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Elastic scattering and total reaction cross section of 6He + 120Sn
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The elastic scattering of 6He on 120Sn has been measured at four energies above the Coulomb barrier using the
6He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions
have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels
calculations. The total reaction cross sections have been derived and compared with other systems of similar
masses.
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I. INTRODUCTION

Reactions induced by light exotic projectiles at low energies
are a very interesting subject that has not yet been fully
explored. Light nuclei far from the stability valley such as
6He, 8B, and others have one or more nucleons loosely bound
to a core forming a halo or a skinlike structure with densities
much lower than those of normal nuclear matter. Due to the
small binding energies and low angular momenta of these
valence nucleons their wave functions usually extend over
large distances from the core and, as a consequence, these
projectiles can easily deform and break up during collision
with a target, affecting the imaginary part of the potential
and enhancing the total reaction cross section. The first
experiments using light exotic projectiles at low energies
have been performed for heavy targets such as 6He + 209Bi
and 208Pb [1–4] and new interesting phenomena, such as the
damping of the Fresnel diffraction peak in the elastic angular
distribution and very large total reaction cross sections, have
been reported. Despite the uncertainties involved in the optical
model (OM) analysis of the elastic angular distributions, the
existence of a larger total reaction cross section for 6He + X

systems in comparison with other stable projectiles is clear.
The behavior of the total reduced reaction cross section as a
function of the reduced energy for several stable and exotic
projectiles [5,6] on medium-mass targets has revealed a much
higher total reaction cross section for the 6He + 64Zn system
as compared to other weakly bound and tightly bound stable
projectiles. Similar observations have been performed recently
for the proton-rich 8B nucleus on 58Ni [7], for which a very
large reduced total reaction cross section has been observed
in comparison with other reactions induced by weakly bound
projectiles, such as 6Li + 58Ni and 7Be + 58Ni.

An important step in this study is to identify the reaction
channels responsible for the increase of the reaction cross
section of exotic systems. The projectile breakup and, more
recently, the neutron transfer reactions have been identified
as important reaction channels in collisions induced by the

neutron-rich 6He projectile. Measurement of elastic scattering
of exotic projectiles on several mass targets could shed some
light on this question. In particular, the role of the Coulomb and
nuclear breakup processes and their interference are important
issues that could be clarified by the systematic measurement
of elastic scattering of exotic nuclei on several targets.

An additional interesting aspect of elastic-scattering studies
involving 6He, is that the projectile consists of an α core plus
two neutrons forming a bound three-body Borromean system.
Theoretical efforts have been made to calculate three-body
wave functions for 6He and only very recently are powerful
four-body continuum-discretized coupled-channels (CDCC)
programs being developed to take into account such effects
on the elastic scattering and in the breakup channel [8–10].
Experimental data of the elastic scattering at low energies
are thus welcome to compare with the predictions of those
calculations.

In this work we present new data of the medium-heavy
mass system 6He + 120Sn. We measured four elastic-scattering
angular distributions at energies Elab = 17.4, 18.05, 19.8, and
20.5 MeV, the Coulomb barrier being estimated around Elab

CB ≈
15.9 MeV. This article is structured as follows. In Sec. II we
describe the experimental setup used in this experiment and
outline the main steps of the data analysis. In Sec. III the mea-
sured elastic angular distributions are compared with the OM
and CDCC calculations, and we discuss the total reaction cross
section extracted from both procedures. Finally, we present
a systematics of the total reaction cross section for systems
with exotic 6He, weakly bound 6,7Li, and tightly bound 4He
projectiles on medium-heavy mass 120Sn and 138Ba targets. In
Sec. IV, the main conclusions of this work are summarized.

II. EXPERIMENTAL SETUP AND RESULTS

The experiment was performed in the 8UD São Paulo
Pelletron Laboratory using the RIBRAS (Radioactive Ion
Beams in Brazil) system [11,12] (see Fig. 1). The 7Li3+
primary beam of energies in the range Elab = 24–26 MeV
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FIG. 1. Schematic view of the RIBRAS system (see text for
details).

and intensities of about 300 nAe was focused on a 12µ
9Be foil (labeled “1” in Fig. 1). The first collimator (2)
and the Faraday cup (3) just after the primary target define
the acceptance angular range of the solenoid (4) which is
presently between 2◦ and 6◦. The Faraday cup prevents the
primary beam from entering into the solenoid and measures
its intensity, which is integrated during each run. The 6He
beam was produced by the 9Be(7Li,6He)10B transfer reaction
and was focused by the solenoid in the secondary target
(7) position. The primary beam particles (7Li3+ elastically
scattered by the primary target) have less magnetic rigidity
and thus they are focused before the secondary target.
To suppress them, a “lollipop” (5) is placed at that position.
The 6He production rate was maximized in the beginning of the
experiment by varying the solenoid current and measuring the
6He particles elastically scattered by a gold secondary target.
During the experiment the 6He beam intensities were around
104–105 pps at the secondary-target position. A 3.8 mg/cm2

120Sn (98.29%) target and a 3 mg/cm2 197Au target were
mounted in the secondary scattering chamber (7). The gold
target was used for normalization purposes because the 6He +
197Au scattering is pure Rutherford at the energies and angular
range of the experiment. A system of four �E (20 µm)-E
(1000 µm) silicon telescopes was mounted in a rotating plate
inside the secondary chamber to perform angular distribution
measurements. The detectors have effective areas of 150 mm2

(at forward angles) and 300 mm2 (at backward angles) and the
detection solid angles are in the range 10–20 msr. In Fig. 2 we
present two �E-Etotal spectra with gold and tin targets where
Etotal = E + �E. We clearly see the 6He peak separated from
the 7Li2+ and α-particle contaminants. The energy resolution
of the 6He beam was of about 1 MeV mainly due to the energy
straggling in the primary target. The elastic-scattering cross
section can be determined by the expression below, normalized
by the gold target run,

σ
6He+120Sn
cm (θ ) = NSn

c

NAu
c

NAu
b

NSn
b

NAu
t

NSn
t

J Sn

J Au
σ

6He+197Au
cm (θ ), (1)

where Nc is the area of the peak of interest, J is the factor
of transformation from the laboratory to the center-of-mass
system, Nb is the total number of 6He beam particles during
the run, and Nt is the surface density of the target in number
of atoms/cm2. This expression has the advantage of being
independent of the detection solid angles. The ratio NAu

b /NSn
b

is taken as the ratio of the integrators of the runs with gold and

FIG. 2. (Color online) Biparameteric spectra recorded for the tin
target (top) and the gold target (bottom).

tin targets. We performed runs with the gold target before and
after every run with the tin target to monitor the production
rate during the whole experiment.

The 6He + 120Sn elastic angular distributions are presented
in Fig. 3. The energies indicated in the labels take into account
the energy loss in the tin target and hence they actually
correspond to the estimated 6He energy in the middle of the
target.

III. ANALYSIS OF THE ELASTIC SCATTERING

A. Optical model analysis

As a first step in the analysis we performed OM calculations
using the SFRESCO code [13]. A Woods-Saxon shape was
used and the six parameters were varied freely to fit the
experimental data. Initially, the four angular distributions
were analyzed altogether using a single set of potential
parameters. This procedure can be justified by the relatively
small energy interval of the measurements and the small
number of points in each angular distribution. The global
Woods-Saxon parameters obtained are V0 = 216.3 MeV, r0r =
0.90 fm, ar = 0.90 fm, W = 12.42 MeV, r0i

= 1.42 fm, and
ai = 0.75 fm, where R = r0(A1/3

p + A
1/3
t ). In a second step

we started the search from these parameters and let V , ror ,
and the imaginary strength W vary freely for each energy.
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FIG. 3. 6He + 120Sn elastic angular distributions. The experimen-
tal data of this experiment (solid circles) are compared with OM
(dashed lines), three-body CDCC (dotted lines), and four-body CDCC
(solid lines) calculations. See text for details.

The fits are shown in Fig. 3 by dashed lines and the final OM
parameters are presented in Table I. The OM total reaction
cross sections are listed in the second column of Table II.
During the OM analysis we observed that different potential
parameters reproduced equally well the data, indicating the
presence of a large ambiguity in the Woods-Saxon parameters.
The large imaginary radius and diffuseness compared to the
real part indicate the need for a long-range absorptive term in
the interacting potential.

A remarkable feature of the best potential (Table I) is that
the imaginary part decreases with increasing energy while the
real part increases. A similar behavior, known as the breakup
threshold anomaly, has been reported previously [14,15] in
weakly bound systems.

B. CDCC calculations

Theoretically, the effect of the coupling to breakup states
can be described explicitly within the CDCC framework [16].
The method was first developed for three-body (3b-CDCC)
problems (two-body projectile plus a target) and it has been
successfully used for many reactions induced by stable and
exotic weakly bound nuclei (e.g., Refs. [4,17]).

The first applications of this method to 6He-induced
reactions [1,2] made use of a simple two-body model (α +
2n) of the 6He nucleus (the so-called dineutron model)

TABLE I. Woods-Saxon optical potential parameters for the
6He + 120Sn system. The values of r0i = 1.42 fm, ai = 0.75 fm, and
ar = 0.90 fm were kept fixed for all the energies (see text for more
details). R = r0(A1/3

p + A
1/3
t ) and rc = 0.8 fm.

Elab (MeV) V (MeV) r0r (fm) W (MeV)

17.40 10 0.37 19.4
18.05 62 0.45 13.8
19.80 176 0.75 6.70
20.50 214 0.75 6.90

in which the α-2n interaction is parametrized with some
simple form (typically a Woods-Saxon shape) whose depth is
adjusted to reproduce the experimental two-neutron separation
energy, εb = −0.97 MeV. However, this model is known to
overestimate the radial extension of the ground-state wave
function and, consequently, the couplings to the continuum. A
possible improvement of this approach, proposed in Ref. [18],
is to define an effective α-2n separation energy, which is
adjusted to reproduce the rms radius predicted within a
more realistic three-body model. This procedure leads to
an effective binding energy around εb = −1.6 MeV. This
improved dineutron model has been found to reproduce
satisfactorily the elastic-scattering data of several 6He-induced
reactions [18].

Continuum states with jπ = 0+, 1−, 2+, 3−, and 4+ were
included. The 2n-α interaction was adopted from Ref. [18].
For the 0+ states, the depth of this potential was adjusted
to reproduce the separation energy of 1.6 MeV, whereas for
2+ states the depth was adjusted to give a resonance at an
excitation energy of 1.8 MeV. For 1− we just adopted the
depth found for the ground state. The 2n-120Sn and α-120Sn
interactions, which are required to generate the projectile-
target coupling potentials, were taken from the deuteron global
potential of Lohr and Haeberli [19] and the α potential of Tabor
et al. [20], respectively.

The calculations were performed with the code FRESCO

[13]. The results of these calculations are shown in Fig. 3
(dotted lines). Overall, they reproduce the data at the different
energies reasonably well.

Despite the success of the dineutron model, a proper treat-
ment of the reactions induced by Borromean nuclei, like 6He,
requires a four-body formalism (three-body projectile plus a
target). Recently the CDCC framework has been extended
to four-body (4b-CDCC) problems [8–10]. In this work we
use the four-body CDCC formalism developed in Ref. [9] to
calculate the elastic angular distributions for the measured
reaction. To discretize the three-body continuum we use a
pseudo-state (PS) method, the transformed harmonic oscillator
(THO) method [21] (already used within the four-body CDCC
formalism in Ref. [9]). The discretization methods based on
PS consists in representing the continuum spectrum of the
projectile by the eigenstates obtained upon diagonalization
of the projectile Hamiltonian in a truncated basis of square-
integrable basis (PS basis).

Here we use the same structure model for the three-body
system 6He(α + n + n), as in Refs. [9,21]. The Hamiltonian
includes two-body potentials plus an effective three-body po-
tential. The 6He ground-state wave function (j = 0+) needed
to construct the THO basis is generated using the codes FACE

[22] and STURMXX [23]. The maximum hypermomentum used
was Kmax = 8. The parameters of the three-body interaction
are adjusted to reproduce the ground-state separation energy
and matter radius. The calculated ground-state energy was
0.952 MeV and the rms radius was 2.46 fm (assuming a rms
radius of 1.47 fm for the α particle). Both Coulomb and nuclear
potentials are included. The fragment-target interactions were
represented by optical potentials that reproduce the elastic
scattering at the appropriate energy. The n + 120Sn potential
was taken from the global parametrization of Koning and
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TABLE II. Total reaction cross sections for the 6He + 120Sn system obtained from the OM and CDCC calculations.
The fourth column is the average between the second and third columns (see text for more details).

E (MeV) σ OM
reac (mb) σ CDCC

reac (mb) σ av
reac (mb) σ halo (mb) σfus = σ av

reac − σ halo (mb) σ Bass
fus (mb)

17.40 1451 1491 1471 768 703 618
18.05 1445 1592 1519 763 756 703
19.80 1475 1834 1655 739 916 900
20.50 1579 1916 1748 762 986 1065

Delaroche [24] and the α + 120Sn potential was from the global
parametrization of Avrigeanu et al. [25].

The coupled-channels equations were solved using the code
FRESCO [13], which reads the coupling potentials externally.
We included in the calculation the states with angular mo-
mentum j = 0+, 1−, and 2+. To get convergence we needed
a THO basis with 86 states up to a maximum energy value
of 8 MeV.

Figure 3 shows the four-body CDCC calculations for the
6He + 120Sn at the different incident energies, Elab = 17.40,
18.05, 19.80, and 20.50 MeV, denoted by solid lines. The
calculations reproduce quite well the data at the different
energies. It is worth noting that there is no free parameter
to adjust the calculation to the experimental data.
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FIG. 4. (Color online) Reduced reaction cross section versus
reduced energy for the 6He + 120S reaction compared to other systems
of similar masses: (a) from Refs. [26,27] and (b) from Ref. [28]. The
dashed lines are to guide the eyes. The total reaction cross sections
were obtained from optical model fits of the experimental angular
distributions. For the 6He + 120Sn system, we plot the average values
of OM and four-body CDCC calculations from Table II. The upper
and lower parts of Fig. 4 report the same data reduced by two different
methods (see text for details).

C. The total reaction cross section

In Table II we compare the total reaction cross sections
obtained from the OM and four-body CDCC calculations. The
total reaction cross sections calculated with four-body CDCC
are systematically about 10% larger than the OM results.

To compare the reaction cross section of different systems
at different energies we make the transformation σred =
σreac/(Ap

1/3 + At
1/3)2 and Ered = Ecm(Ap

1/3 + At
1/3)/ZpZt ,

where Zp (Zt ) and Ap (At ) are the charge and mass of the
projectile (target), respectively. This procedure accounts for
the geometrical effect in the cross section due to the size
of the system and the effect of the Coulomb barrier. In the
upper part of Fig. 4 we present the reduced reaction cross
section versus the reduced energy for several systems with
targets of masses around the 120Sn mass. Angular distributions
for the 4He + 120Sn system could also be measured in the
present experiment due to the α contamination beam and were
analyzed using the OM to obtain the reaction cross section
plotted in Fig. 4 as solid circles. In the lower part of Fig. 4
we use the new prescription from Ref. [6], σ ′

red = 2E

h̄ωR2
B

σ and

χ = E−EB

h̄ω
where RB , EB , and h̄ω are respectively the radius,

energy, and curvature of the Coulomb barrier. In Fig. 4, UFF
stands for the universal fusion function [6].

We see that with both reduction methods, the 6He + 120Sn
system presents the largest reaction cross section.

From this plot one can estimate the difference between
the reduced reaction cross section for the 6He + 120Sn and
the core 4He + 120Sn by calculating: σ halo = [σ

6He+120Sn
red −

σ
4He+120Sn
red ] × (A1/3

p + A
1/3
t )2. This difference is calculated at

the same reduced energy. Since the 4He projectile is the
double-magic core of the 6He, the only important reaction
channels in σ

4He+120Sn
red should be the fusion and some inelastic

excitation of the target. Thus σ halo must represent the total
contribution due to the projectile breakup + neutron transfer
reactions + incomplete fusion processes. In Table II we present
σ halo obtained at the four energies measured. It is interesting
to observe that σ halo exhausts about one half of the total
reaction cross section. The other half should be due to complete
fusion and the difference σfus = σ av

reac − σ halo (see Table II)
agrees very well with complete fusion calculations for the
6He + 120Sn reaction using the Bass model [29].

IV. CONCLUSIONS

The first experimental data of the 6He + 120Sn scattering
at energies near the Coulomb barrier are presented. The OM
analysis of the angular distributions indicates the presence of
a long-range imaginary potential. Four-body and three-body
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CDCC calculations, considering the 6He breakup channel,
have been found to reproduce quite well the elastic angular
distributions considering the experimental error bars.

The total reaction cross sections obtained from OM and
four-body CDCC calculations for the 6He + 120Sn have been
compared with other stable and exotic systems from the
literature and the results show an enhancement of the total
reaction cross section for the 6He + 120Sn system compared
with other weakly bound and tightly bound projectiles. The
contribution of the direct channels to the total reaction cross
section was estimated from the scaled plot and was found to
be of the order of one half of the total reaction cross section in
the energy range of the data.
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