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The predictive power of the coherent state (CS) approach to the interacting boson model (IBM) is tested far
from the IBM dynamical symmetry limits. The transitional region along the γ -unstable path from U(5) to O(6)
is considered. Excitation energy of the excited β band and intraband and interband transitions obtained within
the CS approach are compared with the exact results as a function of the boson number N . We find that the CS
formalism provides approximations to the exact results that are correct up to the order 1/N in the transitional
region, except in a narrow region close to the critical point.
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I. INTRODUCTION

The study of shape phase transitions in finite nuclear quantal
systems has recently been the subject of many investigations
[1,2]. Different models have been used to describe the
dynamics of the many-body systems. In most cases, a key
instrumental role in characterizing the phase transitions and
the critical points is played by the energy surfaces and their
behavior as a function of the number of particles. In the specific
case of the approaches based on the interacting boson model
(IBM) [3], the energy surfaces are constructed from the boson
coherent states [4–6]. It is well known that in correspondence
with the dynamical symmetries, the results obtained within
the intrinsic formalism for a number of observables (such as
excitation energies, E2 matrix elements, two-particle transfer
matrix elements, etc.) coincide, in leading order in 1/N (with
N the boson number), with the corresponding exact values
obtained directly diagonalizing the boson Hamiltonian. The
aim of this paper is to study the capability of the coherent
state (CS) formalism to provide good results also outside (and
far from) these situations. For this study, we have selected the
U(5) to O(6) leg of the Casten triangle. The critical point along
this path was studied by Iachello solving the corresponding
Bohr equation [7] for an infinite square well in the β variable
and obtaining what is known as the critical point symmetry
E(5) [8]. The same physical situation has been treated within
the IBM [9,10].

The selected path is known to preserve the γ instability
and is therefore characterized by excited bands in the β degree
of freedom only. The results of our study show that all along
the transitional path (except in a narrow region close to the
critical point), the CS formalism still provides estimates for
energy bands and transitions that describe the exact values
with the same degree of accuracy as in the limiting cases [in
our case, the O(6) vertex], namely, in leading order in 1/N .
It is important to note that next-to-leading order terms are not
correctly calculated within the CS approach. Consequently, no
finite-N effects can be extracted from this formalism, and one
has to rely on other methods [11–14].

The paper has the following structure. In Sec. II, the
transitional Hamiltonian used is presented and the formalism

of the coherent states revised, including the proper kernels to
project the states from the intrinsic to the laboratory frame. In
Sec. III, explicit expressions for selected excitation energies
and B(E2) transition rates within the CS approach along the
complete O(6)–U(5) transitional region are obtained. These are
compared with the exact calculations for different N values.
Finally, Sec. IV summarizes the main conclusions.

II. HAMILTONIAN AND COHERENT STATES

We will consider the spherical to deformed γ -unstable
shape transition by using the Hamiltonian

HB = xn̂d − 1 − x

N
Q̂ · Q̂, (2.1)

where n̂d is the d-boson number operator, and

Q̂ = (s† × d̃)(2) + (d† × s̃)(2) (2.2)

is the assumed boson quadrupole operator. With our choice
of the Hamiltonian, we obtain for x = 1 the U(5) dynamical
symmetry and for x = 0 the O(6) one. Note that for any
value of x, the choice of the quadrupole operator leads to a
Hamiltonian that preserves the O(5) symmetry, and spectra are
therefore characterized by its degeneracies and characteristic
band structures (and associated γ instability). As we know
[1], the Hamiltonian (2.1) describes a second-order phase
transition, with the critical point occurring at the critical
value xc = (4N − 8)/(5N − 8). In Fig. 1, a schematic diagram
presents the low-lying spectra in the O(6) and U(5) limits.
The relevant quantum numbers L [angular momentum which
labels the O(3) irreducible representations (irreps)] and τ or
v [O(5) seniority which labels the O(5) irreps] in each limit
are explicitly given. It should be noted that in the literature,
v is used when working with the basis associated with the
U(5) dynamical symmetry, while τ is written in the base
associated with the O(6) dynamical symmetry. For these two
limiting situations, exact analytic B(E2) values for selected
transition rates have been obtained [3]. Those studied in this
paper are indicated explicitly in Fig. 1 beside the arrows of the
corresponding transitions.
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FIG. 1. (Color online) Schematic spectra for O(6) and U(5)
dynamical symmetries. The states considered in this work in both
cases are L(v or τ ) = 0(0), 2(1), 4(2) in the ground-state band [σ =
N in O(6) and nβ = 0 in U(5)] and L(v or τ ) = 0(0), 2(1) in the
excited band [σ = N − 2 in O(6) and nβ = 1 in U(5)]. Exact
analytical B(E2)’s at the O(6) and U(5) limits for the transitions
considered in this paper are explicitly given beside the corresponding
arrows.

A. Exact calculations

The Hamiltonian (2.1) can be easily diagonalized with
the method proposed in Ref. [10], even for large values of
the number of bosons, N . The method provides the energies
and the wave functions and, consequently, allows for the
calculations of B(E2) transition rates between initial (τ,L)i
and final (τ,L)f states,

B
(
E2; τi, Li → τf , Lf

) = 1

2Li + 1
|〈τf Lf ||T̂ E2||τiLi〉|2.

(2.3)

In the next section, we will present exact calculations using
T̂ E2 = Q̂, as given in Eq. (2.2), for the selected transitions
along the U(5)–O(6) transitional region.

In addition, we will also consider the E(0) transition from
the 0+ of the β band to the ground-state 0+. The transition
probability is associated with the matrix element of the
operator n̂s = N − n̂d , i.e.,

B(E0; 0+
β → 0+

g ) = |〈0+
g |n̂s |0+

β 〉|2. (2.4)

B. Coherent state approach

A useful way of looking at phase transitions is to resort to the
concept of intrinsic states and the associated energy surfaces.
In the IBM for even nuclei, one introduces a ground-state
intrinsic state of the form

�g.s.(β,γ ) = 1√
N !

(b†g.s.(β,γ ))N |0〉, (2.5)

where the basic boson is given in the form

b†g.s.(β,γ ) = 1√
1 + β2

(
s† + β cos γ d

†
0

+ β√
2

sin γ (d†
2 + d

†
−2)

)
, (2.6)

and β and γ play a role similar to the intrinsic collective
variables in the Bohr Hamiltonian. The ground-state energy
surface is obtained as the expectation value of the boson
Hamiltonian (2.1) in the intrinsic state, i.e.,

Eg.s.(β,γ ) = 〈�g.s.(β,γ )|HB |�g.s.(β,γ )〉. (2.7)

In a similar way, one introduces the intrinsic state associated
with the β band by

�β(β,γ ) = 1√
(N − 1)!

(b†g.s.(β,γ ))N−1b
†
β(β,γ )|0〉, (2.8)

where the basic β boson is given by [3,15]

b
†
β(β,γ ) = 1√

1 + β2

(
−βs† + cos γ d

†
0

+ 1√
2

sin γ (d†
2 + d

†
−2)

)
. (2.9)

The energy of the β band is obtained as the expectation value
of the boson Hamiltonian (2.1) in the intrinsic β state, i.e.,

Eβ(β,γ ) = 〈�β(β,γ )|HB |�β(β,γ )〉. (2.10)

Within the intrinsic frame formalism, one can also cal-
culate wave functions with the correct quantum numbers by
projecting with the proper kernels. In correspondence to each
intrinsic state, one has in the laboratory frame a band-like
structure. Since the intrinsic system is γ dependent, the proper
kernels connecting intrinsic and laboratory frames are given by
the functions �τ,L,M (γ,θi) [16], characterized by the quantum
numbers (τ,L,M), solutions of the γ -angular part of the Bohr
Hamiltonian with γ -independent potential. These functions
can be viewed as a sort of generalization to five dimensions of
the usual three-dimensional D functions,(

− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

3∑
k=1

Q2
k

sin2
(
γ − 2

3πk
))

×�τ,L,M (γ,θi) = τ (τ + 3)�τ,L,M (γ,θi), (2.11)

where θi stands for the three Euler angles, and the Qκ ’s are
the components of the angular momentum written in terms of
the Euler angles. The resulting spectrum (with degeneracies
and energies) is the one characterizing the O(5) symmetry.
In our context, the only relevant functions are those with
zero component of the angular momentum. To simplify the
notation, we shall henceforth drop from the labels in �

the index corresponding to M = 0. As an example, we quote
here the explicit form of the function associated with the 2+
state with τ = 1,

�1,2(γ,θ,φ)

= (1/
√

8π ){cos γ Y20(θ,φ) + (1/
√

2)

× sin γ [Y22(θ,φ) + Y2−2(θ,φ)]}. (2.12)
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As a result all the members of the ground-state and the β band
are described by the wave functions

|τ,L〉g.s. = �τ,L(γ,θi)|�g.s.(βmin, γ )〉, (2.13)

and

|τ,L〉β = �τ,L(γ,θi)|�β(βmin, γ )〉, (2.14)

in terms of the intrinsic states �g.s.(βmin, γ ) and �β(βmin, γ ).
The evaluation of matrix elements associated with transition
rates will involve an integration over the variables γ and the
Euler angles plus the matrix element in the intrinsic frame.
The B(Eλ) values within two given states in bands a and b,
respectively, can be evaluated according to

B(Eλ; (τi, Li)a → (τf , Lf )b)

= 1

2Li + 1
|b〈τf Lf ||T̂ (Eλ)(lab)||τiLi〉a|2

= 1

2Li + 1

(
Li λ Lf

0 0 0

)−2

× |〈�τi,Li
(γ,θ,φ)|T̂ (Eλ)

ab (intr)(γ,θ,φ)|�τf ,Lf
(γ,θ,φ)〉|2.

(2.15)

The formalism presented so far for the β band is strictly valid
only when the energy surface admits a value of βmin �= 0. In
the case of Hamiltonian (2.1), this only happens along the O(6)
side of the phase transition. When βmin = 0 [the U(5) side],
the coherent states in Eqs. (2.5) and (2.6) are still valid, but
they become just a condensate of s bosons. On the other hand,
with βmin = 0, the one-phonon excitation state obtained from
Eqs. (2.8) and (2.9) becomes a pure L = 2 state (admixture
of d bosons), and therefore it cannot contain an L = 0 state.
This must be searched within the two-phonon triplet whose
structure is

(s†)N−2

(
cos γ d

†
0 + 1√

2
sin γ (d†

2 + d
†
−2)

)2

|0〉. (2.16)

In the next section, results obtained within this formalism
for selected transitions will be compared against the exact
results for the complete transitional O(6)–U(5) line. The
operator used for E2 transitions is equal to Q̂lab of Ref. [17]
with χ = 0, while for E0 transitions, it is T (E0)(lab) = n̂s .

III. RESULTS FOR THE U(5)–O(6) TRANSITIONAL
REGION

In this section, we compare exact calculations for the
energies, B(E2)’s, and B(E0)’s with the approximate ones
obtained within the CS approach.

A. Excitation energies

To show the shape phase transition, we present in Fig. 2
exact calculations, as a function of the control parameter x, for
the excitation energies of the first 2+ in the ground-state band
(upper panel) and for the excitation energy of the bandhead
of the β band (lower panel) for different values of N (N =
10, 100, 1000). For x = 0 [i.e., in the O(6) symmetry], the 0+

β
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FIG. 2. (Color online) Excitation energies for the 2+
1 (gap �) and

for the second 0+ with v or τ = 0. Exact calculations are presented
for N = 10, 100, and 1000.

state (i.e., the bandhead of the β band) has quantum numbers
σ = N − 2 and τ = 0 and is known to have excitation energy
Eβ = 4 + 4/N . At the other extreme (the spherical limit),
the β bandhead transforms into the two-phonon state 0+ and,
consequently, has an excitation energy of 2. Concerning the
gap (�) (excitation energy of the first excited state), for the
Hamiltonian (2.1) it goes as τ (τ + 3)/N = 4/N in the O(6)
limit and tends to zero as N goes to infinity. In the large N

limit, � is zero in the deformed phase and different from zero
in the spherical one. In the U(5) limit, � = 1 (one-phonon
state). The transition is clearly observed in the behavior of �

and is sharper as N increases.
To compare these results with those provided by the CS

approach, we used Eq. (2.7) and our boson Hamiltonian (2.1)
to provide the ground-state energy surface:

Eg.s.(β,γ ) = Nxβ2

1 + β2
− (1 − x)

(
4(N − 1)β2

(1 + β2)2 + 5 + β2

1 + β2

)
.

(3.1)

In our specific case, as expected from the overall O(5)
symmetry, the energy surfaces for any value of the control
parameter x are completely γ independent. As far as the β

dependence is concerned, for x values larger than the critical
xc = 4N−8

5N−8 , the system finds more convenient a spherical shape
(βmin = 0); whereas for x values smaller than xc, the minimum
corresponds to a deformed value

βmin(N,x) =
√

8(1 − x) + N (5x − 4)

N (3x − 4)
. (3.2)

At the critical point xc, the energy surface ends up being rather
flat around the origin as is expected for a second-order phase
transition [9].
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For the β band (when x < xc), the corresponding energy
surface, Eq. (2.10), again γ independent, is given by

Eβ(β,γ )

= x(1 + (N − 1)β2)

1 + β2
+ (x−1)

× 4N2β2 + N (7 − 18β2 + 3β4) + 2(β4 + 10β2 − 3)

N (1 + β2)2
.

(3.3)

The predicted excitation energy of the β band is therefore
given by

E∗
β = Eβ(β,γ ) − Eg.s.(β,γ )

= x
1 − β2

1 + β2
− 2(1 − x)

× N (β4 − 10β2 + 1) + β4 + 10β2 − 3

N (1 + β2)2
. (3.4)

Note that for x = 0, i.e., for the O(6) case, for large N the
value of the minimum approaches βmin = 1 and the excitation
energy becomes E∗

β = 4 − 4/N to be compared with the exact
value 4 + 4/N , i.e., with a discrepancy of the order of 1/N .
For the other values of x the resulting excitation energies are
given in Fig. 3 in comparison with the results obtained in the
exact calculation for different N values.

As mentioned above, the β band in the intrinsic frame is
only defined for the deformed region, βmin �= 0. In the spherical
phase [the U(5)-side of the phase transition], the first excited
0+ is among the two-phonon triplet. The energy of these states
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FIG. 3. (Color online) Excitation energies for the 0+
2 state. In the

intrinsic frame, this corresponds to (a) the β band for the deformed
phase [0 < x < xc with xc = (4N − 8)/(5N − 8)] and (b) the 0+ in
the two-phonon triplet for the spherical phase (xc < x < 1). In the
exact calculation, the plotted energy corresponds to the second 0+

state with v = 0 (or τ = 0), which corresponds to the bandhead of
the β band in the O(6) region, while it is the two-phonon state in the
U(5) region. Exact calculations and approximate CS calculations are
presented for N = 10, l00, and 1000.

is calculated to be

E0+
2

= 11x − 9 + (1 − x)
16

N
. (3.5)

Since for the ground state Eq. (3.1) can be used with β = 0, the
excitation energy of the first excited 0+ state in the spherical
phase is given by

E∗
0+

2
= 6x − 4 + (1 − x)

16

N
. (3.6)

In Fig. 3, these results are plotted for the spherical phase
(x > xc).

From Fig. 3, it is observed that the agreement all along the
transitional region is of the order 1/N , as in the limits. Larger
discrepancies are obtained close to the critical point.

B. E2 and E0 transition probabilities

Apart from the energies one can calculate, as a function of x

and both for exact and approximate CS approaches, the value
of the intraband B(E2) matrix elements within the ground and
β bands B(E2; 2+

g → 0+
g ), B(E2;4+

g → 2+
g ), and B(E2;2+

β →
0+

β ) and the interband values B(E2;0+
β → 2+

g ).
In the intrinsic state formalism, following Eq. (2.15),

the B(E2) values within the ground band can be evaluated
according to

B(E2; (τ1, L1)g → (τ2, L2)g)

= 1

2L1 + 1
|g〈τ1L1||Q̂lab||τ2L2〉g|2

= 1

2L1 + 1

(
L1 2 L2

0 0 0

)−2

× |〈�τ1,L1 (γ,θ,φ)|Q̂intr
gg (γ,θ,φ)|�τ2,L2 (γ,θ,φ)〉|2,

(3.7)

where the intrinsic quadrupole moment is

Q̂intr
gg (γ,θ,φ)

= 〈�g.s.|Q̂lab
0 |�g.s.〉

= 〈�g.s.|
∑

µ

√
4π

5
(−1)µQ̂µY2,µ(θ,φ)|�g.s.〉, (3.8)

which can be evaluated giving

Qintr
gg (γ,θ,φ)

=
√

4π

5

2β

1 + β2
N{cos γ Y20(θ,φ)

+ (1/
√

2) sin γ [Y22(θ,φ) + Y2−2(θ,φ)]}

= 8πN

√
2

5

β

1 + β2
�1,2(γ,θ,φ). (3.9)

This leads to the final value for the transition from 2+
g (τ = 1)

to 0+
g (τ = 0)

B(E2; 2+
g → 0+

g ) = N2 4β2

5(1 + β2)2
, (3.10)
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and similarly for the transition from the 4+
g (τ = 2) to the 2+

g

(τ = 1) state

B(E2; 4+
g → 2+

g ) = N2 8β2

7(1 + β2)2
. (3.11)

Use has been made of the recursion relation

�1,2(γ,θ,φ) × �1,2(γ,θ,φ)

=
√

2

8π
�0,0(γ,θ,φ) + 1

7π

√
5

8
�2,2(γ,θ,φ)

+ 3

14π
√

2
�2,4(γ,θ,φ), (3.12)

for the evaluation of the matrix elements involving the �

functions.
In a similar way, we can determine the intensities within the

β band and the interband transitions. For the transition within
the β band, one needs to evaluate the intrinsic quadrupole
matrix element in the β band, i.e.,

Qintr
ββ (γ,θ,φ)

= 〈�β |Q̂lab
0 |�β〉

= 〈�β |
∑

µ

√
4π

5
(−1)µQ̂µY2,µ(θ,φ)|�β〉

=
√

4π

5

2β

1 + β2
(N − 2){cos γ Y20(θ,φ)

+ (1/
√

2) sin γ [Y22(θ,φ) + Y2−2(θ,φ)]}

= 8π (N − 2)

√
2

5

β

1 + β2
�1,2(γ,θ,φ), (3.13)

which leads, for example, to the transition probability from the
state 2+

β (τ = 1) to 0+
β (τ = 0)

B(E2; 2+
β → 0+

β ) = (N − 2)2 4β2

5(1 + β2)2
. (3.14)

Finally, for the interband β-ground transitions, one has to cal-
culate the nondiagonal quadrupole matrix elements between
the intrinsic ground and β states:

Qintr
gβ (γ,θ,φ) = 〈�β |Q̂lab

0 |�g.s.〉

= 〈�β |
∑

µ

√
4π

5
(−1)µQ̂µY2,µ(θ,φ)|�g.s.〉

=
√

4π

5

√
N

1 − β2

1 + β2
{cos γ Y20(θ,φ)

+ (1/
√

2) sin γ [Y22(θ,φ) + Y2−2(θ,φ)]}

= 4π
√

N

√
2

5

1 − β2

1 + β2
�1,2(γ,θ,φ), (3.15)

which leads, for example, to the transition probability from the
state 0+

β (τ = 0) to 2+
g (τ = 1)

B(E2; 0+
β → 2+

g ) = N
(1 − β2)2

(1 + β2)2
. (3.16)

In all these equations, the shape variable β should be
fixed to the value of β = βmin that minimizes the ground-state
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FIG. 4. (Color online) B(E2) values for the transitions labeled
on each row: 2+

g → 0+
g , 4+

g → 2+
g , 2+

β → 0+
2 , and 0+

2 → 2+
g . In each

case exact and CS results are presented for N = 10 , N = 100, and
N = 1000. Coherent state results are plotted for the deformed and the
spherical regions. In the deformed phase, the 0+

2 state is the bandhead
of the β band and 2β stands for the first excited state of this band; in
the spherical phase, the 0+

2 state is the 0+ in the two-phonon triplet
and 2β stands for the 2+ in the three-phonon quintuplet. Each B(E2)
is divided by N2 or N in order to use the same scale independently of
the value of N . Please note the different scale for B(E2; 0+

2 → 2+
g ).

The last row displays the values of the E0 transition probability
(divided by N ) from the 0+ of the β band (or two-phonon state) to
the ground-state 0+.

energy surface. In Fig. 4, the exact B(E2)’s for the transitions
2+

g → 0+
g , 4+

g → 2+
g , 2+

β → 0+
β , and 0+

β → 2+
g are compared

with the CS approximation for different N values. As a last
comparison, in the last column, we also display the values
of the E0 transition probabilities from the 0+ of the β band
to the ground-state 0+. In the intrinsic frame formalism, this
transition probability is given by

B(E0; 0+
β → 0+

g ) = |〈�0,0|
(̂
nintr

s

)
gβ

|�0,0〉|2, (3.17)

where the intrinsic n̂s operator is

(̂nintr
s )gβ = 〈�g.s. |̂nlab

s |�g.s.〉 = −
√

N
β

1 + β2
. (3.18)

This gives for the B(E0),

B(E0; 0+
β → 0+

g ) = N
β2

(1 + β2)2
. (3.19)

The exact calculations for B(E2) can be checked in the
limits, since analytical expressions are known and given in
Fig. 1. For the E0 case, the exact value of B(E0; 0+

β → 0+
g ) in

the O(6) limit is calculated to be [3]

B(O6)(E0; 0+
β → 0+

g ) = N
(N + 3)(N + 2)(N − 1)

4N (N + 1)2
, (3.20)

which, in the large N limit, goes to N/4. This B(E0) is zero
in the U(5) limit, since ns is a good quantum number in this
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limit, and then the operator n̂s does not induce transitions from
0+

β to 0+
g .

The CS results can be checked in the O(6) limit because
results have already been reported [17]. In all cases, the critical
point is clearly observed for large N , and, in this case, the CS
approach provides a fairly good approximation to the exact
results, except for very close to the critical point, where large
discrepancies can be seen in B(E2; 0+

β → 2+
g )/N . For small N

values, discrepancies of the next-to-leading-order terms in the
1/N expansion are already observed in the deformed region.
Larger deviations are observed close to the critical point. All
along the U(5) quasidynamical symmetry region, the structure
of the states (2.16), and therefore the B(E2) values, coincides
with the U(5) limit. With reference to Fig. ( 4), the asymptotic
values for properly normalized B(E2)’s (in the limit of large
N and for x > xc) are 2 for the fourth row and 0 in all other
cases.

IV. SUMMARY AND CONCLUSIONS

The degree of accuracy of the coherent state (CS) approach
to the interacting boson model has been tested along the entire
O(6)–U(5) transitional region. We have studied excitation

energies of the β band and B(E2) and B(E0) transitions for
selected intraband and interband transitions. For that purpose,
the appropriate kernels to project from intrinsic to laboratory
frames were used. In the spherical phase, the coherent state
formalism can be used and gives reasonable results [exact in
the U(5) limit] except close to the critical point. Consequently,
we conclude that the CS formalism provides in all cases
approximations to the exact results of the order 1/N in the
transitional region except close to the critical point. Finite-N
effects cannot be analyzed within the CS formalism, since
next-to-leading-order terms are not correctly calculated.
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