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SUMMARY  The analysis of the Takens-Bogdanov bifurca-
tion of the equilibrium at the origin in the Chua’s equation with
a cubic nonlinearity is carried out. The local analysis provides, in
first approximation, different bifurcation sets, where the presence
of several dynamical behaviours (including periodic, homoclinic
and heteroclinic orbits) is predicted. The local results are used
as a guide to apply the adequate numerical methods to obtain
a global understanding of the bifurcation sets. The study of
the normal form of the Takens-Bogdanov bifurcation shows the
presence of a degenerate (codimension-three) situation, which is
analyzed in both homoclinic and heteroclinic cases.
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1. Introduction

The main objective of this work is to provide a deep un-
derstanding of some nontrivial dynamical behaviour re-
lated to the Takens-Bogdanov bifurcation (double-zero
eigenvalue of the linearization matrix) in the Chua’s
equation with a cubic nonlinearity. This equation mod-
els an electronic circuit, whose most important features
are its simplicity (only one nonlinearity, which we have
taken as an odd cubic polynomial), and the complex
behaviours that can exhibit. Some of these behaviours
are analytically explained in the study we will perform.

The analysis of this circuit has been source of a
large bibliography (see Matsumoto et al. [9]). The
most widely considered case corresponds to a piecewise
linear implementation of the nonlinear device (see, e.g.,
Madan [8] and references therein). Under this hypoth-
esis, the theoretical analysis of the state equations can-
not profit from many results of differentiable dynamics
and, in particular, of bifurcation theory (see, for in-
stance, [5]).

We consider here the Chua’s equation with a cubic
nonlinearity:

i = aly —az® — cx),
y=r-y+z, (1)
z = —py.

We are interested in those bifurcation aspects related
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to the Takens-Bogdanov bifurcation that the equilib-
rium at the origin in the above equation exhibits. The
importance of this bifurcation lies in the possibility of
finding global effects (homoclinic and heteroclinic mo-
tions) from a local bifurcation study (see Matsumoto
et al. [9]).

Chua’s equation (1) has been analyzed, e.g., by
Khibnik et al. [7], Huang et al. [6], Pivka et al. [10].
In the two last papers, a new linear term is included in
the last equation of (1), in order to take into account
small resistive effects in the inductor. In Khibnik et al.
[7], the analysis is done by keeping fixed a, ¢, so that
there is no possibility of a Takens-Bogdanov bifurca-
tion. The authors carry out the analysis for the Hopf
bifurcation, and establish its connection with a homo-
clinic bifurcation. This connection can be explained
with the analysis we will perform here (compare Fig. 10
of [7] with Fig. 1 here).

In our analysis of the Chua’s equation (1), we will
consider the nontrivial cases a # 0, a # 0.

Note the symmetry (z,y,2) — (—z, —y, —2) it ex-
hibits. The origin is always an equilibrium point, and
the linearization matrix at this point is:

—ac o 0
1 -1 1 . (2)
0 -6 0

It is a straightforward computation to show that, taking

ﬁ:ﬁc:a7

the linearization matrix at the origin has a double zero
eigenvalue and a third eigenvalue —1. Then, we have
a bidimensional center manifold and a one-dimensional
stable manifold. To analyze this linear codimension-
two bifurcation, we take ¢ and ( as bifurcation param-
eters, and look for the bifurcation behaviours corre-
sponding to parameter values close to the critical ones:

Ces Be-

c=c.=0,

2. Normal Form

Firstly, we consider the Chua’s equation with the pa-
rameter evaluated at their critical values. In order to
put the equation in an appropriate form, we make the
linear transformation:
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Fig.1 Bifurcation set for the Chua’s equation, for a = 1, = 1.3. (a) Numerical bifur-
cation set. (b) Qualitative bifurcation set. The configuration of equilibria and periodic
orbits in each zone appears in Fig. 4. (c) Zoom of the neighbourhood of Takens-Bogdanov
point. (d) Zoom of the neighbourhood of the degenerate homoclinic connection point.
T a 0 -« X Y = asX® 4 b3 X%V + a5 X° + bs XY, (3)
y | = 0o 1 1 Y |,
2 —a 1 7 where
4 3
- . S . a3 = —ax bz = 3aa”(a—1
bringing the linearization matrix (2) to Jordan form: 3 ) 8’ 3 2( ; ),
as = 3a“a®, bs = —3a“a’ (8a — b).

0 1
0 0
-1

In the new variables, a third-order center manifold
(computed by using a recursive procedure developed
in Freire et al. [2]) is given by

7 =a*a(X3 - 3X%Y +6XY? - 6Y?).

This approximation enables us to obtain the fifth-order
reduced system on the center manifold.

Next, we will put the reduced system in an appro-
priate form. For that, we use near-identity transfor-
mations leading to normal form. Using the algorithm
developed in Gamero et al. [3], we obtain the following
fifth-order normal form for the reduced system on the
center manifold:

X =Y,

We observe that the coefficient as is always nonzero
(although it may be positive or negative). However,
the coefficient b3 vanishes for the value o = 1, where a
degenerate Takens-Bogdanov bifurcation takes place.

To know how the parameters ¢, § affect to the
normal form (3), we suspend the system (adding the
trivial equations ¢ = 0, ﬁ = 0) and compute the center
manifold for the suspended system. After some com-
putations, and neglecting the higher-order terms in the
parameters, we put in correspondence the Chua’s equa-
tion (1) —taking ¢ ~ ¢, and 8 ~ (.— with:

X =Y,

Y =eaX +eY +azX®
+03X%Y + a5 X® + bs X 1Y,

Z=-2,

where
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€1 = —a’c,
€2 =—(f—a)+ala—1ec

It is a straightforward computation to show that these
unfolding parameters satisfy the transversality condi-
tion:

5(61, 62)

8(67 ﬂ) c:&ﬁza

and then, the change of parameters ¢, by €1,€3 is a
local diffeomorphism.

In next sections we will address the study of both,
nondegenerate and degenerate cases.

=a? #0,

3. Nondegenerate Cases

When both a3 and b3 are nonzero, we are dealing with
a nondegenerate Takens-Bogdanov bifurcation [5]. Its
classification depends on the sign of as, and the coef-
ficients a5, bs do not play any role in the subsequent
analysis. So, in the study of the nondegenerate cases it
is enough to compute the third-order normal form, i.e.,
the normal form (3) truncated up to third order (any-
way, the whole fifth-order normal form will be required
later in the analysis of the degenerate case).

Depending on the sign of asz (which is determined
by the sign of the parameter a), two different situations
arise:

3.1 Homoclinic Case

This case applies when the coefficient az is negative,
that is, for @ > 0. We can consider b3 < 0, whose
analysis can be found in Guckenheimer and Holmes [5]
(the study for bs > 0 can be reduced to the above one
by changing the sign of ¢, X, €2).

In the bifurcation set around the origin, the fol-
lowing codimension-one bifurcations are present:

e A pitchfork bifurcation of the origin PI.

e A Hopf bifurcation of the origin H.

e A Hopf bifurcation of the nontrivial equilibria h.

e A homoclinic connection of the origin Hm (in fact,
a pair of homoclinic connections, due to the sym-
metry).

e A saddle-node bifurcation of periodic orbits SN1.

The local approximations of these bifurcations appear
in the quoted book, and they are not included here for
the sake of brevity. It is important to notice that, as
we have computed €1, e to first order as a function of
parameters c, 3, we have a useful starting point for the
numerical analysis we will present later.

3.2 Heteroclinic Case

This situation corresponds to as > 0. It occurs in

Chua’s equation (1) when a < 0. We can restrict to
the case bg < 0 (the case bs > 0 can be handled by
changing the sign of ¢, X, es). The following bifurca-
tions are present (see Guckenheimer and Holmes [5]):

e A pitchfork bifurcation of the origin PI.

e A Hopf bifurcation of the origin H.

e A heteroclinic connection between nontrivial equi-
libria Ht.

As above, we have not included the local expressions
for these bifurcations.

4. Degenerate Cases

The complexity of bifurcation behaviours grows in the
degenerate case corresponding to the vanishing of b3,
which occurs at the critical value . = 1. In this case,
the fifth-order terms in (3) are necessary to determine
the local bifurcation behaviour.

For the critical value of o, we find bs = —9a%a” #
0. This degenerate case is a codimension-three situa-
tion, and a third unfolding parameter is required. We
will take €3 = o — a. = a — 1, together with €¢; and es,
to describe this bifurcation.

In the degenerate cases, the knowledge of the whole
fifth-order normal form (3) is required. One of the fifth-
order terms in the normal form (3) —the coefficient
as— can be eliminated by rescaling the time in terms
of the state variables. This operation do not alter the
values of the remaining coefficients in the fifth-order
normal form.

As in the nondegenerate cases, two different situa-
tions are possible. Each one will be considered in next
subsections.

4.1 Homoclinic Case

This is the case when ag < 0. We can assume by >
0 (the case b5 < 0 can be reduced to the above by
changing the sign of t, Y, €3, €3). In Rousseau and Li [14]
and Rodriguez-Luis et al. [12], it is shown that, besides
the bifurcations present in the nondegenerate case (see
Sect. 3.1), the following ones appear:

e A degenerate Hopf bifurcation of the origin Hd.
From here, a saddle-node bifurcation of periodic
orbits SN2 emerges.

e A degenerate Hopf bifurcation of the nontrivial
equilibria hd. From here, a saddle-node bifurca-
tion of periodic orbits sn emerges.

e A degenerate homoclinic connection Hmd. From
here, two saddle-node bifurcations of periodic or-
bits sn and SIN3 emerge.

e A cusp of saddle-node bifurcations of periodic or-
bits C1, where SN1 and SN2 collapse.



ALGABA et al: BIFURCATIONS IN CHUA’S EQUATION

4.2 Heteroclinic Case

This corresponds to the case ag > 0. We can reduce
our study to the case b5 > 0, by changing the sign of
t,Y, €2, €5 if necessary. Beyond the bifurcations present
in the nondegenerate case (see Sect. 3.2), the following
bifurcations appear (see Rousseau [13]):

e A degenerate Hopf bifurcation Hd. From here,
a saddle-node bifurcation of periodic orbits SN
emerges.

e A degenerate heteroclinic connection Htd, where
the heteroclinic connection changes its stability.
Here, the above saddle-node bifurcation of periodic
orbits SN ends.

5. Numerical Study

Now, we will look for this rich bifurcation behaviour
predicted by the theory, around this degenerate Takens-
Bogdanov bifurcation, in the Chua’s equation. Firstly,
we have selected @ = 1 in order to present bifurcation
sets corresponding to the homoclinic case. We will fo-
cus on the degenerate case that occurs at ¢, = 0, 5. = 1,
a. = 1.

The numerical results are presented in Figs. 1 and
3, corresponding to fixed values of & = 1.3 and 0.8, re-
spectively. They are located on both sides of the critical
value o, = 1 where the degeneracy takes place.

The local results achieved in previous sections have
been essentials as a guide in the use of the adequate
numerical continuation methods (see Doedel et al. [1],
Rodriguez-Luis et al. [11]), in order to extend globally
the local information.

In Fig. 1 we have taken a = 1.3. This is the richest
situation from the point of view of different bifurcation
behaviours. In the bifurcation set drawn in (a) we have
considered the range 5 € (0,1.4), ¢ € (—0.8,1). The
numerical results of the quoted picture have been ob-
tained with AUTO[1]. Several curves are so close that
are almost indistinguishable. We refer to the quali-
tative curves (Fig.1(b)) and the two zooms ((c)—(d))
to clarify the bifurcation set. All the bifurcations pre-
dicted by the analysis of Sect.3.1 are present. More-
over, a cusp of saddle-node bifurcations of periodic or-
bits C2, where SN3 and SN4 collapse, also appears.
The presence of this cusp may be related to a higher
degeneracy in the homoclinic Hm. Further study will
be needed to understand it.

For the moment, we show numerically that, in-
creasing a, the two cusps C1 and C2 meets in a beak-
to-beak singularity. This fact is presented in the bi-
furcation sets of Fig.2, where we only draw the four
saddle-node bifurcations of periodic orbits. Notice that,
for a« = 1.45, the saddle-node bifurcations SN; and
SNy collapse at C1, and SN3 and SN, at C2. Later,
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Fig.2 Beak-to-beak singularity for a = 1. Partial bifurcation
set including only the saddle-node bifurcation of periodic orbits
curves. (a) Situation at o = 1.45, before the collision of the
cusps. (b) Situation at o = 1.5, after the collision.
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Fig.3 Numerical bifurcation set for the Chua’s equation for
a = 1, « = 0.8. The configuration of equilibria and periodic

orbits in each zone appears in Fig. 4.

for o = 1.5, a saddle-node curve (SN;-SN3) joins TB
and Hmd, whereas SN,—SIN4 are not the same curve.

In Fig. 3, the situation is simpler, and only the bi-
furcations predicted by the local analysis appear. This
bifurcation set also illustrates the homoclinic nonde-
generate case, considered in Sect. 3.1.
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Fig.4 Configuration of equilibria and periodic orbits in the homoclinic case.
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Fig.5 Numerical bifurcation set for the Chua’s equation for Fig.6 Numerical bifurcation set for the Chua’s equation for
a = —1, a = 1.3. The configuration of equilibria and periodic a = —1, a = 0.8. The configuration of equilibria and periodic

orbits in each zone appears in Fig. 7.

The configurations of equilibria and periodic orbits
present in each zone of the bifurcation sets, for this
homoclinic case, are depicted schematically in Fig. 4.

Now, we select a = —1, to deal with the hete-
roclinic case. As above, we have taken o = 1.3 and
a = 0.8. Each value corresponds to a side of the crit-
ical value o, = 1 where the degeneracy takes place.
The numerical results are presented in Figs.5 and 6.
The configurations of equilibria and periodic orbits are
sketched in Fig. 7. All the curves and configurations are
explained by the previous theoretical analysis. In par-

orbits in each zone appears in Fig. 7.

ticular, the configuration in the vicinity of a heteroclinic
nondegenerate Takens-Bogdanov bifurcation coincides
with the situation of Fig. 6.

The analysis carried out is a straight way to detect
global dynamics from a local analysis. For instance,
in Fig.8 we show two global connections. Namely, a
homoclinic orbit located on the curve Hm of Fig. 1. It
corresponds to the parameter values a = 1, a = 1.3,
0 = 0.892 and ¢ =~ —0.435. We have represented its
projection onto the zy plane. Also, a heteroclinic orbit
located on the curve Ht of Fig. 5, corresponding to the
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Fig.7 Configuration of equilibria and periodic orbits in the heteroclinic case.
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Fig.8 (a) Projection on the zy plane of the homoclinic con-
nection that appears, for a = 1, « = 1.3, at # = 0.892 and
¢~ —0.435. (b) Projection on the zy plane of a pair of hetero-
clinic connections that appears, fora = —1, « = 1.3, at § = 1.295
and ¢ ~ 0.2052.

values a = —1, a = 1.3, § = 1.295 and ¢ =~ 0.2052.
These global connections, that near the Takens-
Bogdanov bifurcation are planar phenomena, develop
a tridimensional structure by moving, for example, the
parameter «. In the planar situation, the periodic or-
bits have a monotonically increasing period when ap-
proaching homoclinicity. On the other hand, when the
homoclinic connection enters in the Shil'nikov region, a
wiggling behaviour appears, with a sequence of saddle-

20

Pe 10 |

0.2 ¢

(b)
Fig.9 (a) Bifurcation diagram (period versus g8) fora =1, o =
10, ¢ = —0.5. (b) Projection on the zy plane of the homoclinic
connection that appears, fora =1, « = 10, ¢ = —0.5, 8 = 0.7705.

node and period-doubling bifurcations of periodic or-
bits (see Glendinning and Sparrow [4]). This behaviour
is presented in Fig. 9, where we have included a bifur-
cation diagram, plotting the period against 3. Also,
a phase portrait of the Shil’'nikov homoclinic connec-
tion is drawn. Notice the saddle-focus character of the
equilibrium at the origin.

6. Conclusions

The study of the Takens-Bogdanov bifurcation is a pow-
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erful method that provides valuable information about
periodic behaviour and global dynamics.

Near the Takens-Bogdanov bifurcation, the phe-
nomena are planar, but moving the parameters far
away, we can expect that they develop a tridimensional
structure, and then they can provide a route to chaotic
dynamics.

In this paper, we have carry out the analysis of the
Takens-Bogdanov bifurcation of the equilibrium at the
origin in the Chua’s equation with a cubic nonlinear-
ity. Deriving the corresponding normal form, we put
in evidence the presence of degenerate cases. Then, we
obtain theoretically local and global bifurcations, that
provide information about periodic behaviours and ho-
moclinic and heteroclinic motions. The completion of
the bifurcation set requires numerical methods. These
allow us to detect the presence of a cusp of saddle-node
bifurcation of periodic orbits, and also of a beak-to-
beak singularity. Moreover, our analysis explains the
presence of several codimension-two bifurcations de-
tected numerically in Khibnik et al. [7]. Namely, a
degenerate Hopf bifurcation of the origin, a degenerate
homoclinic and a cusp of saddle-node of periodic orbits
(see Fig. 10 of [7]).
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