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The two-dimensional square-well potential is one of the simplest quantum-mechanical systems that
exhibits accidental degeneracy. We show that the double degeneracy present is a consequence of a
dynamical symmetry and derive a new symmetry group associated with the systermmg7 ©
American Association of Physics Teachers.

[. INTRODUCTION box and derive, using group-theoretical arguments, the dy-
) ) . namical symmetry responsible for the observed double de-

Accidental degent_aracy in quantum systems usu.ally S'Qnalﬁeneracy. We also construct a new symmetry group which

the presence of a hidden symmetry group for which the deyyises from the combination of thigsontinuous symmetry

generacy is rendered normal, that is, in terms of which the,nq the eight discrete operations of the square-well geomet-

observed state degeneracies correspond to the dimensions,pf symmetry group. The new group is similar to the kind of

the irreducible r(_ep_re_sentations o_f the grdufhis is the case space groups common in solid state physics. We then pro-

for the nonrelativistic hydrogenic atom, where t8&X4)  ceed to show explicitly that the group explains the observed

symmetry explains the angular momentum independence @fouble degeneracy of the system.

the energy spectrumMany other physical systems display-

ing larger degeneracies than anticipated have been studied,

and in most instances the corresponding hidden symmetrids THE SQUARE-WELL POTENTIAL

have been identified. In most cases, however, this requires a . )

very careful and detailed analysis, which has prompted the A free particle enclosed by an impenetrable two-

authors of Ref. 3 to compare it more with art than with dimensional square box of sidehas the eigenstates

science. Moreover, these symmetries usually correspond to 2 n, X N,y

continuous transformations and the corresponding symmetry 4, , (X,y)=— sin( )sin( ) D

groups are thus Lie groups or supergrofifismay come as v L L L

a surprise that one of the simplest and most studied systeMgheren,,n, are positive integers. These states satisfy the

in introductory quantum mechanics, that of the free particle;gngition Yin,n, =0 at the boundaries of the box. In Fig. 1 we

in an impenetrable square box, exhibits accidental degen- .. . .
eracy and that, to our knowledge, no group-theoretical expla'—ndlcate the coordinate system selected for the stajedt is

nation has been provided in the literature. The problem iin this system that the eigenfunctions take the simple form
discussed in many quantum mechanics textbooks. For e 1). The corresponding eigenvalues are given by

ample, Liboff assigns the degeneracy to ey symmetry 272 T

transformation between wave functions, but does not discuss En,.n,= 2uL2 (n1+n3). )
either the symmetry classification of the states or the distinc- ) ) )
tion between normal and accidental degeneracies in th¥/e can readily see that there are two kinds of degeneracies
systent. Other books do analyze the geometrical symmetrie®resent. The first kind, which is the one we shall consider in
in the problem, but fail to explain the presence of accidentathis paper, is a double degeneracy that occurs wheneyver
degenerac$.In contrast to other hidden symmetry analyses#n,, since by interchanging the, andn, labels in(1), we

that have been carried out, a distinguishing feature of thigind
system(and that of its three-dimensional extensids that E —E 3)
the patent geometrical symmetry of the box correspondstoa MMz —N2.M’

point group and not to a continuous set of transformations. The second kind of degeneracy is more subtle and occurs

Perhaps for this reason the problem has not been studigghen we have the following kind of “Pythagorean” rela-
using the traditional methodssince its analysis requires a tions:

combination of discrete and continuous group techniques. In -~ , .
this article we re-examine the two-dimensional particle in a  N1+nz=nz+nz with nj#n; for all i,j, (4)
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y Table |. The?,, character table. At the right we indicate the transformation
properties of the coordinates,y’,z’ and the angular momentum operators
R«,Ry ,R, under the action of the group, with respect to the reference frame
of Fig. 2.
Cu E C, 2C, 2o, 20y
A, 1 1 1 1 1 z' x'2+y'?
A, 1 1 1 -1 -1 R,
B, 1 1 -1 1 -1 x'2—y'?
B, 1 1 -1 -1 1 X'y’
E 2 -2 0 0 0 &'.y"), (R Ryr)
0| L K X dimensional and a single two-dimensional one. In order for
r

| this group to explain the degenera(3) of the system, the
set of doubly degenerate statesy, , and
Fig. 1. Selectedunprimed coordinate system for the square-well potential, . n with n;#n,, should transform asl Zthe two-
. .. | 2' 1 ) A . L X
with origin at & corner of the box. dimensional irreducible representatidd, We shall prove,
however, that this is not the case. To this end, we define the

and higher order relations of this sort, i.e., the equality ofin€ar combinations

three or more of these sums of squares. The full degeneracy 1

of the problem, including the ones {4), has been discussed brn.= ————(Un.n.* ¥n.n.), (5)
by Wai-Kee Li, giving rise to a formula which arises from Y21+ 8,,) v

the Gaussian factorization theorem. This result is useful to | .

evaluate the degree of degeneracy as the quantum numbé&fich have the same energy spectrum as the stajesnd
grow.” We shall not attempt to explain the existence of the@'® more appropriate, since they carry the 1.RZgf , as we
“Pythagorean” degenerac{d) in terms of a larger symme- NOW show by applying to them the operators of the group. It
try group in this paper, so from our point of view they will iS enough to consider a single operator in each class,
remain “accidental.” It is, of course, an interesting questionfrom which we find

whether they can also be understood in this way, a matter

which probably involves the establishment of some kind of E¢Eln2: ¢Eln2’ (6a)
new connection between' group-theoretical methods and & b = (=)Mo (6b)
number theory. The analysis of the double degenerd8ies 2%°nyn, ngny?

however, may shed some light on this question. N x x4 -

Returning to Eq(3), we shall now start by showing that C4¢n1nz_ “nlnz¢n1nz+'8“1“z¢n1“z’ (60)
the apparent symmetry of the system is unable to accountfor . . . + - 6
this behavior. What is the expiicit symmetry group associ-  %v®nin,™ @nin,®nin, ™ Bnyn,bnin, (6d)
ated with the particle in the square box? The system is a, s _ o g 6
clearly invariant under all operations that transform the Ud¢n1ﬂz_—¢n1“z’ (6¢)
square bpx onto itself, i.g., the,, point group of powers of \where
w/4 rotations and reflectiofsThese operations are indicated . .
in Fi le i | o @, = H(—)"2 ()M, (7a
in Fig. 2, while in Table | we write down th&,,-character N, 2
table. At the right of Table | we indicate the way that the BE = (=)t (— )Mt (7b)
coordinates and angular momentum operators transform un- #Pn;n,™ 2 - '

der the group. We see from Table | that this group has fiv

kinds of irreducible representatioifsR.), four of them one The operations considered {f) are indicated in Fig. 2 and

the result can be simply deduced from the action of the group
operators on the coordinates ¥) and substituting in the/'s
, a in (1) and the¢'s in (5). For example,Cox=L~—-x, Cyy
. B . Gd =L -y, and the resultéb) can be found by direct substitu-
N tion in the wave functions.

N Rs It is important to emphasize that in order to carry out the
S xe symmetry analysis of the system it is necessary to use the
*_ 0*“ states(5) and not the wave functiond), since the latter, in

AN X general, do not transform irreducibly under tha, group,
, N but rather as a linear combination of two different represen-
’ \ tations. This is an important point, which is often a source of
ya AN 6 confusion in quantum mechanics textbooks. For example, the
0.5 Gd a3 operator in(6e), while clearly connecting the states, ,,

and Y, does not mix the state®) among themselves.

Fig. 2. Primed coordinate system for symmetry elements of the gigup ~ 1N€ mix?ng of they's, Wh_iIG implying a degeneracy, does
with origin at the center of the box. not provide a reason for its occurrence.
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We now return to our discussion. From relatige$ and
the character Table | we can identify the symmetry characte
of the ‘ﬁynz according to the parity of the labels. For ex-

ample, ifn;=2k, n,=2l (k, | integers, we find
a;k,Zl =-1, “5k,2| =0, B;k,ZI =0, :82_k,2I =1 (8a) 1.5
and from(6):

E¢2ik,2I = ¢2ik,2| ) C2¢2tk,2l = ¢2ik,2I ) C4¢2ik,2| =+ ¢2tk,2l )
(8b) 1

~a g = _ * ~a g = _ +
Oy Poa=~ bakas  TqPau2a= P -

We see thatp,, 5 and ¢, are not mixed by the group

operators and, furthermore, by comparii@p) with Table | 0.5
we find that

ba—B2, bua—Az (1#k) ©
is their symmetry character. Note that due%p ¢, ,=0 and 0

only ¢, 5 survives, but still transforms a8,. Doing the
same analysis fon,;=2k+1, n,=2I+1, we find

boki1ai1—AL bai1a+1—B1 (1#K). (10 (a)

Again, for =k the A; state ¢, .4, iS nondegenerate.
Finally, for (—)"1#(—)"2, we find that¢>;'1n2 and by, do 2
mix, since, e.g., fron{6) and(7)

Cadboka+1= o a+1- (13)
We conclude that the pair of stat#lynz, n;#n,, carry the

double-valued I.LRE only when ()"#(—)"2. For this

case the degenerad®) is indeed explained by, . How-

ever, in the case whem, # n, and the parities are the same, 1
for both even and odd values of the quantum numbers the s

of degenerate state$;,“1r12 and ®nn, cAITY different one-

dimensional I.R. of7,, and are thus “accidentally” degen-

erate under the action of this group. From the point of view ¢ .5
of 74, there is no reason foB(,,A,) or (A;,B,) states to be
degenerate. In Figs. 3 and 4 we display particujﬁegfgvnz

wave functions associated with and B,,A,) symmetries,

respectively. Note that no obvious geometric operation cal 0
transform theg ™ into the ¢~ for the latter case.

(b)

Ill. HIDDEN SYMMETRY

. o _
To attempt an explanation for this behavior we now search ~ F19- 3. Contour plot for the wave functio) ¢ and (b) ;.

for additional operators that can mix the stat@sand (10)

amdong them_szlvis anddthushshpulﬂ lie OUtiﬁ;@H To th'sl . fined through the following requirements. The symmetry op-
end, we remind the reader that in the case of the nonre a'['Ve'rations@]i should commute with the particle’s Hamiltonian
istic hydrogenic atom a similar situation occurs, and the SOhside the box:

lution stems from the existence of a nongeometrical symme- ‘

try arising from the particulagCoulomb potential involved? - hZ 9?9
This is a so-called “dynamical symmetry,” expressed Hz_ﬂ WJFW’ (12

through the conservation of the Runge—Lenz ve&oand
through the closurdat fixed energy of the commutation I-€.,
relations involvingA and the angular momentuin, corre- [9; I:|]=0 13
sponding to ar5O(4) symmetry? In the square-box system, v ’ )
however, there is no potential inside the box while there is and, in addition, when acting on the eigenstai@sthe g;
infinite potential at the boundary, and it is the shape of theshould lead to states with the same boundary conditions. An
box that entirely imposes th&,, symmetry. Since the arbitrary O(2) transformation(two-dimensional rotations
eigenstategb) satisfy the appropriate boundary conditions, and reflectionssatisfies(13), but only its ", subgroup op-
the symmetry group for the system can be more simply deerations preserve the boundary conditions. By imposing the
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F®A1=Bl, F®B]_=A1, F@AZZBz, F@BZZAz
(14

From Table | we readily find thdf =B, since the entries in
the table coincide with the group elements for one-
dimensional representations. Furthermore, from Table | we
also see thaB;®E=E, and thus the degenerate sets with
(—)"#(—)"2 are left unaltered by &, tensor. From the
right-hand side of Table | we see that in the reference system
of Fig. 2 the combinatiox’?—y’? transforms as thg, |.R.
under the group operations, although this is not true in the
reference frame chosen for the wave functi¢hs The same
linear combination of squared momenta, however, trans-
forms according to th8; I.R. in both reference systems. We
conclude that the operator

DBI= — — — (15)

satisfies the requirements we set up from the outset. As a
check, by applyind15) to the states5) we find

2
R . T .
D(Bl)‘bﬁlnzz F (n%_ n%) ¢nln2 ) (16)

as required. This operator constitutes the “dynamical sym-
metry” operator(analogous to the Runge—Lenz vector in the
Coulomb system which does not arise from geometrical
considerations but from the specific Hamiltoniét?) to-
gether with the boundary conditions which impose thg,
symmetry. We again stress that in this case the commutation
with the Hamiltonian(12) does not automatically guarantee
that the boundary conditions are preserved. The combination
(15) is the only operator that does so and has the appropriate
tensor properties undef,, . Before considering the combi-
nation of this operator with th&,, transformations, we re-
mark that it is possible to interpret the larger symmetry in
terms of supersymmetric quantum mechanics, in the follow-
ing sens€.We may identifyD® in (15) as a “supersym-
metric charge”’Q=D®Y, since for the singlet states

> P
ALt — +
(b) Q¢“'"_(ax2_ o?yz) Pra=0 4
—+ . .
Fig. 4. Contour plot for the wave functio@) ¢, and (b) é5,. and thus eaclkp,, , can be considered to be a vacuum state in

the language of supersymmetric quantum mechanics
(SSQM.2 In this approach th@bﬁlnz play the role of super-

above requirements we can avoid dealing with the awkwargymmetric partners and one may define a supersymmetric
form of the potential when searghing for other symmetries. IfHamiltonian(with Q'=0Q):

a dynamical symmetry operat@ exists for the particle in 1 2 202

the box, it .should. commute withi put.not .Wlth theZy, '%SZE {Q’QT}:(a_xz_ Tz)
transformations, since we expect ttawill mix the A, and y

B, states(9) as well as theA; and B; eigenfunctiong10), . _ - N .
while preserving the boundary conditions satisfied by the>iNceB1® BAl(_BA)l’ /s commutes with”, , and also with
¢§1'n2. These requirements are only possibleDif trans- bothH andD'*’=Q. Note that the whole spectrum can be

forms one of the two states {®) or (10) into a linear com- organized as a series Of. towers \+N'th the ﬂnglﬂm_,
bination of the same two states. In particular, we shall searcfP!lowed by supersymmetric doublefs,, with n>n. This

for an operator that transforms one of the states into thés an intriguing interpretation, but the description is not com-
other. From the point of view of symmetry, this implies that plete, since the actual relation between thg, symmetries

it should have definite tensorial properties undgr,, D,  andD(®Y is not specified in this framework. In Sec. IV we
wherel is one of the I.R. in Table I, such that derive a new symmetry group for the system.

(18
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IV. ANEW SYMMETRY GROUP FOR THE The meaning of25) is that the full%,, group may be gen-
SQUARE WELL erated by considering the subgro(®6) plus the elements
) ) arising from the action ot on the 7, operations. Since
When attempting to define a larger symmetry group fory,q operationg e 75, can only change the signs 6k and
the system which contains the geometriegj, group as a (see Fig. 2 it is glear from(19) that
subgroup, we shall need to combine these transformationsy R

with the continuous ones generatedd{P?. Finite transfor- §U(a)=U(a)d, (27)

mations associated with®) can be obtained by exponen- while o2 (which exchangegx and dy) gives

tiation: - ~ R

A A 2 g ciU(a)=U(—a)ad. (28
U(a)=exﬂiaD(Bl))=eX[{ia(m— Y2 } (19 we also note that the invariance o, implies

where a is a coordinate measuring the amplitude of the 049=g*0g where §,0% €%, (29)
transformation. Abstractly, thel(a) conform to an Abelian  or explicitly

one-parameter continuous grotiput no information regard- & b b a .

ing the range ofx can be deduced fror(l9). When acting E*=E, o, =0,, o, =0,, C;=C,. (30)
with (19) on the square-well wave functioii$) or (5), how- Using (27)~(29) we find that in the new symmetry group

ever, one can see thatis bounded and thus that the group is h Kinds of el hich q -
compact. Using16) we readily find there are two kinds of elements, which we denoteiiy)g
andU(a)05g, with multiplication table

U(a) gy o, (xy) = €m0 (X,y), (20 T .
U(a)g:U(B)g,=U(a+B)9:92, (319
where - A o
2 U(@)g:U(B)ag9,=U(a+B)oga1 0z, (31b
Ky p = — (n2—n? 21) N aan S e
nn = 12 (N2 ND)- ( 0(@)538,0(8)8.=U(a— £)538.8., (319
As (n3—n?) is an integer number, we conclude that  U(a)53g,U(B)538,=U(a—B)3*d,. (31d)

am?/L? is a periodic variable, where the period depends o

the relative parities ofi; andn,. Thus, for (—)"1=(—)", rbenoting the one parameter group @{«) by D(1), itis

also clear from27) and (28) that forRe %,

2 2_ :
n;—ni=4l, | integer, RO(@)R1=U(ea), 32)
which implies that we may restriet to the range
where
_em.T o e=+1 if R=§
O\LT < 2 or 0\0[<27T| . (22) R oF
e=—1 if R=c%0. (33

On the other hand, for-{)"#(—)"2,

Equations(32) and (33) imply that under the action of the

Z 4, €lements, théD(1) set of operators transform among

implying that themselves. This is the definition of an invariant subgroup
and this indicates that we may denote the symmetry group of

23) (31) in the semidirect product forth

B=D(1)0%,,. (34)

In the next section we construct the I.R. of this group and
proceed to prove that under its action the accidental degen-
eracy(3) is rendered normal.

ns—n?=21+1, | integer,

a772 2
0$?(2|+1)<27T, or 0$a<m

We see from(20)—(23) that this one-parameter group can
be labeled[up to possible additional degeneracies of the
“Pythagorean” type(4)] by the discrete set of numbeks

or, alternatively, by the integer numbers

_ L2
Kn,n,= =2 Kn;n =n§—nf (24)
2 gpe M2 V. THE IRREDUCIBLE REPRESENTATIONS OF &
Note that the double-degenera3) implies thatk, ,, and Given the semidirect product form @, its representa-
Knn,= —Kn,n, are associated with the same energy eigentions can be constructed using an induction proceldiirem
value. The singlet states corresponckig=0. D(1) to &. This is a somewhat technical endeavor which is

We are now in a position to study the full symmetry op- difficult for the nonspecialist, so in this section we follow a

erations combining) («) and %, . The latter group can be S"'.‘p'e[] bl_,ltdequ_ivalent route \g’hiCh does hot explicifjly_ reh
. ' j . quire the induction concepts. Since we are interested in the
conveniently defined by the coset expansisee Fig. 2 particular I.R. of®& spanned by the square-well's wave func-

Cay=C oyt 0472, (25  tions (1) [or equivalently(5)], we may use thé® (1) repre-
o . sentationg20) and(21). We start by considering the I.R. of
where %>, is the normal(Abelian) subgroup the subgroup of34) given by
72,={8}={E.0] .0y 070, =C5}. (26 D(1)® 75, (35
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Table Il. The?’,, character table.

Ca E G, oy g,
A 1 1 1 1
A, 1 1 -1 -1
B, 1 -1 1 1
B, 1 -1 -1 1

where the direct product sign is due(®@yv). This is an Abe-
lian subgroup whose I.R. are thus one dimensi6riaénot-

ing the operators of this group uy(a)g. we find
U (@)@, (X) =€ Krnagp, o (X)
= e (§) o, (%),

where x(g) are elements of thé,, character tablgsee
Table II). It is easy to check directly for the, , (X) states

that
x(E)=1, x(o))=

x(Cp)=(—)M"",
Equations(36) and(37) provide a complete classification of
the I.R. of the subgrou85) spanned by the stat&ﬁlnz(x).
Comparing(37) with Table Il we readily identify the corre-
sponding %5, I.R. In order to generate the corresponding
representations fo®, we should now include the action of
a3 as implied by the coset expansi¢25) and the group
table (31). Since

a'g‘pnlnz(x) = ’pnznl(x)y

the action of thez,, operations that are not i, span a
two-dimensional space whenever;#n,. For the case
wheren;=n,, however, the I.R. remains unidimensional:

U(@)Renn(X) =€ ¥y (R) ghnn(X) = X (R) han(X),  (39)

for all Re %, , sincek,,=0. Thex(R) in (39) are the ele-
ments of theZ,, character table, and we have shown in Eqs

(36)

n,+1 by_,_\yni+1
(=)"7% x(oy)=(—)™ " 37

(39

ekex(g)+e ™ x(g*) e *x(g*)—e*x(g)

(9) and (10) that the corresponding I.R. are eith&g (for
evenn) or B, (for odd n). Thek,,=0 L.R. thus coincide
with the Z7,, ones. Returning to the;#n, case, we act on
the two-dimensional space spanned b%lnz(x) and

&30, () = Y (X),
‘/’nlnz) (f—‘ikax(g)z/fnlnz)
Yony] | O(@)35500,0,
e X(9)¥nyn, )
530(— @)§* o,
x(9) ¥,

Ikaz
:<e x(g* )‘wanln2
_( e“"Xx(9)

U(a)g(

ika

0 ) ‘ﬁnlnz
e—ikax(g*) wnznl
where we use@27), (28), and(29) and have Writter’|<nlnz as

¢”2n1) .

K.
Doing the same fol (a)&3g we find
(41
In both (40) and (41), x(g) [or x(g*)] are given by(37)
[recalling Egs(30)]. As a last point in the construction of the
I.R., it is necessary to find the representationUdfe)R in

0 ) . (40

e *x(g)
0

’//nlnz 0

) ( (//nlnz
l’bnznl IkaX(g )

0(@&3@(

the basig5), which as discussed before is the one that spans

the 7,4, I.LR. This is achieved by means of the orthogonal
matrix

1

1/ 1
-1 1

= (42)

which transformg40) and (41) into the slightly more com-
plicated form

D(U(a)g)=5| _. . . , , (433
2 e x(g) —e*x(g*) e*x(g)+e *x(g")
) e x(g*)+te " x(g) e x(g)—e*x(g*)
D(U(a)oq9)= 5 ; (43b)
2 | ekay(g*)—e *ax(g) —e*x(g*)—e *x(g)
|
whereD corresponds to the representation matrix. (=) (—)"2 (—)M—(—)"2
Using (43) together with(30) and(37) we can readily find D(c?)=— (44)
the explicit form of the representation for evefy, element, 2[(m)M= ()" ()M ()™
in particular, for the generators} and o§. We can then 44
study the representations of tf#&,, subgroup contained in
D, a procedure known as the subductién 7 ,, by taking ay _ 10
a=0 in (43): Dloa)=g _4q| (45)
1092 Am. J. Phys., Vol. 65, No. 11, November 1997 Leyvedzal. 1092



From (44) we immediately conclude that when dimensional free particle system enclosed by an

(—)"=(—)"2 the representations are reducible, while for impenetrable cubic box, although the solution is more com-

(—)M#(—)"2 they remain irreducible, as we had already plex. In this case there is a six-dimensional degeneracy not

found in Sec. IIl. fully explained by theO,, apparent symmetry of the system,
We have thus succeeded in deriving the explicit form forand there are two additional dynamical symmetries, which

the I.R. of & given in(43), spanned by the square-well statesshould be combined with the operations of thg group.

(5) and which are labeled by a pair of quantum numbers A similar analysis can be applied to other separable sys-

(Kn,n,,I'). We should distinguish between tiig=n, and  tems of the kind

ny#n, cases. H=3PZ+V(|x])+ 3P+ V(lyD), (47)

(@ Forny=n,, all the I.R. are one dimensiond,,=0. including the free particle and the harmonic oscillator sys-
Thel is a#,, label, eitherA; or B, for even and odd tem, both of which display higher symmetries thé@nt is
n, respectively. perhaps relevant to note that the quartic Hamiltonian

(b) For n;#n,, the I.R. of & are bidimensional and la- H=ﬁ)2(+ﬁ§, (48)

beled by ((nlnz,l"), wherel is a 75, |.R. By taking

a=0 in (43) we arrive at the subduction of these rep-
resentationss| %, . Using the @¢=0) characterfthe

wheren,, and ﬁy are thex andy number operators, displays

a symmetry group isomorphic 1 for the space spanned by

- . harmonic oscillator wave functions. In this space the study of

traches of rt]h_el_ lbllq lasso?a(tje(:] wf|(k|1|4) and (45)% - the additional degeneracié$ may be simpler to carry ot.

gether with Table |, we find the following results: Finally, we note that the same kind of methods can be ap-
& ! C Dim plied to the analysis of the accidental degeneracies associated

Kon=0; A, A, 1 with a rectangular box with commensurable sides, that is,
k,n=0; B, B, 1 wherenlL;=mL,, wherelL, andL, are the side lengths and
(Koms 1013 A1) A, ®B; 2 (46) n and m are integers. In that case the double degeneracies
(Kom,2ns A2) A,®B, 2 occur for the levelsf;n,) and (;,n5) whennn,=mn;,
(Kaman+1; B2) E 2 mn,=nn;, besides the appearance of generalized
(Kom+1,2n; B1) E 2 “Pythagorean” identities. Since the patent symmetry in this

Particular attention should be paid to the third and fourthcafe 'ng?;ﬁ no dg)luble_ d(a_gengrap|(las argtextg)_?fcted,t s_lqhthe
rows in the above table, corresponding to the I.R. spanned bRZi uré of the problem IS, In principie, quite difierent. 1he
the basis states10) and (9). These sets span two- mtegral of the motion(15), however, still connects the de-
dimensional I.R. in® which reduce to a direct sum of rep- 9EN€rate wave functions in the system. In this case the
resentations under reduction #0,,. Therefore, while the double degeneracy can be ascribed to the presence of a hid-
v - ’ den discrete symmetry, which together with the integral of

degeneracy 'a$7300|ated wit9) and (10) is accidental under the motion can explain the accidental degeneracy obséfved.
the geometricz,, group, unde® the degeneracy turns out

to be natural. Again, this situation is analogous to the one
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