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Polarization observables in the elastic scattering of protons from 4,6,8He
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We have calculated the p-4,6,8He elastic scattering differential cross section and polarizations at 297 MeV using
the Multiple Scattering expansion of the Optical potential (MSO) reaction scattering framework. The role of the
core and valence neutrons contribution to the interaction in the description of the elastic scattering observables
is analyzed.
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I. INTRODUCTION

The analyzing power of an unstable beam of 6He on a
polarized proton target at an energy of 71 MeV/nucleon was
measured recently for the first time [1]. It was found that
at this energy the polarization changes sign from positive to
negative at around 50◦ which is in contradiction with some
theoretical predictions [2,3]. In [1] a phenomenological optical
model analysis of the data was carried out, and it was found
that the behavior of the sign change of the polarization could
be explained if the radius of the spin orbit component was
set to a larger value than the standard value in this mass
region. To understand this behavior one should calculate a
microscopic optical potential where dynamics and structure
are clearly delineated. This can be achieved making use of the
Multiple scattering expansion of the Optical potential (MSO)
as formulated by Kermann, McManus, and Thaler (KMT) [4]
where the single scattering term is given in the impulse
approximation by the product of the free nucleon-nucleon
amplitude evaluated at the appropriate energy and the target
density. This term of the potential does not treat the 6He
few-body dynamics. However, one expects that it will provide
us with some insight into the behavior of the phenomenological
optical potential.

The KMT formalism is valid for proton incident energies
in the intermediate energy region Ep = 100–500 MeV. Dif-
ferential cross sections, analyzing powers, and spin rotation
parameters for elastic scattering of protons on 4He at 297 MeV
were measured [5]. Therefore we calculate the elastic scatter-
ing of protons from the helium isotopes at this energy.

In Sec. II we will briefly describe the single scattering
approximation of the MSO scattering framework. In Sec. III
we discuss the structure models used to evaluate the ground
state matter density distributions. In Sec. IV we evaluate the
elastic scattering differential cross section and polarization
observables and conclude in Sec. V.
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II. MSO

The proton-nucleus elastic scattering can be described in
terms of an optical model (OM) obtained either microscop-
ically, from first principles, or from fitting the data. We
will follow in here the multiple scattering expansion of the
optical potential in terms of the free nucleon-nucleon transition
amplitude tNN as formulated by KMT [4].

A. Nucleon-nucleon transition amplitude

The free NN transition amplitude tNN (ω, �K′, �K), de-
scribing the scattering from two-nucleon states with relative
momenta �K and �K′ for relative energy ω in their center of
mass (c.m.) frame, is related to the anti-symmetrised scattering
amplitude matrix elements by

tNN (ω, �K′, �K) = − h̄2

4π2µNN
MNN (ω, �K′, �K), (1)

where µNN is the nucleon-nucleon reduced mass.
In the Wolfenstein representation the most general form

of the amplitude, consistent with time-reversal, parity, and
rotational invariance, is written as

M(ω, �K′, �K) = A + B(�σ0 · n̂)(�σ1 · n̂) + C(�σ0 + �σ1) · n̂

+D(�σ0 · m̂)(�σ1 · m̂) + E(�σ0 · �̂)(�σ1 · �̂)

+F[(�σ0 · �̂)(�σ1 · m̂) + (�σ1 · m̂)(�σ0 · �̂)], (2)

where the orthogonal set of unit vectors
(n̂ = ( �K × �K′)/| �K × �K′|, �̂ = ( �K′ + �K)/| �K′ + �K|, and
m̂ = �̂ × n̂ are defined by the NN scattering plane [6].
The scattering amplitude can also be expressed as a
complex function of the energy ω, the momentum transfer
�q = ( �K′ − �K) and the total momentum �Q = ( �K + �K′)/2 of
the NN pair in their center of mass frame:

〈 �K′|M(ω)| �K〉 = M(ω, �K′, �K) = M(ω, �q, �Q). (3)

B. Single scattering factorized optical potential

Let us then consider the scattering of a proton from a
nucleus (of mass number A) assumed to be well described
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by n clusters. Within MSO, as formulated by KMT, the optical
potential can be written as an expansion in terms of the free
NN transition amplitudes, tpN (for projectile p-struck nucleon
N scattering). In momentum space, the matrix elements of the
single scattering term, evaluated in the optimal factorization
[7], are given by

〈�k′|U |�k〉 = A − 1

A

n∑
i=1

[
ρi

p(q)t̄pp(ω, q,Q/2, φ)

+ ρi
n(q)t̄pn(ω, q,Q/2, φ)

]
, (4)

where ρi
p and ρi

n are the nuclear matter density distributions
for the protons and neutrons respectively for each cluster of
the nucleus. Here, t̄pp (t̄pn) is the spin averaged amplitude for
the pp, pn scattering respectively evaluated at the appropriate
energy ω = E

2 , and φ is the angle between the vectors
�Q = (�k′ + �k)/2 and �q = (�k′ − �k). In Eq. (4) other spin

components of the NN transition amplitudes for the case of
proton scattering from nonzero spin clusters are not included.

Higher order effects have been evaluated and shown to
reduce the absorption present in the lower partial waves [7].

The optical potential matrix elements can then be written
as a sum of a central and spin-orbit contribution

〈�k′|U |�k〉 = 〈�k′|Uc|�k〉 + i �σ · �n〈�k′|Uls |�k〉, (5)

with σ the spin operator for the projectile, �n = �κ × �κ ′ and

〈�k′|Uc|�k〉 = A − 1

A

h̄2

4π2µNN

∑[
ρi

p(q)App(ω, q,Q/2, φ)

+ ρi
nApn(ω, q,Q/2, φ)

]
, (6)

and the spin-orbit given as

〈�k′|Uls |�k〉 = A − 1

A

h̄2

4π2µNN

−i

sin θNA

×
∑[

ρi
p(q)Cpp(ω, q,Q/2, φ)

+ ρi
nCpn(ω, q,Q/2, φ)

]
. (7)

In here, θNA is the scattering angle in the nucleon-nucleus
center of mass frame. The evaluation of the off-shell central
and spin-orbit amplitudes A, C/ sin φ, have shown that for
NN relative momenta less than 3 fm−1 and 50 MeV � ω �
200 MeV, they are essentially independent of the variables ω

and φ. It is then a good approximation to take this angle to its
on shell value φ = π/2. At this stage the optical potential is
still nonlocal.

In the KMT scattering framework, it is necessary to solve
the Lippmann-Schwinger equation for the elastic scattering
problem, for the potential U ,

T ′ = U + UG0T
′. (8)

The transition amplitude for elastic scattering, T , is related
to the transition amplitude associated with the potential U ,
through the relation T = A

A−1T ′, with T ′ = T ′(U ) where
T ′(U ) is defined in Eq. (8).

III. STRUCTURE

A. 4He

To describe the 4He ground state we take a single
particle harmonic oscillator model (HO), with parameter
b4 = √

2/3〈r2〉1/2
4 . The matter density normalized to the

number of nucleons is given has

ρ4(q) = ρ4
n(q) + ρ4

p(q). (9)

We assume the same matter density distribution for protons
and neutrons,

ρ4
n,p(q) = 2 exp

( − b2
4q

2/4
)
, b4 = 1.396 fm, (10)

where we have taken 〈r2〉1/2
4 = 1.71 fm.

B. 6He

To describe the 6He structure we consider two models:
a few-body model and a harmonic oscillator model. In
the former, the 6He is described as a three-body system
n + n + 4He. The bound wave function is obtained by solving
the Schrödinger equation in hyperspherical coordinates with
an effective three-body (3B) potential, which is introduced
to overcome the underbinding caused by the other closed
channels, most important of which the t + t breakup. The
n-4He potential is taken from Refs. [8,9], and use the GPT
NN potential [10] with spin-orbit and tensor components. In
the model (R5) we consider here the 3B effective potential
is described in [11]. The model predicts, with an α particle
rms matter radius of 1.49 fm, an 6He rms matter radius
of 2.50 fm. The total wave function is a sum of the three
components, 
 = 
12 + 
c1 + 
c2, where 1 and 2 represent
the halo neutrons and c the core. Neutron antisymmetrization
implies that 
c2 and 
c1 are related by permutation of labels,
and


 = 
̄12(�r12, �r(12)c) + (1 + P )
̄c1(�rc1, �r(c1)2). (11)

The total wave function 
 can be transformed into either set
of coordinates, so that


 = 
̄12(�r12, �r(12)c) = 
̄c1(�rc1, �r(c1)2). (12)

The one particle density can be written

ρ6
FB(r) = ρ̂c(r) + ρv

n(r), (13)

where ρ̂c(r) and ρv
n(r) are the contributions from the core and

valence neutrons in the center of mass of the whole nucleus. It
follows that the valence neutron density is

ρv
n(r) = 2

(
A

A − 1

)3 ∫
d�rc1

∣∣∣∣
̄c1

(
�rc1,

A

A − 1
�r
)∣∣∣∣

2

(14)

and, assuming that the core internal density is ρc(r), then ρ̂c(r)
is obtained by folding with ρc.m.(r), the density distribution for
the motion of the core center of mass, i.e.,

ρ̂c(r) =
∫

d�rcρ
c(�r − �rc)ρc.m.(�rc) (15)
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where

ρc.m.(�rc) =
(

A

2

)3 ∫
d�r12

∣∣∣∣
̄12

(
�r12,

A

2
�rc

)∣∣∣∣
2

. (16)

In momentum space,

ρ6
FB(q) = ρ̂c(q) + ρv

n(q), (17)

where

ρ̂c(q) = ρc(q) × ρc.m.(q). (18)

Here, the core density is

ρc(q) = ρc
n(q) + ρc

p(q), (19)

with

ρc
n,p(q) = 2 exp

( − b̄2
4q

2/4
)
, b̄4 = 1.216 fm, (20)

where we have taken a point density distribution of rms matter
radius of 1.49 fm.

We also consider the case where the valence nucleons are
described within the harmonic oscillator single particle model.
In momentum space these densities are

ρ6
HO(q) = ρ̆c(q) + ρ̆v

n(q), (21)

with

ρ̆c(q) = ρ̆c
n(q) + ρ̆c

p(q)
(22)

ρ̆c
n,p(q) = 2 exp

(− b̆2
4q

2/4
)
,

and

ρ̆v
n(q) = 2

(
1 − b̆2

vq
2/6

)
exp

(− b̆2
vq

2/4
)
. (23)

The range parameters are chosen to reproduce the rms radius
of 6He, i.e.,

〈r2〉6 = b̆2
4 + 5

6
b̆2

v. (24)

We assume 〈r2〉1/2
6 = 2.5 fm and take two sets of parameters:

b̆4 = 1.5 fm and b̆v = 2.1 fm (HO1) and b̆4 = 1.396 fm and
b̆v = 2.27 fm (HO2). In the second set (HO2) the parameters
for the α core are the same than those for the 4He particle.

In Fig. 1 the contributions to the matter density distributions
of 6He are compared with that of the neutron/proton 4He
matter distribution (thin dark solid line). The solid light
(dashed light) curve represents the neutron valence density
distribution within the few body (HO1) model. The thick
solid dark (dashed dark) curve represents the core density
distribution within the few body (HO1) model. The valence
neutrons density distribution is shorter ranged in momentum
space configuration. Due to the density distribution of the c.m.
motion the core contribution is shorter ranged when compared
with the 4He matter density distribution.

C. 8He

To describe the 8He ground state we take the cluster orbital
shell model approximation (COSMA) wave function proposed
by Zhukov et al. [12]. In this work a simple parametrized
Gaussian form for the core and valence nucleon densities
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FIG. 1. (Color online) Calculated neutron/proton matter density
distributions for 4,6He. The thin dark solid line represents the
neutron/proton matter distribution of 4He. The solid light (dashed
light) curve corresponds to the neutron valence density distribution
within the few body (HO1) model. The thick solid dark (dashed dark)
curve represents the core density distribution within the Few body
(HO1) model.

is also presented. When compared with the full COSMA
model approximation this density produces the same rms
matter radius and accurate values for rv = 3.14 fm and rp =
1.69 fm, the mean distances of the valence neutrons, and of
a point proton from the 8He c.m., respectively. The Fourier
transforms of these densities are

ρ̌c
n,p(q) = 2 exp

(− b̌2
4q

2/4
)
, b̌4 = 1.38 fm (25)

for the α core cluster, and

ρ̌v
n(q) = 4

(
1 − b̌2

vq
2/6

)
exp

(− b̌2
vq

2/4
)
,

(26)
b̌v = 1.99 fm

for the valence neutrons cluster.

IV. RESULTS

In this section we evaluate the elastic scattering differential
cross section and polarization for the scattering of protons
on 4,6,8He at Elab = 297 MeV using the multiple scattering
expansion of the optical potential MSO. In the impulse
optimal factorization of the single scattering approximation
the optical potential can be written as a product of target
densities and off-shell free NN transition amplitudes evaluated
at the appropriate energy. These amplitudes were obtained
from a realistic NN Paris interaction, as in [7]. The Coulomb
interaction was included in an approximate way using the
subtracted transition amplitude method [7,13] with an uniform
charge sphere.

In Fig. 2 we show the differential cross section (upper
figure) and analyzing power (lower figure) for protons on 4He
at 297 MeV. The solid line represents the calculated cross
section for protons on 4He as described in the text. When
compared with the data taken from [5], one sees that the
calculated observable reproduces reasonably well the small
angular region but decays faster than the data. This is probably
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FIG. 2. Calculated elastic differential cross section for p-4He at
297 MeV. The data are for p-4He [5].

due to the breakdown at large angles of the KMT mean field
theory for such a light nucleus like 4He.

In the upper part of Fig. 3 we compare the differential
cross section for protons on 4,6He isotopes at 297 MeV. The
calculated differential cross section for proton on 6He using
the few-body (thick solid line) and harmonic oscillator HO1
(open circles) densities are bigger than that of p-4He at small
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FIG. 3. Calculated elastic differential cross section for p-4,6He at
297 MeV using different structure models for 6He.

angles where the valence neutron contribution is crucial and
are identical to each other specially at large angles. This is
due to the fact that in this angular region the differential cross
section essentially probes the core contribution to the optical
potential, and this is essentially the same in both models. In
addition, the differential cross sections calculated with both
the FB and HO1 structure models decay faster than that of
proton scattering from 4He. This follows from the fact that
in both models the matter density distribution of the core
in momentum space is shorter ranged than that of 4He. In
fact, the HO2 model has a similar core contribution than
that of the 4He and therefore the calculated differential cross
section, represented by the dashed-dotted line, decays more
slowly. Therefore at large angles the differential cross section
essentially probe that structure part of information contained
in the core contribution to the optical model.

In the lower part of Fig. 3 we show the calculated analyzing
power for p-4,6He. In both cases the observable changes from
positive to negative sign at this energy as for the case at lower
energy [5]. At small angles the calculated observable for proton
on 6He using the few body and the HO1 model are the same
despite the valence matter density distributions being different.
This is due to the fact that the spin-orbit contribution from the
halo valence neutrons is very small. In fact, the short range
character of the valence halo density distribution when folded
with the spin-orbit component of the NN scattering amplitude,
which approaches zero at small momentum transfer, gives
a negligible contribution to the overall spin-orbit force. The
p-6He polarization is slightly shifted inwards when compared
to the p-4He polarization.

In the upper (lower) part of Fig. 4 the dashed line represents
the elastic scattering differential cross section (polarization)
for p-8He. At very small angles, where the valence neutrons
contribution is important, the differential cross section is larger
than that of p-4,6He. At larger angles it decreases slowly than
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FIG. 4. Elastic differential cross section for p-4,6,8He at 297 MeV.
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that of the p-6He because the core contribution to the optical
potential is longer ranged in momentum space. Although the
core contribution to the optical potential is identical to that of
the 4He the skin of the valence neutrons have here a mass effect
in shifting the analyzing power slightly inwards. Nevertheless
one can say that the analyzing powers for p-4,6,8He are very
similar.

V. CONCLUSIONS

We have studied the elastic scattering of protons from
4,6,8He and calculated the differential cross section and
analyzing power elastic observables. These calculations were
performed making use of the impulse approximation to the
single scattering term of the multiple scattering expansion of
the optical potential. In this approach dynamics and structure
are clearly delineated. We have evaluated the differential cross
section and analyzing power observables. We have shown
that the differential cross section probe that structure part of
information contained in the core contribution to the optical
model. We have also shown that the the spin-orbit contribution

from the halo valence neutrons is very small and does not
contribute to the analyzing power. Therefore, the long-range
halo contribution cannot justify a significant modification
of the spin-orbit potential (in particular, the increase of
the potential radius), as suggested in the phenomenological
analysis done in Ref. [1].

In addition, we have found that the polarization observable
for proton +6He changes sign from positive to negative at
around 30◦, and that the analyzing power for p-4,6,8He are
very similar.

Experimental data for these reactions would be very useful
to assess the validity of the conclusions outlined in this work.
Preliminary results have been already obtained at RIKEN for
proton −8He [14].
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