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The two-dimensional square-well potential is one of the simplest quantum-mechanical systems that
exhibits accidental degeneracy. We show that the double degeneracy present is a consequence of a
dynamical symmetry and derive a new symmetry group associated with the system. ©1997

American Association of Physics Teachers.

I. INTRODUCTION

Accidental degeneracy in quantum systems usually signals
the presence of a hidden symmetry group for which the de-
generacy is rendered normal, that is, in terms of which the
observed state degeneracies correspond to the dimensions of
the irreducible representations of the group.1 This is the case
for the nonrelativistic hydrogenic atom, where theSO(4)
symmetry explains the angular momentum independence of
the energy spectrum.2 Many other physical systems display-
ing larger degeneracies than anticipated have been studied,
and in most instances the corresponding hidden symmetries
have been identified. In most cases, however, this requires a
very careful and detailed analysis, which has prompted the
authors of Ref. 3 to compare it more with art than with
science. Moreover, these symmetries usually correspond to
continuous transformations and the corresponding symmetry
groups are thus Lie groups or supergroups.4 It may come as
a surprise that one of the simplest and most studied systems
in introductory quantum mechanics, that of the free particle
in an impenetrable square box, exhibits accidental degen-
eracy and that, to our knowledge, no group-theoretical expla-
nation has been provided in the literature. The problem is
discussed in many quantum mechanics textbooks. For ex-
ample, Liboff assigns the degeneracy to thex↔y symmetry
transformation between wave functions, but does not discuss
either the symmetry classification of the states or the distinc-
tion between normal and accidental degeneracies in the
system.5 Other books do analyze the geometrical symmetries
in the problem, but fail to explain the presence of accidental
degeneracy.6 In contrast to other hidden symmetry analyses
that have been carried out, a distinguishing feature of this
system~and that of its three-dimensional extension! is that
the patent geometrical symmetry of the box corresponds to a
point group and not to a continuous set of transformations.
Perhaps for this reason the problem has not been studied
using the traditional methods,3 since its analysis requires a
combination of discrete and continuous group techniques. In
this article we re-examine the two-dimensional particle in a

box and derive, using group-theoretical arguments, the dy-
namical symmetry responsible for the observed double de-
generacy. We also construct a new symmetry group which
arises from the combination of this~continuous! symmetry
and the eight discrete operations of the square-well geomet-
ric symmetry group. The new group is similar to the kind of
space groups common in solid state physics. We then pro-
ceed to show explicitly that the group explains the observed
double degeneracy of the system.

II. THE SQUARE-WELL POTENTIAL

A free particle enclosed by an impenetrable two-
dimensional square box of sideL has the eigenstates

cn1n2
~x,y!5

2

L
sinS n1px

L D sinS n2py

L D , ~1!

where n1 ,n2 are positive integers. These states satisfy the
conditioncn1n2

50 at the boundaries of the box. In Fig. 1 we
indicate the coordinate system selected for the states~1!. It is
in this system that the eigenfunctions take the simple form
~1!. The corresponding eigenvalues are given by

En1 ,n2
5

\2p2

2mL2 ~n1
21n2

2!. ~2!

We can readily see that there are two kinds of degeneracies
present. The first kind, which is the one we shall consider in
this paper, is a double degeneracy that occurs whenevern1

Þn2 , since by interchanging then1 andn2 labels in~1!, we
find

En1 ,n2
5En2 ,n1

. ~3!

The second kind of degeneracy is more subtle and occurs
when we have the following kind of ‘‘Pythagorean’’ rela-
tions:

n1
21n2

25n3
21n4

2 with niÞnj for all i , j , ~4!
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and higher order relations of this sort, i.e., the equality of
three or more of these sums of squares. The full degeneracy
of the problem, including the ones in~4!, has been discussed
by Wai-Kee Li, giving rise to a formula which arises from
the Gaussian factorization theorem. This result is useful to
evaluate the degree of degeneracy as the quantum numbers
grow.7 We shall not attempt to explain the existence of the
‘‘Pythagorean’’ degeneracy~4! in terms of a larger symme-
try group in this paper, so from our point of view they will
remain ‘‘accidental.’’ It is, of course, an interesting question
whether they can also be understood in this way, a matter
which probably involves the establishment of some kind of
new connection between group-theoretical methods and
number theory. The analysis of the double degeneracies~3!,
however, may shed some light on this question.

Returning to Eq.~3!, we shall now start by showing that
the apparent symmetry of the system is unable to account for
this behavior. What is the explicit symmetry group associ-
ated with the particle in the square box? The system is
clearly invariant under all operations that transform the
square box onto itself, i.e., theC 4v point group of powers of
p/4 rotations and reflections.8 These operations are indicated
in Fig. 2, while in Table I we write down theC 4v-character
table. At the right of Table I we indicate the way that the
coordinates and angular momentum operators transform un-
der the group. We see from Table I that this group has five
kinds of irreducible representations~I.R.!, four of them one

dimensional and a single two-dimensional one. In order for
this group to explain the degeneracy~3! of the system, the
set of doubly degenerate statescn1n2

and
cn2 ,n1

, with n1Þn2 , should transform as the two-
dimensional irreducible representation,E. We shall prove,
however, that this is not the case. To this end, we define the
linear combinations

fn1n2

6 5
1

A2~11dn1n2
!

~cn1n2
6cn2n1

!, ~5!

which have the same energy spectrum as the states~1! and
are more appropriate, since they carry the I.R. ofC 4v , as we
now show by applying to them the operators of the group. It
is enough to consider a single operator in eachC 4v class,
from which we find

Êfn1n2

6 5fn1n2

6 , ~6a!

Ĉ2fn1n2

6 5~2 !n11n2fn1n2

6 , ~6b!

Ĉ4fn1n2

6 5an1n2

6 fn1n2

1 1bn1n2

6 fn1n2

2 , ~6c!

sv
afn1n2

6 5an1n2

6 fn1n2

1 2bn1n2

6 fn1n2

2 , ~6d!

sd
afn1n2

6 56fn1n2

6 , ~6e!

where

an1n2

6 5 1
2~~2 !n2116~2 !n111!, ~7a!

bn1n2

6 5 1
2~~2 !n26~2 !n111!. ~7b!

The operations considered in~6! are indicated in Fig. 2 and
the result can be simply deduced from the action of the group
operators on the coordinates (x,y) and substituting in thec’s
in ~1! and thef’s in ~5!. For example,Ĉ2x5L2x, Ĉ2y
5L2y, and the result~6b! can be found by direct substitu-
tion in the wave functions.

It is important to emphasize that in order to carry out the
symmetry analysis of the system it is necessary to use the
states~5! and not the wave functions~1!, since the latter, in
general, do not transform irreducibly under theC 4v group,
but rather as a linear combination of two different represen-
tations. This is an important point, which is often a source of
confusion in quantum mechanics textbooks. For example, the
ŝd

a operator in~6e!, while clearly connecting the statescn1n2

and cn2n1
, does not mix the states~5! among themselves.

The mixing of thec’s, while implying a degeneracy, does
not provide a reason for its occurrence.

Fig. 1. Selected~unprimed! coordinate system for the square-well potential,
with origin at a corner of the box.

Fig. 2. Primed coordinate system for symmetry elements of the groupC4v ,
with origin at the center of the box.

Table I. TheC 4v character table. At the right we indicate the transformation
properties of the coordinatesx8,y8,z8 and the angular momentum operators
Rx ,Ry ,Rz under the action of the group, with respect to the reference frame
of Fig. 2.

C4v E C2 2C4 2sv 2sd

A1 1 1 1 1 1 z8,x821y82

A2 1 1 1 21 21 Rz8
B1 1 1 21 1 21 x822y82

B2 1 1 21 21 1 x8y8
E 2 22 0 0 0 (x8,y8), (Rx8 ,Ry8)
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We now return to our discussion. From relations~6! and
the character Table I we can identify the symmetry character
of the fn1 ,n2

6 according to the parity of the labels. For ex-

ample, ifn152k, n252l ~k, l integers!, we find

a2k,2l
1 521, a2k,2l

2 50, b2k,2l
1 50, b2k,2l

2 51 ~8a!

and from~6!:

Êf2k,2l
6 5f2k,2l

6 , Ĉ2f2k,2l
6 5f2k,2l

6 , Ĉ4f2k,2l
6 57f2k,2l

6 ,
~8b!

ŝv
af2k,2l

6 52f2k,2l
6 , ŝd

af2k,2l
6 5f2k,2l

6 .

We see thatf2k,2l
1 and f2k,2l

2 are not mixed by the group
operators and, furthermore, by comparing~8b! with Table I
we find that

f2k,2l
1 →B2 , f2k,2l

2 →A2 ~ lÞk! ~9!

is their symmetry character. Note that due to~5! fn,n
2 50 and

only f2k,2k
1 survives, but still transforms asB2 . Doing the

same analysis forn152k11, n252l 11, we find

f2k11,2l 11
1 →A1 , f2k11,2l 11

2 →B1 ~ lÞk!. ~10!

Again, for l 5k the A1 statef2k11,2k11
1 is nondegenerate.

Finally, for (2)n1Þ(2)n2, we find thatfn1n2

1 andfn1n2

2 do

mix, since, e.g., from~6! and ~7!

Ĉ4f2k,2l 11
1 5f2k,2l 11

2 . ~11!

We conclude that the pair of statesfn1 ,n2

6 , n1Þn2 , carry the

double-valued I.R.E only when (2)n1Þ(2)n2. For this
case the degeneracy~3! is indeed explained byC 4v . How-
ever, in the case whenn1Þn2 and the parities are the same,
for both even and odd values of the quantum numbers the set
of degenerate statesfn1n2

1 and fn1n2

2 carry different one-

dimensional I.R. ofC 4v and are thus ‘‘accidentally’’ degen-
erate under the action of this group. From the point of view
of C 4v there is no reason for (B2 ,A2) or (A1 ,B1) states to be
degenerate. In Figs. 3 and 4 we display particularfn1 ,n2

6

wave functions associated withE and (B2 ,A2) symmetries,
respectively. Note that no obvious geometric operation can
transform thef1 into thef2 for the latter case.

III. HIDDEN SYMMETRY

To attempt an explanation for this behavior we now search
for additional operators that can mix the states~9! and ~10!
among themselves and thus should lie outsideC 4v . To this
end, we remind the reader that in the case of the nonrelativ-
istic hydrogenic atom a similar situation occurs, and the so-
lution stems from the existence of a nongeometrical symme-
try arising from the particular~Coulomb! potential involved.2

This is a so-called ‘‘dynamical symmetry,’’ expressed
through the conservation of the Runge–Lenz vectorA and
through the closure~at fixed energy! of the commutation
relations involvingA and the angular momentumL , corre-
sponding to anSO(4) symmetry.2 In the square-box system,
however, there is no potential inside the box while there is an
infinite potential at the boundary, and it is the shape of the
box that entirely imposes theC 4v symmetry. Since the
eigenstates~5! satisfy the appropriate boundary conditions,
the symmetry group for the system can be more simply de-

fined through the following requirements. The symmetry op-
erationsĝi should commute with the particle’s Hamiltonian
inside the box:

Ĥ52
\2

2m S ]2

]x2 1
]2

]y2D , ~12!

i.e.,

@ ĝi ,Ĥ#50, ~13!

and, in addition, when acting on the eigenstates~5! the ĝi
should lead to states with the same boundary conditions. An
arbitrary O(2) transformation~two-dimensional rotations
and reflections! satisfies~13!, but only itsC 4v subgroup op-
erations preserve the boundary conditions. By imposing the

Fig. 3. Contour plot for the wave function~a! f23
1 and ~b! f23

2 .

1089 1089Am. J. Phys., Vol. 65, No. 11, November 1997 Leyvrazet al.



above requirements we can avoid dealing with the awkward
form of the potential when searching for other symmetries. If
a dynamical symmetry operatorD̂ exists for the particle in
the box, it should commute withĤ but not with theC 4v

transformations, since we expect thatD̂ will mix the A2 and
B2 states~9! as well as theA1 and B1 eigenfunctions~10!,
while preserving the boundary conditions satisfied by the
fn1 ,n2

6 . These requirements are only possible ifD̂ trans-

forms one of the two states in~9! or ~10! into a linear com-
bination of the same two states. In particular, we shall search
for an operator that transforms one of the states into the
other. From the point of view of symmetry, this implies that
it should have definite tensorial properties underC 4v , D (G),
whereG is one of the I.R. in Table I, such that

G ^ A15B1 , G ^ B15A1 , G ^ A25B2 , G ^ B25A2 .
~14!

From Table I we readily find thatG5B1 , since the entries in
the table coincide with the group elements for one-
dimensional representations. Furthermore, from Table I we
also see thatB1^ E5E, and thus the degenerate sets with
(2)n1Þ(2)n2 are left unaltered by aB1 tensor. From the
right-hand side of Table I we see that in the reference system
of Fig. 2 the combinationx82–y82 transforms as theB1 I.R.
under the group operations, although this is not true in the
reference frame chosen for the wave functions~1!. The same
linear combination of squared momenta, however, trans-
forms according to theB1 I.R. in both reference systems. We
conclude that the operator

D̂ ~B1!5
]2

]x22
]2

]y2 , ~15!

satisfies the requirements we set up from the outset. As a
check, by applying~15! to the states~5! we find

D̂ ~B1!fn1n2

6 5
p2

L2 ~n2
22n1

2!fn1n2

7 , ~16!

as required. This operator constitutes the ‘‘dynamical sym-
metry’’ operator~analogous to the Runge–Lenz vector in the
Coulomb system!, which does not arise from geometrical
considerations but from the specific Hamiltonian~12! to-
gether with the boundary conditions which impose theC 4v
symmetry. We again stress that in this case the commutation
with the Hamiltonian~12! does not automatically guarantee
that the boundary conditions are preserved. The combination
~15! is the only operator that does so and has the appropriate
tensor properties underC 4v . Before considering the combi-
nation of this operator with theC 4v transformations, we re-
mark that it is possible to interpret the larger symmetry in
terms of supersymmetric quantum mechanics, in the follow-
ing sense.9 We may identifyD̂ (B1) in ~15! as a ‘‘supersym-
metric charge’’Q̂[D̂ (B1), since for the singlet states

Q̂fn,n
1 5S ]2

]x22
]2

]y2Dfn,n
1 50, ~17!

and thus eachfn,n
1 can be considered to be a vacuum state in

the language of supersymmetric quantum mechanics
~SSQM!.8 In this approach thefn1n2

6 play the role of super-

symmetric partners and one may define a supersymmetric
Hamiltonian~with Q̂†5Q̂!:

Ĥs5
1

2
$Q,Q†%5S ]2

]x22
]2

]y2D 2

. ~18!

SinceB1^ B15A1 , Ĥs commutes withC 4v , and also with
both Ĥ andD̂ (B1)5Q̂. Note that the whole spectrum can be
organized as a series of ‘‘towers’’ with the singletfn,n

1 ,
followed by supersymmetric doubletsf n̄ ,n

6 , with n̄.n. This
is an intriguing interpretation, but the description is not com-
plete, since the actual relation between theC 4v symmetries
and D̂ (B1) is not specified in this framework. In Sec. IV we
derive a new symmetry group for the system.

Fig. 4. Contour plot for the wave function~a! f24
1 and ~b! f24

2 .
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IV. A NEW SYMMETRY GROUP FOR THE
SQUARE WELL

When attempting to define a larger symmetry group for
the system which contains the geometricalC 4v group as a
subgroup, we shall need to combine these transformations
with the continuous ones generated byD̂ (B1). Finite transfor-
mations associated withD̂ (B1) can be obtained by exponen-
tiation:

Û~a!5exp~ iaD̂ ~B1!!5expF iaS ]2

]x22
]2

]y2D G , ~19!

where a is a coordinate measuring the amplitude of the
transformation. Abstractly, theÛ(a) conform to an Abelian
one-parameter continuous group,8 but no information regard-
ing the range ofa can be deduced from~19!. When acting
with ~19! on the square-well wave functions~1! or ~5!, how-
ever, one can see thata is bounded and thus that the group is
compact. Using~16! we readily find

Û~a!cn1n2
~x,y!5eiakn1n2cn1n2

~x,y!, ~20!

where

kn1n2
5

p2

L2 ~n2
22n1

2!. ~21!

As (n2
22n1

2) is an integer number, we conclude that
ap2/L2 is a periodic variable, where the period depends on
the relative parities ofn1 andn2 . Thus, for (2)n15(2)n2,

n2
22n1

254l , l integer,

which implies that we may restricta to the range

0<
ap2

L2 l ,
p

2
or 0<a,

L2

2p l
. ~22!

On the other hand, for (2)n1Þ(2)n2,

n2
22n1

252l 11, l integer,

implying that

0<
ap2

L2 ~2l 11!,2p, or 0<a,
2L2

p~2l 11!
. ~23!

We see from~20!–~23! that this one-parameter group can
be labeled@up to possible additional degeneracies of the
‘‘Pythagorean’’ type~4!# by the discrete set of numberskn1n2

or, alternatively, by the integer numbers

k̄n1n2
5

L2

p2 kn1n2
5n2

22n1
2. ~24!

Note that the double-degeneracy~3! implies thatkn1n2
and

kn2n1
52kn1n2

are associated with the same energy eigen-

value. The singlet states correspond toknn[0.
We are now in a position to study the full symmetry op-

erations combiningÛ(a) andC 4v . The latter group can be
conveniently defined by the coset expansion~see Fig. 2!

C 4v5C 2v1sd
a
C 2v , ~25!

whereC 2v is the normal~Abelian! subgroup

C 2v5$ĝ%5$E,sv
a ,sv

b ,sv
asv

b5C2%. ~26!

The meaning of~25! is that the fullC 4v group may be gen-
erated by considering the subgroup~26! plus the elements
arising from the action ofsd

a on theC 2v operations. Since
the operationsĝPC 2v can only change the signs of]x and
]y ~see Fig. 2!, it is clear from~19! that

ĝÛ~a!5Û~a!ĝ, ~27!

while ŝd
a ~which exchanges]x and]y! gives

ŝd
aÛ~a!5Û~2a!ŝd

a . ~28!

We also note that the invariance ofC 2v implies

ŝd
aĝ5ĝ* ŝd

a where ĝ,ĝ* PC 2v , ~29!

or explicitly

E* 5E, sv
a* 5sv

b , sv
b* 5sv

a , C2* 5C2 . ~30!

Using ~27!–~29! we find that in the new symmetry group
there are two kinds of elements, which we denote byÛ(a)ĝ
and Û(a)ŝd

aĝ, with multiplication table

Û~a!ĝ1Û~b!ĝ25Û~a1b!ĝ1ĝ2 , ~31a!

Û~a!ĝ1Û~b!ŝd
aĝ25Û~a1b!ŝd

aĝ1* ĝ2 , ~31b!

Û~a!ŝd
aĝ1Û~b!ĝ25Û~a2b!ŝd

aĝ1ĝ2 , ~31c!

Û~a!ŝd
ag1U~b!ŝd

aĝ25Û~a2b!ĝ1* ĝ2 . ~31d!

Denoting the one parameter group ofÛ(a) by D(1), it is
also clear from~27! and ~28! that for RPC 4v

R̂Û~a!R̂215Û~ea!, ~32!

where

e511 if R5ĝ,

e521 if R̂5ŝd
aĝ. ~33!

Equations~32! and ~33! imply that under the action of the
C 4v elements, theD(1) set of operators transform among
themselves. This is the definition of an invariant subgroup
and this indicates that we may denote the symmetry group of
~31! in the semidirect product form10

G5D~1!∧C 4v . ~34!

In the next section we construct the I.R. of this group and
proceed to prove that under its action the accidental degen-
eracy~3! is rendered normal.

V. THE IRREDUCIBLE REPRESENTATIONS OF G

Given the semidirect product form ofG, its representa-
tions can be constructed using an induction procedure10 from
D(1) to G. This is a somewhat technical endeavor which is
difficult for the nonspecialist, so in this section we follow a
simpler but equivalent route which does not explicitly re-
quire the induction concepts. Since we are interested in the
particular I.R. ofG spanned by the square-well’s wave func-
tions ~1! @or equivalently~5!#, we may use theD(1) repre-
sentations~20! and~21!. We start by considering the I.R. of
the subgroup of~34! given by

D~1! ^ C 2v , ~35!
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where the direct product sign is due to~27!. This is an Abe-
lian subgroup whose I.R. are thus one dimensional.8 Denot-
ing the operators of this group byÛ(a)ĝ, we find

Û~a!ĝcn1n2
~x!5eiakn1n2ĝcn1n2

~x!

5eiakn1n2x~ ĝ!cn1n2
~x!, ~36!

where x(g) are elements of theC 2v character table~see
Table II!. It is easy to check directly for thecn1n2

(x) states
that

x~E!51, x~sv
a!5~2 !n211, x~sv

b!5~2 !n111,
~37!

x~C2!5~2 !n11n2.

Equations~36! and ~37! provide a complete classification of
the I.R. of the subgroup~35! spanned by the statescn1n2

(x).
Comparing~37! with Table II we readily identify the corre-
spondingC 2v I.R. In order to generate the corresponding
representations forG, we should now include the action of
ŝd

a as implied by the coset expansion~25! and the group
table ~31!. Since

ŝd
acn1n2

~x!5cn2n1
~x!, ~38!

the action of theC 4v operations that are not inC 2v span a
two-dimensional space whenevern1Þn2 . For the case
wheren15n2 , however, the I.R. remains unidimensional:

Û~a!R̂cnn~x!5eiaknnx~R!cnn~x!5x~R!cnn~x!, ~39!

for all RPC 4v , sinceknn50. Thex(R) in ~39! are the ele-
ments of theC 4v character table, and we have shown in Eqs.

~9! and ~10! that the corresponding I.R. are eitherA1 ~for
even n! or B2 ~for odd n!. The knn50 I.R. thus coincide
with the C 4v ones. Returning to then1Þn2 case, we act on
the two-dimensional space spanned bycn1n2

(x) and

ŝd
acn1n2

(x)5cn2n1
(x),

Û~a!ĝS cn1n2

cn2n1
D 5S eikax~g!cn1n2

Û~a!ĝŝd
acn1n2

D
5S eikax~g!cn1n2

ŝd
aÛ~2a!ĝ* cn1n2

D
5S eikax~g!cn1n2

e2 ikax~g* !ŝd
acn1n2

D
5S eikax~g! 0

0 e2 ikax~g* !
D S cn1n2

cn2n1
D , ~40!

where we used~27!, ~28!, and~29! and have writtenkn1n2
as

k.
Doing the same forÛ(a)ŝd

aĝ we find

Û~a!ŝd
aĝS cn1n2

cn2n1
D 5S 0 e2 ikax~g!

eikax~g* ! 0 D S cn1n2

cn2n1
D .

~41!

In both ~40! and ~41!, x(g) @or x(g* )# are given by~37!
@recalling Eqs.~30!#. As a last point in the construction of the
I.R., it is necessary to find the representation ofÛ(a)R̂ in
the basis~5!, which as discussed before is the one that spans
the C 4v I.R. This is achieved by means of the orthogonal
matrix

S5
1

&

S 1 1

21 1D , ~42!

which transforms~40! and ~41! into the slightly more com-
plicated form

D~U~a!g!5
1

2 Feikax~g!1e2 ikax~g* ! e2 ikax~g* !2eikax~g!

e2 ikax~g!2eikax~g* ! eikax~g!1e2 ikax~g* !
G , ~43a!

D~U~a!sd
ag!5

1

2 Feikax~g* !1e2 ikax~g! eikax~g!2eikax~g* !

eikax~g* !2e2 ikax~g! 2eikax~g* !2e2 ikax~g!
G , ~43b!

whereD corresponds to the representation matrix.
Using ~43! together with~30! and~37! we can readily find

the explicit form of the representation for everyC 4v element,
in particular, for the generatorsŝv

a and ŝd
a . We can then

study the representations of theC 4v subgroup contained in
D, a procedure known as the subductionG↓C 4v by taking
a50 in ~43!:

D~sv
a!52

1

2 F ~2 !n11~2 !n2 ~2 !n12~2 !n2

~2 !n12~2 !n2 ~2 !n11~2 !n2
G ~44!

and

D~sd
a!5F1 0

0 21G . ~45!

Table II. TheC 2v character table.

C2v E C2 sv
a sv

b

A1 1 1 1 1
A2 1 1 21 21
B1 1 21 1 21
B2 1 21 21 1
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From ~44! we immediately conclude that when
(2)n15(2)n2 the representations are reducible, while for
(2)n1Þ(2)n2 they remain irreducible, as we had already
found in Sec. III.

We have thus succeeded in deriving the explicit form for
the I.R. ofG given in ~43!, spanned by the square-well states
~5! and which are labeled by a pair of quantum numbers
(kn1n2

,G). We should distinguish between then15n2 and

n1Þn2 cases.

~a! For n15n2 , all the I.R. are one dimensional,knn50.
TheG is a C 4v label, eitherA1 or B2 for even and odd
n, respectively.

~b! For n1Þn2 , the I.R. of G are bidimensional and la-
beled by (kn1n2

,G), whereG is a C 2v I.R. By taking

a50 in ~43! we arrive at the subduction of these rep-
resentationsG↓C 4v . Using the (a50) characters@the
traces of the I.R. associated with~44! and ~45!# to-
gether with Table I, we find the following results:

G ↓ C 4v Dim

knn50; A1 A1 1

~46!

knn50; B2 B2 1
~k2m11,2n11 ; A1! A1% B1 2
~k2m,2n ; A2! A2% B2 2
~k2m,2n11 ; B2! E 2
~k2m11,2n ; B1! E 2

Particular attention should be paid to the third and fourth
rows in the above table, corresponding to the I.R. spanned by
the basis states~10! and ~9!. These sets span two-
dimensional I.R. inG which reduce to a direct sum of rep-
resentations under reduction toC 4v . Therefore, while the
degeneracy associated with~9! and ~10! is accidental under
the geometricC 4v group, underG the degeneracy turns out
to be natural. Again, this situation is analogous to the one
present in the nonrelativistic hydrogenic atom, whereSO(4)
and SO(3) play the roles ofG and C 4v , respectively. The
groupG has a structure similar to that of a space~crystallo-
graphic! group,10,11 albeit the role of the translations is
played by the internal transformations generated byD (B1),
Eq. ~19!.

VI. CONCLUSIONS

We have analyzed the problem of a particle enclosed by an
impenetrable square box in two dimensions, discussed its
accidental degeneracy associated with the existence of a dy-
namical symmetry, and constructed the higher symmetry
groupG5D(1)∧C 4v . The structure ofG is similar to that
of a space group, and we have exploited this fact in order to
explicitly construct the I.R. spanned by the square-well wave
functions. The doubly degenerate states of the system are
now classified according to different double-valued represen-
tations ofG, i.e., under the new group the degeneracy has
been rendered normal. Furthermore, we have shown that
these representations correctly reduce to the appropriate I.R.
under theC4v subgroup.

It should be remarked that our analysis does not explain
additional degeneracies@of the ‘‘Pythagorean’’ type~4!#
which, as remarked upon in Sec. I, probably require the es-
tablishment of a connection between group theory and num-
ber theory.7,12 Our analysis can be generalized to the three-

dimensional free particle system enclosed by an
impenetrable cubic box, although the solution is more com-
plex. In this case there is a six-dimensional degeneracy not
fully explained by theOh apparent symmetry of the system,
and there are two additional dynamical symmetries, which
should be combined with the operations of theOh group.

A similar analysis can be applied to other separable sys-
tems of the kind

H5 1
2Px

21V~ uxu!1 1
2Py

21V~ uyu!, ~47!

including the free particle and the harmonic oscillator sys-
tem, both of which display higher symmetries thanG. It is
perhaps relevant to note that the quartic Hamiltonian

H5n̂x
21n̂y

2, ~48!

wheren̂x and n̂y are thex andy number operators, displays
a symmetry group isomorphic toG for the space spanned by
harmonic oscillator wave functions. In this space the study of
the additional degeneracies~4! may be simpler to carry out.3

Finally, we note that the same kind of methods can be ap-
plied to the analysis of the accidental degeneracies associated
with a rectangular box with commensurable sides, that is,
wherenL15mL2 , whereL1 andL2 are the side lengths and
n and m are integers. In that case the double degeneracies
occur for the levels (n1n2) and (n18 ,n28) when nn15mn28 ,
mn25nn18 , besides the appearance of generalized
‘‘Pythagorean’’ identities. Since the patent symmetry in this
case isC 2v , no double degeneracies are expected, so the
nature of the problem is, in principle, quite different. The
integral of the motion~15!, however, still connects the de-
generate wave functions in the system. In this case the
double degeneracy can be ascribed to the presence of a hid-
den discrete symmetry, which together with the integral of
the motion can explain the accidental degeneracy observed.13
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