|1/2

λ1 − Cg − C1/2
f

,
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we obtain ((Rmu, u)) ≥ 0 for all u ∈ Vm such that ‖u‖ = β.
Consequently, by a corollary of the Brouwer fixed point theorem (see [17, p. 53]),

for each m ≥ 1 there exists um ∈ Vm such that Rm(um) = 0, with ‖um‖ ≤ β.
Observe moreover that Aum ∈ Vm, and therefore

|Aum|2 = (g(um), Aum) + (f0(um), Aum) (24)

≤ 1

2
|Aum|2 + 2λ−1

1 C2
g‖um‖2 + 2|g(0)|2 + λ−1

1 (Cf‖um‖2 + |ψ|).

From (24), for all um such that ‖um‖ ≤ β, we deduce that the sequence {um}
is bounded in D(A), and consequently, by the compact injection of D(A) in V , we
can extract a subsequence {um′} ⊂ {um}, which converges, weakly in D(A) and
strongly in V , to an element u∗ ∈ D(A). It is now standard to take limits in (22)
and to obtain that u∗ is a stationary solution.

Uniqueness
Let us suppose that u∗ and ũ∗ are two stationary solutions of (18). Then,

((u∗ − ũ∗, v)) = (g(u∗)− g(ũ∗), v) + (f0(u∗)− f0(ũ∗), v), ∀v ∈ V, t > 0. (25)

Taking v = u∗ − ũ∗ and proceeding as in (23) we obtain from (25)

‖u∗ − ũ∗‖2 ≤ (λ−1
1 Cg + λ−1

1 Lf (R)) ‖u∗ − ũ∗‖2 ,

where R =
‖g(0)‖+ |ψ|1/2

λ1 − Cg − C1/2
f

.

Then, it is obvious that u∗ = ũ∗ if condition (21) is satisfied.

Theorem 5.2. Assume that f1)−f4) hold with ψ time-independent and that we have

λ1 > Cg + C
1/2
f , and (21) is fulfilled. Then, there exists a value 0 < λ < 2δ such

that for the solution u(·, τ, φ) of (1) and φ ∈ Cδ(V ), the following estimates hold
for all t ≥ τ :

a) If function f is globally lipschitz, i.e., Lf (R) = Lf , then

|u(t, τ, φ)− u∗|2 ≤ e−λt
(
|φ(0)− u∗|2 + γ̃‖φ(0)− u∗‖2 +

e2δτλ−1
1 Lf

2δ − λ
‖φ− u∗‖2δ

)
,

(26)

‖ut(·, τ, φ)− u∗‖2δ
≤ max

{
e−2δ(t−τ)‖φ− u∗‖2δ ,

e−λt

γ̃

(
|φ(0)− u∗|2 + γ̃‖φ(0)− u∗‖2 +

e2δτλ−1
1 Lf

2δ − λ
‖φ− u∗‖2δ

)}
, (27)

b) Assume that Lf (R) is a continuous function of R, and there exists 0 < µ <
2λ1−2Cg
λ1γ̃+1 such that µλ1γ̃(2λ1 − µγ̃λ1 − µ− 2Cg) > 2Cf , and

λ1 > Lf (R̃), (28)

where R̃ is the positive number given by

R̃2 = max
{

2λ−1
1 γ̃−1 (2λ1 − µγ̃λ1 − µ− 2Cg)

−1×

×(µ− (2λ−1
1 γ̃−1Cf (2λ1 − µγ̃λ1 − µ− 2Cg)

−1
)−1(‖g(0)‖2 + |ψ|), R2

}
,
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with R defined by (21). Then, there exists a value 0 < λ < 2δ such that for
each φ ∈ Cδ(V ), there exists Tφ > τ such that:

|u(t, τ, φ)−u∗|2 ≤ e−λt
(
|φ(0)− u∗|2 + γ̃‖φ(0)− u∗‖2 +

e2δτλ−1
1 Lf (R̃)

2δ − λ
‖φ− u∗‖2δ

)
,

(29)

‖ut(·, τ, φ)− u∗‖2δ
≤ max

{
e−2δ(t−τ)‖φ− u∗‖2δ ,

e−λt

γ̃

(
|φ(0)− u∗|2 + γ̃‖φ(0)− u∗‖2 +

e2δτλ−1
1 Lf (R̃)

2δ − λ
‖φ− u∗‖2δ

)}
,(30)

for all t ≥ Tφ, where u∗ is the unique stationary solution of (18) given by Theorem
5.1.

Proof. For short we denote u(t) = u(·, τ, φ). Let us also denote w(t) = u(t) − u∗.
Considering equations (18) for u(t) and (19) for u∗, one has

d

dt
(w(t), v)+γ(t)

d

dt
((w(t), v))+((w(t), v)) = (g(u(t))−g(u∗), v)+(f(t, ut)−f0(u∗), v),

for t > τ , for any v ∈ V.
Then, taking into account that 0 < γ0 < γ(t) < γ1 <∞ for all t, we have that

d

dt
|w(t)|2 + γ̃

d

dt
‖w(t)‖2 + 2‖w(t)‖2

≤ d

dt
|w(t)|2 + γ(t)

d

dt
‖w(t)‖2 + 2‖w(t)‖2

≤ 2|g(u(t)− g(u∗)||w(t)|+ 2|f(t, ut)− f0(u∗)||w(t)|,

for t > τ, where γ̃ = γ0 or γ̃ = γ1 depending on if d
dt‖w(t)‖2 is positive o negative.

Therefore,

d

dt
(|w(t)|2 + γ̃‖w(t)‖2) ≤ −2‖w(t)‖2 + 2|g(u(t)− g(u∗)||w(t)|+ 2|f(t, ut)− f0(u∗)||w(t)|,

for t > τ .
Case a): We assume that f is globally Lipschitz.
From energy equality and the Lipschitz condition on g and f, and introducing an
exponential term eλt with a positive value λ to be fixed later on, we obtain

d

dt
(eλt(|w(t)|2 + γ̃‖w(t)‖2)) ≤ eλt

(
λ(|w(t)|2 + γ̃‖w(t)‖2)− 2‖w(t)‖2

+2|g(u(t)− g(u∗)||w(t)|+ 2|f(t, ut)− f0(u∗)||w(t)|)
≤ eλt

(
λ(|w(t)|2 + γ̃‖w(t)‖2)− 2‖w(t)‖2

+2λ−1
1 Cg‖w(t)‖2 + 2λ

−1/2
1 Lf‖wt‖δ|w(t)|

)
,

for t > τ .
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Hence, using the Young inequality with ε > 0 to be fixed later on, we conclude
that

d

dt
(eλt(|w(t)|2 + γ̃‖w(t)‖2)) ≤ eλt(λλ−1

1 + λγ̃ − 2 + 2Cgλ
−1
1 + ελ−1

1 Lf )‖w(t)‖2

+
λ−1

1 Lf
ε

eλt‖wt‖2δ .

Therefore, integrating from τ to t, we have

eλt(|w(t)|2 + γ̃‖w(t)‖2) ≤ |w(τ)|2 + γ̃‖w(τ)‖2 +
λ−1

1 Lf
ε

∫ t

τ

eλs‖ws‖2δds

+ (λλ−1
1 + λγ̃ − 2 + 2Cgλ

−1
1 + ελ−1

1 Lf )

∫ t

τ

eλs‖w(s)‖2ds.
(31)

In order to control the term
∫ t
τ
eλs‖ws‖2δds, we proceed as follows.∫ t

τ

eλs sup
θ≤0

e2δθ‖w(s+ θ)‖2ds

=

∫ t

τ

eλs max{ sup
θ≤τ−s

e2δθ‖w(s+ θ)‖2, sup
θ∈[τ−s,0]

e2δθ‖w(s+ θ)‖2}ds

=

∫ t

τ

max{e2δτe−(2δ−λ)s‖φ− u∗‖2δ , sup
θ∈[τ−s,0]

e(2δ−λ)θeλ(s+θ)‖w(s+ θ)‖2}ds.

So, if 0 < λ < 2δ, using the above equality in (31), we obtain

eλt(|w(t)|2 + γ̃‖w(t)‖2)

≤ |w(τ)|2 + γ̃‖w(τ)‖2 +
e2δτλ−1

1 Lf
ε

‖φ− u∗‖2δ
∫ t

τ

e(λ−2δ)sds

+(λλ−1
1 + λγ̃ − 2 + 2Cgλ

−1
1 + ελ−1

1 Lf +
λ−1

1 Lf
ε

)

∫ t

τ

max
r∈[τ,s]

eλr‖w(r)‖2ds.

Observe that the (optimal) choice of ε = 1 makes ελ−1
1 Lf + Lf (λ1ε)

−1 be minimal
and the coefficient of the last integral is negative with a suitable choice of λ ∈ (0, 2δ)
by (21). So, we can omit this term and deduce that

eλt(|w(t)|2 + γ̃‖w(t)‖2) ≤ |w(τ)|2 + γ̃‖w(τ)‖2

+
e2δτλ−1

1 Lf
2δ − λ

(1− e(λ−2δ)t)‖φ− u∗‖2δ
(32)

whence (29) follows.
Finally, (30) can be deduced in the following way:

‖wt‖2δ = sup
θ≤0

e2δθ‖w(t+ θ)‖2

= max{ sup
θ∈(−∞,τ−t]

e2δθ‖φ(t+ θ − τ)− u∗‖2, max
θ∈[τ−t,0]

e2δθ‖w(t+ θ)‖2}

= max{e−2δ(t−τ)‖φ− u∗‖2γ , max
θ∈[τ−t,0]

e2δθ‖w(t+ θ)‖2},

and the second term can be estimated using (32) and that e(2δ−λ)θ ≤ 1.
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Case b): Now, proceeding in the same way

d

dt
(eµt[|u(t)|2 + γ̃‖u(t)‖2])

≤ µeµt(|u(t)|2 + γ̃‖u(t)‖2)

+eµt(−2‖u(t)‖2 + 2|g(u)||u(t)|+ 2|f(t, ut)||u(t)|)
≤ eµt(µλ−1

1 + µγ̃ − 2 + 2Cgλ
−1
1 )‖u(t)‖2 + 2eµt(|g(0)|+ |f(t, ut)|)|u(t)|

≤ 2eµtλ−1
1

(
2− µλ−1

1 − µγ̃ − 2Cgλ
−1
1

)−1
(|g(0)|2 + |f(t, ut)|2),

a.e. t > τ , and therefore, by f3),

d

dt
(eµt[|u(t)|2+γ̃‖u(t)‖2]) ≤ 2λ−1

1 Cf (2λ1−µγ̃λ1−µ−2Cg)
−1
eµt‖ut‖2δ

+ 2λ−1
1 (2λ1−µγ̃λ1−µ−2Cg)

−1
eµt(‖g(0)‖2+|ψ|) a.e. t > τ .

Integrating this last inequality, we obtain

eµt[|u(t)|2+γ̃‖u(t)‖2] ≤ eµτ [|φ(0)|2 + γ̃‖φ(0)‖2]

+ 2λ−1
1 (2λ1 − µγ̃λ1 − µ− 2Cg)

−1
(‖g(0)‖2 + |ψ|)

∫ t

τ

eµs ds

+ 2λ−1
1 Cf (2λ1 − µγ̃λ1 − µ− 2Cg)

−1
∫ t

τ

eµs‖us‖2δ ds

for all t ≥ τ.
Now,

eµt‖ut‖2δ = eµt sup
θ≤0

e2δθ‖u(t+ θ)‖2

= eµt max{ sup
θ∈(−∞,τ−t]

e2δθ‖φ(t+ θ − τ)‖2, sup
θ∈[τ−t,0]

e2δθ‖u(t+ θ)‖2}

= max{e2δτe−(2δ−µ)t‖φ‖2δ , sup
r∈[τ,t]

e(2δ−µ)(r−t)eµr‖u(r)‖2},

Thus, taking 0 < µ < 2δ, it is easy to deduce that

eµt‖ut‖2δ ≤ γ̃−1e2δτ [|φ(0)|2 + γ̃‖φ‖2δ ]

+2λ−1
1 γ̃−1 (2λ1 − µγ̃λ1 − µ− 2Cg)

−1
(‖g(0)‖2 + |ψ|)

∫ t

τ

eµs ds

+2λ−1
1 γ̃−1Cf (2λ1 − µγ̃λ1 − µ− 2Cg)

−1
∫ t

τ

eµs‖us‖2δ ds

for all t ≥ τ, and therefore, thanks to the Gronwall lemma and calling

ξ = +2λ−1
1 γ̃−1 (2λ1−µγ̃λ1−µ−2Cg)

−1
,

we deduce

‖ut‖2δ ≤ (γ̃−1e2δτ [|φ(0)|2 + γ̃‖φ‖2δ ]

+ ξ(‖g(0)‖2+|ψ|))eξt + ξ(µ− ξ)−1(‖g(0)‖2 + |ψ|),
(33)

for all t ≥ τ .
By (28) and the continuity of Lf , there exists an ε > 0 such that

λ1 > Lf (R̃+ ε), (34)
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and a time Tφ big enough such that

‖ut‖δ ≤ R̃+ ε ∀ t ≥ Tφ.
Then, reasoning as in case a), we can prove the convergence in this case b).

6. Some remarks for future research in a set-valued framework. The anal-
ysis we have carried out in the paper strongly relies on hypotheses (f1)−(f3), where
(f2) is a locally Lipschitz assumption responsible for the uniqueness of solutions of
the initial value problem associated to our non-autonomous model. However, there
are many interesting situations in applications in which the function f can only be
guaranteed to be continuous and satisfying some growth condition (like condition
(f3)), or even can be a set-valued function (and therefore the differential equa-
tion in (1) becomes a differential inclusion). Then, in these situations, it is not
possible to ensure uniqueness of solutions of our problem (1), and consequently,
we cannot define a non-autonomous dynamical system according to Definition 1.1.
However, these situations can also be analyzed by exploiting the tools and technique
of the set-valued analysis. More precisely, there is a recently developed theory of
set-valued or multi-valued dynamical systems (in both the autonomous and non-
autonomous/random frameworks, see, e.g., [3, 20, 10, 5]) which has proven to be
very useful in these cases of non-uniqueness of solutions as well as those concerning
differential inclusions. The main feature is that, in many of these cases, one can
construct a set-valued or multi-valued semigroup or process generated by taking
into account all the possible solutions that the problem may have associated to
every initial value.

It is worth mentioning that the extension of the results in this paper to this set-
valued setup is nontrivial and requires of a much more sophisticate analysis with
techniques from set-valued analysis. It is our intention to analyze this case in a
future work.
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