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ABSTRACT

Pedro Jorge Sequeira Cardoso, Ph.D.

University of Seville, 2006

The study of meta-heuristic solutions based on the Ant Colony Optimization (ACO)

paradigm for the Multiple Objective Minimum Spanning Trees and related combina-

torial problems is the main concern of this investigation.

In the commonly accepted complexity scale for problems, the Multiple Objective

Minimum Spanning Trees is rated as an NP-complete problem. Furthermore, as in the

generality of the multiple objective optimization problem, the solution of the Minimum

Spanning Trees case is a set of trade-off solutions in the sense that to improve one of

the objectives it is necessary to worse at least one of the others, which is a major

concern in a practical point of view.

In the first part of the investigation, a theoretical analysis of the problem is made

to complement the known results. This analysis corroborates the fact that in practice

the use of exact methods to solve the Multiple Objective Minimum Spanning Trees

problems is only applied in specific circumstances. This implies that to solve the prob-

lem an approximation method must be considered as an alternative. In particular, two

methods based on the ACO paradigm are proposed: the Multiple Objective Network

optimization based on an ACO (MONACO) and the ε-Depth ANT Explorer (ε-DANTE).

The MONACO method uses a set of pheromone trails and specific heuristics to approxi-

mate the Pareto set. The ε-DANTE method is an improvement of the MONACO method

that uses a depth search procedure, based on the best performing solutions, to deeply

exploit the search space.

The proposed methods are tested with selected multiple objective problems, im-



proving the results previously obtained by other authors. To test the MONACO and

ε-DANTE algorithms over the Multiple Objective Minimum Spanning Trees problem is

proposed a library/repository of multiple objective network problems established over a

systematized set of networks generators. The results obtained with MONACO and ε-DAN-

TE are then compared with the results obtained with a Brute Force and the Weighted

Sum method.
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1.1 Overview

In the last decades, the technological advances of the computational capacities in con-

junction with the decreasing prices of the informatics apparatus placed the humanity

into a new era of scientific knowledge. Those progresses, combined with the networks

of knowledge, like the Internet or the media, allowed a much faster dissemination of

the accomplished technical developments.

However, newer and pushing limits are being imposed to those networks in areas

1



2 Chapter 1. Introduction

like security, capacity/velocity, delays, reliability and accuracy.

Behind the viewable face of this Computer Science revolution, investigators all over

the world are using the available computational capacities to develop new methods,

most of them based in large numerical computations, to solve the challenging proposed

problems. Those methods can be decomposed in several sub-fields, each one embracing

important areas of investigation, like

• Design – Process to originate and develop a project associated to some concept.

For instance, the several existing Computer-Aided Design (CAD) tools help the

developers in the project phase of complex systems, allowing at the same time to

have a perspective of the developed plans.

• Visualization – Techniques to create images, diagrams, or animations that are

used to support decisions. For example, the use of virtual reality together with

seismic studies to find the best places to drill oil and gas wells [Hodgson, 2002].

• Simulations – Methods used to model real-life situations on a computer. For

instance, the use of flight simulators or the traffic simulation (that permits the

preview of the consequences of changes introduced to circulation plans or unex-

pected occurrences) are examples of applications that reduce the costs and risks

associated with these activities.

• Optimization – Common to most of the engineering processes, uses computa-

tional methods to make the most of the available resources.

All this cases are nowadays a common working procedure. However, the last point

will be precisely the main problem to be discussed in this thesis.
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1.2 Optimization Problems

In the The American Heritage Dictionary of the English Language [AHD, 2000] opti-

mization is defined as

“The procedure or procedures used to make a system or design as ef-

fective or functional as possible, especially the mathematical techniques in-

volved.”

This definition characterizes optimization as a set of actions applicable to any prac-

tice or object to be improved. In fact, optimization arises in the most distinct and de-

manding areas of knowledge like all fields of engineering, logistics, economics, medicine

and biology.

The inherent complexity in the behaviour of the above mentioned areas makes

extremely difficult to adequately model them. Furthermore, in most of the modelled

problems parameters, like the number of variables, dynamics, noises, restrictions, num-

ber of objectives, time, or computational capacity limitations, can make the search for

a simple solution a very demanding task. However, finding a good solution is usually

a much more challenging or even an impossible assignment.

For example, suppose that our objective is to connect the 100 biggest cities of the

Iberian Peninsula, using the shortest possible quantity of a certain optical fibre cable

– the classical Spanning Tree Problem [Bor̊uvka, 1926; Nešetřil, 1997]. Obtaining a

solution is an easy task (after selecting the 100 biggest cities!). To compute it, we can

simply put 100 papers with the names of the selected cities in some ballot box and

start picking papers. Then, the cities are connected following the order in which they

were selected. Now, we just have to hope that this was a good choice out of the 10196

possibilities.
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Certainly the previous solution is improved if a wiser criterion is used in the choice

of the connections between the cities. For example, the process can start by comput-

ing and sorting the distance between each pair of cities. Then a tree is built through

the addition of the cheapest connections that keeps the feasibility, that is, it does not

introduces any cycle. Comparing both solutions, the last one has a higher computa-

tional overhead but certainly decreases the necessary cable length. In fact, the sketched

method describes an algorithm to obtain an optimum solution for the proposed prob-

lem (see for example [Jungnickel, 1999]). For the 100 cities, and even for a higher

number of cities, the procedure is certainly executable by hand in a large limited time

window.

If some restrictions are included the problem can become much harder to solve.

Suppose that no city can be connected to more than three neighbour cities. A feasible

solution is easily attainable using the same procedure described above with the ballot

box. Like before this is a very rudimentary process and the solution is not expected to

be a good one.

Obviously, these circumstances also allows the use of the procedure that succes-

sively adds the cheapest connections that maintain the feasibility, that is, it does not

introduces any cycle and no city is directly connected to more than three neighbour

cities. However, probably it will not be the best possible solution. It is well known

that the class of problems described (Minimum k-Degree Spanning Tree Problem) is

intricate for hand computation and requires the use of complex strategies to achieve the

optimum solution in feasible time, even for relatively small problems [Ausiello et al.,

1999, p. 393].

Therefore, in an optimization problem, the best possible solution has different inter-

pretations according to the bearable costs associated with its computation. Conditions,

like time and computational capacities, restrict the aptitude to reach global or even
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local optimums.

Imagine another example. Now, the objective is to choose a kindergarten for your

children. Several objectives are to be fulfilled, like the

• Quality of the installations;

• Quality of the interior equipments;

• Quality of the playground equipments;

• Quality of the open green area;

• Experience of the educators;

• Easiness of parking for living and picking up the children;

• Distance to your home or your workplace;

• Working period;

• Monthly fee;

• Existing extra-curricular activities (swimming classes, informatics classes, foreign

languages classes, ...); and

• Etc.

Those objectives are, in most cases, antagonistic. For example, if you want a place

with extra-curricular activities you will probably have a higher fee.

For the sake of clarity, suppose that we have five possible schools and we are only

considering three objectives, that are all somehow quantifiable from 1 (good) to 3

(bad), resumed in Table 1.1. From Figure 1.1, the radar chart for the values of Table

1.1, we can conclude that there is not a school that is better than the others in all the

objectives. Like in most of the practical problems this circumstances make necessary
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Objective 1 Objective 2 Objective 3

School A 1 3 1

School B 2 2 2

School C 1 1 2

School D 3 2 3

School E 2 2 1

Table 1.1: School classification example.

0

1

2

3

Objective 1

Objective 2Objective 3

School A

School B

School C

School D

School E

Figure 1.1: Radar chart of the schools classification example.

to decide between trade-off solutions. In fact, although we can discard Schools B and

D since Scholl C is better or equal in all objectives; Schools A, C and E are not better

than any of the others since

• C is worse than A and E in objective 3 (being better in objective 2); and

• A is better than E for objective 1 but worse in objective 2.

Before this kind solutions, where a set of trade-off answers is proposed, the choice will

end up to be made by a decision maker, which in this case are the parents.
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The last example can be considered simple, since only five feasible solutions and

three objectives were considered. Returning to our initial problem of connecting the 100

biggest cities of the Iberian Peninsula with an optical fibre network (using a spanning

tree), the dimensions and the intractability of the problem is much higher. Factor like

distances, existing infrastructures, maximum/minimum nodes degree, network reliabil-

ity and other installation and maintenance costs produce a large number of compromise

solutions.

The last two proposed examples are classified as multiple objective optimization

problems. In fact, realistic optimization problems require the simultaneous optimiza-

tion of more than one objective, which brings new questions:

• How to balance all the options?

• What are the priorities?

• What to do in situations with equal priority?

Those and other questions have to be answered by the decision maker that, according to

the conjecture, has to decide which solution to choose among all the trade-off proposed

ones. Nevertheless, we are particularly interested in those solutions that are not worse

than any of the others in all considered objectives. Those best solutions are called

Pareto solutions and the set of all Pareto solutions is called Pareto or efficient set.

This set contains the best trade-off performing options in the sense that to improve an

objective it is necessary to worse at least one of the others.

Consequently, an optimization problem has one basic component, called objective

or weight function

W : F → O,

where F is the feasible set of solutions (with the restrictions included) and O is the

objective space. O is usually a subset of IRm, where m are the number of considered
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objectives. The solution of the problem are the elements of F that have optimum values

(maximum or minimum) in O, according to some predefined order relation [Deb, 2001].

Optimization problem can be classified in two main classes: continuous and discrete.

In the continuous case, F is a continuous set (like intervals). In the discrete case, which

include the combinatorial problems, the variables are limited to assume only discrete

values (F is a discrete set).

In the remaining document, unless stated otherwise, it will be considered only

multiple objective combinatorial optimization problems, mainly directed to network

optimization cases.

1.3 Heuristics and Meta-Heuristics

The use of heuristics is strictly connected to the computation of approximations to

optimal solutions. In [Barr et al., 1995] an heuristic is defined as

“An heuristic method (also called an approximation algorithm, an inexact

procedure, or, simply, a heuristic) is a well-defined set of steps for quickly

identifying a high-quality solution for a given problem (...)”

In fact, solving problems using heuristics has always been a part of the human way,

like the process described to construct the 3-degree spanning tree between the 100

cities in the previous section, where the solution is not necessarily the optimum.

Since the endings of the 1960′s decade, a set of new heuristic optimization trends

are being developed. Those methods are in their majority based in stochastic (pseudo-

random) processes that delineate general optimization procedures, usually designated

as meta-heuristics.

More specifically, the (stochastic) meta-heuristics methods are characterized for

being non-deterministic procedures. These optimization processes are general algo-
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rithmic frameworks, defined using non-problem specific information, which allow their

application to large classes of problems with relatively few modifications.

Frequently, the understanding of those meta-heuristics is helped by the use of

metaphors inspired by the surrounding world. The observation of successfully adapted

organism in particular environments or the observation of physical processes has the

ability to suggest new methodologies or algorithms.

Some examples of those nature inspired meta-heuristics are the

• Ant Colony Optimization – uses the ants’ colonies behaviour as a metaphor to

describe a process based in a population of agents and layers of numerical values

(pheromone trails) to guide in the construction of the solutions. This communica-

tion process is called stigmergy since it is done by the change of the surrounding

environment [Dorigo & Stutzle, 2004; Dorigo et al., 1999].

• Genetic Algorithms – the main procedure is a simulation of the biological evo-

lutionary Darwinian theories. Those algorithms are probably the best studied

among the meta-heuristic methods, with several variants proposed. In general,

the procedure is constituted by a global search technique that successively im-

proves the known best performing solution (known as individuals) through the

use of three basic operators: mutation, selection and crossover. Those opera-

tors allow the inheritance of the information from iteration to iteration (through

individuals), avoid the stagnation of the procedure in some local optimum and

discard the less promising solutions [Vose, 1999].

• Simulated Annealing – based in the idea of the metallurgic annealing, the process

evolves from solution to solution using a local search strategy. A parameter called

temperature controls the probability of moving to worse solutions, which avoids

getting stuck in some local optimum. As the method advances, the temperature
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parameter disallows more often moves to worse solutions [Kirkpatrick et al., 1983].

• Particle Swarm Optimization – these methods reproduce the behaviour of the

flocks of birds or fish schooling. A set of agents (particles) move through the

search space following the best performing solution [Eberhart & Kennedy, 1995a;

Eberhart et al., 2001].

• Stochastic Diffusion Search – this meta-heuristic is another population based

search method that uses a set of simple agents to execute simple computations

steps. The information obtained by each agent is communicated directly to other

agents, instead of the stigmergetic communication used in the Ant Colony Opti-

mization methods. As a result this diffusion mechanism implies the appearance

of clusters of agents that keep the information of regions where high quality

solutions are located [Bishop et al., 2002; De Meyer, 2003].

Methods like Ant Colony Optimization, Particle Swarm Optimization, or Stochastic

Diffusion Search, are all based in populations of simple agents that somehow have the

ability to communicate among them. They are generally categorized in an overall

meta-heuristic class designated as Swarm Intelligence.

Other heuristics like the Hill-Climbing, the Greedy Randomized Adaptive Search

Procedure [Ribeiro & Resende, 2001], or the Tabu Search [Glover & Laguna, 1997],

are also local search methods that successively try to improve the known solutions by

movements in their vicinity. Generally, the procedure ends when a local-optimum is

reached or certain amount of iterations is executed.

Some of these methods, like the Genetic Algorithms or the Ant Colony Optimiza-

tion, have their convergence in probability to the global optimums proved, whenever

some basic conditions are verified.
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Above all, the widespread utilization of these methods in the most distinct aca-

demic and industrial applications is justified by the exceptional results that are being

obtained, even when compared with the classical methods, for some of the most de-

manding optimization problems.

In Section 2.3 the essential methods used in this thesis will get a more detailed

review.

1.4 Contributions

The main contributions of this thesis are the

• Establishment of a set of theoretical results for the Multiple Objective

Minimum Spanning Trees problem. A part of these results is the general-

izations of properties known for the single objective problem. Furthermore, it

is presented an additional set of definitions and results that are specifically re-

lated to the multiple objective case. The analysis of the results, allows to present

conclusions related to the difficulty of defining algorithms capable of computing

the Pareto set or, in a more pragmatic mode, good approximation sets [Cardoso

et al., 2005b].

• Establishment of a library/repository of network problems. This con-

tribution can be divided in two main parts [Cardoso et al., 2006b]:

– Systematization of the network generating process. One of the main objec-

tives is to define a set of generating algorithms, capable of translating, as

much as possible, real world situations. This is done by the combination of

several possible network topologies and edges weights generators.

– Associated to the problem is presented a set of network problems and their

Pareto and/or approximation sets. Those instances will allow a faster clas-
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sification of the performance in future algorithms, since it is avoided the

endeavours associated to the settlement of representative libraries of prob-

lems to be tested.

• Formulation of the MONACO – Multiple Objective Network optimization

based on an ACO – algorithm. This method is a Swarm Algorithm, which,

as the name suggests, is particularly adaptable to the optimization of network

problems with multiple objectives. The process relies on a set of pheromone

trails, one for each objective, which are used to lead the stochastic search pro-

cedure to the more promising solutions. Tests made with an implementation of

MONACO for three multiple objective optimization problems (the simulation of a

network of flows, the Travelling Salesman Person and the Minimum Spanning

Trees problem) show that it can be easily adapted to different classes of multi-

ple objective problems, maintaining its efficiency and accuracy [Cardoso et al.,

2003a, b, 2004, 2005a]. Other authors adapted and compared MONACO with two

Genetic Algorithms and other Ant Colony methods for the Multiple Objective

Travelling Salesman Person problem [Garćıa-Mart́ınez et al., 2004], concluding of

its potential quality.

• Development of the ε-DANTE – Depth ANT Explorer – algorithm. This

method is also a Swarm Algorithm that uses the same framework of MONACO,

that is, it uses several pheromone trails to direct the stochastic search proce-

dure. However, selected solutions are further explored through the employment

of a depth search process, which is also based in the same stochastic pheromone

mechanism, producing a hybrid algorithm.

Additional contributions are

• A survey and discussion of the Multiple Objective Minimum Spanning
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Trees problem. This analysis is based on the bibliography examination of some

of the more relevant documents, with special interest in the algorithmic solutions,

the computational complexity and the theoretical results.

• The improvement of results using ε-DANTE algorithm. An implementa-

tion of the ε-DANTE algorithm is applied to three multiple objective problems:

the Travelling Salesman Person problem, the k-Degree Minimum Spanning Trees

problem and the Minimum Spanning Trees problem. The obtained results im-

prove the results that were previously collected by other authors for the first

and second of those problems. Relatively to the Minimum Spanning Trees case,

the method improves, in general, the results obtained with some deterministic

methods, which were used to approximate the Pareto set.

• The proposal of a new Angle-Pheromone Update strategy associated

to the ε-DANTE algorithm. This strategy avoids noisy pheromone trails, which

are common to the use, in the pheromone updating formula, of all the computed

solutions or all the elements in the approximation set. More specifically, are used

only subsets of the approximation set which, for example, in the bi-objective case

corresponds to the elements that lie in a subangle of the angle defined by the origin

and the extreme solutions weights. These updating formulas are generalized for

problems with m ≥ 2 objectives.

• The use of a new strategy to observe the time evolution of the op-

timization process. This method can use most of the performance metrics

to sketch a time evolution graphics, which allows to estimate the speed of con-

vergence toward a reference set and the required time to achieve an acceptable

approximation set, for some defined computational environment.
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Some extra contributions, which are not detailed presented here for the sake of

simplicity and clearness, were accomplished during the research time associated to the

development of the work presented in this thesis. For example, in [Cardoso & Jesus,

2004] it is planned one possible utilization of the developed methods, which includes

the simulation of networks of flows in a multi-user framework.

1.5 Outline of the Thesis

This thesis is divided in seven chapters, which are organized as follows. In this first

chapter was made a brief introduction to the multiple objective optimization problems,

difficulties, trends and an outline of the main contributions of this thesis.

The second chapter contains basic concepts necessary to understand the following

chapters. More precisely, it is made a survey of the basic definitions of the multiple

objective optimizations problems, of the classical optimization techniques and the more

recent stochastic trends in the optimization field. The chapter ends with the analysis

of different algorithm performance metrics and the examination of some algorithmic

properties related to the spanning trees problems. The aim of this chapter is to make

this thesis self contained, which implies that the reader familiarized with the described

concepts may skip into the next chapter.

The third chapter analyses the multiple objective minimum spanning trees problem,

which includes a state of the art survey and the presentation of a set of theoretical

results based in the edges efficiency relations. A discussion about the need to propose

algorithmic alternatives to the existing ones ends the chapter.

In Chapter 4 it is presented a framework for a set of network generators. It includes

a systematization of the process used to build distinct network problems. The process

includes three generating steps associated to the nodes, the edges and the weights.

Several sub-generators are proposed for each of those steps, which upon combination
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allow to define various optimization difficulties that become intrinsically associated to

the networks topologies and edges weights. Some Pareto and approximation sets are

sketched in the final section, allowing to recognize interesting characteristics, like fronts

with large concave regions or with gaps.

The fifth chapter is devoted to the presentation of two meta-heuristics: MONACO

and ε-DANTE algorithms. First, the MONACO procedure is presented along with a set of

results obtained for three multiple objective optimization problems: the simulation of

a network of flows, the Travelling Salesman Person and the Minimum Spanning Trees.

In the second part of this chapter, it is described the ε-DANTE procedure followed by

presentation of the results that were obtained for a set of instances of the Multiple

Objective Travelling Salesman Person and the Multiple Objective k-Degree Minimum

Spanning Trees problems. It is demonstrated that in most cases the achieved solutions

are, at least, comparable to previous known results. This chapter presents also the

definition of the Angle-Pheromone Updating strategy, which is based in a subset of the

elements of the approximation set that is in construction.

A detailed analysis of the results obtained with ε-DANTE for an extensive set of

Multiple Objective Minimum Spanning Trees problems is made in Chapter 6. This

analysis includes the use of several statistics associated to the performance metrics

results.

Conclusions about the developed work and considerations about future research

and possible trends are presented in the seventh and last chapter.
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2.1 Overview

Beyond the inherent complexity associated to contingencies like the dimensions, the

topologies and their dynamics, real world networks conception and optimization prob-

lems are extremely intricate due to the multiple objectives to be fulfilled. Features

like productivity, reliability, longevity, efficiency, or quality, are strategic aspects to be

considered in the optimization of networks. For instance

• In a telecommunications network, where the solutions of many problems are based

on spanning tree optimizations, exist various aspects that compete among each

other. Among these factors are the maintenance and communication costs, the

communication delays, the reliability, the bandwidth, and the profitability [Pinto

et al., 2005];

• In traffic networks, if you want to plan a car trip, yours choices might be pondered

by distance, expected time, tolls and, others not so much quantifiable objectives,

like possible scenic views, roads quality and accident risks. Solutions for this

problem can, in some circumstances, be computed as the solution of the Travelling

Salesman Person;
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• In the planning of an irrigation network, we would like to optimize the necessary

canals excavations and construction works, the canals/pipes length, the canal-

s/pipes dimensions, the number of irrigated points. For instance, solutions for

this problem might be computed using Steiner trees [Jesus, 2000; Jungnickel,

1999].

The obligation of accomplishing several conflicting simultaneous objectives, usually

implies the non-existence of one single solution that can be considered as the optimum,

since improving one objective will worse at least one of the others. As a consequence, a

set of solutions that represents the best compromise between the conflicting objectives

is called the efficient set. The final verdict of picking one of those optimal trade-off

answers is left to a decision maker that has to rank them according to some criteria.

On the other hand, the computation of the efficient set of networks can be im-

practical, or even impossible, due to several circumstances, like the absence of efficient

algorithms or to an exponential number of solutions [Hamacher & Ruhe, 1994]. This

implies that a representative collection of efficient or quasi-efficient solutions can even-

tually be acceptable.

As already surveyed in the first chapter, there are two main classes of algorithm to

solve an optimization problem: exact or approximation methods.

The generality of the exact methods are deterministic procedures. Meaning that

under the same initial conditions they do precisely the same steps until the optimal-

ity criterion is verified. Nevertheless, problems may arise when the exact methods,

whenever they exist, are not applicable for circumstances like their high algorithmic

complexity (see Section 2.3.1) [Ausiello et al., 1999; Bovet & Crescenzi, 1994].

As an alternative, the last decades extensive use of non-deterministic methods or

meta-heuristics, one of the main concerns of this study, confirmed their potentialities

by the establishment of optimum or quasi-optimum solutions in some of the most
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demanding practical and academic optimization problems [Andersson, 2001; Bagchi,

1999; Bernal-Agustin, 1998; Deb, 2001].

This appealing area originates the development of a large number of methods,

along with their variants, which implies that to achieve an empirical investigation

of the quality of the different algorithms, it is necessary to be in the possession of

performance metrics, capable of, under certain conditions, conclude of the possible

overperformance of one algorithm over another.

Therefore, this chapter will start by discussing the basic concepts of the multiple

objective problems: the definition of the problem and its optimality conditions. Next,

the algorithmic theory is surveyed followed by a review of some of the more relevant de-

terministic and approximation methods for the combinatorial optimization field. This

chapter ends with the analysis of a set of performance metrics that are used to esti-

mate the quality of the obtained approximations and a review of the (single objective)

spanning tree problem.

2.2 Multiple Objective Optimization

2.2.1 Problem Definition

The solution of a multiple objective optimization problem, as in any optimization

problem, has associated two sets: the search space and the objective space. The search

space or feasible set contains all the possible answers for an optimization problem. On

the other hand, the objective space elements, associated through a function to the

elements of the search space, allow the ranking of the solutions.

The function that estimates the weight of the feasible solutions is called objective

function. In the multiple objective case, this function is a weight vector function defined

by m components to be optimized. Mathematically, this function can be defined as
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follows. In an optimization problem an objective function, W , is defined as

W : S → O

X 7→ W(X) = (w1(X), w2(X), . . . , wm(X)),
(2.1)

where wi are the components of W , S is the feasible set or search space, O ⊂ IRm

is the objective space and X is a solution. For example, the components of W can

be defined as

wi(X) =
∑
x∈X

zi(x), i = 1, 2, . . . ,m (2.2)

or

wi(X) = max
x∈X

zi(x), i = 1, 2, . . . ,m, (2.3)

where x is an element of a feasible solution X and zi(x) is the i-weight contribution of

x to the overall weight. The objective functions defined in (2.2) and (2.3) are usually

denominated as Sum Objective function and Bottleneck Objective function,

respectively.

Next is presented a more specific example.

Example 2.1: If the network N , in Figure 2.1, is the solution of some optimization

problem and the weights of the edges, (z1(e), z2(e)), are given in Table 2.1, then the

objective function can be defined as the

• Sum objective function

W(N) = (w1(N), w2(N))

=

(∑
e∈N

z1(e),
∑
e∈N

z2(e)

)
= (32, 36); (2.4)

• Bottleneck objective function

W(N) = (w1(N), w2(N)) (2.5)

=

(
max
e∈N

z1(e),max
e∈N

z2(e)

)
= (7, 5). (2.6)
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Figure 2.1: Network example.

Given the objective function, it is now possible to define a multiple objective opti-

mization problem, which can be stated as

optimize W(s),

s ∈ S
(2.7)

where optimize means that we either want to minimize or maximize each of the m

objectives, wi(i = 1, 2, . . . ,m).

In this thesis, unless stated otherwise, it will always be considered that all objectives

are to be minimized, denoted as

min+ W(s).

s ∈ S
(2.8)

Note that if some of the objectives were to be maximized, we could always use the

duality principle that states the equivalence of the original problem to one where all

objectives are to be minimized [Deb, 2001].
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A B C D E F G H

A (1,2) (3,3) (2,2) (1,2) (2,3) (5,4) (7,5)

B (1,2) – – (1,1) (3,3) – – –

C (3,3) – – – – (2,3) – (1,2)

D (2,2) (1,1) – – – (2,1) – –

E (1,2) (3,3) – – – – (1,2) –

F (2,3) – (2,3) (2,1) – – – –

G (5,4) – – – (1,2) – – (1,3)

H (7,5) – (1,2) – – – (1,3) –

Table 2.1: Weights of the edges of network in Figure 2.1.

Using the previous definitions, the optimization problem min+
N∈N W(N) can be

stated as

min
X∈S

+

(∑
x∈X

z1(x),
∑
x∈X

z2(x), . . . ,
∑
x∈X

zm(x)

)
(2.9)

for the sum objective function and as

min
X∈S

+

(
max
x∈X

z1(x),max
x∈X

z2(x), . . . ,max
x∈X

zm(x)

)
(2.10)

for the bottleneck objective function.

The problem defined in (2.10) is known as the max-ordering problem (often also

known as the minimax problem) and has applications in the game theory. During the

remaining of this document we will consider the optimization problem defined in (2.9).

Considering the previous example with network N , in Figure 2.1, and the shortest

path problem between nodes A and H. There are several admissible solutions, like

A−H, A−C −H, or A−G−H. The weights of those paths are W(A−H) = (7, 5),

W(A − C − H) = (4, 5), and W(A − G − H) = (6, 7), meaning that A − C − H is

obviously better than the other two.
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On the other hand, if we think of paths between B and E, examples of feasible

solutions are B − E and B − A− E. In this case, the weights are W(B − E) = (3, 3)

and W(B − A − E) = (2, 4). Therefore, unless some objective preference is settled,

none of them is better than the other.

In fact, in the multiple objective optimization situations like the previous one, where

it is not possible to say that one solution over performs another, are common. This

requires the definition of an order relation to allow the partial ranking of the solutions,

as the one that will be introduced in the next section.

2.2.2 Dominance and Pareto Optimality

An optimization process requires the definition of an order relation capable of com-

paring two solution X and Y . This comparison has three possible results: X is better

than Y , Y is better than X, or none of the solutions is better than the other.

In the first two cases the solution that is better than the other is, usually, referred

as the dominating solution. The last case includes two distinct situations: whenW(X)

is equal to W(Y ) and when W(X) is different from W(Y ).

To compare two solutions the more commonly used relations in the multiple ob-

jective optimization area is due to Vilfredo Pareto. These relations assume that no

objective is more important than any of the others and are defined as follows [Knowles,

2002; Zitzler et al., 2003]. Given two solutions X and Y of the feasible set S it is said

that

• X weakly dominates Y , X � Y , if

∀i∈{1,2,...,m} : wi(X) ≤ wi(Y ); (2.11)
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Figure 2.2: Dominated, dominating and incomparable regions in the objective space.

• X dominates Y , X ≺ Y , if ∀i∈{1,2,...,m} : wi(X) ≤ wi(Y )

∃j∈{1,2,...,m} : wj(X) < wj(Y );
(2.12)

• X strictly dominates Y , X ≺≺ Y , If

∀i∈{1,2,...,m} : wi(X) < wi(Y ); (2.13)

• X is incomparable to Y , X ∼ Y , If

X 6� Y and Y 6� X. (2.14)

Those definitions state that solution X weakly dominate solution Y if X is not

worse than Y in all objectives; X dominates Y if X is no worse than Y in all objectives

and is strictly better in at least one of those objectives; and if X is strictly better than

Y in all objectives then X strictly dominates Y . It is also considered the case where
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Figure 2.3: Graphical representations of the weights vector of five solutions.

none of the solutions over performs the other, designated as incomparable solutions.

Figure 2.2 represents the regions in the objective space that dominates, are dominated,

or are incomparable to a solution X.

From the definition it is also obvious that if X strictly dominates Y then X domi-

nates Y , and if X dominates Y then X weakly dominates Y , that is,

X ≺≺ Y ⇒ X ≺ Y ⇒ X � Y. (2.15)

In Figure 2.3 we can see the dominance relations between five solutions A, B, C, D,

and E. In this case A ≺≺ C, A ≺≺ E, C ≺≺ E, A ≺ B, A ≺ D, B ≺ E, and D ≺ E.

Table 2.2 resumes the properties that the binary dominance relation satisfy (in

Appendix ?? are the recalled the basic binary relations classes). The � relation is a

(weak) partial order since it is reflexive, antisymmetric and transitive. Being irreflexive

and transitive, the other two relations (≺ and ≺≺) are strict partial orders.

According to the above dominance definitions, it is now possible to set an optimality

condition where the solutions of the problem are the solutions that are not dominated

by any other feasible solution as follows. A solution X is Pareto (optimal) or
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� ≺ ≺≺

Reflexive X × ×

Irreflexive × X X

Co-reflexive × × ×

Symmetric × × ×

Antisymmetric X × ×

Transitive X X X

Total × × ×

Trichotomous × × ×

Observations Weak partial order Strict partial order Strict partial order

Table 2.2: Binary relations satisfied by the dominance relations.

efficente if it is not dominated by any other solutions of S, that is, ∀Y ∈S−{X} : Y 6≺ X.

The set of all Pareto solutions is called Pareto set or efficient set.

To better understand the relations between the identities of the above definition,

Figure 2.4 sketches in dark grey the objective space associated to some problem and

identifies the dominated region, the Pareto set and the Pareto front.

As we will see in the next sections, the outcome of an approximation algorithm

does not necessarily return the exact Pareto set. Therefore, it is usual to define the

resulting set as follows. A set Q of solutions of some optimization problem is called

an approximation set if no element of Q is weakly dominated by any other of the

elements of Q. This definition indicates that all dominated solutions can be discarded

as approximations to the problem in study.

Furthermore, the concept of well-distributed efficient solutions [Hamacher

& Ruhe, 1994], can be generalized to the approximation set case as follows. Let

P = {X1, X2, . . . , XN} be a lexicographically ordered approximation set. P is a well-

distributed approximation set if the Euclidean distance between two lexicographic
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Figure 2.4: Pareto set and dominated region.

consecutive solution in the objective space is smaller then some predefined ε value, that

is,

max
i=1,2,...,N−1

√√√√ m∑
i=1

(wi(Xi)− wi(Xi+1))2 < ε (2.16)

A well-distributed set is a relevant feature of the quality of the approximation sets,

which will be further investigate in Section 2.4.

For the approximations sets we can define four relations [Zitzler et al., 2003]. If Q1

and Q2 are two approximations sets, we say that

• Q1 strictly dominates Q2, Q1 ≺≺ Q2, if every solution in Q2 is strictly domi-

nated by at least one solution in Q1, that is,

∀Y ∈Q2∃X∈Q1 : X ≺≺ Y. (2.17)

• Q1 is better than Q2, Q1 /Q2, if every solution in Q2 is weakly dominated by
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at least one solution in Q1 and Q1 6= Q2, that is,

∀Y ∈Q2∃X∈Q1 6=Q2 : X � Y. (2.18)

• Q1 dominates Q2, Q1 ≺ Q2, if every solution in Q2 is dominated by at least

one solution in Q1, that is,

∀Y ∈Q2∃X∈Q1 : X ≺ Y. (2.19)

• Q1 weakly dominatesQ2, Q1 � Q2, if every solution inQ2 is weakly dominated

by at least one solution in Q1 , that is,

∀Y ∈Q2∃X∈Q1 : X � Y. (2.20)

2.3 Multiple Objective Optimization Methods

2.3.1 Algorithms Complexity

The theory of complexity studies the time and space needed to execute some algorithm

(see for example [Ausiello et al., 1999] for more details). The algorithmic complexity

of a method depends on the size, n, of the input instance (like the number of nodes or

edges of a network) and is classified by a function f(n), upon which the requirements

needed to run the algorithm can be estimated. Two parameters are usually considered:

Time complexity The time complexity of an algorithm is used to estimate the num-

ber of operations necessary to obtain a solution, like arithmetic operations, com-

parisons, or memory accesses.

Space complexity The space complexity estimates the amount of memory needed to

execute the algorithm, like number of integers, floats, or other types.
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Knowing the time and space complexity of two algorithms allows the theoretical

comparison of the methods under the same inputed conditions.

Assuming some data input, commonly three types of computational complexity can

be estimated: the worst possible case (which is the most used), the best possible case,

or the average complexity. The best case usually has not great interest and the average

case is difficult to compute due to the existence of probability functions to evaluate in

the strict dependency of the data input.

Nevertheless, it is usually considered enough to compute the rate of growth of f as

the input size enlarges. For example, if algorithm A performs 3n2 + n operations, it is

considered that its growth velocity is of n2 polynomial order.

To represent the rate of growth of the time or space complexity it is used the

following notation:

• f(n) = O(g(n)) if exists c such that f(n) ≤ cg(n) for n large enough;

• f(n) = Ω(g(n)) if exists c such that f(n) ≥ cg(n) for n large enough;

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

If f(n) = O(g(n)) then f increases at most at the same rate as g. On the other hand,

f(n) = Ω(g(n)) means that f growth at least at the same rate as g. If f(n) = Θ(g(n))

then f as the same rate of growth of g.

The time/space complexity upper bound of a problem is O(g(n)) if exists an algo-

rithm for that problem whose running time/space is O(g(n)). This complexity upper

bound provides information about the amount of time/space which is asymptotically

sufficient to solve the problem. However, the upper bound does not mean that a

precise knowledge of the complexity of the problem is available since more efficient

algorithms, with smaller running times/spaces, may exist and we may not be aware of

their existence.
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On the other hand, the complexity time/space lower bound of a problem is Ω(g(n))

if any algorithm for that problem has at least running time/space g(n). Establishing a

lower bound for a problem is a difficult task since it is necessary to prove that this lower

bound value holds for all algorithms that solve the problem (known and unknown).

A problem has Θ(g(n)) time/space complexity if its upper bound is O(g(n)) and

its lower bound is Ω(g(n)).

The algorithms with complexity O(nk) for some k are called polynomial, efficient

or good algorithms [Jungnickel, 1999]. Problems for which exist efficient algorithms

are called easy problems. On the other hand, problems for which no polynomial

algorithm can exist are called intractable or hard. In fact, exist a large number of

problems called NP−complete for which not only no polynomial algorithm is known,

but for which is also a good reason to believe that such efficient algorithms cannot

exist (see [Garey & Johnson, 1990] for a more thoroughly investigation).

Another form of intractability occurs when the number of the solutions of the

problem increase exponentially with the input size of the problem, which is usually

represented as NP − ] [Hamacher & Ruhe, 1994].

2.3.2 Classical Methods

Exact Methods

Methods to compute the Pareto set, like the Brute Force methods, exist for the majority

of the optimization problems. However, in general they are only capable to manage

small instances of the proposed problems, in reasonable time. Beside the Brute Force

strategy several others methods have been proposed to explore all possible solutions

of the optimization problems. Some examples are the Divide-and-Conquer techniques

with variants like the Branch-and-Bound and Branch-and-Cut algorithms [Mitchell,

2002].
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For instance, the Branch-and-Bound method is a more efficient way (than the Brute

Force method) to guaranty the optimal solution of a problem. The method has two

basic operations:

Branching is an intelligent form of covering the admissible region through several

admissible subregions. Since this process is recursive in each subregion it can be

naturally thought as a tree where the nodes are the constructed regions. This

tree is known as the search tree or branch-and-bound tree.

Bounding is a fast way of computing the lower and upper bounds for the optimal

solution inside the subregion defined by the branching. If the lower bound of

some region is greater than the upper of some other, then that first subregion

can be discarded in a process called pruning.

In the bounding phase, when for some subregion the upper and lower bound matches

(case in which we have the optimum value) or it is possible to efficiently compute the

optimum, that subregion is said to be solved. Ideally the process would stop when

all the subregions where either pruned or solved. In practice, it is usual to stop the

process after some predetermined time.

This method was able to tackle several problems like the Robust Spanning Tree

with Interval Data problem [Montemanni & Gambardella, 2003], the Travelling Sales-

man Person problem [Hernández-Pérez & Salazar-González, 2004; Zhang, 1993], or the

Knapsack problem [Kozanidis & Melachrinoudis, 2004].

Based Single Objective Methods

Due to the intrinsic complexity found on most of the multiple criteria problems, several

techniques have been developed to take advantage from the known single objective

algorithms. Those methods, where transformations of the multiple objectives problem
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into a single objective one are used to establish the procedures, are usually recognized

as the classical techniques. Three examples of those techniques are presented next.

Weighted Sum Method Among the classical techniques, the Weighted Sum Method

is the widely used. In this case, a set of weighted vectors

Λ =

{
(λ1, λ2, . . . , λm) : λi ∈ IR+ ∧

m∑
i=1

λi = 1

}
(2.21)

is initially set. Then, each element (λ1, λ2, . . . , λm) of Λ is used to obtain a single ob-

jective function through the weighted sum of the components ofW , defined in formula

(2.1). As consequence a new single objective optimization problem is set as

min
X∈S

m∑
i=1

λiwi(X). (2.22)

Now, providing the existence of an algorithm for the associated single objective

problem, each optimization procedure returns efficient solutions.

To prove that the solutions of (2.22) are efficient solutions of the original multiple

objective problem, suppose that X∗ is a solution of (2.22), but is not a Pareto solution.

Then, there exists X ∈ S such that X ≺ X∗, that is, wi(X) ≤ wi(X
∗) for all i ∈

{1, 2, . . . ,m} and wj(X) < wj(X
∗) for at least one j ∈ {1, 2, . . . ,m}. Therefore, for

vector λ = (λ1, λ2, . . . , λm), with λi > 0, we have λiwi(X) ≤ λiwi(X
∗) for all i ∈

{1, 2, . . . ,m} and exists j ∈ {1, 2, . . . ,m} such that λjwj(X) < λjwj(X
∗) which implies

that
m∑
i=1

λiwi(X) <
m∑
i=1

λiwi(X
∗). (2.23)

This contradicts our hypotheses that X∗ is a solution of minX∈S
∑m

i=1 λiwi(X). There-

fore, X∗, solution of minX∈S
∑m

i=1 λiwi(X), must be an efficient solution.

Although this result guarantees efficient solutions, it cannot be used to solve all

multiple objective problems due to several facts, like
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Figure 2.5: Example of non-supported efficient solution.

• The associated single-objective problem might not have an efficient algorithm to

solve it [Knowles & Corne, 2001b];

• Different weight vectors need not necessarily lead to distinct solutions, thus be-

coming a hard task to produce a representative Pareto front;

• Generally, the solutions are not well distributed[Hamacher & Ruhe, 1994]; and

• The Pareto solutions with objectives in a concave region of the Pareto front are

not solutions of (2.22) for any weight vector of Λ [Deb, 2001].

The last point states that if {A,B,C} are three solutions in the objective space, as

sketched in Figure 2.5, then C is not a solution of the Weighted Sum problem.

In fact, as pointed out by Deb [2001] for the bi-objective case, the objective vector

for any solution of (2.22), is an element of the convex hull of the objective space, which

suggests the next definitions. A solution is called supported efficient solution

or extreme efficient solution if it is the solution of (2.22), for some vector λ =

(λ1, λ2, . . . , λm) ∈ Λ. The remaining solutions are called non-supported efficient



2.3. Multiple Objective Optimization Methods 35

2 4 6 8 10
w1

1

2

3

4

5

6

7

8
w
2

A

B C

D

E

ΕA ΕB ΕC ΕD

Figure 2.6: ε-constraint method.

solutions.

ε–Constraint Method In this case, one of the objectives is minimized as a single

objective function and the remaining objectives are restricted to being smaller than a

parameter value:

min
X∈Sµ

wµ(X), (2.24)

where

Sµ = {X ∈ S : wi(X) ≤ εi, i 6= µ} (2.25)

Consider the example presented in Figure 2.6 where A, B, D and E are Pareto

solutions. In this case, if we apply the restriction w1(X) ≤ εB and minimize the second

objective, then the solution of (2.24) is B, element of the Pareto front.

In [Miettinen, 1999] is proved that if the solution of (2.24) is unique then that

solution is also an optimum of the original multiple objective problem. On the other

hand, if the solution of (2.24) is not unique then it is possible that the returned solution
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is not on the Pareto front. Considering again the example in Figure 2.6, when the

restriction used is εC then both B and C are solutions of (2.24) although C is not

Pareto optimum.

The ε–Constraint method has the advantage of being applicable to convex and non

convex fronts in undifferentiated mode and the fact that different values of the εi can

produce different solutions of the Pareto front.

On the other hand, as exampled, the returned solution can be non-efficient. Fur-

thermore, difficulties can arise in the definition of the values of the εi. If one of the εi

is smaller than the minimum of wi, that is,

εi < min
X∈S

wi(X), (2.26)

for some i ∈ {1, 2, . . . , µ−1, µ+1, . . . ,m} then Sµ is an empty set (like the use of εA in

the example in Figure 2.6). On the other hand, if the εi are greater then the maximum

of the i components of the efficient set (P∗), that is,

εi > max
X∈P∗

wi(X) (2.27)

for all i ∈ {1, 2, . . . , µ−1, µ+ 1, . . . ,m}, then there is no restriction on S (as the use of

εD in the example). Therefore, the values of εi must be carefully selected and should

be incremented in small steps within the interval defined by their respective weights.

For a large number of objectives this becomes difficult and time consuming.

Weighted Metric Method The weighted metric method, as the name suggests,

uses weighted metrics to transform a multiple objective problem into a single objective

one. For example, the single objective problem can be defined as

min
X∈S

lp(X), (2.28)

where

lp(X) = p

√√√√ m∑
i=1

λi |wi(X)− wi(X∗)|p (2.29)
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is the weighted lp norm, (λ1, λ2, . . . , λm) satisfies (2.21) and X∗ is some ideal solution.

If p = 1 then the single objective problem is defined as

min
X∈S

m∑
i=1

λi |wi(X)− wi(X∗)| (2.30)

which is equivalent to the Weighted Sum approach [Deb, 2001]. When p = 2 the

returned solution is the solution that minimize the weighted Euclidean distance to

the ideal point. The case where p = ∞ is called the weighted Tchebycheff method,

formulated as

min
X∈S

l∞(X), (2.31)

where

l∞(X) = max
i=1,2,...,m

λi |wi(X)− wi(X∗)| . (2.32)

In [Miettinen, 1999] it is proved that any efficient solution is a solution of the

weighted Tchebycheff method for some weighting vector.

However, the method has some weakness, like

• The need to know the ideal point, which implies the computation of the minimum

values for each objective.

• When the associated single objective problems has not an efficient algorithm to

solve it, it becomes a hard task to compute the ideal point and the efficient

solutions.

• In the continuous case, as p increases, lp becomes non-differentiable which implies

that the single objective gradient-based methods cannot be used.

2.3.3 Heuristics and Meta-Heuristics

The previous section presented some of the classical optimization methods. In gen-

eral, those methods transform the multiple objective problem into a single objective
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one. Nevertheless, those methods have some important weaknesses. Perhaps the most

important pitfall is the fact that, in many cases, the resulting single objective mini-

mization problem has not an efficient algorithm to solve it. Other difficulties may occur

in the Weighted Sum method by the impossibility of returning any of the efficient so-

lutions in a concave region of the Pareto front. Although the ε-Constraint method can

compute those solutions, this method has not the assurance of returning efficient solu-

tions. Some other problems associated to some of the described methods are the need

of an a priori known ideal point and the fact that different optimization parameter like

the λ weighting vector or the εi values do not necessarily produce different solutions.

In the last decades several alternatives to the classical optimization methods have

been proposed. Most of these alternatives where first introduced to solve the single

objective optimization problems, but, due to their characteristics, were more or less

straightforwardly adapted to the multiple objective case. These methods abstractly

describe an optimization concept characterized by a set of common optimization steps

to be performed independently of the problem, making them generally applicable and

flexible. They are recognized as approximation methods or meta-heuristics.

Most of those meta-heuristics require only a set of feasible solutions, a weight func-

tion, a neighbourhood function and an efficient method to explore the neighbourhood.

Usually, the meta-heuristics are distinguished in two main classes characterized by

• Maintaining a single solutions that is consecutively improved using some neigh-

bourhood transition rule (allowing in some cases local worsens), as the Tabu

Search or the Simulated Annealing algorithms.

• Being population based with some sort of information exchange between the

elements, which permits the simultaneous explorations of different regions of

the search space, as the Genetic Algorithms or the Ant Colony Optimization

Algorithms.
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A large number of these methods mimic natural processes and are, generally, recog-

nized as Evolutionary Computation. One of the first studies in Evolutionary Computa-

tion, named as Evolutionary Strategies, was made in the 1960’s decade to optimize the

search for the optimal shapes of bodies in a flow and presented in [Rechenberg, 1973;

Schwefel, 1977]. Those ideas were latter developed by others researchers conducting

to other evolutionary methods, like Evolutionary Programming, Genetic Algorithm,

Genetic Programming, or Swarm Intelligence.

The remaining of this section outlines some of those meta-heuristics that represent

the actual trend of the field. With particular relevance it will be made an analysis of

the Ant Colony Optimization algorithm.

Swarm Intelligence Algorithms

Swarms The swarms are complex adaptive systems that display emergent behaviour

and are the base idea of the Swarm Intelligence algorithms.

These algorithms are established over the conduct of animals that are not considered

to be intelligent, like insects. Besides, the myth of the Honey Bee Queen, or the Ant

Queen, the last one well personified in the Antz film, has not any relationship to the real

swarm conduct, since neither the queen nor any of swarm members has a command

role in the swarm dynamics. However, the group behaviour of some of those social

creatures, acting as a swarm, reveals aptitude to solve very complex tasks.

One of the first swarm like organism to be studied, from a mathematical point of

view, was the slime mold [Johnson, 2001]. The slime mold oscillations between being a

single creature and a swarm are made according to its environment. Those changes are

based not in a leader instruction but in a collective phenomenon that is triggered by

a substance called cyclic AMP. That substance sweeps the entire community, as each

isolated cell relays the signal to its neighbours.
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This conduct is now one of the classics studies in bottom-up behaviour. In this

problem solving concept answers are produced based on a multitude of elements, rather

than in a chain of command supported by a leader. More detailed overviews of those

studies can be seen in [Johnson, 2001; Resnick, 1999; Tarasewich & McMullen, 2002].

Ant Colony Optimization

Real Colonies of Ants Ants are social insects that work together for the welfare

of the colony in the detriment of the individual. Each one work up to a common goal,

making decisions as a response to the surrounding environment.

The communication between ants is based in chemical signals. These chemical

signals are called pheromones and are used in a variety of situations like alarm of

some threat, recognition of other colony elements, or as a recruitment signal for some

activity. The pheromones usually are dropped in trails and depending on their purpose

different types of chemical are left by each of the species. Nevertheless, the recruitment

objective is the same in both cases [Johnson, 2001].

Relatively to the foraging process, it can be described as follows. First, the scouts

ants leave the nest in search for supplies. Each ant does a random search until it finds

food, feeds itself and go back to the nest in a direct way (somehow the ants keep a

record of their position which allows them to return through a straightforward path).

In the way back a pheromone trail is left. When it reaches the nest the scout signals

the others about the finding, which will follow the resource/nest trail that was left.

As they follow the trail, those other ants reinforce it, which will guide more elements

to the harvest. This will keep ongoing until the food finish. Then the ants stop

following the trail which will evaporate. This behaviour allows the exploitation of the

founded resource. Figure 2.7 sketches a simulation of the foraging process obtained

with StarLogo software [Resnick, 1996, 1999, 2004].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.7: StarLogo simulation of the foraging behaviour of an ant colony: (a) scouts

start a random search; (b) founded food in the return to the nest they leave a pheromone

trail; (c) all sources of food where found; (d)-(e) one of the source was completely

harvested and the trail starts to disappear until it completely evaporates; (g)-(i) the

other food sources are also finish; The ants start a new random search.
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The Swarm Intelligence algorithms mimic those swarm group actions. In general,

the Swarm Intelligence algorithms employ a set of unfussy agents that react to envi-

ronmental signals to solve the proposed problems, using changes introduced by other

agents, and acting locally to produce complex global behaviour. Furthermore, the use

of multiple agents has the advantage of simultaneously searching for solutions in mul-

tiple places with distributed control, which produces robustness and flexibility. This

characteristic also allows possible parallelizations of the process in a very straight and

efficient way.

ACO Algorithm The Ant Colony Optimization (ACO) algorithms are the more

spread Swarm Intelligence algorithms [Botee & Bonabeau, 1998; Dorigo & Stutzle,

2004; Dorigo et al., 1999; Middendorf et al., 2002]. Introduced by Marco Dorigo, the

Ant Colony Optimization is one of the most recent meta-heuristics that, as the name

suggests, mimics the pillagers behaviour of the ants’ colonies [Dorigo et al., 1996].

As in the natural process, the Ant Colony Optimization method is based in a set of

artificial agents that communicate using simulated trails of pheromones. Those trails

reflect the gathered experience of the agents that have already solved the problem and

favour the creation of new solutions. The method comprises a set of iterations where

collections of solutions are obtained. At the end of each iteration, the pheromone

trails are updated considering the known solutions as well as a certain pheromone

evaporation.

Other Swarm Intelligence Algorithms Although the Ant Colony Optimization

algorithms are the most well-known in the Swarm Intelligence field, there are other

methods based in the same swarm paradigm.

For example, the Particle Swarm Optimization mimics the social models observed in

the bird flocking or the fishing schools [Eberhart & Kennedy, 1995a, b]. Each particle
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Algorithm 1 ACO - Ant Colony Optimization Algorithm.

1: Initialize the pheromone trail.

2: while stopping criterion is not met do

3: for all ants do

4: Construct a new solution using the current pheromone trail.

5: Evaluate the solutions constructed.

6: end for

7: Update the pheromone trail.

8: end while

of the swarm keeps information about its position and velocity in the search space,

its best achieved solution and the global best. Depending on the implementation,

the information is either transmitted from each particle to its neighbours or to all

of the particles in the swarm. Using the available information and movements that

include certain quantities of randomness (usually called craziness, to favour a larger

exploration of the search space), the swarm of particles are guided toward the most

promising regions of the search space.

Another example is the use of the honey bees behaviour as a metaphor to the

optimization of Internet servers [Nakrani & Tovey, 2004; Tovey, 2004].

Swarm Intelligence in Multiple Objective Optimization The application of the

Swarm Intelligence algorithm to the multiple objective optimization problems has been

developed within several different conceptual approaches. For example, Ant Colony

types of algorithms are distinguishable by using [Garćıa-Mart́ınez et al., 2004]

• Single/multiple colonies;

• Single/multiple pheromone matrices;

• Elitist and non-elitist pheromone updating rules; or

• Updating rules that allow ants to update pheromone trails of other colonies.
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The multiple objective Ant Colony based algorithms have been applied in some

problems, as the Vehicle Routing Problems with Time Windows [Gambardella et al.,

1999], the design of water distribution irrigation networks [Mariano-Romero & Morales-

Manzanares, 1999], the Travelling Salesman Person problem [Cardoso et al., 2003b;

Garćıa-Mart́ınez et al., 2004], the portfolio selection [Doerner et al., 2001], the Mini-

mum Spanning Trees problem [Cardoso et al., 2004], or the optimization of flight routes

to avoid hazardous weather [Alam et al., 2006].

In [Ray & Liew, 2002] a Particle Swarm Optimization method is used to approxi-

mate the solution of several multiple objective problems including unconstrained and

constrained cases with continuous, discrete, or mixed variables. Another example of

applications is made in the optimization of the Minimax problem [Laskari et al., 2002].

Genetic Algorithms

First introduced by John Holland in the 1970’s, the Genetic Algorithms mimic the Dar-

winian natural evolutionary principles [Holland, 1975]. This meta-heuristic is perhaps

the most used between the evolutionary methods, with proofs of successful applications

in many academic and practical problems.

In fact, several books are (or have chapters) concerned to the Genetic Algorithms

subject [Aarts & Lenstra, 1997; Parmee, 2001; Sait & Youseff, 1997; Vose, 1999]. Si-

multaneously, numerous thesis and other works that use and develop the method as a

framework were presented, as in [Jesus, 2000; Sinclair, 2001] for single objective prob-

lems or as in [Coello-Coello, 1996; Fonseca, 1995; Jaszkiewicz, 2001; Knowles, 2002;

Murata, 1997; van Veldhuizen, 1999; Zitzler, 1999] for the multiple objective cases.

Surveys and comparisons from some of the Genetic Algorithm variants are made, for

example, in [Coello-Coello, 2000; Ehrgott & Dandibleux, 2000; Zitzler et al., 2000].

The Genetic Algorithm’s procedure is based in a set of iterations referred as gener-
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chromosome

1010 0 11010

↓

gene

Parent 1 Parent 2

10 1001 1010 00 0000 0111

↘ ↙

offpring 1: 0010010111

offpring 2: 1000001010

Figure 2.8: Genetic Algorithm (a) Example of binary string codification; (b) Double

cut point crossover.

ations. In each generation exists a population or set of solutions. Those solutions are

also usually called chromosomes or individuals and can be codified in different ways,

Figure 2.8(a).

The first population, P0, is the population from which the method will hopefully

evolve towards the optimum. The following generations, Pi, are breed from the previous

one, Pi−1, by the application of the evolution process that is based in the competition

between the individuals of the population for mating. Each of the individuals has

associated a fitness value which represents is quality as a solution. The most apt

individuals have more chances to mate and produce offsprings, perpetuating its fitness.

To implement the method is common to use three basic operators:

Selection – Used to probabilistically choose the individuals that will perform the

mating.

Crossover – With two selected individuals, called parents, are generated offsprings

that inherit characteristics from both of them, Figure 2.8(b).

Mutation – Does random changes in the offspring in order to possibly introduce new

characteristics to the population avoiding stagnation.



46 Chapter 2. Preliminaries

Algorithm 2 Genetic Algorithms (GA).

output: Approximation to the solution of the problem

1: function GA()

2: Initialize population

3: Evaluate the population

4: while stopping criteria not verified do

5: Choose parents

6: Perform crossover and mutations

7: Perform fitness based selection

8: Evaluate the population

9: end while

10: return Population

11: end function

A high level description of the process is made in Algorithm 2.

Tabu Search

The Tabu Search method was introduced by Fred Glover as a general meta-heuristic

based on a dynamic-neighbourhood search to solve combinatorial problems [Glover &

Laguna, 1997].

A neighbourhood optimization method should maintain not only the information

about the present solution but also about the search process. Therefore, the use of

memories to keep track of the information about the last iterations is essential. This

information is used to guide the search procedure in the transition from one solution

to another, by means of restricting the current solution neighbourhood.

If a non-memory based procedure is used, the method would just choose the next

solution applying formula arg minR∈N(S) f(R), where f is the objective function, S is

the current solution, and N(S) is the set of neighbourhood solution of S. This method-

ology leads to a steepest descent method, which is very susceptible to get trapped in

local minimums. To avoid this risk, the method must accept solution that are not
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Algorithm 3 Tabu Search (TS).

input: S0 . initial solution

output: S∗ . best approximation achieved

1: function TS(S0)

2: S∗ ← S0

3: Set the tabu list to the empty set

4: k ← 0

5: while stopping criteria not verified do

6: k ← k + 1

7: Compute the set of feasible neighbours, V ∗

8: Choose the best solution from V ∗, Sk ← arg minR∈V ∗ f(R)

9: Update the tabu list

10: if f(S∗) > f(Sk) then

11: S∗ ← Sk

12: end if

13: end while

14: return S∗

15: end function

better then the present one, which per se creates another risk: getting trapped in a

cycle between a set of solutions. The Tabu Search method tries to avoid this last men-

ace by forbidding the visit of the last n solutions. This can be made by the use of a

dynamic-neighbourhood approach, so that in iteration k the feasible neighbours of S

would be a set Nk(S) that does not include the last n visited solution, which are kept

in some tabu list T , Nk(S) = N(S)− T.

Some application in the literature are the 0-1 Multiple Objective problems [Alves

& Cl̈ı¿1
2
maco, 2000], the Quadratic Assignment problem, or the Bandwidth Packing

problem [Sait & Youseff, 1997]

Algorithm 3 presents the Tabu Search fundamental procedure.
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Simulated Annealing

As the name suggests, the Simulated Annealing algorithm is based on the process in

which metal is heated and cooled into a minimum energy crystalline structure (the

annealing process). The algorithm was first proposed by Kirkpatrick et al. [1983] to

several combinatorial problems. Basically, the method is a relaxation of the classical

greedy local search algorithm where a solution is replaced when it is found a new

improved one.

A list of results is presented in [Aarts & Lenstra, 1997], which proves that, under

mild conditions, the Simulated Annealing algorithm converge in probability to the

set of optimal solutions, that is, the algorithm asymptotically determines an optimal

solution with probability 1.

Some application in the literature are the Establishing Positioning Networks [Saleh

& Dare, 2002], the 0-1 Multiple Objective problems [Alves & Cl̈ı¿1
2
maco, 2000], or the

Capacitated Minimum Spanning Tree problem [Torres-Jimenez et al., 1999]

In Algorithm 4 it is presented a high level description of this meta-heuristic.

2.4 Performance Metrics

The studies made in the meta-heuristics field represent a great effort of the scientific

community to develop new techniques capable of solving some of the most demanding

optimization problems, as we have seen through the non exhaustive list of algorithms

exampled in the previous section.

It is also logical that any optimization meta-heuristic has as objective to determine

good approximations to the problem solution, whenever it is impossible to achieve the

exact solution. However, the confirmation of the quality of those solutions and the

report of the worthiness of the results are almost always a difficult task [Barr et al.,
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Algorithm 4 Simulated Annealing (SA).

input: S0, T0 . Initial solution and temperature

output:

1: function SA(S0, T0)

2: S ← S0

3: S∗ ← S

4: T ← T0

5: while Stopping criteria not verified do

6: Compute a solution R in the neighborhood of S

7: if R improves S then

8: p← 1

9: else

10: p← e
w(S)−w(R)

T

11: end if

12: Set p0 as a random value in [0, 1]

13: if p < p0 then

14: S ← R

15: end if

16: Update T

17: if R improves S∗ then

18: S∗ ← R

19: end if

20: end while

21: return S∗

22: end function

1995].

Given two approximations sets P and Q several questions can arise [Knowles et al.,

2005]:

• Is P better than Q?

• If it is, by how much?

• If it is not, in what aspects?
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In general, the answers to each of these questions are difficult. The proposed classifi-

cations usually assess in one of the following categories:

• Accuracy of the approximation set;

• Computational effort – CPU time, memory, number of evaluations, number of

iterations;

• Robustness – how does the method behave when small variations on the data

input are introduced; or

• Reliability – how does the method works when applied to problems with different

classes of difficulties.

In the single objective case it is enough to compare the obtained solution with

the optimum solution or the best known approximation, which makes comparing the

accuracy of a solution relatively simple. However, comparing the performance of dif-

ferent approximations, obtained with different algorithms or possibly the same but

with different parameters, can be much more difficult. This difficulty arises from other

multiple factors to consider in the classification attempt as the computational effort,

the reliability, or the robustness.

In the multiple objective case the number of dimensions to evaluate is even greater,

as a result of the nature of the problem. There is a basic factor that contribute to

the general increase of these difficulties: the algorithms return approximation sets with

each element represented by a scalar vector. Comparing two single distinct solutions is

rather simple, although it can be inconclusive, depending on their dominance relation

(see the definitions of dominance and incomparability in page 24).

The problem is much more complex when we think about approximation sets. If

we are “lucky” all elements in one set are dominated by at least one element in the
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other set and we can easily classify them. On the other hand, if the opposite occurs,

we would like to estimate which one is the best approximation.

The earliest documents in the field simply sketched the fronts (up to three objec-

tives) and tried to empirically take conclusions about the global performance of the

sets. This approach rapidly become insufficient due to factor like the number of objec-

tives (greater than three), the number of solutions of the front, the number of fronts

to be compared, or the inconclusive observation of the sketches where the fronts al-

ternately were better than the others. Those pitfalls conducted to the development of

quantitative metrics more simple to compare, than the graphical plots.

Until now there are three approaches to compare multiple solutions obtained with

different algorithms, namely the:

• Empirical attainment functions – indicate the probability of achieving a prede-

fined objective;

• Dominance-compliant quality indicators – estimate the fitness of the solutions;

and

• Comparison indicators based on utility functions – use utility functions, possibly

provided by the decision maker, to compute comparison values.

In fact, the attainment function is computed as

αP(Y ) = P

( ⋃
Xi∈P

[Xi � Y ]

)
(2.33)

where P = {X1, X2, . . . , Xn} is an approximation set and Y is a goal solution [Fonseca

et al., 2001]. Therefore, αP(Y ) is the probability of the goal Y to be attained by at least

one of the solutions in P . The empirical attainment function can then be computed as

αℵ(Y ) =
1

n

∑
Pi∈ℵ

αPi(Y ) (2.34)
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where ℵ = {P1,P2, . . . ,Pn} is a set of n approximation sets obtained by n independent

runs from the optimizer.

The dominance-compliant m-ary quality indicator I is a function

I : Ωn → IR

(P1,P2, . . . ,Pn) 7→ I(P1,P2, . . . ,Pn)
(2.35)

where Ω is the set off all approximation sets and I(P1,P2, . . . ,Pn) is a real value that

specifies the quality of the approximation sets (P1,P2, . . . ,Pn) [Zitzler et al., 2003].

The most commonly used quality indicators are the unary and binary. The unary

indicators are used to measure the proximity to the Pareto set (or some reference set),

the spread, or the uniform distribution of the approximation. On the other hand,

the binary indicators compare two approximation sets returning a value that should

indicate which one is preferable to the other.

In [Zitzler et al., 2002b, 2003] it is shown that there is no combination of unary

quality measures that, in general, can indicate that an approximation P is better

than an approximation Q. Nevertheless, these quality indicators are widely used as

combination of several of them that, as we will see in the next sections, is based on the

distinct characteristics of each one of them.

As the name suggest, the comparison indicators based in utility functions employ

usefulness functions to compute a value that indicates the worth of the approximation

set through that function. Usually, the utility function is parametric correspondence

and an overall value for the indicator can be computed by combining the results when

those parameters change in some set.

Restricting our analysis to the quality of the approximations sets, they should

satisfy some desirable aspects[Bui et al., 2001; Deb, 2001]:

• Be as near as possible to the real Pareto front;

• Have spread solutions all along the Pareto front; and
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Figure 2.9: Orthogonal goals.

• Be uniformly distributed.

The objectives of being near and simultaneously be spread all along the Pareto

front can be considered orthogonal, as sketched in Figure 2.9. In fact, the first goal

requires a depth search in the directions of the Pareto front while the second requires

a sweeping search through all the Pareto Front.

For short, the use of quality indicators allows to estimate the worth of one or

more approximations sets. Whenever possible they should be compared to the (real)

Pareto front or to a reference set. The quality of the approximation set is based in the

two orthogonal objectives: minimize the distance to the Pareto front and maximize

diversity of the solutions (extension and distribution).

Some of the most used quality indicators for sets of non-dominated solutions are

presented next.
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2.4.1 Closeness to the Reference Set

Error Ratio - ER

The Error Ratio metric [Bui et al., 2001; Deb, 2001; van Veldhuizen & Lamont, 1999]

is defined as

ER : Ω2 → IR+

(P∗,Q) 7→
∑
q∈Q e(q)

|Q|

(2.36)

where Ω is the set off all approximation sets, Q is an approximation set, P∗ is the

reference set, and

e(q) =

 1 if qi 6∈ P

0 if qi ∈ P
. (2.37)

The Error Ratio metric is one of the simplest metric since it only returns the ratio of

the elements in the approximation set Q that are not in the reference set P∗.

If ER returns a small value then Q is a good approximation since most of its values

are in the Pareto set P∗. In fact, ER ranges from 0 to 1 where ER = 0 means that

all elements of Q are elements of P∗, and ER = 1 means that no element of Q is an

element of P∗. For the approximation and reference sets presented in Figure 2.10 the

error ratio is equal to ER = 4
5

= 0.8.

Nevertheless, there are several disadvantages in the use of this metric, namely

• P∗ must be the exact Pareto front (with the known difficulties of achieving it)

since that if P∗ is not complete some optimal solutions of Q can be forgotten,

like the solution e in Figure 2.10;

• Q can have solutions very near to P∗ but that is not measured, like the solutions

a, c, d in Figure 2.10 where P = {A,B,C,D} = {(1, 6), (2, 4), (4, 2), (7, 1)} and

Q = {a, b, c, d, e} = {(1.2, 6.2), (2, 4), (4.2, 2.2), (7.2, 1.2), (8, 0.5)}.

If the problem allows the use of methods like the Weighted Sum, this metric re-

turns ER = 0, even if Q has one single solution. One of the advantages is its low
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Figure 2.10: Error Ratio example

computational cost, compared with the others.

Set Coverage Metric

The Set Coverage metric [Deb, 2001; Knowles, 2002; Zitzler & Thiele, 1999; Zitzler

et al., 2000] is computed by

C : Ω2 → [0, 1]

(P ,Q) 7→ |{q∈Q:(∃p∈P:p�q)}|
|Q| ,

(2.38)

where Ω is the set off all approximation sets, and P and Q are two approximation sets.

This metric calculates the proportion of elements in Q that are weakly dominated by

at least one element in P .

If C(P ,Q) = 0 then none of the elements of Q is weakly dominated. On the other

hand, if C(P ,Q) = 1 then all elements of Q are weakly dominated by at least one of

the elements in P . However, this metric cannot determine how much an approximation

outperforms another if one of the sets completely dominates the other. Since C(P ,Q)+
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C(Q,P) is not necessarily equal to 1, both of the indicators should be considered.

Generational Distance and Maximum Pareto Front Error

The Generational Distance [van Veldhuizen, 1999; van Veldhuizen & Lamont, 1999]

for Q is defined as

GD : Ω2 → IR+
0

(P∗,Q) 7→
√∑

q∈Q d(q)2

|Q|

, (2.39)

where P∗ is the Pareto (or a reference) set, Q is an approximation set, and

d(q) = min
p∈P∗
‖W(p)−W(q)‖ (2.40)

is a minimal distance between solutions of P∗ and Q (in the objective space).

Similarly, the Maximum Pareto Front Error [van Veldhuizen, 1999; van Veld-

huizen & Lamont, 1999] for Q is defined as

MFE : Ω2 → IR+
0

(P∗,Q) 7→ maxq∈Q d(q),
(2.41)

The Generational Distance calculates the average distance of the elements of an

approximation set, Q, to the Pareto/reference set, P∗, and the Maximum Pareto Front

Error evaluates the maximum distance between the elements of the reference and the

approximation set.

Lower values of GD(P∗,Q) or MFE(P∗,Q) indicate that the elements of Q are

close to P∗. However, fluctuations of the distances values can induce incorrect ideas

about the quality of the approximations. The example of Figure 2.11 has represented

three sets:

P = {(1, 6), (2, 4), (4, 2), (7, 1)},

Q = {(1, 6), (2, 4), (4, 2), (7.2, 1.2), (15, 1)}, and

R = {(1.2, 6.2), (2.2, 4.2), (4.2, 2.2), (7.2, 1.2)}.
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Figure 2.11: Generational Distance and Maximum Pareto Front Error example.

In this case, the values of the Generational Distance and the Maximum Pareto Front

Error are GD(P ,Q) = 1.60, GD(P ,R) = 0.14, MFE(P ,Q) = 8 and MFE(P ,R) =

0.4, although all elements of R are weakly dominated by at least one of the elements

in Q.

When the objectives present different magnitudes it is advisable to introduce the

normalization of the values and both of the metrics have a medium computational cost

[Knowles & Corne, 2002].

2.4.2 Spread of the Solutions

Spacing (Schott’s)

The Schott’s Spacing metric [Schott, 1995] for Q is defined as

Sch : Ω → IR+
0

Q 7→
√

1
|Q−1|

∑
q∈Q(d(q)− d̄)2,

(2.42)
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where Q is an approximation set,

d(q) = min
p∈P∗
‖W(p)−W(q)‖ (2.43)

is the minimal distance of solution q ∈ Q to P∗ (in the objective space), and

d̄ =
1

|Q|
∑
q∈Q

d(q) (2.44)

is the mean of the d(q) values.

The Spacing (Schott’s) metric calculates the diversity of the solutions by computing

how evenly the points are distributed. This is estimated as the statistical variance

of the distance between neighbours of the non dominated solutions (in the objective

space). Ideally, for an approximation set Q this metric should return Sch(Q) = 0.

However, it is possible that even the Pareto set is not equally distributed and therefore

Sch(P∗) 6= 0.

Spread

The Spread metric [Deb et al., 2000] is calculated as

∆ : Ω → IR+

Q 7→
∑m
i=1 di+

∑
q∈Q |d(q)−d̄|∑m

i=1 di+|Q|d̄

(2.45)

where Q is an approximation set, d and d̄ are defined in (2.43) and (2.44), and di is

the distance between the extreme solutions of P∗ and Q (see Figure 2.12).

The spread metric is used to calculate the non-uniformity of the distribution. ∆(Q)

is equal to 0 in the ideal distribution: the approximation set include the extreme

solution and all consecutive solutions are equally distant (in the objective space). Once

more, even the Pareto front can have consecutive solution non equidistant and therefore

∆(P∗) 6= 0.
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Figure 2.12: Spread metric.

2.4.3 Distance to the Reference Set and Spread

Hypervolume or S-metric

The S-metric calculates the hypervolume of the objective space dominated by an ap-

proximation set and an anti-ideal solution [Zitzler, 1999]. The anti-ideal solution is

computed as an objective vector such that its components are the maximum possible

value in each objective. If it is not possible to determine the exact anti-ideal solution it

should be used one outside the feasible objective space, such that the rectangle defined

by the ideal and anti-ideal solution encloses the entire space, as sketched in Figure

2.13. However it should be noticed that the use of different points can lead to different

results as exampled by Knowles & Corne [2002].

Since the hypervolume depends on the magnitude of the values, the objectives

should be normalized. Alternatively, the normalization can somehow be avoided by
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Figure 2.13: Hypervolume metric.

computing the hypervolume ratio of Q defined as

HV R : Ω → IR+

Q 7→ HV (Q)
HV (P ∗)

,
(2.46)

whereQ is an approximation set, P∗ is the Pareto set (or a reference set), and HV (Q) is

the hypervolume of the region defined by the elements of Q and the anti-ideal solution.

This metric has the advantage of measuring both diversity and proximity since

values closer to 1 indicate that the approximation set is near to the Pareto set and/or

has a higher distribution, all along the Pareto front.

2.4.4 Comparison Indicators Based in Utility Functions

Three metrics based in utility functions were presented by Jaszkiewicz [2001].
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R1 Metric

The R1 metric is defined as

R1(P1,P2, U, p) =

∫
u∈U

C(P1,P2, u)p(u)du, (2.47)

where P1 and P2 are two approximation sets, U is a set of utility functions, u : IRm →

IR, which map each approximation to an utility measure, p(u) is the probability of the

utility u, and

C(P1,P2, u) =


1 if u∗(P1) < u∗(P2)

1
2

if u∗(P1) = u∗(P2)

0 if u∗(P1) > u∗(P2)

, (2.48)

with

u∗(P) = min
q∈P

u(q). (2.49)

The R1 metric measures the probability that an approximation set is better than

another over the family of utility functions U . To define U , we can use a family of

Tchebycheff utility function defined as

uλ(q, r) = max
j=1,2,...,m

{λj(qj − rj)}, (2.50)

where λ = (λ1, λ2, . . . , λm) is a weight vector, q is a solution for which we want to

measure the utility and r is a reference point. Therefore, in formula (2.47), U is set as

U =

{
uλ(q, r) : λ = (λ1, λ2, . . . , λm) ∈]0, 1[m∧

m∑
i=1

λi = 1

}
. (2.51)

If R1(P1,P2, U, p) >
1
2

then, according to this measure, P1 is better than P2 and it

will be not worse if R1(P1,P2, U, p) ≥ 1
2
.

R1R is defined considering one of the sets as a reference set. For example, if Pr

is the reference set, R1R(P1, U, p) = R1(Pr,P1, U, p) and, therefore, near values of

R1R(P1, U, p) to 0.5 indicates that more probably P1 is a good approximation.
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R2 Metric

The R2 metric is defined as

R2(P1,P2, U, p) =

∫
u∈U

(u∗(P1)− u∗(P2))p(u)du. (2.52)

where P1, P2, U , u∗, and p are defined as for equation (2.47). The R2 metric re-

turns the difference between the expected values of the utilities of two approximations.

Therefore, P1 is expected to be better than P2 if R2(P1,P2, U, p) < 0 and not worse if

R2(P1,P2, U, p) ≤ 0.

Like in the previous case, it is possible to use a reference set Pr to define

R2R(P1, U, p) = R2(Pr,P1, U, p), (2.53)

which implies that P1 is expected to be a good approximation when the values of

R2R(P1, U, p) are near to 0.

R3 Metric

Finally, the R3 metric is defined as

R3(P1,P2, U, p) =

∫
u∈U

u∗(P1)− u∗(P2)

u∗(P1)
p(u)du, (2.54)

where P1, P2, U , u∗, and p are defined as for equation (2.47). The R3 metric measures

the expected proportion of superiority of one set over another.

Similarly to the two previous cases, provided a reference set it is possible to define

R3R(P1, U, p) = R3(Pr,P1, U, p), (2.55)

and if R3R is a value near to 0 then P1 is expected to be a good approximation.

In practice, the computation of formulas (2.47), (2.52) and (2.54) can be approxi-

mated by replacing the integrals by a Riemann sum over UΛ, where

UΛ =

{
uλ(q, r) : λ = (λ1, λ2, . . . , λm) ∧ λi ∈

{
1

k
,

2

k
, . . . ,

k − 1

k

}
∧

m∑
i=1

λi = 1

}
,

(2.56)
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for some large k, that is, those metric values can be approximated by

R1(P1,P2, r, UΛ, p) =
∑

uλ,r∈UΛ

C(P1,P2, uλ,r, r)p(uλ,r), (2.57)

R2(P1,P2, r, UΛ, p) =
∑

uλ,r∈UΛ

[
u∗λ,r(P1)− u∗λ,r(P2)

]
p(uλ,r), (2.58)

and

R3(P1,P2, r, UΛ, p) =
∑

uλ,r∈UΛ

u∗λ,r(P1)− u∗λ,r(P2)

u∗λ,r(P1)
p(uλ,r). (2.59)

2.4.5 Metrics Resume

The metrics can be classified in some aspect [Knowles & Corne, 2002; Zitzler et al.,

2003], like

• A metrics M is called a direct comparative metric if M compares two sets: given

the approximation sets P and Q, M(P ,Q) measures how much better is P in

relation to Q.

• A direct comparative metric M is symmetric, if for all non dominated sets,

M(P ,Q) = k −M(Q,P) for some k.

• If M is based on a reference set then M is called a reference metric. All direct

comparative metrics can be used as reference sets, although the opposite is not

true.

• A metric is a cardinal measure if is based on counting the number of vector in

the non-dominated set.

• If the metric is trichotomous and transitive than it induces a complete ordering

of all possible non dominated sets.
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In a more elaborated manner, three outperforming relations are defined as follows

[Jaszkiewicz, 2001]. Let P and Q be two approximation sets and ND(P ,Q) is the non

dominated subset of P ∪Q then

• P weakly outperforms Q, POWQ, if P 6= Q and all solutions in Q are weakly

dominated by at least one solution in P , that is,

P 6= Q and ND(P ,Q) = P . (2.60)

• P strong outperforms Q, POSQ, if all solutions in Q are weakly dominated

by at least one solution in P and exists at least one that is dominated, that is,

ND(P ,Q) = P and B\ND(P ,Q) 6= ∅. (2.61)

• P completely outperforms Q, POCQ, if each element of Q is dominated by

at least one of the elements of P , that is,

ND(P ,Q) = P and B ∩ND(P ,Q) = ∅. (2.62)

If two approximation sets verify OC relation then they also verify OS and if they

verify OS relation then they also verify OW . This is usually represented as OC ⇒ OS ⇒

OW .

If OX is one of the outperformance relation defined above, P and Q are two ap-

proximation sets such that POXQ and I is a metric then I is (weakly) compatible if I

indicates that P is (no worse) better than Q.

Table 2.3 resumes the properties that each of the above metrics satisfy (more details

can be found in [Knowles, 2002]).
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ER C GD MFE ∆ Sch HV R R1 R2 R3

Direct comparative × X × × × × × X X X

Symmetric × × × × × × × X X X

Reference Metric X × X X × × X × × ×

Cardinal X X × × × × × × × ×

Complete Ordering × × × × × × × X × ×

Scaling independent X X X × × × X X × ×

OW compatible × × × × × × X X X X

OS compatible × X X × × × X X X X

OC compatible × X X × × × X X X X

Utility function × × × × × × × X X X

Table 2.3: Summary table of the properties verified by the metrics.

(X-verifies the relation; ×- the relation does not verify, not applicable or unknown.)

As in [Knowles & Corne, 2002] we recommend the use of R1, R2 and R3, three of

the metrics suggested in [Jaszkiewicz, 2001] for the multiple objective maximization

continuous case. These metrics have the advantage of providing comparisons based

on probabilities, are non-cardinal metrics, independent of a reference set (although

they induce three other metrics that depend on a reference set – R1R, R2R and R3R),

are adaptable to various utility functions, and satisfy the complete, the strong and the

weak outperformance relations. On the other hand, they can have a high computational

cost, which is related to the necessity of setting a family of utility functions that, for

some cases as the Tchebycheff utility, can also introduce some other difficulties like the

computation of an ideal point.
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2.5 Spanning Trees

This section recalles some basic definitions and algorithms on arborescences. Before

going on it is necessary to define a network. An undirected network is a tuple

N = (V , E ,Z), (2.63)

where V = {1, 2, . . . , n} is the set of nodes, E ⊂ {{i, j} : i, j ∈ V} is the set of edges

and

Z : E → IRm

Z(e) 7→ (z1(e), z2(e), . . . , zm(e))
(2.64)

is a function that associates a weight vector to each edge.

Unless stated otherwise, it will be considered that all networks are undirected.

Nevertheless, a directed network would be defined similarly with the exception of the

elements of E , which must indicate the direction of the edge with a starting and a

ending node: E ⊂ {(i, j) : i, j ∈ V} = V × V .

To simplify the notation, euv represents an edge defined by nodes u and v of V .

Furthermore, two nodes are adjacent if exists an edge connecting them and the degree

of a node, u, is defined as the number of its adjacent nodes, δ(u). A network is said

connected if exists a path between every pair of nodes.

N ′ = (V ′, E ′,Z ′) is a subnetwork of N if V ′ is a subset of V , E ′ is a subset of E

(with all the edges defined over V ′) and Z ′ is the restriction of Z to E ′.

In the remaining of this section it will be considered the single objective case, that

is, m = 1. The case where m > 1 will be subject of analysis in Section 3 and following.

Most of the network types considered in this thesis are spanning trees. Mathemat-

ically, a spanning tree of a connected network N is a connected subnetwork of N

that contains all nodes of N and does not contain any cycle. More generally, a forest

is defined as a subnetwork containing no cycles, where any two nodes are connected by

at most one path.
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Let TN ⊆ 2E be the set of all spanning trees over N . For a complete network,

Caley’s formula states that |TN | = |V||V|−2 (see for example [Coppersmith & Lotker,

1996]). More generally, Kirchhoff’s theorem [Masbaum, 2002; Norman, 1993] states

that the number of spanning trees of an undirected network is

|TN | =
1

|V|

|V|−1∏
i=1

λi (2.65)

where λ1, λ2, . . . , λ|V|−1 are the eigenvalues of the admittance matrix L = [li,j], com-

puted as

li,j =


δ(i) if i = j

−1 if node i is adjacent to node j and i 6= j

0 otherwise

(2.66)

In particular, the Minimum Spanning Tree problem solution is a spanning tree with

total minimal weight. Using the sum objective function defined in (2.2), the minimum

spanning tree problem is stated as

min
T∈TN

w1(T ), (2.67)

where w1(T ) =
∑

e∈T z1(T ).

The Minimum Spanning Tree problem has been studied for several decades and a

list of historical developments can be found in documents like [Graham & Hell, 1985].

The following sections present three classical procedures to solve the problem.

2.5.1 Bor̊uvka’s Algorithm

This algorithm covers problems where all the edges have different weights. It starts

with a forest constituted by the vertices of N . Then it examines each vertex to find

the lighter edge that connects two distinct forest elements, and merges those elements

by adding that edge. Since the result is always a forest, the process is repeated until a

single (spanning) tree is completed [Jungnickel, 1999].
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Algorithm 5 Bor̊uvka’s algorithm.

input: N = (V , E ,Z) . weighted undirected network

output: MST . Minimum spanning tree

1: function MST BORŮVKA(N )

2: for i ∈ {1, 2, . . . , |V|} do

3: Wi ← {vi} . V = {v1, v2, . . . , v|V|}
4: end for

5: MST ← ∅
6: F ← {W1,W2, . . . ,W|V|}
7: while |MST | < |V| − 1 do

8: for Ui ∈ F do

9: find a minimal weight edge euv such that u ∈ Ui and v ∈ U ′i 6= Ui

10: MST ←MST ∪ {euv}
11: end for

12: for Ui ∈ F do

13: MERGE(Ui, U
′
i)

14: end for

15: end while

16: return MST

17: end function

Algorithm 5 describes the procedure where the MERGE function represents the

disjoint union of the subtrees into F (a set that contains the forest elements).

2.5.2 Prim’s Algorithm

The Prim’s algorithm was first described by Vojtěch Jarńık in 1930 [Jarn̈ı¿1
2
k, 1930].

Later it was independently rediscovered by Robert Prim and Edsger Dijkstra in the

1950’s decade [Prim, 1957].

Basically, the procedure starts by picking one node. Then the edges with small

weights that keep the feasibility are added until the spanning tree is complete (see for

example [Jungnickel, 1999]). Algorithm 6 has a high level description of the process.

The complexity of the algorithm depends on step 6. If the data structure used to
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Algorithm 6 Prim’s algorithm.

input: N = (V , E ,Z) . weighted undirected network

output: MST . Minimum spanning tree

1: function MST PRIM(N )

2: Select a node v from V
3: T ← {v}
4: MST ← ∅
5: while |MST | < |V| − 1 do

6: Find the minimal weight edge euv such that u ∈ T and v ∈ V − T
7: T ← T ∪ {v}
8: MST ←MST ∪ {euv}
9: end while

10: return MST

11: end function

keep the information is an adjacency matrix then the algorithm has O(|V|2) complexity.

However, using a binary heap the complexity can be improved to an O(|V | log |V | +

|E| log |V|) and if a Fibonacci heap is used, then its complexity is O(|E|+ |V| log |V|).

2.5.3 Kruskal’s Algorithm

Kruskal’s Algorithm is perhaps the easiest to understand of the the three algorithms

here presented [Kruskal, 1956].

The process starts with an empty forest. Then, while the spanning tree is not com-

plete, the edges are successively tested, sorted by the increase values of their weights.

An edge is included in the forest if it does not create any cycle, that is, it keeps the

forest property (see for example [Jungnickel, 1999]).

Algorithm 7 presents the description of the procedure which has an O(|E| log |E|)

time complexity due to the necessity of sorting the edges in an increasing order.
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Algorithm 7 Kruskal’s algorithm.

input: N = (V , E ,Z) . weighted undirected network

output: MST . Minimum spanning tree

1: function MST KRUSKAL(N )

2: Sort the elements of E in non decreasing weights: {e1, e2, . . . , e|E|}
3: i← 1

4: while |MST | < |V| − 1 do

5: if MST ∪ {ei} is a forest then

6: MST ←MST ∪ {ei}
7: end if

8: i← i+ 1

9: end while

10: return MST

11: end function

2.5.4 Other Methods

The three classical procedures presented above have been improved by several re-

searchers:

• Gabow et al. [1989] presented a O(|E| log β(|E|, |V|)) method where β is the slow

growing function defined by β(m,n) = min{i : log(i) m ≤ m
n
};

• A randomized linear-time algorithm for finding minimum spanning trees with

expected running time of O(|E|) was proposed by Kleint & Tarjan [1994];

• A deterministic algorithm with time complexity O(|E|α(|E|, |V|)) was proposed

by Chazelle [2000], where α is the inverse of the Ackermann’s function (an even

slowly growing function than β) defined as

α(m,n) = min
{
i ≥ 1 : A

(
i,
⌊m
n

⌋)
≥ log2 n

}
, (2.68)
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where

A(m,n) =


n+ 1 if m = 0

A(m− 1, 1) if m > 0 and n = 0

A(m− 1, A(m,n− 1)) if m > 0 and n > 0

; and (2.69)

• Chazelle et al. [2005] presented a method to approximate the minimum spanning

tree weight in sublinear time.

2.5.5 Related Problems

Several variants of the Minimum Spanning Tree problem have been studied by computer

science researchers. Those variants arise from imposing restrictions to one or more of

the trees parameters like the degree of the nodes, the number of leaves, the diameter

of the tree (maximum distance between two nodes) and others.

In [Ausiello et al., 1999] it is a list of variants of the spanning tree problem, including

several NP -complete cases.

2.6 Summary

In this chapter has been presented some preliminary definitions and results necessary

for the remaining thesis. Those concepts were specially concerned with the multiple

objective optimization of networks (in particular spanning trees).

The multiple objective optimization problems are, by nature, extremely difficult

to solve. The conjunction of incompatible objectives implies that the solution of a

multiple objective problem is not a single solution but a set of trade off answers. The

necessity to find equilibrium between the objectives implies that hardly ever exists spe-

cific algorithms to exactly solve the problems in acceptable time. In the deterministic

field, the most common solutions include the transformation of the multiple objec-
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tives problem into a single objective problem for which, hopefully, exists an efficient

algorithm capable of solving it.

Recent meta-heuristics have proved that they return good approximations to the

most demanding problems, recurring to suitable adaptations for the problems.

On the other hand, the use of different methods require the existence of quality

indicator capable of, at least probabilistically, infer which of the methods has a more

acceptable behaviour.

In the end of these preliminaries chapter, some basic results on spanning trees

were recalled, subject that will be further developed in the following chapters, for the

multiple objective case.
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3.1 Overview

The Multiple Objective Minimum Spanning Trees problem, classified as a combinato-

rial optimization problem with NP -complete complexity, is the main concern of this

chapter. For this problem exists a general absence of theoretical results, which moti-

vates the analysis of a set of properties that will be proposed in the following sections.

Relatively to the Multiple Objective Minimum Spanning Trees problem, several

theoretical and practical applications use arborescences representations, which are as-

73
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sumed as unavoidable in many strategic optimization fields, as the final result or as

some intermediate step of a larger problem. For example, arborescences are applied in

practical circumstances in

VLSI circuits – It is known that the design, build and functioning of VLSI circuits

has to be optimized using, most of the times, spanning and/or Steiner trees. For

example, the topological optimization of the circuits creates high performance

interconnections through the minimization of the total wire length, the critical

path length, or the registered delays[Atallah, 1999; Cong et al., 1996].

Telecommunications networks

• IEEE standard 802.1D (Spanning Tree Protocol [802.1D, 2004]) – In redun-

dant telecommunication networks there may exist several paths in which

two nodes can connect. The existence of multiple paths requires the defi-

nition of a set of rules to avoid traffic congestion in internal network loops.

The Spanning Tree Protocol configures a spanning tree structure accessed

by each bridge or router, which is the only way that traffic can be sent to all

visible nodes. The spanning tree is defined using the shortest distance to a

root bridge or router, using bandwidth as a measurement. The bi-objective

spanning tree-based genetic algorithm that minimizes the communication

cost and the average message delay is presented by Gen & Li [1998]; and

Abuali et al. [1994] study the probabilistic minimum spanning tree. Other

relevant parameters can be optimized like the reliability of the edges, the

probability of packet corruption, or the average number of edges that a

random packet has to cross to reach a destination.

• Quality of Service problems – The Spanning Tree Protocol, in the intent of

avoiding traffic loops, forces the packets to be tunnelled into the branches of
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a single tree. This implies that often, even in normal circumstances, some

edges end up being congested, although the blocked (not used) branches have

plenty of available bandwidth[Yu et al., 2003]. Possible solutions include the

use of VLAN spanning trees that maintain instance trees for each VLAN

configured in the network [Cisco Systems, 2005].

Electrical or cable TV networks – By nature, electrical and cable TV networks

assume a spanning tree topology. In fact, as referred in the previous chapter,

Bor̊uvka was the first to formalize the problem and use its proposed solution

to optimize an electrical network. Other application examples are illustrated in

the ability to handle large-scale distribution-network problems as presented by

Carvalho et al. [2001].

Road networks – In this field the use of spanning trees or related problems is also

used often [Hu, 1974]. For example, in the design stage parameters like total

length, environmental impact, network diameter, or node degree have to be opti-

mized. The emergency circulation plans is another example of problem that can

be solved as a spanning tree where factors, like the (average) required time and

distance to reach every possible emergent point or region in the network, have to

be optimized.

Astronomy and astrophysics – Spanning tree are used to characterize the aggrega-

tion level of a given set of points, identifying clusters associated to galaxies[Adami

& Mazure, 1999].

Medical imaging – In magnetic resonance imaging the reconstructed images can be

decomposed into amplitude images and phase maps. The minimum spanning

tree algorithm is used as an unwrapping method to process the acquired signal

and the sequenciation of those images [An et al., 2000].
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As exampled, by the number of possible applications along with their practical

importance, the study of arborescences problems is made in very distinct areas of

science.

Often the problem resumes to find a tree with minimal total weight: the Minimum

Spanning Tree problem. However, very distinct cases can appear based in aspects,

like the type of optimization problem (minimization/maximization), the restrictions

on the nodes/edges, number of leaves, or the diameter of the tree. A comprehensive

description of these problems can be find in [Ausiello et al., 1999].

In the remaining of this chapter, it is presented the mathematical formalization of

the problem followed by an overview of its computational complexity along with some

known algorithmic proposals. The last sections introduce a set of results and do an

analysis that motivates the subsequent chapters.

3.2 Problem Definition

To formalize the problem it is necessary to recall the network definition previously

presented. An undirected network is a tuple

N = (V , E ,Z) , (3.1)

where V is the set of nodes or vertices, E is the set of edges defined between the

nodes of V and Z is a weight vector function that maps each element of E into IRm.

Furthermore, it will be considered that all networks are connected, that is, there exists

always a path between every pair of nodes.

For a subnetwork T of N , the sum objective function, also called weight or cost
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vector of T , is defined as in (2.4) by

W(T ) = (w1(T ), w2(T ), . . . , wm(T )) =

=

(∑
e∈T

z1(e), . . . ,
∑
e∈T

zm(e)

)
= (3.2)

=
∑
e∈T

Z(e),

where e ∈ T means that e is an edge of T and zi (i = 1, 2, . . . ,m) are the components

of the function Z defined in (2.64).

A spanning tree T is an acyclic and connected sub-network of N so that the set of

nodes of T is equal to V ,

T = (V , ET ⊂ E ,Z). (3.3)

It will be also considered the use of the classical dominance relations, set efficiency

and Pareto’s optimality for the multiple criteria optimization problems (refer to Chap-

ter 2).

If TN is the set of all spanning trees over N then the optimization problem can be

stated as

min
T∈TN

+ W(T ). (3.4)

where min+ indicates that all objectives are to be minimized.

To simplify the notation, let VT denote the set of nodes of network T , euv ∈ E is

the edge defined by nodes u and v and T ′ = T − {e} ∪ {f} is a network obtained by

removing edge e and adding edge f to T , that is,

T ′ = (V , ET − {e} ∪ {f},Z), (3.5)

where ET is the set of edges of T .
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3.3 Complexity

Several complete studies about the complexity of the Multiple Objective Minimum

Spanning Trees problems are present in different papers. Overviews about the com-

plexity of the spanning tree problems on undirected graphs are made in [Camerini

et al., 1980, 1983, 1984]. Their comprehensive study resumes the complexity of several

single and multiple objective instances, classifying them as solvable in polynomial time

or NP -complete. They prove or present references that for more than fifty variants,

and excluding some very rare cases, the (weighted) undirected multiple objective span-

ning trees problems are NP-complete problems. This includes the Multiple Objective

Minimum Spanning trees problem, the main concern of this document.

Later, in [Hamacher & Ruhe, 1994] it was proved that the problem is also NP − ],

that is, it can have an exponential number of efficient trees.

Methods to scan all spanning trees, like the recursion algorithms presented in

[Gabow & Myers, 1978; Ramos et al., 1998; Shioura et al., 1997], have a high or-

der of complexity with one of the best taking O(|TN |+ |V|+ |E|) time and O(|V|+ |E|)

space, which usually became untreatable for small networks.

The linear and non-linear combination of objectives for the directed and the undi-

rected networks are analysed in [Dell’Amico & Maffioli, 1996, 2000]. As expectable,

results show that the linear combination of ”easy” problems continues to be “easy”,

which does not necessarily verify for the non-linear case. This implies that for each

linear combination of the objectives, the Multiple Objective Minimum Spanning Trees

problem is transformed into a single objective problem, for which exists an efficient

algorithm to solve it. This process can be used to obtain a set of efficient solutions,

which are recognized as supported solutions.

A Prim’s based algorithm to obtain all efficient spanning trees was proposed by

Corley [1985]. Unfortunately, the process is based over a wrong premise (as exampled



3.3. Complexity 79

W1

Viable region

W2

A

B

C

Figure 3.1: Viable region.

in [Hamacher & Ruhe, 1994]) that if T ′ is a subtree of an efficient spanning tree T ,

euv is an edge of E such that u ∈ VT ′ and v 6∈ VT ′ then euv is an edge in an efficient

spanning tree if and only if euv is efficient over the set of edges defined between VT ′

and V − VT ′ .

Also in [Hamacher & Ruhe, 1994] it is presented a two-stage method to construct

a well-distributed set of efficient solutions, generalized to a well-distributed approx-

imation set in formula (2.16), for the Multiple Objective Minimum Spanning Trees

problem. In the first stage, the supported solutions are computed using the Weighted

Sum method, described in Section 2.3, and a strategy based in the slopes values be-

tween lexicographically consecutive solutions. In the second stage, a neighbourhood

search is made to complete the well-distributed set looking for solutions in the viable

regions. Here the viable regions are the non-dominated triangular regions defined by

lexicographic consecutive solutions in the objective space. Figure 3.1 presents the vi-

able region (in grey), and three solutions: A and B are supported solutions and C is

not a supported solution. The process stops in any of the steps, whenever the well-
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distributed condition is verified. The algorithm presents some limitations as the fact

that it is established over results for the bi-objective case and it does not predict the

cases where the fronts have gaps, where it is impossible to satisfy the well-distributed

condition.

Another two-phase method is also presented in [Steiner & Radzik, 2003]. The

method starts by computing the set of supported solutions (like in [Hamacher & Ruhe,

1994]). Then, they apply a k-Best Minimum Spanning Trees algorithm to search for

other efficient solutions in the viable region. The proposed method is then compared

with another two-phase method where a Branch-and-Bound technique replaces the k-

Best Minimum Spanning Trees in the second phase. They conclude that, for the tested

problems, the k-Best Minimum Spanning Trees strategy outperforms the two-phase

Branch-and-Bound method.

Another Branch-and-Bound algorithm for the bi-objective case is presented in

[Sourd et al., 2006]. The method uses the same line of process that was above de-

scribed: firstly it computes the supported solutions, which are then used to find the

others efficient solutions by a Branch-and-Bound method.

However, we are not aware of any reference to the study of the Multiple Objective

Minimum Spanning Trees problem using meta-heuristic techniques.

Some exceptions issue variants of the Multiple Objective Minimum Spanning Trees

problem, like the k-Degree Multiple Objective Minimum Spanning Trees problem,

where genetic algorithms were proposed [Knowles & Corne, 2001a; Knowles et al.,

1999; Raidl & Julstrom, 2000; Zhou & Gen, 1999], and the Multiple Destination Rout-

ing Problem [Leung et al., 1998].
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3.4 Efficiency and Dominance

As already referred, there exists a general absence of documented theoretical results

associated to the Multiple Objective Minimum Spanning Trees problem. Therefore, as

an effort to better characterize the problem in study, in this section we generalize some

of the propositions known for the single objective case and introduce some new results.

More specifically, several theorems with premises over the edges local, global, and cut

efficiency are proved. Those results allow to conclude that under certain conditions it

is possible to assure that some edges belong to the efficient trees.

In the first remark, it is proved that if for some sub-network of N we can replace an

edge by another that dominates the first one, then the resulting network also dominates

the former.

Remark 3.1: Let e be an edge of a non empty sub-network T of N . If f is an edge

of E −ET and f dominates e, f ≺ e, then a network T ′ obtained by adding f to T and

removing e from T , T ′ = T − {e} ∪ {f}, dominates T .

Proof. Since f dominates e then zi(f) ≤ zi(e) for all i ∈ M = {1, 2, . . . ,m} and

zj(f) < zj(e) for some j ∈ M . Therefore, from the first inequality, for all i ∈ M the

following assertion is verified

wi(T
′) = wi(T ) + zi(f)− zi(e) ≤ wi(T ) (3.6)

and, from the second, it is guaranteed that exists j ∈M such that

wj(T
′) = wj(T ) + zj(f)− zj(e) < wj(T ), (3.7)

which proves that T ′ dominates T .

Considering that E|T is the set of edges defined in N by VT and N|T = (VT , E|T ,Z)

then, we are able to define the tree efficiency concept and prove that a spanning tree
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is efficient if and only if all its subtrees are also efficient, as follows. We say that T is

a efficient subtree if T is efficient over N|T . By the previous definition, T ∈ TN is

an efficient tree if there is no other tree S ∈ TN such that S dominates T .

Theorem 3.1. A spanning tree is efficient if and only if all its subtrees are efficient.

Proof. Suppose that T has a subtree T ′ that is not efficient over

N|T ′ = (VT ′ , E|T ′ ,Z). (3.8)

Then, there exists a subtree S ′ ∈ N|T ′ such that S ′ ≺ T ′, that is, wi(S
′) ≤ wi(T

′)

for all i ∈M and exists j ∈M such that wj(S
′) < wj(T

′). Now, for

S = T − T ′ ∪ S ′ (3.9)

we have

wi(S) = wi(T )− wi(T ′) + wi(S
′) ≤ wi(T ) for all i ∈M (3.10)

and

wj(S) = wj(T )− wj(T ′) + wj(S
′) < wj(T ) for some j ∈M, (3.11)

which means that S dominates T and consequently we have a contradiction. Therefore,

all subtrees of T must be efficient.

To prove the reciprocal, it is enough to observe that T is a subtree of T and by the

hypothesis all subtrees of T are efficient.

Theorem 3.1 suggests that if a subtree of an efficient spanning tree is replaced

by other efficient subtree then the resulting spanning tree would also be efficient. In

fact, this is not true in all situations. Consider, for example, the network in Figure

3.2 and the eleven possible spanning trees with weights W(T1) = (19, 19), W(T2) =

(18, 18), W(T3) = (19, 19), W(T4) = (18, 22), W(T5) = (16, 20), W(T6) = (17, 21),

W(T7) = (18, 22), W(T8) = (22, 18), W(T9) = (20, 16), W(T10) = (21, 17) and
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Figure 3.2: A breakdown network into spanning trees.

W(T11) = (22, 18). The efficient spanning trees are T2, T5 and T9. Over the sub-

network defined by nodes {1, 2, 3}, S1 = {e12, e23} and S2 = {e12, e13} are two efficient

subtrees. Although tree T2 is efficient, the tree obtained by replacing the subtree S1 of

T2 by subtree S2 conducts to a tree that is not efficient, T6.

Next are introduced two concepts that will be used in the following remarks. A

cut of V is a partition of V in two non empty sets V1 and V2, that is, V = V1 ∪ V2

and V1 ∩ V2 = ∅. Let us denote the set of the edges incident with one node in V1
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and with a node in V2 by E(V1,V2) and euv ∈ E(V1,V2) will mean that euv is an edge

of the cut E(V1,V2) such that u ∈ V1 and v ∈ V2. Furthermore, if N is a connected

network, we say that an edge euv ∈ E is a bridge if by removing it the network becomes

disconnected.

The next remark states a condition to replace an edge of a tree so that the resulting

network is also a tree.

Remark 3.2: Let T be a tree, euv ∈ ET and {Vu,Vv} the cut induced by removing

euv from T . If ewz ∈ E(Vu,Vv) then T ′ = T − {euv} ∪ {ewz} is a tree.

Proof. Let Tu and Tv be the subtrees of T defined by Vu and Vv, respectively. Since T

is a tree, Tu and Tv are also trees (they are subtrees of T ) and by hypothesis they are

node-disjoint. Therefore, for ewz ∈ E(Vu,Vv),

T ′ = (V , ETu ∪ ETv ∪ {ewz},Z) (3.12)

cannot contain any cycles and is connected, which proves that T ′ is a tree.

Let Eu be the set of edges with starting node u. Then, it is possible to introduce

the local efficiency of the edges as follows. An edge euv ∈ E is local or node efficient

if euv is not dominated by any edge in Eu, that is,

∀euw ∈ Eu : euw 6≺ euv. (3.13)

Furthermore, an edge is local or node dominant if euv dominates all edges in

Eu − {euv}, that is,

∀euw ∈ Eu − {euv} : euv ≺ euw. (3.14)

Similar definitions can be made for cuts as follows. If {V1,V2 = V − V1} is a cut of

V then an edge euv ∈ E(V1,V2) is said {V1,V2}-cut efficient if euv is not dominated
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Figure 3.3: Hamacher and Ruhe example.

by any edge in E(V1,V2) and edge euv ∈ E(V1,V2) is {V1,V2}-cut dominante if euv

dominates every element of E(V1,V2)− {euv} or euv is a bridge.

As already referred, in [Corley, 1985] it is made an attempt to obtain a necessary

and sufficient condition for the Multiple Objective Minimum Spanning Trees efficiency,

based on the cut efficiency of the edges. Latter it was found a counter-example for the

proposed result [Hamacher & Ruhe, 1994], which is sketched in Figure 3.3. It can be

observed that all edges are local efficient but exists at least one spanning tree that is

not efficient (for example T1).

In fact, we are not aware of any necessary and sufficient condition, based on the local

efficiency of the edges, proving that a tree is or is not efficient. Even if an edge is locally

dominated it can still be a part of an efficient spanning tree, as exampled in Figure 3.4.

In that example, Edge e15 is dominated by edges e12 and e45. Nevertheless, e15 belongs

to the efficient spanning trees T3 = {e12, e15, e45, e23} and T4 = {e12, e15, e45, e34}.

In the following two theorems it is proved that, in some conditions, a same edge

can belong to all the efficient spanning trees.

Theorem 3.2. If euv is local dominant or euv is a bridge then euv belongs to all the

efficient trees.
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Figure 3.4: Example of a locally dominated edge that belongs to the efficient spanning

trees.

Proof. The case in which euv is a bridge is trivial. Suppose now, that euv is node

dominant, T is an efficient tree from TN , (u, u1, u2, . . . , up, v) is the path from u to v in

T , euv does not belong to T and S is the tree obtained by replacing edge euu1 by edge

euv in T (Remark 3.2). Now, using Remark 3.1 and since euv dominates euu1 , we can
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Figure 3.5: Example where all the edges are node efficient.

conclude that S dominates T . Therefore, T is not an efficient tree, contradicting our

hypothesis, which implies that euv must belong to all efficient trees.

From Figure 3.5 it is possible to observe that the reciprocal of Theorem 3.2 is

not valid. In that example, there are four spanning trees T1 = {e12, e23, e34}, T2 =

{e14, e23, e34}, T3 = {e14, e12, e34} and T4 = {e14, e12, e23}, with weights W(T1) =

(18, 15), W(T2) = (16, 16), W(T3) = (15, 18) and W(T4) = (17, 17), respectively. In

this case, edge e34 belongs to all efficient spanning tree, T1, T2 and T3, although it is

not a bridge neither local dominant.

However, it is easy to see that e34 dominates all the edges in the cut V1 = {1, 4},

V2 = {2, 3}. This suggests the next theorem where it is stated another condition

concluding that the same edge can belong to all efficient spanning trees.

Theorem 3.3. Let {V1,V2} be a cut. An edge euv is {V1,V2}-cut dominant if and only

if euv belongs to all efficient spanning trees.
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Proof. The case in which E(V1,V2) − {euv} = ∅ it is trivial that euv belongs to all

spanning tree, since it is a bridge. Suppose now that E(V1,V2)−{euv} 6= ∅, euv does not

belong to some efficient tree T and let ewz be an edge in E(V1,V2)−{euv} that belongs

to the path between u and v in T . Then, by Remark 3.2, S = T − {ewz} ∪ {euv} is a

spanning tree and, since euv ≺ ewz, from Remark 3.1 we can conclude that S dominates

T which contradicts our hypothesis that T is an efficient spanning tree. Thus euv must

belong to all efficient spanning trees.

To prove the reciprocal suppose that euv is not a bridge (if it is a bridge then by

definition euv is cut dominant as required). Assuming that euv belongs to all efficient

trees but does not exist a cut {V1,V2 = V − V1} such that euv ∈ E(V1,V2) and euv is

cut dominant then, since euv is not cut dominant, one of the following must happen:

• euv is cut dominated for all cuts, in which case it is obvious that it cannot belong

to all efficient spanning trees. In fact, it can not belong to any efficient spanning

tree, since the exchange of euv for any dominating edge, of the edges induced by

the cut, would create a dominating solution; or

• Exists at least a cut {V1,V2 = V − V1} such that euv is {V1,V2}-cut efficient.

Since euv is {V1,V2}-cut efficient (but not dominant) exists eu′v′ ∈ E(V1,V2) such

that euv is not comparable to eu′v′ , euv ∼ eu′v′ . This implies the existence of some

j ∈ M such that zj(eu′v′) < zj(euv). Let T be the efficient spanning tree with

minimal j-weights, that is,

T = arg min
S∈P∗

wj(S) (3.15)

where P∗ is the Pareto set. Then T ′ = T ∪{eu′v′}−{euv} is a tree such wj(T
′) <

wj(T ) which contradicts the hypothesis stated in (3.15).
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In the next result it is proposed a non-optimality condition. If T is a tree and e

an edge that does not belong to T then T ∪ {e} contains an unique cycle denoted by

CT (e).

Theorem 3.4. If a spanning tree T is efficient and e belongs to E − ET then e does

not dominate any edge in the cycle CT (e), that is, ∀e∈E−ET∀f∈CT (e) : e 6≺ f.

Proof. Suppose that T is an efficient spanning tree, and exists e ∈ E−ET and f ∈ CT (e)

such that e ≺ f . By Remark 3.1, the tree S = T − {f} ∪ {e} ≺ T , since e ≺ f which

contradicts our hypothesis and therefore e cannot dominate any edge f ∈ CT (e).

The reciprocal of the above theorem is not valid. For example, in Figure 3.6(a) it

is represented a network which has a unique efficient tree Tef = {e12, e23, e24}, Figure

3.6(b). Now, although edge e14 does not dominate any edge of tree T = {e12, e23, e34},

Figure 3.6(c), T is not efficient.

Theorem 3.5. If T is a spanning tree such that for all edges e of E − ET and for all

edges f of CT (e)− {e} we have f ≺ e then T is the unique efficient spanning tree.

Proof. Let S0 be a spanning tree, ES0 − ET 6= ∅ (if it was the empty set then S0 = T )

and e an edge in ES0 − ET . If we remove e from S0, we obtain two subtrees of S0: S ′0

and S ′′0 . On the other hand, we know that e is dominated by all edges in the path

CT (e)−{e} and S ′0∪S ′′0 ∪CT (e)−{e} will be connected again (not necessarily a tree).

If e′ is the edge that connects S ′0 with S ′′0 and S1 = S0−{e}∪ {e′} is the tree obtained

by removing e from S0 and adding e′, thenW(S1) =W(S0)−Z(e)+Z(e′). Now, since

by hypothesis e′ ≺ e then for all i ∈ M it verifies zi(e) ≤ zi(e
′) and exist j ∈ M such

that zj(e) < zj(e
′), which implies that wi(S1) ≤ wi(S0) for all i ∈ M and exist j ∈ M

such that wj(S1) < wj(S0) and, therefore, S1 ≺ S0. This process can be repeated while

Si − T 6= ∅, obtaining a sequence of trees such that Sk ≺ · · · ≺ S2 ≺ S1 ≺ S0, with



90 Chapter 3. Multiple Objectives Spanning Trees

(a)

H1,1L

H2,1L

H1,2L

H1,1L

H1,1L

H2,1L

1 2

3

4

N

(b) (c)

H1,1L

H1,1L

H1,1L

1 2

3

4

H1,1L

H1,2L

H1,1L

H2,1L

1 2

3

4

Tef T

Figure 3.6: Network example.

k ≤ n − 1. At the end Sk = T , since Sk − T = ∅, which implies that any tree is

dominated by T .

The global efficiency of the edges can be defined as follows. If {V1,V2} is a cut and

Ê(V1,V2) = {e ∈ E(V1,V2) : f 6≺ e, f ∈ E(V1,V2)} (3.16)

is the set of the efficient edges over E(V1,V2) then the union of the efficient edges for

all cuts {V1,V2} over V , that is,

EC =
⋃
V1 V

Ê(V1,V − V1), (3.17)

is called the set of the efficient edges-cuts over N .
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Using the above notion it is possible, in some particular conditions, to restrict the

number of edges that can belong to an efficient tree.

Theorem 3.6. Let EC be the set of the efficient edges-cuts over N and N ′ = (V , EC,Z)

a connected network. If T is an efficient spanning tree then all the edges of T belong

to EC.

Proof. Let S0 be a spanning tree and e 6∈ EC an edge in S0. If we remove e from S0 we

get two subtrees, S ′0 and S ′′0 . On the other hand, since N ′ is connected, there exists at

least one edge e′ in EC connecting S ′0 to S ′′0 that does not belong to S0. Therefore, e′

dominates e, and S1 = S ′0∪S ′′0 ∪{e′} = S0−{e}∪{e′} dominates S0 (Remark 3.1). The

process can be repeated while Si has at least one edge in E −EC, generating on the way

a sequence of dominated trees, Sk ≺ · · · ≺ S2 ≺ S1 ≺ S0 for some k ≤ n−1. Therefore,

all efficient spanning trees only have edges in EC. Conversely, they are dominated by

at least one spanning tree with edges in EC.

The reciprocal of this Theorem 3.6 is not valid. Returning to the example proposed

in Figure 3.3, the set of efficient edges over N coincides with E , EC = E , but there are

trees that are no efficient.

3.5 Conclusions

In the previous sections, several results were examined as an effort to establish prop-

erties capable of enhancing the known methods or suggest new methodologies. These

properties are in general based on the local and the global efficiency of the edges,

allowing in some circumstances to enumerate the Pareto set.

For example, in Theorem 3.1 it is presented a necessary and sufficient condition for

a tree to be efficient, based in its subtrees. Though, it is not known a general condition
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that allows the addition of new edges to an efficient subtree with certainty of keeping

the efficiency and obtaining all possible solution.

Another example is the Theorem 3.3 where it is presented a necessary and sufficient

condition that could be used to establish an a priori set of edges that belong to all

efficient spanning trees. However, a problem emerges when the computational effort

is considered. For example, in a random weighted tree the probability a component of

the weight being greater than another is p = 0.5. Therefore, an edge has probability

0.5m of dominating another which, for a cut with r edges, implies that the probability

of a particular edge dominates all the edges in the cut would be 0.5rm. Therefore, to

allow a proper use of the result

• It should exist a strong correlation between the edges weights, such that p is near

to 1;

• The number of weights (m) should be very small;

• The network should be sparse such that r has also a good probability of being

small; and

• A good heuristic to explore the 2|V| − 2 possible cuts should be applied.

Nevertheless, this problem has several great advantages when used in the study of

meta-heuristics, like

• The problem is the basis for several more interesting problems due to their prac-

tical applications;

• Adaptations from the algorithms for the single objective case (like Prim’s or

Kruskal’s algorithms) allow obtaining fast approximations to the Pareto front;

• The existence of Brute Force methods (applicable to very small instances) allows

to obtain the exact Pareto Front;
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• The associated Weighted Sum problem has efficient algorithms to solve it;

• The possibility of obtaining an approximation set using a Weighted Sum strategy

with weights computed as suggested by Hamacher & Ruhe [1994] for the bi-

objective case, extensible to more objectives as in [Steiner & Radzik, 2003]; or

• The existence of algorithmic strategies that allow to obtain good approximations

to the Pareto front through the computation of solutions in the viable region

using, for example, Branch-and-Bound strategies or k-best algorithms.

When we consider deterministic processes, the two-phase methods, in [Hamacher

& Ruhe, 1994; Steiner & Radzik, 2003], seem to be the best proposal. From the three

alternatives for the second phase the use of Branch-and-Bound techniques, always

dependent on the bounding procedure, is expected to have a high time complexity.

The local search strategy can be considered similar to the k-best scheme and should

have a better performance than the former one, but a high time complexity should

remains.

As far as we know, none of the methods was tested with networks such that the

Pareto front presents one or several large concave regions or large gaps.

However, perhaps the biggest disadvantage is the fact that we should expect them

to be inefficiently or hardly adaptable to slight variations of the problem. Principally,

when those modifications imply that the Weighted Sum problem has not an efficient

method to solve it.

Therefore, the next chapter is devoted to the establishment of a repository of net-

work generators, capable of producing a set of difficulties to most of the methods

like anti-correlated edges weights, concave fronts and fronts with gaps. Two new Ant

Colony based methods are presented, tested and, discussed with already studied in-

stances of the Multiple Objective k-Degree Minimum Spanning Trees problem and
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Multiple Objective Travelling Salesman Person, in the subsequent chapters.

3.6 Summary

This chapter has been devoted to the analysis of deterministic solutions for the Multiple

Objective Minimum Spanning Trees problem. The first sections do a survey of the

problem complexity and of the algorithmic solutions proposed by other authors for

its resolution. Before the general absence of analytical properties, the next section

introduces several results and examples that allow to better characterize the problem

in study. The chapter ends with the presentation of conclusions, which suggest the

need of alternative methods for the problems in study.



No amount of experimentation can ever prove me right; a

single experiment can prove me wrong.

Albert Einstein
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4.1 Overview

The use of heuristics and meta-heuristics in the optimization processes requires that

those methods have to be tested with known problems and confronted with their so-

lutions, to deduct their overall performance and accuracy. The use of large sets of

problems reduces the risk of over-fitting the methods although, in an extensive collec-

tion, some classes of features may be rare or absent.

Commonly, various types of difficulties arise when we try to explore some specific

problem, as

• The need to find repositories for the problems in study (or possibly similar);

• The need to know the optimums or quasi-optimums of the test problems; and

• The lack of diversity of the previously studied instances.

This situation implies that the proposed algorithms are first tested with classical

problems, like some libraries of functions for the continuous case or the classical Trav-

elling Salesman Person problem for the discrete case, which is a touchstone for many

meta-heuristics [Cirasella et al., 2001; Dorigo et al., 1996, 1999; Johnson & McGeoch,

1997].

These lack of choices is even more patent in the multiple objective combinatorial

optimization, where only a few disperse sets of results are available. Therefore, this
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section proposes and presents the Multiple Objective Spanning Tree repository – MOST

– Project [Cardoso et al., 2006a, b]. It is an archive for the large multidisciplinary

applications problems of the multiple objective spanning trees. The objective of the

MOST Project is to establish, maintain, and successively improve an intuitive and

large set of problems along with their optimal or quasi-optimal solutions, on which

different algorithms can quickly be tested and classified relatively to their performance:

processing time and accuracy.

MOST can be accessed via Internet at http://est.ualg.pt/adec/csc/most.

In the MOST Project problems, are classified according to three types of generators:

nodes, edges and weights.

There are five types of nodes generators in consideration:

• Grid Nodes Generator – produces a lattice regular cloud of nodes;

• Triangular Nodes Generator – produces a triangular regular cloud of nodes;

• Uniform and Normal Nodes Generators – are instance cases of the Statistical

Nodes Generator, which uses random generators associated to statistical distri-

butions. As deducted from their names, the uniform and normal distribution are

used in this cases; and

• Clusters Nodes Generator – where clusters of nodes are set using combinations

of the previous generators.

Reporting to the edges classes, six types of generators are proposed:

• Grid Edges Generator – applied over the Grid Nodes Generator produces a

Manhattan-like network;

• Delaunay Edges Generator – uses the Delaunay triangulation to set the edges.

A particular case is set when applied to the Triangular Nodes Generator, called
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the Triangular Edges Generator;

• k-Convex Edges Generator – uses an onion triangulation to set the edges;

• Complete Edges Generator – returns a complete network;

• Voronoi Edges Generator – uses the Voronoi diagram to set the edges and has

a particular case when applied to the Triangular Nodes Generator, called the

Hexagonal Edges Generator; and

• Clusters Edges Generator – uses some of the previous generators to set the edges

between and in the clusters.

For the edges weights case it were considered three generators:

• Random Weights Generator – randomly sets the weights;

• ρ-Correlated Weights Generator – uses a parameter ρ to define the weights such

that the their correlation is equal to ρ; and

• Concave Weights Generator – defines the weights such that the Pareto front has

one or more large concave regions.

Therefore, this chapter is divided as follows. The next three sections describe the

methods that were used to generate the networks. The remaining sections present some

examples of the Pareto fronts, obtained with the generated networks and a summary

of the chapter.

4.2 Nodes Generators

The reproduction of practical problems is one of the main objectives of the MOST

Project. After a previous analysis, it was decided to start by considering five types of
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Figure 4.1: Graphical representation of the nodes distribution obtained with the

GNG10,10.

nodes generators: Grid, Triangular, Uniform, Normal and Cluster Nodes Generator.

The first two generators can be classified as regular since they return regularly dis-

tributed clouds of nodes. The third and forth cases, are instances of a generator that

uses pseudo-random numbers associated to statistical distributions. In the fifth case,

to create clusters of nodes, the previous generators are employed, first to calculate a

set of centres for the clusters, followed by the generation of a set of nodes located in

their neighbourhood. Next, it is given a more detailed description of each one of those

methods.

4.2.1 Grid Nodes Generator (GNG)

The simplest case is the Grid Node Generator. This case produces a set of nodes that

are distributed over a m × n lattice. To simplify, GNGm,n will represent an instance

of that generator, with m lines and n columns of nodes,

V = GNGm,n = {(x, y) : x ∈ {1, 2, . . . , n}, y ∈ {1, 2, . . . ,m}}.

In Figure 4.1 we can see an example of a GNG10,10.
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Algorithm 8 Triangular Nodes Generator algorithm.

input: m, n, l, h = l
√

3
2

. m, n – Number of lines and number of nodes by line; l –

distance between neighbour nodes; h - distance between lines (see Figure 4.2(a))

output: V . set of nodes

1: V ← ∅
2: for all (x, y) ∈ {1, 2, ..., n} × {1, 2, ...,m} do

3: if x is odd then

4: V ← V ∪ {(x× l, y × h)}
5: else

6: V ← V ∪ {(x× l + l
2
, y × h)}

7: end if

8: end for

9: return V

4.2.2 Triangular Nodes Generator (TNG)

Similar to the GNG case, the Triangle Nodes Generator, sets m lines with n nodes per

line, TNGm,n, distributed according with Algorithm 8. Figure 4.2 depicts the nodes

distribution for a TNG10,10.

4.2.3 Statistical Nodes Generator (UNG, NNG)

The Statistical Nodes Generator uses random number generators defined by two sta-

tistical distributions, ZX , ZY , (respectively associated to x and y coordinates), to yield

as much nodes as necessary. In Algorithm 9 it is made a description of the process,

where random(Z) is a function that returns a (pseudo) random number with specified

distribution Z.

We considered two instances of the Statistical Nodes Generator, obtained with the

uniform and the normal distributions.
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Figure 4.2: (a) Height of an equilateral triangle with side l. (b) Graphical representa-

tion of nodes distribution obtained with TNG10,10.

Algorithm 9 Statistical Nodes Generator.

input: ZX , ZY , n . ZX , ZY – statistical distributions; n – number of nodes

output: V . set of nodes

1: V ← ∅
2: for i = 1, 2, ..., n do

3: V ← V ∪ {(random(ZX), random(ZY ))}
4: end for

5: return V

Uniform Nodes Generator (UNG)

As mentioned above, the Uniform Nodes Generator is a particular case of the Sta-

tistical Nodes Generator, and UNGn represents an instance of UNG with n nodes.

In this case, ZX ∼ U [xmin, xmax] and ZY ∼ U [ymin, ymax], where U [a, b] is the uni-

form distribution over the interval [a, b], and xmin, xmax, ymin, and ymax are generator

parameters. This produces a cloud of nodes uniformly distributed over the rectangle

[xmin, xmax]× [ymin, ymax].

In Figure 4.3(a) we can see an example of the distribution for n = 1000 nodes,

UNG1000, with xmin = ymin = 0 and xmax = ymax = 1000.
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(a) (b)

Figure 4.3: Graphical representation of nodes distribution for: (a) UNG1000; and (b)

NNG1000.

Normal Nodes Generator (NNG)

The Normal Nodes Generator is also a particular case of the Statistical Nodes Generator

and NNGn represents an instance with n nodes. In this case, ZX ∼ N(µX , σX) and

ZY ∼ N(µY , σY ), where N(µ, σ) is the normal distribution with mean µ and standard

deviation σ and µX , µY , σX and σY are generator parameters. The cloud of nodes is

distributed around (µX , µY ) with horizontal and vertical deviations associated to the

values of σX and σY , respectively.

The cloud of nodes for NNG1000, with µx = µy = 10000 and σx = σy = 100, is

sketched In Figure 4.3(b).

4.2.4 Clusters Nodes Generator (ClNG)

The last nodes generator to be considered is the Clusters Nodes Generator. The ClNG

uses, in two steps, the previous generators to produce a set of m clusters with n nodes

each. In the first phase, the m clusters centres are generated, c = (cx, cy), around which,

in the second phase, the clusters are completed by the addition of the remaining n− 1
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Figure 4.4: Graphical representation of nodes distribution for a ClNG20,50.

nodes. An instance with m clusters of n nodes each will be represented by ClNGm,n.

In this case, that obviously depends on the centres location and the dimensions of the

clusters, we usually obtain a set of separated sub-clouds of nodes.

In Figure 4.4 we can see an example of 50 clusters with 50 nodes each, ClNG50,50.

We used a UNG50 to generate the centres with xmin = ymin = 0 and xmax = ymax =

1000. Then each cluster was completed using a UNG49, in the neighbourhood of the

centres, defined by the parameters xmin = cx − δx, xmax = cx + δx, ymin = cy − δy and

ymax = cy + δy, where δx = δy =
√

1000. As a results, the number of nodes is perfectly

balanced between the clusters. Nevertheless, others combinations of the generators can

produce some not so well balanced cases.

4.3 Edges Generators

This section describes the six methods used to generate the networks edges, E . The

first, the Grid Edges Generator, is only applicable to GNG instances and returns

a Manhattan-like topology. The next two are called Delaunay and k-Convex Edge

Generator since they use a Delaunay triangulation and an onion triangulation. The
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Figure 4.5: Graphical representation of a network obtained with GEG7,7.

Fourth section considers the complete networks case. It follows the definition of the

Voronoi Edges Generator, based on the Voronoi diagram, which has the particularity

of replacing the set of nodes by the nodes induced by the diagram. Finally, the Cluster

Edge Generator uses a set of nodes obtained with the ClNG and uses some of the

previous methods to generate the edges.

4.3.1 Grid Edges Generator (GEG)

The Grid Edges Generator uses the nodes obtained with the GNG. An edge epq defined

by nodes p and q with coordinates (px, py) and (qx, qy), respectively, belongs to E if

(|px − qx| = 1 ∧ py = qy) ∨ (px = qx ∧ |py − qy| = 1) . (4.1)

This network topology appears, for instance, in Manhattan-like cities networks and

VLSI circuits problems where often the components must be connected over a grid.

Figure 4.5 sketches an example of GEG over a GNG7,7.

4.3.2 Delaunay Edges Generator (DEG)

The Delaunay Edges Generator uses a Delaunay triangulation to define the edges.

Starting from a set of nodes V , the Delaunay triangulation is the decomposition of the
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(a) (b)

(c) (d)

Figure 4.6: Graphical representation of networks obtained with the DEG from the set

of nodes obtained with: (a) GND7×7; (b) TNG7×7; (c) UNG50; and (d) NNG50.

convex-hull defined by V in triangles, such that two nodes are connected if and only if

they lie on a circle whose interior contains no other node of V (see for example [de Berg

et al., 1997]). This triangulation maximizes the minimum angle of the triangles that

compose it. It is also known that the Euclidean minimum spanning tree of a set of

nodes is a subset of the Delaunay triangulation for these same set of nodes.

In Figure 4.6(a)-(d) we can see four networks obtained with a GNG7×7, a TNG7×7,

a UNG50 and a NNG50, respectively. It is obvious that for the first two cases the

triangulation is not unique whether, for the other two cases, depends on the general

position of the nodes (no three nodes are in the same line and no four in the same
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Figure 4.7: k-convex hulls or onion peeling of a UNG50.

circle).

Triangle Edges Generator (TEG)

The Triangle Edges Generator is a particular case of DEG when applied to the TNG.

An example of the TEG for a TNG7,7 is sketched in Figure 4.6(b).

4.3.3 k-Convex Edges Generator (k − CEG)

A convex hull of a set of nodes is the smallest convex set that contains those nodes (see

for example [Abellanas et al., 1996; de Berg et al., 1997] for more details). If P is a set

of points in the plane, the onion peeling or onion layer of this set can be computed

as follows. Let H0 be the convex hull of P . Now remove the points on the boundary of

H0 from P and let H1 be the convex hull of what remains in P . Iteratively repeat the

process until no more points are left in P . Figure 4.7 depictes the resulting k-convex

hulls for a UNG50.

The onion peeling has been studied in areas like computational geometry [Cortés

et al., 2005; Sack & Urrutia, 2000], search algorithms [Chang et al., 2000] and pattern

recognition [Fadili et al., 2004; Poulos et al., 2004].

Any triangulation that includes the k-convex hulls, is called a onion triangulation.
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(a) (b)

(c) (d)

Figure 4.8: Graphical representation of networks obtained with k − CEG for nodes

generated with: (a) GNG7,7; (b) TNG7,7; (c) UNG50; and (d) NNG50.

In particular, a very simple and elegant method supported on rotating callipers was

used to complete the triangulation[Pirzadeh, 1999; Toussaint, 1983].

The k − CEG uses the onion triangulation, described above, to naturally define

the edges of the network. In Figure 4.8 we can see the graphical representation of four

networks obtained with k − CEG.

This k-hull kind of topology can also be found in many city traffics networks.
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4.3.4 Complete Edges Generator (CEG)

As the name suggests the Complete Edges Generator defines the
(|V|

2

)
edges between

each pair of nodes. Most of the real world problems do not allow every node to be

connected to each other. However, in a more academic point of view, it is usual to

consider and test this kind of networks as a worse case scenario [Knowles & Corne,

2001a].

4.3.5 Voronoi Edges Generator (V EG)

The Voronoi Edges Generator uses the Voronoi diagram, dual of the Delaunay trian-

gulation, to generate a network (see for example [de Berg et al., 1997; Sack & Urrutia,

2000]). In this case, any of the previous nodes generators can be used to start the

process. However, as exampled in Figure 4.9(a), the final set of nodes does not coin-

cide with the starting set of nodes V , since the edges of the Voronoi diagram are not

directly defined by V . Therefore, V is replaced by the set of nodes induced by the

Voronoi diagram. Note that this set has not necessarily the same cardinality of the

original V .

Figures 4.9(b)-(d) show examples of networks obtained with a UNG50 and aNNG50.

The Voronoi diagram is associated to problems like the Post Office problem [Knuth,

1973] and this topology pattern is very often found as the frontiers of geopolitical maps.

Hexagonal Edges Generator (HEG)

The Hexagonal Edges Generator is a particular case of V EG when applied to a TNG.

In Figure 4.9(d) we can see an example for a TNG7,7.
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(a) (b)

(c) (d)

Figure 4.9: (a) Voronoi diagram for a set of ten points; Graphical representation of the

networks obtained with the Voronoi Generator for: (b) NNG50; (c) UNG50; and (d)

TNG7,7.

4.3.6 Clusters Edges Generator (ClEG)

The Clusters Edges Generator uses the previous edges generators in two phases. First,

the centre nodes of the clusters are connected (see Section 4.2.4). Then, the process is

repeated over the nodes of each cluster, including their respective centres. In Figure

4.10 we can see two examples for the same set of nodes, ClNG10,15. In Figure 4.10(a)

the DEG was used to connect the centres and the nodes of the clusters. In the case of

Figure 4.10(b) it was adopted the k − CEG to connect the centres and the CEG for

the clusters. It is possible to identify real applications where this topology appears,
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(a) (b)

Figure 4.10: Graphical representation of networks obtained with the ClEG for

ClNG10,15 with: (a) DEG to connect the centres and the clusters nodes; (b) k−CEG

to connect the centres and CEG to generate the edges for the clusters.

like power, phone or cable distribution networks and country traffic maps, where each

cluster may represent a village and each village is connected to neighbour villages.

4.4 Weights Generators

Another important aspect of the networks are the edges weights. In this section three

types of weights generators are presented:

• The Random Weights Generator – is important, for instance, in the study of the

non Euclidean networks;

• The ρ–Correlated Weights Generator – originates networks with interesting char-

acteristics, like the fact that the Pareto front varies from a large cardinality when

ρ ≈ −1 (the graphical representation of the Pareto front for bi-objectives prob-

lems assumes an almost straight line shape), to a very small cardinality when
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ρ ≈ 1;

• The Concave Weights Generator – has another very important characteristic: it

can produce large concave Pareto fronts, known to be hard to tackle by classical

algorithms like the Weighted Sum.

4.4.1 Random Weights Generator (RWG)

The Random Weights Generator sets the weights using a discrete integer uniform ran-

dom distribution over a predefined set. Figure 4.11(a) sketches the cloud of weights

produced by the RWG for a complete network with 50 nodes.

4.4.2 ρ−Correlated Weights Generator (ρ− CWG)

In this case, the objective is to set the edges weights, so that the correlation between

them is some predefined value ρ ∈ [−1, 1]. Except for the cases where the edges

where generated using GEG or TEG, we considered the first weight of the edge e as

the (integer) Euclidean length of e. For the exceptions, the first weight is a random

integer in [1,Md], where Md is the maximum Euclidean distance between every par

of nodes. This two cases have this special treatment since they are regular networks,

which implies that the problem could just be reduced to the single objective case (the

first weight would be equal in all edges).

Algorithm 10 describes the process that is used to establish the weights vector,

where |e| is the Euclidean length of e and random(U [−1, 1]) is a function that returns

a (pseudo) random number with uniform distribution in the interval [−1, 1]. The

values of Y are subject to a normalization process called in line 4. To do this, Y (that

ranges between [−1, 1] after line 3) is replaced by aY + b, where p(x) = ax + b is

the interpolating polynomial of points {(min(Y ),m), (max(Y ),M)} and [m,M ] is the
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Figure 4.11: Cloud of weights for a complete network of 50 nodes using: (a) RWG;

(b) (−0.9)− CWG; (c) (−0.1)− CWG; (d) (0.3)− CWG; (e) (0.99)− CWG and (f)

CWG5,10,100.

interval where the values should range. Note also that the correlation between X and

Y is equal to the correlation between X and aY + b for a 6= 0.
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Algorithm 10 Setting edges with ρ-correlated weights

input: ρ, E = {e1, e2, . . . , ep} . ρ - desired correlation

output: Z . Z : E → IRm

1: Set W ←


1 |e1| random(U [−1, 1])

1 |e2| random(U [−1, 1])
...

1 |ep| random(U [−1, 1])

 and X ←


|e1|
|e2|

...

|ep|


2: Do the QR decompositions of W : W = QR

3: Set Y ←
[

1 ρ
√

1− ρ2

]
×QT

4: Normalize Y

5: Set ∀ei∈E : z1(ei)← bXic
6: Set ∀ei∈E : z2(ei)← bYic

Four examples of the clouds of weights obtained with ρ equal to −0.9, −0.1, 0.3

and 0.99 for a complete network with 50 nodes are presented In Figure 4.11(b)-(e).

4.4.3 Concave Weights Generator (CWG)

In the Concave Weights Generator, the weights are generated to produce a large concave

Pareto front. This case is an adaptation from the generator presented by Knowles &

Corne [2001a] for the k-Degree Minimum Spanning Trees problem.

This generator needs two small integers ξ and η, such that ξ < η �M−ξ (where M

is the maximum admitted weight), and three special nodes n1, n2, n3. These nodes have

an important role in the concave front and should have a degree as large as possible.

Heuristically, n1, n2 and n3 are defined as follows: the selection process starts by setting

n1 as the node with the highest degree. The second node, n2, is chosen from the nodes

with highest degree adjacent to node n1. From the remaining nodes, if there are nodes

adjacent simultaneously to n1 and n2 it is chosen the node with highest degree to be

n3. Otherwise, the same choice is made from the nodes adjacent to n1 or n2. The

existence of candidate nodes with the same degree leads to a random selection between

them. The weights of the edges e ∈ E are set according to Algorithm 11.
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Algorithm 11 Setting edges weights so that the Pareto set has a large concave front.

input: eij ∈ E , M , ξ, η, N = {n1, n2, n3}, . eij is the edge defined

by nodes i and j; M is the maximum weight; ξ and η are small integers, such that

ξ < η � M − ξ; n1, n2, n3 are the special nodes(see Section 4.4.3); and Ud(a, b) -

discrete integer uniform over {a, a+ 1, . . . , b}.
output: z(eij) = (z1, z2) . eij weight vector

1: if i, j 6∈ N then return z(eij) = (Ud(ξ, η), Ud(ξ, η))

2: end if

3: if i ∈ N
•
∨ j ∈ N then return z(eij) = (Ud(M − ξ,M), Ud(M − ξ,M))

4: end if

5: if i = n1 ∧ j = n2 then return z(eij) = (ξ, ξ)

6: end if

7: if i = n1 ∧ j = n3 then return z(eij) = (1,M − ξ)
8: end if

9: if i = n2 ∧ j = n3 then return z(eij) = (M − ξ, 1)

10: end if

Figure 4.11(f) sketches the cloud of weights obtained for a complete network with

50 nodes, ξ = 20, η = 40, and M = 100.

4.5 Examples

In Figure 4.12 we can see the graphical representations of the exact Pareto fronts,

solutions of the Multiple Objectives Minimum Spanning Trees problem, for thirty ex-

amples of networks (non-filled boxes). Simultaneously, it is represented the set of

solutions obtained with 1000 runs of the Weighted Sum method (filled boxes) for the

weights following parameters in

Λ =

{
(l1, l2) : l1 =

k

1001
∧ k ∈ {1, 2, . . . , 1000} ∧ l2 = 1− l1

}
.
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Plot’s Legend

� Brute Force solutions

� Brute Force and Weighted Sum solutions

The exact fronts were obtained using a Brute Force method implemented in C++

and the tests were run on a set of LINUX OS workstations with Intel PentiumTMIII

533Mhz processors and 128Mb of RAM. Due to the time requirements, inherent to

the Brute Force algorithm’s complexity, the use of this method was restricted to the

cases with less than 1011 distinct networks.

The identification of the problems is implicit in the name that is written in the top of

each figure, and follows the sequence: [< nodes generator >]< |V| >[< edges generators >

]< |E| >[< weights generator >] < parameters > [NST ] < number of spanning trees >

.net. For example,

[ClNG]100[ClEG][DEG][k − CEG]227[ro− CWG]0.5[NST ]49.net

is a network with 100 nodes and 227 edges generated using the ClNG for the nodes

and ClEG with DEG and k − CEG to connect inter and intra clusters, respectively.

The weights were set using the 0.5−CWG and the number of distinct spanning trees

as an order of magnitude of 1049.

In the sketches of Figure 4.12 we can observe some of the characteristics previously

referred, as fronts with large gaps (examples: i, ii, iv, v , vi, ix, x, xii, xii, xiv, xvi,

xviii, xx, xxii, xxiv, xxv, xxvi, xvii, xxx), fronts with concave regions (examples: i, ii,

vi, vii, vii, ix, xi, xvi, xvii, xviii, xx, xxii, xxiv, xxv, xxix), and anti-correlated fronts

(examples: xv, xxi, xxiii). It is also observable that, in some cases, the Weighted Sum
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GNG TNG UNG NNG ClNG

GEG X × × × ×

DEG X X X X X

k − CEG X X X X X

CEG X X X X X

V EG X X X X X

ClEG × × × × X

Table 4.1: Possible combinations of the nodes and edges generators.

method does not allow to establish representative fronts for the exact solution as in

Figures 4.12 i, ii, vii, ix, xi, xv, xiv, xx, xxiii.

4.6 Summary

Before the generalized absence of libraries of problems for discrete multiple objective

problems, this section has been devoted to the formalization of a framework to build a

repository of networks test problems.

One of the main objectives has been to define a set of generators that would allow

the generation of networks possessing, as much as possible, the same topological and

edges weights characteristics, as some of the most important practical networks. Simul-

taneously, some more academic problems were considered, as the Complete Network

Generator or the Concave Weights Generator.

Table 4.1 resumes the possible combinations of all the proposed generators. Obvi-

ously, some of the possible combinations take the meaningfulness of the sub-adjacent

idea, like the use of a DEG over a ClNG.

The combination of the generators produces a diversified set of problems. In fact,

without the possible variation in the parameters of the generator, it is possible to set
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sixty-six distinct types of networks. Among all this networks there are several cases

with distinct difficulties for the optimization processes.

This section ends with a set of examples of Pareto fronts obtained for the Multiple

Objectives Minimum Spanning Trees problem over network instances created with

those generators. The Pareto fronts were obtained using a Brute Force method for a

set of small networks and it was possible to confirm some of the Weighted Sum method

pitfalls.
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Figure 4.12: Examples of Pareto fronts
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Figure 4.12: Examples of Pareto fronts (continuation)
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Figure 4.12: Examples of Pareto fronts (continuation)
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Figure 4.12: Examples of Pareto fronts (continuation)





The ants said: together we will be able to transport an elephant

TOGO proverb

The constant creeping of ants will wear away the stone

USA proverb
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5.1 Overview

The previous chapters discussed some of the fragilities associated to the use of exact and

approximation methods in the resolution of most of the multiple objective problems.

In fact, the small number of exact methods, which are in their majority based on the

branch-and-bound strategy, are not applicable to large instances of the problems and/or

with several objectives. Other approaches transform the multiple objective problem

into a single objective problem, recurring to the combination of the weights vector as a

real function or through the establishment of priorities among the objectives. However

this approach has also some pitfalls, has it was verified.

As a practical alternative to the computation of the Pareto solution, an approxi-

mation set is often considered as an acceptable response to the problem solution. In

Section 2.3.3 were surveyed a set of meta-heuristic strategies that in the last decades

gained consensus as pragmatic approximation methods. Their success is based in fea-

tures like their flexible application to many of the optimization problems and, mainly

because, they accomplishes good approximation sets in reasonable time.

The Evolutionary Algorithms are among the meta-heuristic with more success. In

its majority they are based in populations of solutions/agents,which allow to simulta-

neously explore more than one region of the search space, reducing the risks of getting

trapped in some local optima, and are less susceptible to problem noises.

However, the computational requirements demanded by the meta-heuristics imply

that their performance might be compromised when applied to large scale problems.

One possible solution is the parallelization which distributes the tasks through a set of

computers, taking advantage of the population of agents. Another alternative is the use
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of hybrid methods which allows exploring the best qualities of the various algorithms,

accomplishing an improved global process.

In particular, two algorithms based on the Ant Colony Optimization (ACO) paradigm

[Dorigo & Stutzle, 2004; Dorigo et al., 1999] are proposed in this chapter: the Multiple

Objective Network optimization based on an ACO (MONACO) and the ε-Depth ANT

Explorer (ε-DANTE).

Like others Ant Colony Optimization algorithms, MONACO mimics the ant’s for-

aging behaviour supported by a communication process, which relies on a chemical

pheromone trail, signalling a good path to some supply location. However, one of the

main features, which differentiates MONACO from almost all the others Ant Colony al-

gorithms, is the fact that MONACO process uses a pheromone vector associated to each

atomic piece, as if there were several layers of pheromones. Each component of those

vectors is associated to a weight and, as before, represents how worthy the elements

were, for some time-window, in the construction of the solutions relatively to the asso-

ciated weight. Those numerical values are used by each ant/agent1 to pseudo-randomly

support the construction of the solutions.

When a solution is complete, it is evaluated and the Pareto set is update accordingly

to its fitness. This solution is possibly used to update the pheromone trails (it depends

on the ACO version) to be discarded next. This implies that the computational effort

needed to build the solution is not completely explored, being necessary to start all

over again.

The ε-DANTE method has a similar approach to the MONACO method since it uses a

set of agents to construct solutions based on pseudo-random processes, founded in nu-

merical pheromone layers associated to the potential solutions components. However,

1Note that most of the times, it will be used a common Ant Colony Optimiza-
tion terminology where the constructing agents are referred as ants and the numerical
pheromone vector are known as pheromones or pheromone trails.
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the method has one main difference from the previous known Ant Colony algorithms:

a restricted depth search oriented by the pheromone trails is made in selected situa-

tions. In other words, the method constructs a solution similarly to the MONACO process

but, if it achieves a solution in an ε range to the approximation set then it does not

discard it. Instead, the referred depth search is done with limited maximum level,

maximum number of branches in each level, and possibly other features, like maximum

computation time.

Therefore, this chapter is structured as follows. In the next section it is presented

the MONACO algorithm. This method is used to simulate a network of flows and solves

two combinatorial problems: the Multiple Objective Travelling Salesman Person and

the Multiple Objective Minimum Spanning Trees problem. In Section 5.3 it is proposed

the ε-DANTE algorithm and are presented the results obtained for a set of instance for

two problems: the Multiple Objective Travelling Salesman Person and the Multiple

Objective k-Degree Minimum Spanning Trees. The obtained results are then com-

pared with reference sets presented by other authors using exact methods and Evo-

lutionary Algorithms. With ε-DANTE it is described an Angle-Pheromone Updating

strategy, which uses parts of the elements of the approximation set as contributors to

the pheromone vectors trails, in successive time windows.

5.2 MONACO Algorithm

5.2.1 Application to the Multiple Objective Flows Simulation

The MONACO algorithm was first proposed by Cardoso et al. [2003a] as an ACO based

algorithm for a multiple objective network optimization problem with a time discrete

approach. The optimization process uses a single colony with a multi-level pheromone

trail and an heuristic. The combination of these elements allows to introduce a pseudo-
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random formula that is used in the construction of the approximations, to select the

components, of the optimum paths.

More precisely, the method determines approximations to the paths that minimize

the total weights for the flows generated between each pair of nodes of the network

N = (V , E ,Z,O) , (5.1)

where V , E and Z are defined in (3.1) andO = {Ok : k ∈ I} is a set of origin/destination

flows matrices. Each matrix is defined as Ok =
[
o

(k)
i,j

]
, where o

(k)
i,j is the flow from node

i to node j at tick k ∈ I, for the time window of observation I.

During the process, is set a queue of agents/ants in each edge, corresponding to the

flow elements that have not yet arrived to the end of those edges, since it is considered

that a certain amount of ticks is necessary to allow the passing of the edges by each

ant.

In the path construction, each ant is considered as a certain amount of flow with

the same origin s, same destination t and leaving s at the same tick. Then, the path

for that flow is constructed by the ant taking into account the multi-pheromone trail

and an heuristic to improve the choices of suitable routes. Those pheromone trails,

in the same number as the number of weights (m), represent the weight of an edge

regarding the objective of guiding the ant to the destination node, t. Therefore, for

each terminal node t, there are m pheromone trails that catalyse the construction of

the path toward the destination node, that is, the pheromone trails deposited in the

edges are associated to the quality observed for that edge in previous paths to t.

Knowing the necessary ticks to cross an edge, the problem resumes to choose the

next edge whenever the ant arrives into a node that is not t (the ant stops when it

reaches t). Mathematically, when the ant reaches node u, the probability of choosing
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edge euv is given by the formula

puv =


d(evt)−α0

∏m
k=1(τk,t(euv))

αk∑
{w:euw∈E}[d(ewt)−α0

∏m
k=1(τk,t(euw))

αk ]
if euv ∈ E

0 if euv 6∈ E
, (5.2)

where τk,t(euv) is the quantity of the k-pheromone to node t in edge euv (analogous for

τk,t(euw)), d(evt) is the Euclidean distance between nodes v and t (analogous for d(ewt))

and αk ∈ IR+
0 (k = 0, 1, . . . ,m) are parameters that emphasis the heuristic (k = 0) and

the relative importance of the k-pheromone trail (k = 1, 2, . . . ,m), that is, the relative

importance of the k weight in the final value.

Therefore, supposing that the ant is in a node u and wants to go to node t, a

random-heuristic selection of the next node is made from the adjacent nodes, consider-

ing their previous ability in the construction of a good path. The heuristic factor gives

preference to nodes that are closer to t by placing in the formula the inverse of the

Euclidean distance from those nodes to t, which can be seen a guidance ability, while

the pheromone vectors work as a memory of the previous paths. In Example 5.1 it is

possible to observe the strict dependence of the probabilities on the parameters.

Example 5.1: Figure 5.1 presents a section of a network, where two costs are taken

into account considering the values given in Table 5.1. Suppose also that the ant is

on node a and t is its destination node. Then using (5.2) with α0 = α1 = α2 = 1

the probabilities are pab = 0.03, pac = 0.43, pad = 0.29 and pae = 0.26. Considering

α0 = α2 = 1 and α1 = 2 then pab = 0.02, pac = 0.36, pad = 0.40 and pae = 0.22.

Comparing the two cases it is possible to confirm that the variation of the probabilities,

and therefore the choices of the ants, is closely related to the values of the parameters.

Relatively to the pheromones trails, when the process starts, they are all set equal.

The construction of an effective pheromone trail is achieved considering a set of cycles.
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Figure 5.1: Random path determination example.

node (x) distance from x to t τ1,t(a, x) τ2,t(a, x)

b 4 1.0 1.0

c 1 1.5 2

d 1.5 2.5 1.5

e 2 1.5 3

Table 5.1: Random path determination example.

In each cycle, a pre-determined number of ticks are run and each ant that arrives to

its destination node contributes to the variation of the pheromone trails. After each

cycle the k-pheromone trails for node t are updated using the formula:

τk,t(euv) = ρkτk,t(euv) + ∆τk,t(euv), k ∈ {1, 2, . . . ,m}, t ∈ V (5.3)

where 0 < ρk ≤ 1 (k = 0, 1, . . . ,m) is the persistence factor of the trail (1− ρk is trail

evaporation factor) and ∆τk,t(euv) is the quantity of k-pheromone leaved by the ants

that went through edge euv with destination t, in this cycle. That quantity is usually

set as the inverse of the k weight of the path determined by the ant. In other words,
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Algorithm 12 MONACO Algorithm – Flow simulation problem

input: N = (V , E ,Z,O), I . Network and ticks interval (I = [Ti, Tf ])

1: Load the Network

2: for all t ∈ V do

3: for all k ∈ {1, 2, . . . ,m} do

4: Initialise the k-pheromone trails (τk,t) to node t

5: end for

6: end for

7: repeat

8: for i ∈ I do

9: Update ant-packets already in the network (Algorithm 13).

10: Add new ant-packets to the networks (based on the origin/destination ma-

trix for tick i).

11: end for

12: for all t ∈ V do

13: for all k ∈ {1, 2, . . . ,m} do

14: Update the k-pheromone trails associated to t using (5.3).

15: end for

16: end for

17: Remove all remaining ants from network

18: until stopping criteria is met

if Atu,v is the set of all ants that went to t through edge euv and πa(s, t) represents the

path of a ∈ Atu,v, then

∆τk,t(euv) =
∑
a∈Atu,v

Q

wk(πa(s, t))
, (5.4)

where wk(πa(s, t)) is the k component of the sum objective function W , defined as in

(3.2), and Q is a constant related to the amount of pheromone laid by the ants.

Algorithm 12 globally sketches the MONACO computational model and Algorithm 13

presents a more detailed phase, focused on the ants update.

The computational model was implemented using C++ programming language and

a set of tests were used to verify its robustness, liability and accuracy. The computa-

tional environment used was a Intel PentiumTMIV with a 2.0Ghz processor, 256Mb of



5.2. MONACO Algorithm 131

Algorithm 13 Ants update.

1: for all ants in network do

2: if ant arrived at the end of an edge then

3: if ant arrived to its destination node, t then

4: for all k ∈ {1, 2, . . . ,m} do

5: Update ∆τk,t using (5.4)

6: end for

7: Remove ant from network

8: else

9: Use (5.2) to random-heuristically determine next edge and move the ant

to that edge.

10: end if

11: end if

12: end for

Network 1 Network 2

Figure 5.2: Example of tested networks.

RAM and Windows XP OS.

Two examples of networks used in the tests are depicted in Figure 5.2: Network 1

with 18 nodes and 27 edges and Network 2 with 25 nodes and 40 edges. For each prob-

lem, it was considered a weight vector associated to each edge with two components:

number of ticks to cross the edge and its Euclidean distance. It was also considered 100

ticks per cycle, 20 cycles as a stopping criteria for Algorithm 12, persistence parameters

ρd = ρt = 0.5 (associated to the number of ticks and Euclidean distance, respectively)

and αd, αt, αh ∈ {1, 2} (associated, in this case, to the distance weight, the ticks weight

and the heuristic, respectively). In general, it were used 122400 and 240000 ants/cycle
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Figure 5.3: Number of ants present in the network 1 at the end of the cycles - αd = 2

and αt = αh = 1.

cycle 5

t

cycle 5

t

Figure 5.4: Pheromone trails relative to distance weight for node t - the thickness of

the edges corresponds to the quantity of pheromone present in cycle 5 (αd = 2 and

αt = αh = 1).

for Network 1 and Network 2, respectively.

Figure 5.3 sketches the variation of the number of ants at the end of each cycle for

Network 1. From the analysis of the figure, we can conclude that in few cycles a good

trail of pheromone is created, implying an important diminishing in the number of ants

that have not reached destination, that is, less ants are “lost” as the number of cycles

increases. That number suggest a stabilization above the number of ants created in

the last cycles that have not enough ticks to reach its destination node.
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—Euclidean distance—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 - 4 - - - - - - - - - - - - - - - -

2 4 - 5 3
√

2 5
√

2 - - - - - - - - - - - - -

3 - 5 - - 5 - -
√

37 - - - - - - - - - -

4 - 3
√

2 - - 2
√

5 -
√

34 - - - - - - - - - - -

5 - 5
√

2 5 2
√

5 -
√

5 - - - 4 - - - - - - - -

6 - - - -
√

5 - 3 - - -
√

17 - - - - - - -

7 - - -
√

34 - 3 - - - - -
√

65 - - - - - -

8 - -
√

37 - - - - -
√

5 - - - - - 5
√

65 - -

9 - - - - - - -
√

5 - 3 - - - - - - - -

10 - - - - 4 - - - 3 -
√

10 - -
√

37 - - - -

11 - - - - -
√

17 - - -
√

10 - 5 5 - - - - -

12 - - - - - -
√

65 - - - 5 - - - - - -
√

34

13 - - - - - - - - - - 5 - - 4 - - - 4

14 - - - - - - - - -
√

37 - - 4 - 2
√

5 -
√

17 -

15 - - - - - - - 5 - - - - - 2
√

5 - - - -

16 - - - - - - -
√

65 - - - - - - - -
√

97 -

17 - - - - - - - - - - - - -
√

17 -
√

97 - 3

18 - - - - - - - - - - -
√

34 4 - - - 3 -

—Edge velocity—
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 - 5 - - - - - - - - - - - - - - - -

2 5 - 5 1 1 - - - - - - - - - - - - -

3 - 5 - - 1 - - 5 - - - - - - - - - -

4 - 1 - - 1 - 1 - - - - - - - - - - -

5 - 1 1 1 - 1 - - - 1 - - - - - - - -

6 - - - - 1 - 1 - - - 1 - - - - - - -

7 - - - 1 - 1 - - - - - 1 - - - - - -

8 - - 5 - - - - - 1 - - - - - 5 1 - -

9 - - - - - - - 1 - 1 - - - - - - - -

10 - - - - 1 - - - 1 - 1 - - 1 - - - -

11 - - - - - 1 - - - 1 - 3 3 - - - - -

12 - - - - - - 1 - - - 3 - - - - - - 1

13 - - - - - - - - - - 3 - - 3 - - - 1

14 - - - - - - - - - 1 - - 3 - 3 - 1 -

15 - - - - - - - 5 - - - - - 3 - - - -

16 - - - - - - - 1 - - - - - - - - 1 -

17 - - - - - - - - - - - - - 1 - 1 - 1

18 - - - - - - - - - - - 1 1 - - - 1 -

Table 5.2: Euclidean distances and edge velocity between nodes of Network 1.

In Figure 5.4 the pheromone levels toward a node t, represented by the thickness

of the edges, are sketched for both networks, which gives us an idea of the possible

choices made by the ants.

Relatively to the influence of the parameters, if we compare Network 1 in Figures

5.4 and 5.5, it is possible to observe differences in the line thicknesses of some edges.

Those differences are associated to variations in the values of the parameter (in the

first figure αd > αt and in the second αd < αt). For example, in Figure 5.5 the thicker

lines correspond to the edges that conduct to t in a small amount of ticks, while in

Figure 5.4 are the edges that conduct to t through a shortest path (see Table 5.2
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ciclo=5

t

Figure 5.5: Pheromone trails relative to ticks weights for node t - the thickness of

the edges corresponds to the quantity of pheromone present in cycle 5 (αt = 2 and

αd = αh = 1).

for the Euclidean distances and edges velocities). Therefore, depending on the alpha

parameters, the pheromone trails reflect the importance of the weights associated to

those factors.

5.2.2 Application to the Multiple Objective Travelling Sales-

man Person Problem

A first approach to the Multiple Objective Travelling Salesman Person problem using

MONACOis proposed in [Cardoso et al., 2003b]. Maintaining the same idea, as in the

flows simulator presented in the previous section, it uses as many pheromone trails as

the number of weights. In this case, the construction of the Hamiltonian cycle is made

in a constructive manner, such that, if the last node that was selected is u then the
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probability of adding edge euv to the cycle is given by

puv =


Πmk=1(τk(euv))αk (wk(euv))−βk∑
w∈U Πmk=1(τk(euv))αk (wk(euv))−βk

if v ∈ U

0 if v 6∈ U
, (5.5)

where U is the set of nodes that still do not belong to the cycle, τk(euv) is the quantity

of k-pheromone in edge euv, wk(euv) is the k weight of edge euv, and α1, α2, . . . , αm

and β1, β2, . . . , βm are parameters that, respectively, emphasis the weights and the

local greedy heuristic importance, which favours the selection of nodes near to node u.

Each cycle was completed through the application of a 2-opt non-stochastic optimizer.

In essence, the 2-opt optimizer starts with the cycle provided by MONACO. Then the

algorithm improves the tour repeatedly by exchanging two edges at a time. These

exchanges are performed if the cycle fitness is improved and done until no better

solution can be derived.

A set of tests were run with parameters

α1, α2, β1, β2 ∈ {1, 5, 10}, ρ1 = ρ2 = 0.1 (5.6)

(the pheromone updating formulas are similar to the ones presented in formulas (5.3)

and (5.4)) and only the elements of the approximation set contribute to the variation

of the pheromone trail.

Figure 5.6 sketches the approximation sets obtained with MONACO (continuous line)

and MOGLS [Jaszkiewicz, 2002] (dashed line) for the kroab50 and kroab100 problems.

The kroab50 problem is obtained through the combination of the kroa50 and the krob50

available at [Jaszkiewicz, 2006b; TSPLib, 2003] (analogous for kroab100).

Others implementations

For the same problem, other authors adapted/implemented the MONACO’s concept and

compared the results with the outcomes of other multiple objective optimization Swarm
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Figure 5.6: Results from MONACO for kroab50 and kroab100.

Algorithms [Garćıa-Mart́ınez et al., 2004]: Multiple Objective Ant-Q Algorithm, Ant

Algorithm for Bi-criterion Optimization Problems, Multi Colony for Bi-criterion Opti-

mization Problems, Pareto Ant Colony Optimization (P-ACO), Multiple Ant Colony

System for Vehicle Routing Problem with Time Windows, Multiple Ant Colony Sys-

tem, COMPETants, Multiple Objective Ant Colony Optimization Metaheuristic, Ant

Colony Optimization Approach to Multiple Objectives and SACO (in [Garc̈ı¿1
2
a-Marẗı¿1

2
nez

et al., 2004] is a more detailed report from same authors). Their test used six bi-

objective problem instances: kroab50, krocd50,kroab100, kroad100, krobc100, and
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krocd100. Furthermore, two Multiple Objective Genetic Algorithms were considered

as baselines for the Swarm Algorithms performance: the Strength Pareto Evolution-

ary Algorithm 2 (SPEA2) [Zitzler et al., 2001, 2002a] and the Nondominated Sorting

Genetic Algorithm II (NSGAII) [Deb et al., 2000].

As a result, their implementation of MONACO method was considered to

“(...) we can see that both MOGAs [Multiple Objective Genetic Algo-

rithms], NSGA-II and SPEA2, can usually perform much more iterations

and evaluations than the MOACO [Multiple Objective Ant Colony] al-

gorithms considered in the same fixed run time. Hence, this shows how

MOACO algorithms are somehow slower than MOGAs in the current prob-

lem(...)

(...) Non-dominated solution sets returned by both MOGAs, NSGA-II and

SPEA2, are poor in comparison with most of those returned by MOACO

algorithms. These sets can only dominate some solutions returned by COM-

PETants and MOAQ when applied to small instances of size 50(...)

(...) P-ACO and MONACO algorithms return very good solutions in the

central part of the Pareto front but they are not able to generate any

solution at all in the extents of the Pareto front(...)

(...) Pareto fronts returned by P-ACO and MONACO are practically not

dominated by those obtained from the remaining algorithms. So we could

say that P-ACO and MONACO are the algorithms with the best perfor-

mance according to this metric [C metric], because their Pareto fronts are

not dominated (...)

(...)The only case we found where the algorithms of a family behave in

the same way is that of P-ACO and MONACO, characterized by two
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pheromone matrices and a single heuristic matrix. Both algorithms achieve

a good convergence to the central parts of the Pareto fronts, avoiding the

generation of solutions in the extremes of the front.(...)”

[Garc̈ı¿1
2
a-Marẗı¿1

2
nez et al., 2004]

Globally, the authors concluded that MONACO and P-ACO achieve very good

solutions in central parts of the Pareto front but could not generate a spread set of

solutions all along the Pareto front, as it is desirable. However, in their approach the

parameters were set as α1 = α2 = 1, β1 = β2 = 2, and ρ1 = ρ2 = 0.2, and kept

constant along the process. A different approach, as the one presented earlier, where

the parameters assume different weights according to formula (5.6), or a more greedy

strategy as the one that will be presented in Section 5.3.2, would probably favour a

wide exploration of the Pareto front.

5.2.3 Application to the Multiple Objective Minimum Span-

ning Trees Problem

MONACO was later adapted to the Multiple Objective Minimum Spanning Trees problem

[Cardoso et al., 2004, 2005b].

In this approach, the construction of a spanning tree by MONACO is divided in two

phases: in the first phase a set of disjoint subtrees is built and in the second phase

those subtrees are joined to form a final tree.

In both phases the process uses m pheromone trails, τk (k = 1, 2, . . . ,m), where

each trail is associated to a weight, and a local heuristic that favours the inclusion of

edges with lower weights.
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Phase 1: Construction of the Disjoint Subtrees

The process begins by determining a set of disjoint subtrees. It starts by randomly

choose a node, u0, that does not belong to any subtree. From that node it is built a

path, which is a subtree, by the means of the ordered addition of nodes, selected with

probability puiui+1
given by formula:

puiui+1
=

∏m
k=1 τk(euiui+1

)αkwk(euiui+1
)−βk∑

z∈{v:euiv∈E}
∏m

k=1 τk(euiz)
αkwk(euiz)

−βk
, euiui+1

∈ E , i = 0, 1, 2, . . . , (5.7)

where αk, βk ∈ IR+
0 (k = 1, 2, . . . ,m) are parameters associated to the relative impor-

tance of weight k and the local heuristic, wk(euiv)
−βk , respectively. This local heuris-

tic, as already referred, favours the addition of the more promising edges, with lower

weights, which de per se improves the convergence to the Pareto front.

The subtree construction stops when the selected node already belongs to some

subtree. When it happens, two things can occur:

• The last selected node does not belong to the tree in construction. In this case,

it is obtained a subtree by joining the subtree under construction with the inter-

sected, which is kept for latter merge in Phase 2.

• The node that was selected already belongs to the subtree in construction that

is disjoint from any other. In this case, the chosen edge is discarded, to avoid

cycles, and this subtree is also kept and later joined with the others constructed

subtrees.

The described process is repeated until all nodes belong to some subtree. In Algo-

rithm 14 is a high level description of the process and in Example 5.2 (steps (a)-(f))

we can see a typical run for a 8 node network.
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Algorithm 14 Low-level description of the subtrees construction.

input: N = (V , E ,Z), αk, βk(k = 1, 2, . . . ,m) . Network and algorithm parameters

output: Set of disjoint subtrees, T .

1: T ← ∅ . set of disjoint subtrees

2: L ← ∅ . node taboo list

3: while L 6= V do

4: T ← ∅
5: Randomly select a node u from V − L
6: L ← L ∪ {u},
7: out← false

8: repeat

9: Choose v with probability puv, using formula(5.7)

10: if v 6∈ L then . v does not belong to any subtree

11: T ← T ∪ {euv}
12: L ← L ∪ {v},
13: u← v

14: else . v already belongs to some subtree, T ′

15: if v 6∈ T and v ∈ T ′ then . T ′ 6= T

16: T ← T − {T ′}
17: T ← T ∪ T ′ ∪ {eu,v} . Trees T and T ′ are joined

18: end if

19: T ← T ∪ {T},
20: out← true

21: end if

22: until out = true or L = V
23: end while

24: return T

Phase 2: Merge of the Subtrees

In the first phase, a set of disjoint subtrees T = {T1, T2, . . . , Tk} were generated. Now,

the process start by picking one subtree from T , Ti, and follows by searching for a

good connection to one of the others, T − {Ti}. That connection is made by pseudo-

randomly choosing an edge euv such that u ∈ Ti and v 6∈ Ti. The probability of one

admissible edge being inserted into the tree is given by:
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Algorithm 15 Low-level description of the subtrees fusion.

input: N = (V , E ,Z), T = {T1, T2, . . . , Tp}, αk, βk(k = 1, 2, . . . ,m) . Network, set of

disjoint trees and algorithm parameters

output: T . spanning tree

1: while |T | > 1 do

2: Randomly choose a subtree, Ti, from T
3: Using formula (5.8) randomly select euv such that u ∈ Ti and v ∈ Tj with i 6= j

4: T ← T − {Ti, Tj}
5: T ← T ∪ {Ti ∪ Tj ∪ {euv}}
6: end while

7: return T ∈ T . |T | = 1

puv =

∏m
k=1 τk(euv)

αkwk(euv)
−βk∑

f∈Q [
∏m

k=1 τk(f)αkwk(f)−βk ]
, euv ∈ Q, (5.8)

where Q = {exy ∈ E : x ∈ VTi ∧ y 6∈ VTi}. This process is repeated until it remains a

single tree in T .

Algorithm 15 has a high level description of the merge part and Example 5.2 (steps

(g)-(i)) presents a complete description of this process.

Example 5.2: Consider the network in Figure 5.7 with associated edges weights

(w1, w2). Suppose that the process has been running for some time, with parameters

α1 = 1, α2 = 2, β1 = 2 and β2 = 2, and the pheromone trails have values given by

(τ1, τ2), resumed in Table 5.3.

The process to build a tree can be described as follows (in Figure 5.7 is also depicted

the process, where the continuous lines are the edges already included and the dashed

lines are the candidate edges for entering in the tree):

(a) Randomly select a node. Supposing that it is node 1, the probabilities of adding

each of the edges with this starting node are

p1,2 =

(
1
1

)2
5
(

1
2

)2
42(

1
1

)2
5
(

1
2

)2
42 +

(
1
3

)2
1
(

1
3

)2
22 + · · ·+

(
1
7

)2
1
(

1
5

)2
22

= 0.452,
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—Z—

1 2 3 4 5 6 7 8

1 (1,2) (3,3) (2,2) (1,2) (2,3) (5,4) (7,5)

2 (1,2) (1,1) (3,3)

3 (3,3) (2,3) (1,2)

4 (2,2) (1,1) (2,1)

5 (1,2) (3,3) (1,2)

6 (2,3) (2,3) (2,1)

7 (5,4) (1,2) (1,3)

8 (7,5) (1,2) (1,3)

—τ—

1 2 3 4 5 6 7 8

1 (5,4) (1,2) (4,4) (5,4) (2,2) (1,1) (1,2)

2 (5,4) (3,4) (2,3)

3 (1,2) (4,4) (4,5)

4 (4,4) (3,4) (6,5)

5 (5,4) (2,3) (5,5)

6 (2,2) (4,4) (6,5)

7 (1,1) (5,5) (2,3)

8 (1,2) (4,5) (2,3)

.

Table 5.3: Edges weights and pheromone trails.

p1,3 = 0.001, p1,4 = 0.090, p1,5 = 0.452, p1,6 = 0.005, p1,7 = 0.0 and p1,8 = 0.0.

Edge e12 is selected, Figure 5.7 (a)-(b);

(b) From node 2 the probabilities are p2,1 = 0.293, p2,4 = 0.704 and p2,5 = 0.003. Edge

e24 is added, Figure 5.7 (b)-(c);

(c) From node 4 the probabilities are p4,1 = 0.044, p4,2 = 0.536 and p4,6 = 0.419. Edge

e42 is selected. Since it would generate a cycle the construction of this subtree is

stopped. Other node is randomly choose to restart the process. Node 5 is selected,

Figure 5.7 (c)-(d);

(d) From node 5 the probabilities are p5,1 = 0.389, p5,2 = 0.004 and p5,7 = 0.607. Edge
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e51 is added, Figure 5.7 (d)-(e);

(e) Since node 1 belongs to other subtree, the two subtrees (the one in construction

and the one to which node 1 belongs) are joined;

(f) The process in steps (a) to (e) is repeated until all nodes belong to one subtree,

Figure 5.7 (f);

(g) Randomly choose a subtree. Subtree T1 is selected and will be connected to another

subtree, according to formula (5.8), with probabilities p1,3 = 0.001, p1,6 = 0.003,

p1,7 = 0.0, p1,8 = 0.0, p4,6 = 0.543 and p5,7 = 0.453. Edge e57 is selected, Figure

5.7 (g)-(h);

(h) Repeat the last step until all subtrees are connected;

(i) Final tree, Figure 5.7 (i).

Tests and Results

Computational Environment A set of instances obtained from the MOST repos-

itory (Section 4) was used to test MONACO with the Multiple Objective Minimum Span-

ning Trees problem. The obtained result are compared with two other algorithms:

Brute Force method and Weighted Sum method.

Brute Force Method The results for the Brute Force method were obtained

through an implementation of the algorithm proposed by Ramos et al. [1998]. The tests

were run on a LINUX OS workstations with Intel PentiumTMIII 533Mhz processors

and 128Mb of RAM. Due to its time complexity, the use of this method was restricted

to the cases with less than 1011 distinct networks. A quadtree data structure was used

to maintain the Pareto set [Mostaghim et al., 2002].
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Figure 5.7: Simulation of the building tree process.
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Weighted Sum Method The results for the weighted sum approach (Section

2.3.2) were obtained using 1000 distinct pondering weights:

Λ =

{
(λ1, λ2) : λ1 ∈

{
k

1001
: k = 1, 2, . . . , 1000

}
and λ2 = 1− λ1

}
. (5.9)

MONACO The tests were run on the same environment of Brute Force case. The

running time was limited to |E| log |E| seconds, and it was also kept the last update time

of the approximation set for reference. To maintain the approximation set it was used

a quadtree data structure. In each cycle were used b|N |1/2c ants per cycle and 1 cycle

for each pair of (α1, α2) parameters, with extra cycles whenever the approximation set

was improved. Additional parameters were ρk = 0.9, α1 varied in {0, 0.25, 0.5, . . . , 3.0},

α2 = 3.0− α1 and βk = αk
2

(k = 1, 2).

To take advantage of the quadtree data structure and the pheromone vectors up-

dating strategy, a fast (time limited) set of iterations, with ρ = 0 and α1 following the

sequence 1.5, 1.25, . . . , 0, 1.75, 2.0, . . . , 3.0, were run. This provides a first approxima-

tion to the Pareto front, which will be used in the pheromone vectors update strategy.

It has the advantage to spread the solutions all over the branches of the quadtree,

avoiding a possible quasi-linear distribution.

Furthermore, after each cycle the pheromone trails were updated using formula

τk(e) = ρkτk(e) + ∆τk(e), (5.10)

where k ∈ {1, 2, . . . ,m}, e ∈ E ,

∆τk(e) =
∑
T∈Te

Q

wk(T )
, (5.11)

Te is the set of solutions generated during the cycle containing edge e, and Q is a value

in the same magnitude of the solutions.
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R1 R3

(hf, ws) (hf, aco) (ws, aco) (hf, ws) (hf, aco) (ws, aco)

20 Mean(µ) 0.7548† 0.5338† 0.2933 -0.0005 -0.0003 -0.0003

S.d.(σ) 0.1594† 0.0826† 0.1911 0.0007 0.0018 0.0023

50 Mean(µ) – – 0.5085 – – -0.0101

S.d.(σ) – – 0.3393 – – 0.0271

100 Mean(µ) – – 0.7266 – – -0.0879

S.d.(σ) – – 0.3145 – – 0.2805

all Mean(µ) – – 0.4749 – – -0.0278

S.d.(σ) – – 0.3291 – – 0.1543

Table 5.4: Mean and standard deviation for the R1 and R3 metrics obtained for 20, 50

and 100 nodes networks († - results for 130 networks for which the Brute Force method

was run).

Results

For a more detailed analysis, the results presented here are divided according to the

size of the problems and the methods used to approximate them.

20 Nodes Networks The Brute Force method was applied to 130 networks with

less then 1011 distinct spanning trees, from a total of 249 networks with 20 nodes.

Figures 5.8 shows the box-and-whisker plots for the R1 and R3 metrics, respectively,

comparing Brute Force method (hf) with the Weighted Sum (ws) and MONACO (aco)

methods. Table 5.4 resumes the values of the mean and the standard deviation for

those metrics values.

For the studied problems, MONACO’s results are similar to the results returned by
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Figure 5.8: Box-and-whisker plots for: (a) and (c) – R1 and R3 metrics comparing

Brute Force Method (hf) with the Weighted Sum (ws) and MONACO (aco) for the 130

networks of 20 nodes; (b) and (d) – R1 and R3 metrics comparing the Weighted Sum

and MONACO methods for all 249 networks of 20 nodes.

Brute Force method (note that the Brute Force method returns the exact Pareto set,

which implies that R1(hf,P1) ≥ 1
2

and R3(hf,P1) ≥ 0 for any approximation P1).

Therefore, the 0.5338 value for the mean of R1(hf, aco) indicates that MONACO return

similar values to the ones of Brute Force method. This observation, is corroborated by

the fact that R1(hf, aco) returned 0.5 (and R3(hf, aco) = 0) in 95 of the 130 cases.

In general, for the R1 and R3 metrics, MONACO performed better than the Weighted

Sum method in a great number of networks (µR1(ws,aco) = 0.2933), but with similar

approximation sets (µR3(ws,aco) = −0.0003). In Figure 5.8 (d) we can see the box-and-

whisker plots for the observed results.
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50 nodes

CWG ρ− CWG ρ− CWG RWG

ρ ≥ 0 ρ < 0

µ σ µ σ µ σ µ σ

R1 0.1293 0.1810 0.4700 0.2382 0.7855 0.2573 0.5078 0.3400

R3 0.0440 0.1830 -

0.1040

0.2050 -

0.1382

0.1368 -

0.0736

0.1435

# 32 52 50 20

100 nodes

CWG ρ− CWG ρ− CWG RWG

ρ ≥ 0 ρ < 0

µ σ µ σ µ σ µ σ

R1 0.3185 0.2585 0.7736 0.2380 0.8877 0.2269 0.8957 0.1060

R3 -

0.0379

0.2487 -

0.3537

0.3412 -

0.4244

0.4648 -

0.1573

0.1649

# 36 48 50 25

Table 5.5: Mean (µ) and standard deviation (σ) values for the R1(ws, aco) and

R3(ws, aco) metric values according to the network size and weight generator (# –

number of networks in each class).

50 Nodes Networks For the 50 nodes networks case were considered 154 prob-

lems. Figures 5.9 (a)-(b) sketch the box-and-whisker plots for R1 and R3 metrics,

and the mean and standard deviation values of R1 and R3 according to the weight

generators are resumed in Table 5.5.

In this case, the Weighted Sum method and MONACO have similar solutions, according

to the R1 and R3 metrics, since µR1(ws,aco) = 0.5085 and µR3(ws,aco) = −0.0101 (see
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CWG ρ− CWG ρ− CWG RWG

ρ ≥ 0 ρ < 0

µ σ µ σ µ σ µ σ

R1 0.1731 0.2137 0.4749 0.2589 0.6036 0.3476 0.5706 0.3399

R3 0.0324 0.1888 -

0.1052

0.2433 -

0.1476

0.3107 -

0.0723

0.1454

# 104 205 184 69

Table 5.6: Mean (µ) and standard deviation (σ) values for the R1 and R3 metrics

for all networks according to the weights generators (# – number of networks in each

class).

Table 5.4). However, if the problems are divided into the classes presented in Table 5.5,

it is possible to conclude that when compared to the Weighted Sum, MONACO achieves

better values for the R1 and R3 metrics when applied to networks generated using the

CWG. On the other hand, the worst cases are obtained for the ρ− CWG with ρ < 0

networks, where µR1(ws,aco) = 0.7855 and µR3(ws,aco) = −0.1382.

100 Nodes Networks For the 100 nodes case were considered 159 networks.

Table 5.4 presents the statistics for the values of the R1 and R3 metrics and Figures

5.9 (c)-(d) shows the box-and-whisker plots for those same metrics. The mean and

standard deviation values of R1 and R3 according to four weight classes of network

generators are resumed in Table 5.5.

In this case the Weighted Sum method outperforms MONACO in most of the problems

with R1(ws, aco) = 0.7266 and R3(ws, aco) = −0.0879. The best results for the

R1 and R3 metrics are achieved for the networks obtained with the CWG where

µR1(ws,aco) = 0.3185.
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Figure 5.9: Box-and-whisker plots for R1 and R3 metrics comparing Weighted Sum

(ws) and MONACO (aco) for network with: (a)–(b) 50 nodes, and (c)–(d) 100 nodes.

Overall Values For the overall 562 networks Figure 5.10(a)-(b) shows the box-

and-whisker for R1 and R3 metrics and Tables 5.4 and 5.6 resume the values for the

mean and standard deviation of the R1 and R3 metrics.

MONACO is sightly better than Weighted Sum for the R1 metric (µR1(ws,aco) = 0.4749),

although the large value of the standard deviation. R3 returned a small variation with

the interquartile value range, equal to 0.0056. According to Table 5.6, if we restrict

the analysis to the 104 networks that used the CWG then µR1(ws,aco) = 0.1731 and

µR3(ws,aco) = 0.0324.

In general, µR3(ws,aco) = −0.0278 and σR3(ws,aco) = 0.1543 values indicate that the

approximation sets returned by MONACO are relatively similar to the ones produced

by the Weighted Sum method, which only returns Pareto solutions. However, it is
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Figure 5.10: Box-and-whisker plots for the R1 and R3 metrics comparing Weighted

Sum (ws) and MONACO(aco) for: (a)-(b) all 562 networks; (c)-(d) the 104 networks that

used the CWG.

possible to observe that quality of the results returned by MONACO diminish as the size of

the networks increase, which indicates that possible alternatives should be considered,

besides the possible extra computational time.

5.3 ε-DANTE Algorithm

The previous sections analysed the results returned by MONACO. It was possible to

conclude that, although the approximations sets returned by MONACO were, in most of

the cases, comparable to the used reference sets, alternatives to improve the quality of

the solutions should be thought.
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As in most of the Swarm Intelligence processes, MONACO builds a solution, evaluates

it, performs the pheromone updating process and discards it (recall Algorithm 1). This

strategy does not allow a proper local exploration, overlooking the computational effort

that was necessary to produce it. Furthermore, as pointed by Dorigo & Stützle [1999]

“(...) construction algorithms are typically the fastest approximate

methods, but the solutions they generate often are not of a very high quality

and they are not guaranteed to be optimal with respect to small changes;

the results produced by constructive heuristics can often be improved by

local search algorithms.(...)”

In fact, to further explore the achieved solutions, it is common to use hybrid al-

gorithms that apply local optimizers to the solutions obtained with the construction

algorithms, as

• The 2-opt or 3-opt in the Travelling Salesman Person [Dorigo & Stutzle, 2004];

• The SOP-3-exchange for the Sequential Ordering Problem [Gambardella & Dorigo,

2000]; or

• The iterated local search for the Bin Packing Problem [Levine & Ducatelle, 2004].

The ε-DANTE process was developed with the objective of exploring the more promis-

ing constructed solutions. The method is characterized by a restricted depth search

based on the pheromone vectors. In other words, whenever a solution is attractive,

it is performed a depth search procedure limited in the number of branches by level

and/or in the available computational requirements.

Algorithm 16 presents a high level description of the method. The main procedure

is composed by a set of iterations. In each of these iterations, a set of agents construct

solutions using the current pheromone trails. If the solutions improve the approxima-

tion set or its distance to that set is not superior to a ε criterion parameter then it
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Algorithm 16 ε-DANTE Algorithm

1: Initialize the pheromone trail.

2: while stopping criterion is not met do

3: for all ants do

4: Construct a new solution, S, using the current pheromone trail.

5: if the distance of S to the approximation set is inferior to ε or S improves

the approxiamtion set then

6: Apply a depth search procedure from that solution.

7: end if

8: end for

9: Update the pheromone trail. . Optional

10: end while

is applied the restricted depth search method. Steps 4 - 6 of the algorithm will be

described with more detail in the next section. Note that step 9 is optional, since the

pheromone update can be performed in the previous steps, as we will see later.

5.3.1 Depth Search Exploration

As referred, the fitness of each generated solution, S, is compared with the fitness of

the elements in the approximation set that is in construction. Then the limited depth

search is made to

Level D – If S improves P , that is, S is not dominated by any element of P (@T∈P :

T ≺ S); or

Level d – If S is dominated by some element T of P but its relative distance to the

approximation set is smaller than ε, which includes the case whereW(T ) =W(S).

Here d and D are algorithm parameters and should verify d > D. Furthermore, the

number of branches used in each level of the depth search, M , it is also an algorithm

parameter.
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Figure 5.11: Example of search tree.

Figure 5.11 delineates the search tree for a process with M = 1, d = 5 and D = 4.

Each edge of the tree represents the addition of one component of the solution (ε-DANTE

is a construction algorithms) and the leaves, labelled as sk, are the achieved solutions.

Algorithm 17 presents a high level description of the process where

• The algorithm contains a tabu list for each level, tabul, that is initialized as the

empty set. This tabu list avoids that the same solutions are rebuilt in the depth

search, by restricting the addition of the same edges in the same level. The use

of the tabu list is version dependent and should be thought according to step 31,

since it also restricts the construction of new solutions containing those edges.

• In step 4 the computed distance from T to the approximation set P should return

a negative value if T improves P ; and

• In step 6 the update procedure consists in inserting T in P and removing the
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elements of P dominated by T .

• Steps 7 and 10 are optional since, if all solutions contribute to the variation of

the pheromones, the result is a noisy trail with consequent lost of performance.

5.3.2 Angle-Pheromones Update Strategy

With ε-DANTE it is also proposed a new strategy for updating the pheromone vectors.

This update is particular to the multiple objective problems since, as before, it is

supposed that to each edge is associated a m-vector of values and each component of

the vector represents the worthy of that edge in the construction of good solutions,

considering a particular weight.

The Angle-Pheromone Update strategy can be considered greedy in the sense that

it only uses elements of the approximation set. The objective is to explore small regions

of the search space by using, in the pheromone updating formula, only a subset of the

solutions contained in that set. This idea is motivated by the fact that, in most of the

cases, the number of elements in the approximation set becomes very large. Empirical

tests proved that if all the solutions in the approximation set were used, the pheromone

based selection becomes very noisy, which delays the convergence toward the Pareto

set.

Therefore, the pheromone vector update is made according to formula

τ(e) = ρτ(e) + ∆(e), e ∈ E , (5.12)

where

• τ(e) is pheromone vector associated to edge e;

• ρ ∈ [0, 1] is called the persistence factor (1 − ρ is the evaporation factor). The

smaller the values of ρ are, the smaller quantity of information, used in one cycle,
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Algorithm 17 ε-DANTE’s solutions exploration.

1: function ε-DANTE Solutions(T )

2: l← |T | . defines the level by the number of added edges

3: if T is a solution then

4: Set ∆ as the relative distance from T to P
5: if ∆ < 0 then . T improves P
6: Update the approximation set with T

7: Update ∆k (k = 1, 2, . . . ,m) with T . Optional

8: return D

9: else

10: if ∆ < ε then Update ∆k (k = 1, 2, . . . ,m) with T . Optional

11: return d

12: else return 0

13: end if

14: end if

15: else

16: SearchLevel← 0, NumberOfBranches←M

17: for k = 1 to NumberOfBranches do

18: if ∃e∈E−tabul : T ∪ {e} is admissible then

19: Choose an edge, e, from E − tabul . Problem specific

20: Tabul ← Tabul ∪ {e} . Optional

21: T ← T ∪ {e}
22: L←ε-DANTE Solutions(T ) . Recursive call

23: if L > 0 then

24: NumberOfBranches← NumberOfBranches+M

25: SearchLevel← max{SearchLevel, L}
26: end if

27: T ← T − {e}
28: else Go to line 31

29: end if

30: end for

31: Tabul ← ∅ . Optional (clean the tabu list)

32: return max{SearchLevel − 1, 0}
33: end if

34: end function



5.3. ε-DANTE Algorithm 157

is transmitted to following cycle;

• ∆(e) = (∆1(e),∆2(e), . . . ,∆m(e)) is the reinforcement pheromone vector associ-

ated to edge e and is computed using the elements of the approximation set, P ,

and formula

∆k(e) =
∑
T∈Pe

Q

wk(T )
, (5.13)

where

– Q is a value with the same magnitude of the solutions. For example, if the

weights are balanced it can be used the average of the minimum weights,

1

m

m∑
k=1

min
T∈P

wk(T ); (5.14)

– Pe are the elements of the approximation set that contain edge e and lie in

a subangle of the angle defined by the origin and the extreme solutions (of

weights k and k + 1), that is,

Pe =
{
T ∈ P : e ∈ T ∧ φmin

k + Ikφ
h
k ≤ φk(T ) ≤ φmin

k + (Ik + 1)φhk
}

(5.15)

where

φk(T ) = arctan

(
wk+1(T )

wk(T )

)
, (5.16) φmin

k = minT∈P φk(T )

φmax
k = maxT∈P φk(T )

, k = 1, 2, . . . ,m− 1, (5.17)

φhk is the step interval and Ik is a value related to the region to be explored

which is controlled by the main process.

For example, Figure 5.12 sketches one of those angles for the bi-objective case. In

this figure, the black dots are the elements of the approximation set P , the light gray
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Φk
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Figure 5.12: Pheromone vectors update strategy.

zone is the region between angles φmin
k and φmax

k , and the dark gray zone is the region

between

φmin
k + Ikφ

h
k ≤ φk(T ) ≤ φmin

k + (Ik + 1)φhk. (5.18)

The elements of Pe ⊂ P in the dark gray region are the elements that will be used

in equation (5.13).

5.3.3 Test Cases

ε-DANTE algorithm was tested with three multiple objective problems: the Minimum

Spanning Tree, the k-Degree Minimum Spanning Trees and the Travelling Salesman

Person problems. The first problem is studied in detail in the next chapter. The choice

of the other two problems is justified by the existence of results for sets of instances,
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obtained by other authors with other evolutionary techniques, which will allow to

compare the performance of the proposed algorithm.

Multiple Objective k-Degree Minimum Spanning Trees problem

A k-Degree Minimum Spanning Tree is a minimal weight spanning tree such that the

maximum degree of any node is k. In the proposed process, to build the spanning tree,

feasible edges are successively added until a solution is formed. Before the addition of

any of those edges it must be verified that such edge will not form a cycle neither the

nodes maximum degree condition is violated.

More precisely, the process starts by randomly selecting a node from V , s, and

setting TN = {s} (TN is the set of the nodes already included it the tree). Then

sequentially are added n− 1 admissible edges from

A = {euv ∈ E : u ∈ TN ∧ δ(u) < k ∧ v ∈ V − TN} , (5.19)

where δ is the degree of node u in the subtree that is being constructed and k the

maximum degree allowed. The selection of the edges is pseudo-randomly made using

formula

est =

 arg maxes′t′∈A

(∏m
j=1 τj(es′t′)

αjwj(es′t′)
−βj
)

if q ≤ q0

e if q > q0,
(5.20)

where

• τj(e) is the pheromone value associated to the j weight in edge e;

• wj(e) is the j-weight of edge e;

• αj is an algorithm parameter associated to the relevance of weight j;

• βj is an algorithm parameter associated to the local heuristic that favours edges

with lower j-weight;
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• e ∈ A is an edge pseudo-randomly chosen with probability

p(e) =

∏m
j=1 τj(e)

αjwj(e)
−βj∑

f∈A
∏m

j=1 τj(f)αjwj(f)−βj
. (5.21)

• q is a uniform random value in [0, 1]; and

• q0 ∈ [0, 1] is a parameter that influences which branch of (5.20) is used more

often: a smaller value of q0 produces a more exploratory search, since it implies

the use of the pseudo-random formula (5.21) with higher probability. When q0 is

near 1, the feasible edge with larger probability of entering the tree is used with

greater frequency, which suggest an exploiting search.

Example 5.3 sketches some steps of the ε-DANTE process applied to an instance of

the problem in study.

Example 5.3: Consider the same premises of Example 5.2, that is, the considered

network is represented in Figure 5.7 and its weights and pheromone values are in Table

5.3. Let us also suppose that α1 = 1, α2 = 2, β1 = 2, β2 = 2, q0 = 0, and the maximum

degree of the nodes is k = 3.

The construction and exploration process of a set of trees, by ε-DANTE, can be

described as follows (in Figure 5.7 is also depicted the process, where the continuous

lines are the edges already included in the tree and the dashed lines are the candidate

edges to enter the tree):

(a) Randomly select a node. Node 1 is selected. The probabilities of adding each of

the edges with starting node 1 are

p1,2 =

(
1
1

)2
5
(

1
2

)2
42(

1
1

)2
5
(

1
2

)2
42 +

(
1
3

)2
1
(

1
3

)2
22 + · · ·+

(
1
7

)2
1
(

1
5

)2
22

= 0.452,

p1,3 = 0.001, p1,4 = 0.090, p1,5 = 0.452, p1,6 = 0.005, p1,7 = 0.0 and p1,8 = 0.0.

Edge e12 is added, Figure 5.13 (a)-(b);
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(b) From nodes in {1, 2} the probabilities are p1,3 = 0.001, p1,4 = 0.055, p1,5 =

0.276, p1,6 = 0.003, p1,7 = 0, p1,8 = 0, p2,4 = 0.662, and p2,5 = 0.003. Edge e24

is selected, Figure 5.13 (b)-(c);

(c) From nodes in {1, 2, 4} the probabilities are p1,3 = 0.001, p1,5 = 0.345, p1,6 =

0.004, p1,7 = 0, p1,8 = 0, p2,5 = 0.004, and p4,6 = 0.647. Edge e46 is selected.

Note that edge e14 is not allowed since if it was added it would create a cycle,

Figure 5.13 (c)-(d);

(d) From nodes {1, 2, 4, 6} the probabilities are p1,3 = 0.002, p1,5 = 0.907, p1,7 =

0, p1,8 = 0, p2,5 = 0.01, and p6,3 = 0.081. Edge e15 is added, Figure 5.13 (d)-(e);

(e) From nodes {1, 2, 4, 5, 6} the probabilities are p1,3 = 0.001, p1,8 = 0, p5,7 = 0.945,

p1,7 = 0, and p6,3 = 0.054. Edge e57 is selected, Figure 5.13 (e)-(f);

(f) From nodes {1, 2, 4, 5, 6, 7} the probabilities are p1,3 = 0.013, p1,8 = 0.001, p3,6 =

0.464, and p7,8 = 0.522. Edge e18 is selected, Figure 5.13 (f)-(g);

(g) From nodes {1, 2, 4, 5, 6, 7, 8} the probabilities are p3,6 = 0.066 and p3,8 = 0.934.

Edge e38 is added. Note that edge e13 is not considered since the degree of node

1 is already k = 3, Figure 5.13 (g)-(h);

(h) The construction of the spanning tree is complete, Figure 5.13 (h). If this tree

enters the approximation set, then it is made the depth search process as follows;

(i) Edge e38 is removed. From nodes {1, 2, 4, 5, 6, 7, 8} only the edge e36 can be added

since edge e38 has already been used in this level and therefore is in the tabu list,

Figure 5.13 (i);

(j) It is obtained a new tree, Figure 5.13 (j);
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(k) Edge e36 is removed, but there are no other feasible edge to be added, Figure

5.13 (k);

(l) Edge e18 is removed. From nodes {1, 2, 4, 5, 6, 7} the probabilities are p1,3 = 0.024

and p7,8 = 0.976. Note that edge e13 can now be used since the degree of node 1

is two and edge e18 cannot be added since it is tabu, Figure 5.13 (l).

The process would continue until some stopping criteria was met like the non-

existence of feasible edges to continue the search, the full exploration of the depth

levels or some other computational restriction.

The algorithm was implemented in C + + and tests were run on a PC with Intel

PentiumTMIV 3Ghz processor, 512Mb of RAM and Windows XP OS. For each problem

the method was run 15 times with parameters in Table 5.7.

The problems instances that were used to test the implementation were defined by

Knowles & Corne [2001a] and the ε-DANTE solutions are compared with the solutions

obtained with the Genetic Algorithms presented by the same authors. More specifically,

it was used as reference set the one composed by the non-dominated elements of the

union of the 30 runs made with their Genetic Algorithm (except for the instances with

10 nodes where it was used the exact Pareto set, marked with a “†”).

Table 5.8 presents a resume of the results for the tested instances over the 15 runs.

This table contains information about the average values of the metrics R1 and R3,

the reference point used to compute the values of R1 and R3, the average cardinality of

the approximation set built with ε-DANTE (in parentheses the cardinal of the reference

set), the average time of the last update of the approximation set and a sketch of a

typical front. From the same table it is possible to observe that in most of the cases,

ε-DANTE improves the reference set since R1 < 0.5 and R3 ≈ 0. The exceptions were

the 10 nodes networks where in one case it has achieved the exact Pareto set (obtained
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Figure 5.13: Simulation of the building trees process.
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Parameter Values Comments

D 1 Maximum depth

d b3|V|
4
c Intermediate depth

M 2 Number of branches

ε 0

αi, βi {0, 0.03, 0.06, . . . , 3.0}

ρ 0.1

q0 {0.5, 0.6, 0.7, 0.8, 0.9} Set randomly for each ant

k 3 Maximum of the nodes de-

grees

Number of ants per cycle |V|

Number of cycles 2

Maximum run time min{60|V| log |V|, 36000} Seconds

Table 5.7: Used parameters.

with the Brute Force method) and in the other two cases it has obtained 128 and 183

of the 134 and 191 solutions, respectively.

The time evolution of the R1 and R3 metrics are depicted in Figures 5.14 and 5.15,

respectively. It is possible to observe that the convergence of the solutions toward the

reference set is made quite fast since R3 quickly takes values near to zero. Nevertheless,

the local refinement takes some extra time which, as already referred, is a characteristic

common to most of the Ant Colony based algorithms. If some extra local optimizers

are applied to the solutions the convergence of the approximation set toward the Pareto

set would probably be achieved more rapidly.
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Problems µR1 µR3 Reference

point

µ|P|
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µT ime Sketch of a typi-
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Table 5.8: Resume of the results for the k-Degree Minimum Spanning Tree problem.

Multiple Objective Travelling Salesman Person Problem

In the implemented process each agent is initially placed at random in one of the nodes.

Then each of those agents build a Hamiltonian cycle by the successive inclusion of nodes
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Figure 5.14: Time evolution for R1 metric over the 15 runs.

from the ones that were not yet visited, and are adjacent to the last one inserted. If

the distance from the constructed solution to the approximation set is not superior to
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Figure 5.15: Time evolution for R3 metric over the 15 runs.

a ε parameter or the solution improves the approximation set then, it is performed the

pheromone oriented depth search procedure as described in Section 5.3.1. In any of the
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cases, the order in which the nodes are chosen is made pseudo randomly according to

the pheromone trails and a local greedy heuristic that gives preference to the “nearest”

nodes.

Mathematically, if the current node is s and TN is the set of nodes already included

in the path that is being constructed, then an edge est is chosen to integrate the path

(and consequently node t is added) accordingly to

est =

 arg maxest′∈As
(∏m

k=1 τk(est′)
αkwk(est′)

−βk
)

if q ≤ q0

e if q > q0

(5.22)

where

• As = {est′ ∈ E : t′ 6∈ TN}

• t is the next node to be inserted in the path;

• τk(e) is the pheromone value associated to the k weight in edge e;

• wk(e) is the k-weight of edge e;

• αk is an algorithm parameter associated to the relevance of weight k;

• βk is an algorithm parameter associated to the local heuristic that favors edges

with lower k-weight;

• e ∈ As is an edge pseudo-randomly chosen with probability

p(e) =

∏m
k=1 τk(e)

αkwk(e)
−βk∑

f∈As
∏m

k=1 τk(f)αkwk(f)−βk
; (5.23)

• q is a uniform random value in [0, 1]; and

• q0 ∈ [0, 1] is a parameter that favours the exploration of the search space (for

smaller values of q0) or the exploitation of that same search space (for larger

values of q0).
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Parameter Values Comments

D b |V|
2
c Maximum depth

d b3|V|
4
c Intermediate depth

M 1 Number of branches

ε 0

αi, βi {0, 0.03, 0.06, . . . , 3.0}

ρ 0.1

q0 {0.5, 0.6, 0.7, 0.8, 0.9} Set randomly for each ant

Number of ants per cycle |V|

Number of cycles 10

Maximum run time 10 hours

Table 5.9: Used parameters.

This process is repeated n − 1 times. The Euclidean cycle is concluded by the

addition of the edge defined by the first and last nodes inserted in the path.

The algorithm was developed in C+ + and a set of runs were made over a PC with

Intel PentiumTMIV 3Ghz processor, 512Mb of RAM and Windows XP OS. For each

problem the method was run 12 times with parameters showed in Table 5.9.

Table 5.10 resumes the results for the 12 runs where

• µR1, µR3 are the mean values of the R1 and R3 metrics;

• The reference point column contains the points used in (2.57) and (2.59) to

compute the values of R1 and R3;

• µ|P| is the mean value of the cardinality of the approximation set;

• µ|Pref is the cardinality of the reference set; and

• µT ime is the average time (in seconds) of last update of the approximation set.
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Problems µR1 µR3 Reference point µ|P| (µ|Pref |) µTime (sec) Sketch of a typical front

kroab50 0.20 0.001 (16296.4, 16354.8) 811 (414) 33294

20000300004000050000600007000080000
w1

20000

30000

40000

50000

60000

70000

w
2

kroac50 0.28 0.002 (16296.4, 15614.3) 677 (291) 34799

2000030000400005000060000700008000090000
w1

20000

30000

40000

50000

60000

70000

80000

w
2

kroad50 0.32 0.001 (16296.4, 16155.8) 520 (363) 34980

20000 40000 60000 80000
w1

20000

30000

40000

50000

60000

70000

80000

w
2

kroae50 0.35 0.001 (16296.4, 15751.9) 573 (342) 33979

2000030000400005000060000700008000090000
w1

20000

30000

40000

50000

60000

70000

80000

w
2

krobc50 0.40 0.000 (16354.8, 15614.3) 622 (369) 35134

2000030000400005000060000700008000090000
w1

20000

30000

40000

50000

60000

70000

80000

w
2

krobd50 0.31 0.001 (16354.8, 16155.8) 678 (410) 349336

20000300004000050000600007000080000
w1

20000

30000

40000

50000

60000

70000

80000
w
2

krobe50 0.40 0.000 (16354.8, 15751.9) 529 (330) 344046

20000 40000 60000 80000
w1

0

20000

40000

60000

80000

w
2

krocd50 0.30 0.001 (15614.3, 16155.8) 736 (403) 35429

20000300004000050000600007000080000
w1

20000

30000

40000

50000

60000

70000

80000

90000

w
2

kroce50 0.25 0.002 (15614.3, 15751.9) 624 (328) 34880

20000300004000050000600007000080000
w1

20000

40000

60000

80000

w
2

krode50 0.37 0.001 (16155.8, 15751.9) 499 (313) 35121

20000 40000 60000 80000
w1

20000

30000

40000

50000

60000

70000

80000

w
2

Table 5.10: Resume of the results for the Travelling Salesman Person problem.
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The instance problems considered were kroab50, kroac50, kroad50, kroae50, krobc50,

krobd50, krobe50, kroab50, krocd50, krocd50 and krode50 (all available at [Jaszkiewicz,

2006b; TSPLib, 2003]). The used reference set was computed as the non dominated

set of the union of the results obtained with 5 runs for each of the Multiple Objective

Genetic Local Search (MOGLS), Multiple Objective Simulated Annealing (MOSA) and

MOSA-like MOGLS algorithms [Jaszkiewicz, 2002, 2006a; Shibuchi & Murata, 1998].

The values presented in Table 5.10, where R1 < 0.5 and R3 ≥ 0, indicate that

ε-DANTE improved the reference sets. Furthermore, the cardinality of the approximation

set is always superior to the reference set.

Some examples of the time evolution of the R1 and R3 metrics for the problems in

study are sketched in Figures 5.16 and 5.17. It is observable that most of them attain

a R1 value near to 0.5 after approximately one hour of computation. Furthermore,

Figure 5.17 shows that the convergence to the reference set is much faster since R3

rapidly approximates 0.

Figure 5.18 sketches some examples of the graphics for

C(P1,P2, uλ,r, r), (5.24)

and

u∗λ,r(P1)− u∗λ,r(P2)

u∗λ,r(P1)
, (5.25)

used to compute the values of R1 and R3 with λ ∈ {0.01, 0.02, . . . , 0.99} (refer to

formulas (2.57) and (2.59)). The R1 graphics allow to infer where the solutions returned

by ε-DANTE were better or worse than the solutions from the reference set, which is

dependent of the utility function parameter, λ. On the other hand, the R3 gives the

idea by how much one of the algorithms is better or worse than the others.

For example, for the λ parameter where C(P1,P2, uλ,r, r) = 0.5 the (Tchebycheff)

utility function returned equal utility values, and a better utility value for ε-DANTE
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Figure 5.16: Time evolution for R1 metric over the 12 runs.
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Figure 5.17: Time evolution for R3 metric over the 12 runs.
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Figure 5.18: Graphics of C(Pref ,P , uλ,r, r) and
u∗λ,r(Pref )−u∗λ,r(P)

u∗λ,r(Pref )
(functions used to com-

pute the R1 and R3 metrics).

when C(P1,P2, uλ,r, r) = 0.
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5.3.4 Algorithm Complexity

The overall complexity of the algorithm is strictly connected to the problem and the

associated implementation. If Algorithm 16 has NC cycles, each cycle uses NA ants

and, NS is the computational requirements to compute a solution, then the process has

O(NC ×NA ×NS). (5.26)

The computational complexity associated to the computation of a solution for the Mul-

tiple objective k-Degree Minimum Spanning Trees problem and the Multiple Objective

Travelling Salesman Person problem are studied in the next two theorems.

Theorem 5.1. Consider the implementation, in Section 5.3.3, for the Multiple Ob-

jective k-Degree Minimum Spanning Trees problem over a complete network instance.

Suppose that k is large enough so that the k-degree restriction is never applied. Then

the construction of tree has

O
(
mn2 + q0n

3 + (1− q0)n4
)

(5.27)

complexity.

Proof. The values of the products present in (5.20) and (5.21) are calculated as a pre-

computation, which takes O(mn2). The main construction process start by randomly

picking one node, n1, and then it is chosen one edge, from the possible n − 1. Using

formula (5.20) it takes O(q0(n− 1) + (1− q0)(n− 1)2) since

• The first branch of (5.20) is used with probability q0 and takes O(n− 1);

• The second branch, used with probability (1− q0), takes O((n− 1)2) since it

is necessary to compute the sum of n− 1 parcels in formula (5.21), for n− 1

alternative edges.
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Analogously, if k nodes were already inserted, from each of those nodes there are

n − k possible choices, which applied to the first and second branch of (5.20) would

take O((n − k)k) and O((n − k)2k), respectively. Therefore, the construction of the

tree presumes

O

(
mn2 +

n−1∑
k=1

[
q0(n− k)k + (1− q0)(n− k)2k

])
(5.28)

or simply

O
(
mn2 + q0n

3 + (1− q0)n4
)
. (5.29)

A similar analysis can be made for the Travelling Salesman Person case as follows.

Theorem 5.2. Consider the implementation, in Section 5.3.3, for the Multiple Ob-

jective Travelling Salesman Person problem over a complete network instance. The

construction of a solution has

O(mn2 + q0n
2 + (1− q0)n3) (5.30)

complexity.

Proof. The values of the products present in (5.20) and (5.21) are calculated as a pre-

computation, which takes O(mn2). The main construction process starts by picking

one node. From that node exists n−1 possible edges which implies a O(q0(n−1)+(1−

q0)(n−1)2). If it were already inserted k−1 edges (k nodes in en1n2 , en2n3 , . . . , enk−1nk),

then the construction process searches from the n−k nodes adjacent to node nk, which

for the first branch of (5.23) takes O(n− k) and for the second one takes O((n− k)2).

Therefore the construction of a solution is made in

O

(
mn2 +

n−1∑
k=1

[
q0(n− k) + (1− q0)(n− k)2)

])
(5.31)
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which can be simplified to

O(mn2 + q0n
2 + (1− q0)n3). (5.32)

In none of the analysis is considered the complexity of the depth search phase,

whenever it exists. However some things can be made to diminish the computational

time, like

• Use values of q0 near to 1, which has the risk of not providing enough exploration

of the search space;

• In the k-Degree Minimum Spanning Trees case select a subset of the nodes in the

subtree instead of the all subtree, diminishing the number of times that (5.21) is

computed;

• Use a candidate list (as in [Dorigo & Stutzle, 2004]), which through a pre-

computation allows to diminish the cardinality of A in formulas (5.21) and (5.23),

by restricting the number of choices to be considered in each construction step.

Nevertheless, the computational requirements to compute a single solution are high

and if that solution has a good fitness then it should not be simply evaluated and

discarded. In fact, the use of a local search, like the 2-opt, 3-opt, or the depth search

process proposed with ε-DANTE, allows to further explore the solutions, possible achiev-

ing new ones to improve the approximation set with, less computational effort.

5.4 Summary

This chapter has been devoted to the analysis of two methods proposed for the res-

olution of discrete multiple objective optimization problems: MONACO and ε-DANTE.
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Both methods, based in the Ant Colony Optimization paradigm, use as many layers of

pheromones as the number of weights of the multiple objective problems.

In particular, MONACO was applied to three problems, namely: a multiple objective

flows simulator, an optimizer for the Multiple Objective Travelling Salesman Person,

and the Multiple objective Minimum Spanning Trees Problems. MONACO shows poten-

tial to be a working tool for optimization and simulation problems. However, it suffers

from the common to most of the Ant Colony Optimization algorithms pitfall, that is,

the refinement of the solutions can require an extra computational effort, possibly di-

minished with the use of post-optimizers. Moreover, after the evaluation of a solution

two things can happen:

• The solution enters the approximation set and information is propagated through

the pheromone vectors; or

• The solution is discarded which happens even if the solution is “attractive”, that

is, it is near to the approximations set or has the same fitness of one of its

elements. In this case it can be lost all the computational effort necessary to

build the solution.

The ε-DANTE algorithm appears as an effort to provide an effective way of further

exploring the solutions that improve the approximation set or the solutions that are

considered “attractive” (based in their fitness). More precisely, whenever a solution is

inserted into the approximation set or satisfies an ε distance to the approximation set

criterion, it is performed a limited depth search using the pheromone values to guide

the search.

A version of ε-DANTE was implemented and applied to two multiple objective prob-

lems for which exits a set of publish results: the k-Degree Minimum Spanning Trees and

the Travelling Salesman Person. In both cases, it was verified that the method rapidly
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converges toward the fronts achieved by other authors and ends up by improving, in

general, their results.

In this chapter has also been proposed a pheromone update strategy that uses the

elements of the approximation set. In the Ant Colony algorithms is common to use

greedy strategies, where only the best performing solutions are used to update the

pheromone value. One possible procedure uses all the elements of the approximation

set to update the pheromone trails. However, the cardinality of this set is usually

very large, which introduces noisy pheromone trails, reducing the performance of the

algorithm. The proposed update strategy uses only small subsets of the approximation

set, which successively favours the exploration of small part of the search space.

Next chapter will be devoted to the analysis of the results obtained with ε-DANTE

when applied to the Multiple Objective Minimum Spanning Trees problem for a large

set of instances obtained through the application of the network generators proposed

in Chapter 4.





Insanity: doing the same thing over and over again and ex-

pecting different results.

Albert Einstein
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6.1 Overview

This chapter makes an analysis of the results obtained with an ε-DANTE implementa-

tion when applied to several instances of the Multiple Objective Minimum Spanning

Trees problem. Previously, ε-DANTE algorithm was described and compared with some

high performing methods. For the tested instances, the obtained results showed that

this method produces quality solutions, which were, at least, comparable to the other

implementations.
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Concerning the problem that is in study in this chapter, the construction of the

spanning trees starts by randomly picking one node from V . Then, while the solution

is not complete, the edges are added to the tree in construction using formula

est =

 arg maxes′t′∈A

(∏m
j=1 τj(es′t′)

αjwj(es′t′)
−βj
)

if q ≤ q0

e if q > q0

, (6.1)

where A = {euv ∈ E : u ∈ TN ∧ v ∈ V − TN} and the remaining values are explained

in section 5.3.3.

To test the ε-DANTE implementation a total of 404 networks with 20, 50 and 100

nodes were considered. Those networks were obtained with the generators described in

Chapter 4. Further details related to the dimensions and classes of the networks that

were used can be found in [Cardoso et al., 2006b].

For each network instance the method was run once and its results are compared

with results produced by an Brute Force and/or a Weighted Sum method, according

to the dimensions of the problem.

The computational environment used to run ε-DANTE was a set of PCs with Intel

PentiumTMIV processors at 3Ghz, 512Mb of RAM and Windows XP OS. The used

parameters are resumed in Table 6.1. On the other hand, as in Section 5.2.2, the results

for the Brute Force method were obtained through an implementation of the algorithm

proposed by Ramos et al. [1998], in a LINUX OS workstation with Intel PentiumTMIII

533Mhz processor and 128Mb of RAM. For the Weighted Sum approach the results

were obtained using 1000 distinct pondering weights (equation (5.9)). The solutions

obtained with these implementations were compared using a set of reference metrics,

described in Section 2.4, like the Error Ratio, the Set Coverage, and the R1, R2 and

R3 metrics.

The approximation and the Pareto sets, whenever they exist, obtained with the

implementations are sketched in Appendix ??.
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Parameter Values Comments

D 1 Maximum depth

d b |V|
2
c Intermediate depth

M 2 Number of branches

ε 0

αi, βi {0, 0.03, 0.06, . . . , 3.0}

ρ 0.1

q0 {0.5, 0.6, 0.7, 0.8, 0.9} Set randomly for

each ant

Number if ants per cycle |V|

Number of cycles 2

Maximum run time min{60|V| log |V|, 36000} Seconds

Table 6.1: Used parameters for ε-DANTE in the Multiple Objective Minimum Spanning

Trees construction.

Therefore, the results for the complete set of tests are examined in the remaining

chapter. The analysis is divided according to the dimensions of the networks and the

classes of their generators.

6.2 Performance Analysis

6.2.1 20 Nodes Networks

The ε-DANTE implementation was applied to 143 networks with 20 nodes. For 79 of

those networks, networks that define less than 1011 distinct spanning trees, it was

applied a Brute Force method to compute the exact Pareto set. Table 6.2 resumes the

mean and standard deviation values of the metrics results obtained with ε-DANTE for
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Network with 20 nodes and less that

1011 distinct spanning trees

Mean (µ) Standard Deviation (σ)

|Pbf | 54,9 53,4

|Pε| 54,9 53,4

ER(Pbf ,Pε) 0,0 0,0

C(Pbf ,Pε) 1,0 0,0

C(Pε,Pbf ) 1,0 0,0

R1(Pbf ,Pε) 0,5 0,0

R2(Pbf ,Pε) 0,0 0,0

R3(Pbf ,Pε) 0,0 0,0

Time (sec) 18,8 64,7

Table 6.2: Comparison of the Brute Force method with ε-DANTE.

those 79 networks, where Phf and Pε are the sets of solutions returned by the Brute

Force and the ε-DANTE methods, respectively. From the analysis of the table values,

it is possible to conclude that ε-DANTE was able to compute the exact Pareto set in

all the cases. Figure 6.1 sketches the box-and-whisker plot of the distribution of the

last time that the Pareto set was updated by the process. In this case, for 25% of the

problems the optimum set is achieved in less than 2 seconds and for 75% of them after

17 seconds.

Table 6.3 presents a summary of the values obtained with ε-DANTE for the 143

networks with 20 nodes (see also Figure 6.2), where Pws and Pε are the sets of solutions

returned by the Weighted Sum and, as before, the ε-DANTE , respectively.

From the analysis of the values some conclusions can be made:

• In average, 28.14% of the elements of Pε are weakly dominated by at least one of
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Figure 6.1: Box-and-whisker for the time of the last update performed by ε-DANTE in

the 79 networks for which Brute Force Method was run.

20 nodes networks

Mean (µ) Standard Deviation (σ)

|Pws| 14,6 10,0

|Pε| 129,9 246,2

C(Pws,Pε) 0,2814 0,2196

C(Pε,Pws) 0,9884 0,0978

R1(Pws,Pε) 0,1932 0,1369

R2(Pws,Pε) 5,8672 111,9400

R3(Pws,Pε) 0,0356 0,1320

Time (sec) 277,9 819,0

Table 6.3: Mean and standard deviation for the metrics obtained for 20 nodes networks.

the elements of Pws, which means that the remaining 71.86% are not dominated

by any of the elements of Pws.

• Also in average, 98.84% of the solutions obtained with the Weighted Sum method
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Figure 6.2: Box-and-whisker plots for R1 and R3 metrics comparing the Weighted Sum

(ws) with ε-DANTE for the 143 networks with 20 nodes.

are weakly dominated by the solutions that were returned by ε-DANTE and only

1.16% of the elements of Pws are not weakly dominated by the elements of Pε.

• µR1(Pws,Pε) = 0.1932 and µR3(Pws,Pε) = 0.0356 evidence that the results obtained

with ε-DANTE outperform the results achieved by the Weighted Sum implemen-

tation.

6.2.2 50 Nodes Networks

The implementation of ε-DANTE was applied to 119 networks with 50 nodes. Table

6.4 resumes the statistical results for the same metrics of the previous section, and

the box-and-whisker diagrams for the observed values of R1, R3 and time of the last

update of the approximation set are sketched in Figure 6.3.

From the analysis of the table values, some observations can be made:

• 20.09% is the percentage of elements of Pε that are weakly dominated by the

elements of Pws. This implies that 79.91% of the elements of Pε are not weakly
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50 nodes networks

Mean (µ) Standard Deviation (σ)

|Pws| 33,7 24,3

|Pε| 344,7 387,1

C(Pws,Pε) 0,2009 0,1731

C(Pε,Pws) 0,8219 0,3381

R1(Pws,Pε) 0,1670 0,1812

R2(Pws,Pε) 2,5530 112,0223

R3(Pws,Pε) 0,0432 0,0657

Time (sec) 4940,1 5168,0

Table 6.4: Mean and standard deviation for the metrics obtained for 50 nodes networks.
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Figure 6.3: Box-and-whisker plots for (a)-(b) R1 and R3 metrics comparing the

Weighted Sum (ws) with ε-DANTE, and (c) time of the last update of the approxi-

mation set, for the 119 networks with 50 nodes.

dominated by any of the elements of Pws.

• 82.19% of the elements of Pws are weakly dominated by the elements of Pε.

• µR1(Pws,Pε) = 0.1670 and µR3(Pws,Pε) = 0.0432 also evidences that the results

returned by ε-DANTE improve the results that were returned by the Weighted
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Sum implementation.

• The cardinal of Pws is approximately one tenth of the cardinal of Pε.

6.2.3 100 Nodes Networks

For the 100 nodes cases it were considered 142 networks. Table 6.5 resumes the average

and standard deviation of the metrics values that were obtained, and Figure 6.4 depicts

the box-and-whisker plot for the R1 and R3 metrics distribution. In this case,

• µR1(Pws,Pε) = 0.2401, which indicates that often Pε has a better utility function

value than Pws.

• µR3(Pws,Pε) = −0, 0798 < 0 evidence that, in average, the utility function values

of Pws were better than the values of Pε. However, observing the box-and-whisker

plot forR3 (Figure 6.4) for which the quartile values are {−0.0123, 0.0091, 0.0249},

it is possible to conclude that more than 50% of the networks have µR3(Pws,Pε) > 0

(in fact, 97 of the 142, which correspond to 68.3%).

• 63.73% of the elements of Pws are weakly dominated by the elements of Pε.

• 75.35% of the elements of Pε are not weakly dominated by any element of Pws.

6.2.4 Global Results

Table 6.6 presents a statistical resume of the metric values for the 404 network instances

and the box-and-whisker plots for the values of the R1 and R3 metrics are sketched in

Figure 6.5. In general, it is possible to conclude that

• ε-DANTE returned approximately ten times the number of supported solutions

computed by the Weighted Sum method, µ|Pε| ≈ 10µ|Pws|;
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100 nodes networks

Mean (µ) Standard Deviation (σ)

|ws| 64,5 51,2

|Pε| 674,7 539,7

C(Pws,Pε) 0,2465 0,2518

C(Pε,Pws) 0,6373 0,3339

R1(Pws,Pε) 0,2401 0,2653

R2(Pws,Pε) -347,3236 1704,5600

R3(Pws,Pε) -0,0798 0,4492

Time (sec) 20650,8 11651,6

Table 6.5: Mean and standard deviation for the metrics obtained for 100 nodes net-

works.
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Figure 6.4: Box-and-whisker plots for R1 and R3 metrics comparing the Weighted Sum

(ws) with ε-DANTE for the 142 networks with 100 nodes.

• In average 81.6% of the solutions returned by the Weighted Sum method are

weakly dominated by the solutions returned by ε-DANTE. This value should be
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20, 50 and 100 nodes networks

Mean (µ) Standard Deviation (σ)

|ws| 37,8 39,7

|Pε| 384,6 469,3

C(Pws,Pε) 0,2454 0,2213

C(Pε,Pws) 0,8160 0,3125

R1(Pws,Pε) 0,2020 0,2043

R2(Pws,Pε) -119,2504 1026,1224

R3(Pws,Pε) -0,0027 0,2850

Time (sec) 8812,0 11628,1

Table 6.6: Mean and standard deviation for the metrics values obtained for the 404

networks.

considered together with the fact that the solutions in the Pws sets are Pareto

solutions. On the other hand, in average only 24.54% of the solutions obtained

with ε-DANTE are weakly dominated by the solutions produced by the Weighted

Sum method, which include the ones that are dominated and the ones that have

equal objective values;

• From the statistical values µR1(Pws,Pε) = 0, 2020 and µR3(Pws,Pε) = −0, 0027 and

Figure 6.5 it is inferable that ε-DANTE , in the majority of the problems, returned

fronts that are better than Pws set.

In order to make a more detailed analysis based in the classes of generators, Table

6.7 (with values depicted in Figures 6.6) presents the mean and standard deviation of

R1 and R3 per classes of network weights generators.

In general, ε-DANTE returned approximation sets such that µR1(Pws,Pε) is inferior to

0.2646, with minimum value among the classes equal to 0.0541 for the CWG networks.
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Figure 6.5: Box-and-whisker plots for R1 and R3 metrics comparing the Weighted Sum

and ε-DANTE for the 404 networks with 20, 50 and 100 nodes.

R1(Pws,Pε) R3(Pws,Pε)

Mean

(µ)

Standard

Deviation

(σ)

Mean

(µ)

Standard

Deviation

(σ)

Number of

networks in

each class

RWG 0,2051 0,2042 0,2042 0,0224 53

CWG 0,0541 0,0617 0,1207 0,0721 81

ρ − CWG

with ρ < 0

0,2315 0,2625 -0,0976 0,4722 134

ρ − CWG

with ρ > 0

0,2646 0,1461 0,0095 0,0336 136

Table 6.7: Mean and standard deviation values for the R1 and R3 metrics for networks

divided according to their generators class.

Relatively to the µR3(Pws,Pε) the worse case is observed for the class ρ − CWG with

ρ < 0, although it has a µR1(Pws,Pε) equal to 0.2315. A more detailed observation of the
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Figure 6.6: Mean and standard deviation values for the R1 and R3 metrics for networks

divided according to their generators class.

distributions of the R1 and R3 values can be made using the box-and-whisker plots in

Figures 6.7, and 6.8.

Figure 6.9 simultaneously depicts the pairs of values (“Time of the last update of the

approximation set”, R1) and (“Time of the last update of the approximation set”, R3)

for all the 404 tests. It is possible to observe that the worse cases, that is, with smaller

R3 value, occur when the last update is made earlier. This seams to indicate a small

exploration of the search space possibly motivated by a premature local convergence,

which can be justified by the greedy Angle-Pheromone Update strategy.

6.3 Summary

An analysis of the results obtained with ε-DANTE for the Multiple Objective Minimum

Spanning Trees problem has been made in this chapter. The results were compared

with the exact Pareto set for the smaller networks. In the larger ones, it was used a
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Figure 6.7: Box-and-whisker plots of the R1 and R3 metrics for the networks generated

with: (a)-(b) the RWG; and (c)-(d) the CWG.

subset of the Pareto set obtained with the Weights Sum method. The main idea was

not to compare methods, like ε-DANTE with the Weighted Sum, since they were not

tested in the same condition. In fact, the study made in this chapter is motivated by

other objectives, like

• The analysis of the reliability, accuracy and versatility of the ε-DANTE method;

and
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Figure 6.8: Box-and-whisker plots of the R1 and R3 metrics for networks generated

with ρ− CWG: (a)-(b) with ρ < 0 and (c)-(d) with ρ > 0.

• To prove that ε-DANTE can be used as a high performance tool in optimization

problems, namely in problems for which their intrinsic complexity is recognized.

In general, it was possible to conclude that ε-DANTE procedure produces high quality

solutions and seems to be an alternative method to the previously presented cases.
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Figure 6.9: Distributions of the pairs (“Time of the last update of the approximation
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for the 404 networks.
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The analysis and presentation of practical solutions for the Multiple Objective Min-

imum Spanning Trees problem was one of the main aims of this thesis. Like in the

generality of the multiple objective problems, the computational complexity of this

problem is very high, which implies that almost always is impossible to exactly de-

termine the Pareto set. Therefore, alternatives should be thought that can produce

pragmatic answers, that is, good approximations to the Pareto set in reasonable time.

The next sections will present general conclusions about the developed work and pos-

sible future research.

197
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7.1 Multiple Objective Minimum Spanning Trees Problem

This thesis devoted the entire third chapter, along with some other sections, to the

study of the Multiple Objective Minimum Spanning Trees problem. Related to this

problem, earlier proved to be NP-complete, were presented a set of theoretical results,

which, as discussed, the per se can hardly be efficiently applied to the construction

of approximation algorithms. Nevertheless, it was possible to observe that, in some

conditions, the search space could be restricted either through the guaranty of the

inclusion of certain edges in all the efficient spanning trees or through the exclusion of

edges that could not belong to any efficient solution. However, the process necessary

to establish these restrictions has a very high computational overhead, which limits its

application.

In the same third chapter it is made a survey of the previous methods that were

used by other authors to compute the approximation sets. In their majority, these

methods rely in the use of Weighted Sum strategies, which take advantage of the ex-

istence of efficient algorithms to solve the single objective problem that is associated.

From those algorithms, the best performing are two phase methods that after the com-

putation of the supported solutions, using the Weighted Sum method, continue the

process applying other optimization strategies, which allows looking for other efficien-

t/approximation solutions. Nevertheless, it were also sketched a set of limitations for

those algorithms, which exhort for the development of alternative strategies.

7.2 Repository of Network Problems

The test of alternative methods has to deal with the absence of libraries for the gener-

ality of the Multiple Objective Minimum Spanning Tree problems. Before this insuffi-

ciency, in Chapter 4 it was presented a set of network generators. Mainly directed for
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practical network types, the generation of a network is divided in three sub-generating

steps: nodes, edges and (edge) weights. The combination of the sub-generators allow to

define several network topologies and associated Pareto fronts, which induce different

problems in the computation of the approximation sets. With those generators it was

built an extensive repository of network instances, which were used latter to test the

proposed algorithms.

7.3 MONACO and ε-DANTE

Chapter 5 proposes two Swarm Intelligence algorithms, which are particularly adapted

to the optimization of multiple objective problems. The first part of the chapter de-

scribes the MONACO algorithm. This method is based in m layers of pheromones, each

one related to a weight, implemented in the form of m-ary vectors associated to the

edges. The components of those vectors are used to stochastically guide the search,

allowing to explore distinct zones of the search space. This exploration is mainly done

by adjusting the values of the algorithm parameters, which permits to alternatively

explore the search/objective space in different directions. MONACO’s algorithm was ap-

plied in the optimization of three multiple objective networks problems. First it was

used in the simulation of a network of flows, where the pheromone trails were used to

guide the flows through the edges. Latter it was adapted to the Multiple Objective

Travelling Salesman Person and the results were compared with the results published

by other authors. Returning to the main problem, the Multiple Objective Minimum

Spanning Trees, it was made another implementation of MONACO, allowing to verify that

the method could be considered as an alternative to the processes that were previously

used. For this problem, an extensive set of tests was conducted over the networks

repository previously referred. Nevertheless, it was verified that MONACO’s process, as

most of the constructive algorithm, does not exploit the computational effort that was
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made to build the solutions.

In the second part of the chapter it is proposed another new method called ε-DANTE.

This method is an evolution of the MONACO’s procedure, which does a more effective

exploitation of the computational effort that was made to build the solutions. This

is achieved through the application of a pheromone oriented depth search procedure

based in the more promising solutions. That depth search is limited both in the depth

and the number of branches of the search tree.

The ε-DANTE method was first applied to two multiple objective problems for which

are known approximation sets: the Travelling Salesman Person and the k-Degree Mini-

mum Spanning Trees problem. In the generality of the cases, the known approximation

sets, which were obtained with other evolutionary methods, were improved.

Furthermore, the results of the application of ε-DANTE to the Multiple Objective

Minimum Spanning Trees problem were presented in Chapter 6. A statistical analysis

over more than 400 networks with different topologies and weights allowed to conclude

that, almost in 100% of the cases the ε-DANTE method improves the results obtained

with the Weighted Sum process. In the cases where it was possible to run a Brute

Force method, ε-DANTE was capable to compute the exact Pareto set.

7.4 Future Research

From the global analysis of the developed work, a set of future researches can be

derived, like

• Further develop the strategies proposed in MONACO and ε-DANTE. Although

the promising results obtained with both methods, their effective application is

significantly limited by the size of the problems. Therefore, the inclusion in the

search process of other optimization strategies and heuristics should be further
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thought as a way to solve larger instances, to improve the quality of the solutions

and to accelerate the search procedure.

• Improve the theoretical results and apply them to the meta-heuristic

search procedures in a more effective manner. Other strategies to improve

the computational results can be achieved recurring to pre/post-computation

processes. This allows to restrict the search space when applied in the pre-

computing stage, or to further exploit the computed solutions when applied in

the post-computing case.

• Extend the repository of networks. One of the main concerns in the es-

tablishment of the network generators in Chapter 4 was to provide a large set

of similar to real world problems, mainly directed for the spanning trees case.

Therefore, the proposed repository should contain some other features, like undi-

rected networks, networks with a larger number of objectives and nodes, different

topologies and different instances of the spanning trees problem.

Additional future work include the

• Apply the proposed optimization methods to other practical problems.

For example, most of the real networks are dynamic systems, like the traffic,

the telecommunication or the emergency networks. The referred dynamism can

be associated to all the components of the networks (nodes, edges or weights),

introducing additional difficulties to the traditionally static problems. However,

as already pointed out, the preliminary tests indicate that the adaptive methods

that were proposed are particularly suitable to this types of problems, with some

pitfalls related with the computational time.

• Improvement of the pheromone updating strategies. The pheromone up-

dating step is fundamental in the search procedure. Inappropriate strategies,
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like strategies that introduce noisy pheromone trail, significantly reduce the al-

gorithms performance. Therefore, although the Angle-Pheromone Update tries

to avoid this and other limitations, further improvements or possible alternatives

should be thought.

• Implementation of distributed and/or parallel systems The application

to practical problems require modelling system with large dimensions. The op-

timization of those systems demand the use of huge computational capacities

that are not usually available in single processor machines. Therefore, in the

future the proposed method should be adapted, so that they can be applied in

distributed/parallel computational systems.
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ε-DANTE, 123

ACO see Ant Colony Optimization 42

Algorithms

Efficient, 31

Polynomial, 31

Ant Colony Optimization, 42

Approximation Set, 27

Approximation set

Dominates, 28

Is better than, 28

Strictly dominates, 28

Weakly dominates, 29

Well-distributed, 27, 78

Bridge, 83

Cut, 83

Cut efficient, 84

Cut dominante, 84

Dominates, 24

Incomparable, 25

Strictly dominates, 24

Weakly dominates, 24

Edges Generator, 103

k-Convex, 106

Clusters, 108

Complete, 107

Delaunay, 104

Grid, 104

Hexagonal, 108

Triangle, 106

Voronoi, 108

Efficient set, 26

Well-distributed, 27

Efficient tree, 81

Error ratio see Performance metrics 53

Feasible set, 21

Generational distance see Performance met-

rics 55
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Genetic Algorithms, 44

Heuristic, 37

Hypervolume Ratio see Performance met-

rics 58

Local dominant, 84

Local efficiency, 84

Maximum Pareto front error see Perfor-

mance metrics 55

Meta-heuristic, 37

MONACO, 123

Node dominant, 84

Node efficiency, 84

Nodes Generator, 98

Clusters, 102

Grid, 99

Normal, 102

Statistical, 100

Triangular, 100

Uniform, 101

Objective function, 21

Components, 21

Objective space, 21, 26

onion layer, 106

Onion peeling, 106

Outperforms

Completely, 63

Strong, 63

Weakly, 63

Pareto set, 26

Performance metrics

R1, R1R, 60

R2, R2R, 61

R3, R3R, 61

Error ratio, 53

Generational distance, 55

Hypervolume Ratio, 58

Maximum Pareto front error, 55

Schott’s Spacing, 57

Set coverage metric, 54

Spread, 57

Problems

NP-complete, 31

Easy, 31

Hard, 31

Intractable, 31

R1 see Performance metrics 60

R2 see Performance metrics 61

R3 see Performance metrics 61



INDEX 223

Schott’s Spacing see Performance metrics

57

Search space, 21

Set coverage metric, 54

set of the efficient edges-cuts, 90

Simulated Annealing, 46

SA, 46

Solutions

Extreme efficient, 34

Non-supported efficient, 34

Supported efficient, 34

Spanning tree, 65

Spread see Performance metrics 57

Star Logo, 40

Swarm Intelligence, 39

swarms, 39

SI, 39

Weights Generator, 109

ρ−Correlated, 111

Concave, 113

Random, 110


