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Scaling function and nucleon momentum distribution
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Scaling studies of inclusive quasielastic electron scattering reactions have been used in the past as a basic tool
to obtain information on the nucleon momentum distribution in nuclei. However, the connection between the
scaling function, extracted from the analysis of cross-section data, and the spectral function only exists assuming
very restricted approximations. We revisit the basic expressions involved in scaling studies and how they can
be linked to the nucleon momentum distribution. In particular, the analysis applied in the past to the so-called
scaling region, that is, negative values of the scaling variable y, is extended here to positive y, as a “universal”
superscaling function has been extracted from the analysis of the separated longitudinal data. This leads to results
that clearly differ from those based solely on the negative-y scaling region, providing new information on how
the energy and momentum are distributed in the spectral function.
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I. INTRODUCTION: BASIC ASPECTS OF SCALING

Scaling studies of inclusive quasielastic (QE) electron-
nucleus scattering have largely been considered to provide
a powerful tool for extracting the momentum distribution of
nucleons inside nuclei [1–7]. Such analyses have been applied
to few-body systems, complex nuclei, and nuclear matter, with
an important effort devoted to estimating binding corrections
and, in particular, the high-momentum components of the
nucleon momentum distribution that are governed by short-
range correlations [8,9]. However, caution should be borne
in mind for the conclusions reached, as a close relationship
between the momentum distribution and the scaling function
only emerges after some approximations are made. These
are linked not only to the general description of the electron
scattering reaction mechanism, but also to the integration limits
involved and the behavior of the spectral function [1].

The phenomenon of y scaling emerges from the analysis of
QE (e,e′) reactions. The scaling function, defined as the QE
(e,e′) differential cross section divided by an appropriate factor
involving the single-nucleon cross section [1,10–12], is shown
to depend only on a single variable, y, given as a particular
combination of the two independent variables in the process,
namely, the energy and momentum transfers, ω and q. In the
QE domain and for values of ω and q large enough, the basic
mechanism in (e,e′) reactions on nuclei corresponds to elastic
scattering from individual nucleons in the nuclear medium
with “quasifree” ejection of a nucleon from the nuclear system.
This implies that the inclusive (e,e′) cross section is mainly
constructed from the exclusive (e,e′N ) process, including the
contribution of all nucleons in the target and integrating over
all (unobserved) ejected nucleon variables. In other words, QE
scattering off a nucleus is simply described as an incoherent
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sum of single-nucleon scattering processes. This approach,
which constitutes the basis of the impulse approximation
(IA), although being an oversimplified description of (e,e′)
reactions, has demonstrated its validity under appropriate kine-
matic conditions. Mechanisms beyond the IA (correlations,
meson exchange currents, rescattering processes, etc.) may
play a significant role in electron scattering and, hence, may
lead to non-negligible scaling violations.

The IA provides an intuitive explanation of how the scaling
behavior emerges from the analysis of data. In this case the
QE (e,e′) cross section is given by

[
dσ

dε′d�′

]
(e,e′)

=
A∑

i=1

∫ ∫
�(ω,q)

p dp dE
∫

dφNi

(
ENi

qp2
Ni

)

×
[

dσ

dε′d�′dpNi
d�Ni

]
(e,e′Ni )

, (1)

where the sum extends to all nucleons in the target and {ε′,�′}
refer to the scattered electron variables. The integration over
the ejected (unobserved) nucleon variables {pNi

, ENi
,�Ni

}
has been expressed in terms of the excitation energy E of
the residual nucleus and the missing momentum p. The
significance of these variables as well as the kinematically
allowed integration region denoted �(ω, q) is discussed in
detail in next section.

Within the IA, evaluation of (e,e′Ni) cross sections for
both proton and neutron knockout determines the inclusive
QE cross section. The study of exclusive (e,e′N ) reactions
has been presented in previous work [13–18], focusing on
different aspects of the problem: final-state interactions (FSIs),
relativity, correlations, etc. Although such ingredients have
been proven to be essential to fit experimental (e,e′N ) cross
sections, in what follows we restrict our attention to the
plane-wave IA (PWIA), where the knocked-out nucleon has
no interaction with the residual nucleus. Being the simplest
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approach to (e,e′N ) processes, PWIA retains important rel-
ativistic effects that are essential in describing reactions at
high q and ω. Moreover, the (e,e′N ) differential cross section
in PWIA factorizes in two basic terms: the electron-nucleon
cross section for a moving, off-shell nucleon and the spectral
function that gives the combined probability of finding a
nucleon of certain momentum and energy in the nucleus
[16–18]. In general we can write[

dσ

dε′d�′dpNd�N

]PWIA

(e,e′N)

= KσeN (q, ω; p, E, φN )S(p, E),

(2)

with K a kinematical factor [19] and where p is the missing
momentum and E the excitation energy, essentially the missing
energy minus the separation energy. It is important to point
out that the factorization property shown in Eq. (2) no longer
persists if dynamical relativistic effects in the bound nucleons
are incorporated, that is, effects from the lower components
in the relativistic wave functions, even in the plane-wave
limit [20,21]. Note that both the eN cross section and the
spectral function depend on the two integration variables in
Eq. (1), p and E . To show how the scaling function emerges
from PWIA, further assumptions are needed. First, the spectral
function is assumed to be isospin independent, and second,
σ eN is assumed to have a very mild dependence on the missing
momentum and excitation energy, which is supported by the
most commonly used off-shell cross sections [1]. Hence the
eN cross section can be evaluated at fixed values of p and E :
typically the differential cross section for inclusive QE (e,e′)
processes is written in the form[

dσ

dε′d�′

]
(e,e′)

∼= σ e(q, ω; p = |y|, E = 0) · F (q, ω) , (3)

where the single-nucleon cross section is evaluated at the
special kinematics p = |y| (with y the scaling variable; see
the next section) and E = 0 (the residual nucleus in its ground
state). This corresponds to the lowest value of the missing
momentum occurring when E = 0. The term σ e refers to
the azimuthal-angle-averaged single-nucleon cross section
and it also incorporates the kinematical factor K in Eq. (2)
and the contribution of all nucleons in the target, that is,
σ e ≡ K

∑A
i=1

∫
dφNi

σ eNi /2π .
The function F (q, ω) in Eq. (3) is known as the scaling

function and it is given in PWIA in terms of the spectral
function:

F (q, ω) = 2π

∫ ∫
�(q,ω)

p dp dE S(p, E) . (4)

A detailed study of the scaling function and its connection with
the momentum distribution is presented in the next section.
However, let us start by pointing out some general interesting
features of this basic result. First, only in the case in which
it was possible to extend the kinematically allowed region
�(q, ω) to infinity in the excitation energy plane, that is,
Emax → ∞, would the scaling function be directly linked to
the true momentum distribution of the A-nuclear system:

n(p) ≡
∫ ∞

0
dES(p, E). (5)

Second, guided by the PWIA result in Eq. (3), an experi-
mental scaling function can also be defined by dividing the
experimental QE (e,e′) cross section by the single-nucleon
function, σ e. At high enough values of the momentum transfer
q, the function Fexp(q, ω) has been shown to satisfy scaling
in the region below the QE peak; that is, Fexp becomes only a
function of the scaling variable y (see Refs. [1,11,12], and [22]
for details). Note that Eq. (4) does not apply to Fexp(q, ω),
which incorporates ingredients not included in the simple
PWIA approach: FSIs, meson exchange currents, rescattering
processes, etc. The contribution of these effects and their
impact on the scaling phenomenon depend on the kinematical
region explored, leading, in particular, to a significant scaling
breaking in the region above the QE peak.

Furthermore, based on the analysis performed with the
relativistic Fermi gas (RFG) model, and making use of
the separate longitudinal (L) and transverse (T ) (e,e′) data,
experimental superscaling functions have been introduced:

fexp(q, ω) ≡ kF Fexp(q, ω), (6)

f L(T )
exp (q, ω) ≡ kF FL(T )

exp (q, ω), (7)

where kF is the Fermi momentum. In particular, the L

response is thought to have very little contribution from meson
production and from meson-exchange currents and thus should
be the place where the underlying nuclear dynamics can
cleanly be resolved. It has been shown to superscale; that
is, the function f L

exp shows only a very mild dependence
on the momentum transfer q (first-kind scaling) and the
nuclear system considered (second-kind scaling). This has led
to the introduction of a universal experimental superscaling
function that constitutes a strong constraint for any theoretical
model describing QE electron scattering. Not only should the
superscaling behavior be fulfilled, but also the specific shape
of f L

exp must be reproduced. This subject has been studied
in detail in previous work showing the importance of FSI
and relativity [23–27], and those studies clearly show that
any conclusion about the momentum distribution based on
Eq. (4) should be made with caution. Being aware of this, it is
illustrative, however, to analyze in detail the basic approaches
on which the “link” between the momentum distribution and
the scaling (superscaling) function is based. Moreover, the
usual analysis, restricted in the past to the region below the
QE peak, is now extended to the region above the peak, as
the superscaling function f L

exp is defined for both negative and
positive values of the scaling variable (see discussion in the
next section).

II. THE SCALING FUNCTION

As already shown, in PWIA the scaling function can be
expressed as an integral of the spectral function S in the (p, E)
plane [Eq. (4)], with p the struck nucleon’s momentum,

E(p) ≡
√

M∗2

B + p2 −
√

M02

B + p2 � 0 (8)

the excitation energy of the recoiling system B, M0
B the

ground-state mass of the residual nucleus, and M∗
B the general

invariant mass of the daughter final state. The integration in
Eq. (4) is extended to the kinematically allowed region in
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FIG. 1. (Color online) Excitation energy corresponding to nega-
tive (left) and positive (right) values of y.

the (p, E) plane at fixed values of the momentum and energy
transfer, (q, ω). This is represented by �(q, ω). The general
kinematics corresponding to QE (e,e′) processes leads to the
E-integration range [1,10]

max{0, E+} � E � E−, (9)

where

E±(p; q, ω) = (
M0

A + ω
)

− [√(q ± p)2 + m2
N +

√
M02

B + p2
]

(10)

and where M0
A is the target nuclear mass and mN the nucleon

mass.
The intercepts between the curve E− and the p axis are

denoted −y and Y ; that is, E−(−y; q, ω) = E−(Y ; q, ω) = 0.
The integration region �(q, ω) is shown in Fig. 1 for fixed
values of the transferred energy and momentum for ω < ωQE

(left) and ω > ωQE (right), with ωQE the energy at which the
quasielastic peak (QEP) occurs. In the region below the QEP,
y is negative and p = −y represents the minimum value for
the struck nucleon’s momentum. Above the QEP y is positive
and the curve E+ cuts the integration region when p < y.

In terms of the independent variables q and ω, the intercepts
±y and Y are given by

y(q, ω) = {(
M0

A + ω
)√

�2 − M02

B W 2 − q�
}/

W 2, (11)

Y (q, ω) = {(
M0

A + ω
)√

�2 − M02

B W 2 + q�
}/

W 2, (12)

with W ≡
√

(M0
A + ω)2 − q2 the center-of-mass energy and

� ≡ (M02

B − m2
N + W 2)/2. Then the scaling function in

Eq. (4) can be recast as follows:

1

2π
F (q, y) =

∫ Y (q,y)

−y

pdp

∫ E−(p;q,y)

0
dES(p, E) if y < 0,

(13)

1

2π
F (q, y) =

∫ y

0
pdp

∫ E−(p;q,y)

E+(p;q,y)
dES(p, E) +

∫ Y (q,y)

y

pdp

×
∫ E−(p;q,y)

0
dES(p, E) if y > 0, (14)

for negative and positive values of y, respectively. The analysis
presented in the previous work has been restricted to the
negative-y region, that is, below the QEP, as this is the region
where cross-section data fulfill y-scaling properties. The
function Fexp does not scale for positive values of y because
of the significant scaling violations introduced by effects
beyond the IA, namely, inelastic processes and contributions
from meson-exchange currents. However, these contributions
mostly reside in the purely transverse response and are
negligible in the L channel. The “universal” superscaling
function extracted from the analysis of the separated L data,
and defined for both negative and positive values of the
scaling variable, explains our interest in extending the study
to the region above the QEP. This strategy, which forces
us to employ the superscaling function f L

exp to determine
FL

exp = f L
exp/kF instead of the usual y-scaling function Fexp,

can lead to significant effects concerning the momentum and
energy distribution in the spectral function, as discussed here.

In the preceding expressions we have chosen (p, E ; q, y) as
independent variables. In terms of these we can also express
the energy transfer,

ω(q, y) =
√

(q + y)2 + m2
N +

√
M02

B + y2 − M0
A , (15)

the limits of the excitation energy,

E±(p; q, y) = [√
(q + y)2 + m2

N −
√

(q ± p)2 + m2
N

]
+ [√M02

B + y2 −
√

M02

B + p2
]
, (16)

and the upper limit of p,

Y (q, y) =
M02

B (2q + y) + 2(q + y)
√

M02

B + y2
√

(q + y)2 + m2
N + y

[
2(q + y)2 + m2

N

]
M02

B + 2
√

M02

B + y2
√

(q + y)2 + m2
N + 2y(q + y) + m2

N

. (17)

In the thermodynamic limit M0
B → ∞, we get

E±(p; q, y) →
√

(q + y)2 + m2
N −

√
(q ± p)2 + m2

N

≡ Eq+y − Eq±p, (18)

Y (q, y) → 2q + y, (19)

where we have introduced the nucleon energies Ek ≡√
k2 + m2

N . Moreover, note that in the limit of a very
high momentum transfer, that is, q � |y| and q � mN , the
preceding limiting values reduce to Y → 2q andE± → y ∓ p.

Following previous arguments presented in Refs. [1] and
[4], it is instructive to split the spectral function into two
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terms, corresponding to zero and finite excitation energy,
respectively:

S(p, E) = n0(p)δ(E) + S1(p, E), (20)

with S1(p, E = 0) = 0, which, inserted into Eqs. (13) and (14),
yields

1

2π
F (q, y < 0) =

∫ Y (q,y)

−y

pdp n0(p) +
∫ Y (q,y)

−y

p dp

×
∫ E−(p;q,y)

0
dES1(p, E), (21)

1

2π
F (q, y > 0) =

∫ Y (q,y)

y

pdpn0(p)

+
[∫ y

0
pdp

∫ E−(p;q,y)

E+(p;q,y)
dE

+
∫ Y (q,y)

y

pdp

∫ E−(p;q,y)

0
dE
]

S1(p, E) .

(22)

To analyze how the scaling function and the nucleon mo-
mentum distribution are connected, we proceed by evaluating
the derivatives of the scaling function F with respect to y and
q. Making use of Leibniz’s formula and choosing (p; q, y) as
the three remaining independent variables, after some algebra
we finally get the following results.

A. Negative- y region

1

2π

∂F

∂y
= Y n0(Y )

(
∂Y

∂y

)
− y n0(−y)

+
∫ Y

−y

p dp

(
∂E−

∂y

)
S1(p, E−), (23)

1

2π

∂F

∂q
= Yn0(Y )

(
∂Y

∂q

)
+
∫ Y

−y

p dp

(
∂E−

∂q

)
S1(p, E−).

(24)

Making use of the limits in Eq. (16) and assuming the
residual mass M0

B to be much larger than the momenta,
|y|, p, q, we simply have

∂E−

∂y

 q + y

Eq+y

,
∂E−

∂q

 q + y

Eq+y

− q − p

Eq−p

. (25)

Likewise, the derivatives of Y reduce to ∂Y/∂y 
 1 and
∂Y/∂q 
 2.

Introducing these results in the general expressions in
Eqs. (23) and (24), we get

1

2π

∂F

∂y
= Y n0(Y ) − y n0(−y)

+ q + y

Eq+y

∫ Y

−y

p dp S1(p, E−), (26)

1

2π

∂F

∂q
= 2Yn0(Y ) +

∫ Y

−y

p dp

×
[
q + y

Eq+y

− q − p

Eq−p

]
S1(p, E−), (27)

with E− and Y given in the thermodynamic limit by Eqs. (18)
and (19). Note that the excited-state contribution in the
spectral function, that is, S1, is evaluated at energies along the
curve E−.

For q sufficiently large, q � −y, the upper limit Y can be
safely taken to ∞, and as limY→∞ Yn0(Y ) = 0, the expressions
for the derivatives simplify to

1

2π

∂F

∂y
= −y n0(−y) + q + y

Eq+y

∫ ∞

−y

p dp S1(p, E−), (28)

1

2π

∂F

∂q
=
∫ ∞

−y

p dp

(
q + y

Eq+y

− q − p

Eq−p

)
S1(p, E−) . (29)

If we further assume that S1 is small for large values of p,
so that the main contribution to the integral Eq. (29) comes
from p 
 −y, then we get

lim
q→∞

∂F

∂q
= 0, (30)

namely, scaling of the first kind (the scaling function F loses
its dependence on q).

We also observe that, because at a fixed value of y

the integration region in Eq. (27) increases with q and the
integrand is a positive function, the asymptotic value F (y)
is reached from below (i.e., monotonically increasing as a
function of q) in any PWIA approach, in contrast with what
experimental data seem to indicate [11,12,22]. This is clearly
illustrated in Fig. 2, where the integration region is shown for
different values of the momentum transfer at fixed y, and it
is also consistent with results shown in Figs. 3(a) and 4(a).
In Fig. 3 we present the superscaling function f (ψ) evaluated
within the framework of the relativistic PWIA (RPWIA) (see
Refs. [24] and [25] for details) for different q values and plotted

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
p [GeV/c]

0.1

0.2

0.3

0.4

ε [
G

eV
]

q=0.5 GeV/c

q→∞

q=0.7 GeV/c

q=1.0 GeV/c

-y

FIG. 2. (Color online) Integration region in the (E, p) plane
for y = −0.1 GeV/c and 12C as the target selected. Each curve
corresponds to E− for a different momentum transfer.
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-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
ψ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(
ψ

)

q=0.5 GeV/c
q=0.6
q=0.7
q=0.8
q=0.9
q=1.0

0 0.2 0.4 0.6 0.8 1 1.2
ψ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

FIG. 3. (Color online) Superscaling function f (ψ) for negative
(a) and positive (b) values of the scaling variable ψ . Results
correspond to 12C(e,e′) evaluated in RPWIA for different momentum
transfers.

against the superscaling variable ψ in the negative-ψ region
(below the QEP). This variable is given by [10,12]

ψ = 1√
ξF

λ − τ√
(1 + λ)τ + κ

√
τ (1 + τ )

, (31)

where λ ≡ ω/2mN , κ ≡ q/2mN , and τ ≡ |Q2|/4m2
N = κ2 −

λ2. The scaling variables y and ψ are closely connected [12]:

ψ =
(

y

kF

)⎡⎣1 +
√

1 + m2
N

q2

1

2
ηF

(
y

kF

)
+ O

[
η2

F

]⎤⎦ 
 y

kF

,

(32)

where ηF = kF /mN , and, as noted above, the superscaling
function f is connected to F via f ≡ kF × F , with kF the

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0
y/k

F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f(
y/

k F
)

q=0.5 GeV/c
q=0.6
q=0.7
q=0.8
q=0.9
q=1.0

0 0.2 0.4 0.6 0.8 1
y/k

F

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) (b)

FIG. 4. (Color online) Superscaling function for negative (a) and
positive (b) values of the dimensionless scaling variable y/kF . Results
correspond to 12C(e,e′) evaluated in RPWIA for different momentum
transfers.

Fermi momentum. The curves in Fig. 3 may be compared
with the RPWIA results for the superscaling function, now
for negative and positive values of the dimensionless scaling
variable y/kF obtained using the quadratic form of Eq. (32);
see Fig. 4. As shown, at fixed ψ (or y/kF ) the function f (ψ)
increases with q in accordance with the previous discussion.
The basic results shown in Figs. 3 and 4 demonstrate that ψ

and y/kF can be used interchangeably as long as one does
not focus on the few percent differences seen in the figures,
namely, for large magnitudes of the scaling variables.

In showing the results we choose 12C as an illustrative
example. Indeed this nucleus is relevant for many neutrino
oscillation experiments, where superscaling ideas can be used
to make reliable predictions of neutrino-nucleus cross sections
[28]. Moreover, the analysis of the world data performed in
Ref. [11] points to an excellent superscaling in the so-called
scaling region (ψ < 0) for nuclei with A � 12. Note, however,
that even the 4He data display a very good superscaling
behavior for large negative values of the scaling variable
(ψ < −0.2), while at the QEP there is a 10% violation owing
to the very different spectral function of the lightest nuclei.

B. Positive- y region

In this case, as shown in Fig. 1 (right), the integration
region in the (p, E) plane is limited by the two curves, E+
and E−, in the missing momentum region [0, y]. This makes
the derivative analysis somewhat more complicated. Moreover,
the experimental data show that scaling arguments of the first
kind do not apply to the function F (q, ω) in this region; that is,
F does not become a function dependent only on the scaling
variable y. On the contrary, it shows a strong dependence
on the momentum transfer q. As already mentioned, this
is because of the important contributions beyond the IA
contained in the transverse channel. Therefore, although the
analysis that follows is applied to F (q, y), it should be
clearly stated that only the use of the “universal” (namely,
longitudinal) superscaling function fL, in particular, the study
of its derivative with respect to the scaling variable in the
positive-y region, can reveal important effects not accounted
for by the results obtained in the negative-y scaling region.

After some algebra, the derivatives of the scaling function
F (q, y) are given by

1

2π

∂F

∂y
= Y n0(Y )

(
∂Y

∂y

)
− y n0(y)

+
∫ Y (q,y)

0
p dp S1(p, E−)

(
∂E−

∂y

)

−
∫ y

0
p dp S1(p, E+)

(
∂E+

∂y

)
, (33)

1

2π

∂F

∂q
= Yn0(Y )

(
∂Y

∂q

)

+
∫ Y (q,y)

0
p dp S1(p, E−)

(
∂E−

∂q

)

−
∫ y

0
p dpS1(p, E+)

(
∂E+

∂q

)
. (34)
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As in the previous case, from the general expressions for
E± given in Eq. (16) and assuming the thermodynamic limit,
we get

∂E±

∂y

 q + y

Eq+y

,
∂E±

∂q

 q + y

Eq+y

− q ± p

Eq±p

, (35)

and the derivatives reduce to
1

2π

∂F

∂y
= Y n0(Y ) − y n0(y) + q + y

Eq+y

×
[∫ Y

0
p dp S1(p, E−) −

∫ y

0
p dp S1(p, E+)

]
,

(36)

1

2π

∂F

∂q
= 2Yn0(Y ) + q + y

Eq+y

[∫ Y

0
p dp S1(p, E−)

−
∫ y

0
p dp S1(p, E+)

]

+
∫ y

0
p dp

q + p

Eq+p

S1(p, E+)

−
∫ Y

0
p dp

q − p

Eq+p

S1(p, E−). (37)

Moreover, in the limit of the momentum transfer large
enough, q � y, so that the condition limY→∞ Yn0(Y ) = 0
holds, the expressions of the derivatives result:

1

2π

∂F

∂y
= −y n0(y) + q + y

Eq+y

[∫ ∞

0
p dp S1(p, E−)

−
∫ y

0
p dp S1(p, E+)

]
, (38)

1

2π

∂F

∂q
=
∫ ∞

0
p dp

(
q + y

Eq+y

− q − p

Eq−p

)
S1(p, E−)

−
∫ y

0
p dp

(
q + y

Eq+y

− q + p

Eq+p

)
S1(p, E+) .

(39)

Note that in the limit in which y can be neglected compared
with q, that is, (q + y)/Eq+y → q/Eq , the same comment
applies to the ratio (q + p)/Eq+p involved in the second
integral in Eq. (39), as p is limited within the range [0, y].
Thus, in such a limiting case,∫ y

0
p dp

(
q + y

Eq+y

− q + p

Eq+p

)
S1(p, E+) 
 0 for q � y,

(40)

and only the first integral in Eq. (39) survives. Furthermore, if
the spectral function is such that we can neglect p compared
with q inside the integral, we again get scaling of the
first kind: limq→∞(∂F/∂q) = 0. This is strictly valid only
for very large values of q and it is entirely based on the
approximations leading to the expression in Eq. (4) that
connects the scaling function to the spectral function. As
shown in Fig. 4(b) (positive-y region), the RPWIA scaling
function shows a negligible dependence on the momentum
transfer for 0.3 � y/kF � 0.8 (q � y), whereas for larger
y/kF , scaling of the first kind begins to be slightly violated.

The experimental scaling function extracted from the analysis
of data at intermediate q values (less than or of the order of
the nucleon mass) shows very important scaling violations in
the region above the QEP (positive values of y).

With regard to the dependence of the scaling function F

with q at fixed y, we get different behaviors for small and large
values of y. Indeed from Eq. (39) we observe that in the case
of y being very small (in the vicinity of 0), the second integral
in Eq. (39) can be neglected. As the integrand in the remaining
integral is positive, we get ∂F/∂q > 0; that is, the scaling
function grows with q. This behavior is in accordance with that
already shown in the negative-y region. On the contrary, for
increasing values of y the first integral in Eq. (39) is expected
to diminish significantly, as the excitation energy curve E−
along which S1 is evaluated lies much higher than E+ (see
Fig. 5), and it is reasonable to expect that S1(p, E) gets its main
contribution for values of the momentum and energy that are
not too large. For y large enough, only the second integral in
Eq. (39) survives, and because its integrand is also positive, the
minus sign in front of it leads to ∂F/∂q < 0; that is, the scaling
function F decreases with q, changing its behavior with respect
to the previous cases. It is interesting to point out that this result
is consistent with the integration regions shown in Fig. 5 where,
for increasing momentum transfer, the curve E+ moves to
higher excitation energies in the (E, p) plane. This means that
as q goes up, regions at low (E, p) values, where the spectral
function mostly resides, are not kinematically accessible
anymore. A similar argument can be applied to the case of very
small values of y [see Fig. 5(a)]. However, here the integration
region lost as E+ goes up with increasing q is less important
than the effects introduced by the growing integration region
attached to E−. This general behavior is also in accordance
with the RPWIA results for the superscaling function f

shown in Fig. 4(b) (positive values of y), or, alternatively,
Fig. 3(b). One sees that f increases with q up to ψ �

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

ε [
G

eV
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
p [GeV/c]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ε [
G

eV
]

q=0.5 GeV/c

q→∞

q=0.7 GeV/c

q=1.0 GeV/c

q=0.5 GeV/c

q→∞

q=0.7 GeV/c

q=1.0 GeV/c

(a)

(b)

FIG. 5. (Color online) As Fig. 2, but now for positive values of
y: (a) y = 0.1 GeV/c; (b) y = 0.5 GeV/c.
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0.4; that is, y/kF ∼ 0.364 (q = 0.5GeV/c), y/kF ∼ 0.375
(q = 1.0 GeV/c), and y/kF ∼ 0.382 (q = ∞ GeV/c), with
kF = 1.2 fm−1 the Fermi momentum. This corresponds to y ∼
0.1 GeV/c, which is the situation represented in Fig. 5(a). Also
note that the q dependence of f in the region where y/kF >

0.3 shown in Fig. 4 is very weak. Examination of Figs. 5(a)
and 5(b) shows that for large y values, the energy curves E±
lie very high, and hence, as q increases, the integrals involved
incorporate only additional contributions that are very small,
leading to a very weak variation with momentum transfer.

III. NUCLEON MOMENTUM DISTRIBUTION AND
THE SCALING FUNCTION

In the previous section we have derived general integrod-
ifferential equations connecting the derivatives of the scaling
function, ∂F/∂y and ∂F/∂q, with the spectral function. Based
on these results applied to both negative and positive values of
y, in what follows we revisit the “usual” procedure to obtain
the nucleon momentum distribution function from the analysis
of QE (e,e′) data. Because the kinematics of electron scattering
lead to finite integration limits, we may not a priori draw any
strong conclusions about the “true” momentum distribution
given as n(p) ≡ ∫∞

0 dE S(p, E), namely, the integral of the
spectral function up to infinite excitation energy. However,
assuming the spectral function to reside mostly in the (p, E)
plane at values of p and E that are not too large, the previous
analyses applied to negative- and positive-y regions lead to
different results, thus providing important and complementary
information on how the energy and momentum are distributed
within the spectral function.

The usual procedure considered in previous work [3,4] to
generate the nuclear momentum distribution from the scaling
function has been based on the expression

n(k) =
[ −1

2πy

(
∂F

∂y

)]
|y|=k

, (41)

which has been widely applied in the negative-y region. In
what follows we extend this study to the positive-y region
based on the universal superscaling function introduced from
the analysis of the separated longitudinal data.

Making use of the general expressions given by Eqs. (26)
and (36) and assuming the limiting case limY→∞ Yn0(Y ) = 0,
which is valid if the momentum transfer q is sufficiently large,
the momentum distribution functions can be written as follows:

ny<0(q, k) =
[
n0(−y) − q + y

yEq+y

∫ ∞

−y

p dpS1(p, E−)

]
−y=k

= n0(k) + q − k

kEq−k

∫ ∞

k

p dpS1(p, E−), (42)

ny>0(q, k) =
[
n0(y) − q + y

yEq+y

{∫ ∞

0
p dp S1(p, E−)

−
∫ y

0
p dpS1(p, E+)

}]
y=k

= n0(k) − q + k

kEq+k

×
{∫ ∞

0
p dpS1(p, E−) −

∫ k

0
p dpS1(p, E+)

}
.

(43)

As observed, both expressions receive contributions from
the A − 1 system ground state, n0(k), as well as from the
excited states described through S1(p, E). Although using
the same notation for the excitation energy E−, note that the
E curves that enter in the spectral function S1 in Eqs. (42) and
(43) are very different (see Figs. 2 and 5).

Conclusions about the particular behavior of the previous
expressions can only be drawn based on a specific model
for the spectral function; however, it is illustrative to discuss
some general, “model-independent” properties. For negative
y the function in Eq. (42) exceeds the purely ground-state
contribution, that is, ny<0(q, k) > n0(k) for all q, k values.
This means that the contribution from the excited states adds
to the ground-state momentum distribution. Concerning the
specific role played by each one of the two terms in Eq. (42), it
is difficult to draw stringent conclusions without having control
over S1. As the momentum k grows, the contribution of the
integral in Eq. (42) is expected to diminish significantly (S1

mostly residing at momenta and excitation energies that are not
too large). A similar comment also applies to the ground-state
contribution, which decreases as k gets larger. The analysis of
Eq. (43) in the positive-y region differs because of the relative
contributions provided by the two integrals linked to the
excited states. In this case the global response ny>0(q, k) can be
smaller and/or larger than the purely ground-state contribution,
n0(k), depending on the specific missing momentum value.

In what follows we discuss some particular situations
in detail, thereby drawing some preliminary conclusions on
the general behavior shown by ny ≶ 0(q, k). Let us start by
considering the value of the nucleon momentum k to be in the
vicinity of 0. Thus, neglecting k compared with the momen-
tum transfer q (k � q) and assuming

∫∞
0 p dp S1(p, E−) �∫ k

0 p dp S1(p, E+) → 0, we can write

ny<0(q, k) 
 n0(k) + q

kEq

∫ ∞

k

p dp S1(p, E−) > n0(k),

(44)

ny>0(q, k) 
 n0(k) − q

kEq

∫ ∞

0
p dp S1(p, E−) < n0(k) .

(45)

From these results the following relation (valid for k small
enough) occurs:

ny>0(q, k) � n0(k) � ny<0(q, k) . (46)

Moreover, from Eqs. (44) and (45) the ground-state contribu-
tion is roughly given as n0(k) 
 [ny<0 + ny>0]/2.

As the nucleon momentum k grows, the two functions
ny<0(q, k) and ny>0(q, k) in Eqs. (42) and (43) get closer,
crossing each other at some specific k, such that ny>0(q, k) >

ny<0(q, k) for larger k. From the integration region in the
(E-p) plane shown in Fig. 5, and assuming most of the
strength in the spectral function to be located at not too
high p and E , we can conclude that for intermediate to
high missing momentum values the main contribution in
ny>0(q, k) comes from the second integral in Eq. (43); that
is, ny>0(q, k) 
 [(q + k)/(kEq+k)]

∫ k

0 p dpS1(p, E+).
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FIG. 6. (Color online) Average f
exp
L (ψ) compared with the

Gumbel distribution in Eq. (47) (solid curve) and a fit of the
experimental data (dashed curve).

To prove these general properties, in what follows we
present results based on the derivative analysis making use of
the superscaling function f (ψ). To simplify the calculations
we represent f (ψ) by means of the Gumbel probability density
function (i.e., the derivative of the Gumbel distribution):

fG(ψ) = 1

σ
exp

[
− (ψ − µ)

σ

]
exp

[
− exp

[
− (ψ − µ)

σ

]]
.

(47)

In our case the values of the parameters are µ = 0 and
σ = 0.67 [f max

G = fG(0) = 0.55]. In Fig. 6 we compare the
Gumbel distribution [Eq. (47)] with f L

exp(ψ) and a fit of the
experimental data [22]. As shown, the Gumbel distribution
nicely fits the data. Moreover, it fulfills the unitarity condition∫ +∞
−∞ f (ψ)dψ = 1. The nucleon momentum distribution is

evaluated through the derivative of the scaling function by
using Eq. (41) and recalling that f = kF F , thus getting

n(k) =
[
− 1

2πy

1

kF

df (ψ(y))

dy

]
|y|=k

, (48)

which, using the approximate relation ψ 
 y/kF , can be
presented in the form

n(k) = − 1

2πk

1

kF

[
df (ψ)

d(kF |ψ |)
]

kF |ψ |=k

. (49)

Note that if the superscaling function is not symmetric
with respect to ψ , as is the case for the experimental data,
Eq. (49) yields different momentum distributions for negative
and positive values of ψ , which are denoted n< and n>,
respectively. On the contrary, symmetric scaling functions,
like the RFG one, lead to n< = n>.

In the case of the Gumbel distribution, we get (setting
µ = 0)

dfG(ψ)

dψ
= 1

σ
(e−ψ/σ − 1)fG(ψ), (50)

FIG. 7. (Color online) Nucleon momentum distribution extracted
through the derivative of the superscaling function given by the
Gumbel probability density in Eq. (47). Results corresponding to
negative (solid line) and positive (dashed line) values of the scaling
variable are compared.

which leads to

n<
G(k) = 1

2πσk2
F k

[ek/(σkF ) − 1]fG(−k/kF ), (51)

n>
G(k) = 1

2πσk2
F k

[1 − e−k/(σkF )]fG(k/kF ). (52)

In Fig. 7 we present the results for nψ<0(k) = n<
G(k)/2

(solid line) and nψ>0(k) = n>
G(k)/2 (dashed line), with n<

G(k)
and n>

G(k) given in Eqs. (51) and (52) (at kF = 1.2 fm−1). As
expected, n<

G(k) and n>
G(k) (and nψ<0 and nψ>0, respectively)

coincide in the limiting case k = 0:

n>
G(0) = n<

G(0) = 1

2πσ 3k3
F e

. (53)

For missing momenta up to k ∼ 1 fm−1 the main contribution
resides in n<, which is in accordance with Eq. (46) and the
general discussion presented above. At k 
 1.3–1.4 fm−1, that
is, k close to the Fermi momentum, n< and n> cross each
other, with n> being much higher for larger k values. In fact,
whereas n< shows a steep slope when k increases, which is in
accordance with results based on independent-particle model
descriptions, n> presents a high momentum tail very far from
n< and, hence, from shell-model results (see next section). As
already explained, this tail at intermediate to high k is linked
to the much larger contribution given by the spectral function
S1 when evaluated along the curve E+ instead of E−. This
general behavior is illustrated in Fig. 8, where the contour
curves E± corresponding to positive and negative y values are
presented. The presence of the tail at high momentum values
in the nucleon momentum distribution is a clear signature of
the importance of nucleon-nucleon correlations. Because the
spectral function maps very different regions in the (E − k)
plane for negative and positive y (Fig. 8), the joint analysis of
the two kinematical regions can provide important clues in the
knowledge of NN correlations. It should be pointed out that
the functions nψ<0(k) and nψ>0(k), evaluated through Eq. (49)
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FIG. 8. (Color online) Integration region in the (E, p) plane
for q = 1 GeV/c and different, negative and positive, values of
the scaling variable y. The contour curves E± in both regions are
represented.

and presented in Fig. 7, are normalized to different values
connected with the different areas subtended by the Gumbel
distribution function fG(ψ) at negative and positive ψ , that is,
0.37 (for ψ < 0) and 0.63 (ψ > 0).

In particular, it has been shown in Refs. [24] and [26] in
the framework of relativistic nuclear models that the large
positive-ψ tail of the scaling function is closely related to FSIs,
while the negative-ψ region is more affected by initial-state
correlations, as also shown in the next section using the CDFM
model. The possibility of connecting different aspects of the
momentum distribution to initial- and final-state physics will
be explored further in future work.

IV. NUCLEON MOMENTUM DISTRIBUTION WITHIN
THE COHERENT DENSITY FLUCTUATION MODEL

In this section we give, as an example, the results for the
nucleon momentum distribution extracted from the scaling
function, obtained within the framework of a particular
nuclear model, namely, the coherent density fluctuation model
(CDFM) [29,30]. The latter is a natural extension to finite nu-
clei of the RFG model within which the scaling variable ψ ′ was
introduced.1 The CDFM is based on the generator coordinate
method [31] and includes long-range NN correlations (LRC)
of collective type. In [32,33] the scaling function was defined
within the CDFM using the RFG scaling function [10,34–36]
and applied it to various processes [32,33,37–40].

In the CDFM model [29,30], the one-body density matrix
ρ(r, r′) is an infinite superposition of one-body density matri-
ces ρx(r, r′) corresponding to single Slater determinant wave
functions of systems of A free nucleons homogeneously dis-
tributed in a sphere with radius x, density ρ0(x) ≡ 3A/(4πx3),
and Fermi momentum kF (x) ≡ [ 3π2

2 ρ0(x)]1/3 ≡ α
x

[with α ≡

1The scaling variable ψ ′ differs from ψ by a phenomenological
energy shift Es 
 20 MeV (for 12C) introduced to reproduce the
experimental position of the QEP: ψ ′(q, ω) = ψ(q, ω − Es).

( 9π
8 A)1/3 ∼= 1.52A1/3]:

ρ(r, r′) =
∫ ∞

0
|F (x)|2ρx(r, r′)dx. (54)

The weight function |F (x)|2 can be expressed in an equivalent
way either by means of the density distribution [29,30,33],

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

at
dρ(r)

dr
� 0, (55)

or by means of the nucleon momentum distribution [33],

|F (x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α/x

at
dn(k)

dk
� 0. (56)

In Eqs. (55) and (56)∫
ρ(r)dr = A,

∫
n(k)dk = A,

∫ ∞

0
|F (x)|2dx = 1.

(57)

In the version of the CDFM approach suggested in Refs. [32]
and [33], the scaling function has the form

f (ψ ′) =
∫ α/(kF |ψ ′|)

0
|F (x)|2fRFG(x,ψ ′)dx, (58)

where the RFG scaling function is

fRFG(x,ψ ′) = 3

4

[
1 −

(
kF x|ψ ′|

α

)2
]

×
⎧⎨
⎩1 +

(xmN

α

)2
(

kF x|ψ ′|
α

)2

×
⎡
⎣2 +

(
α

xmN

)2

− 2

√
1 +

(
α

xmN

)2
⎤
⎦
⎫⎬
⎭ .

(59)

In the CDFM the Fermi momentum kF is calculated for
each nucleus by

kF =
∫ ∞

0
kF (x)|F (x)|2dx =

∫ ∞

0

α

x
|F (x)|2dx (60)

and is not a fitting parameter, as it is in the RFG model.
By using Eqs. (55) and (56) in Eqs. (58) and (60), the CDFM

scaling function f (ψ ′) and kF can be expressed equivalently
by the density and momentum distributions [33]:

f (ψ ′) = 4π

A

∫ α/(kF |ψ ′|)

0
ρ(x)

[
x2fRFG(ψ ′, x)

+ x3

3

dfRFG(ψ ′, x)

dx

]
dx, (61)

where fRFG(ψ ′, x) is given by Eq. (59), and

f (ψ ′) = 4π

A

∫ ∞

kF |ψ ′|
n(k)

[
k2fRFG(ψ ′, k)

+ k3

3

dfRFG(ψ ′, k)

dk

]
, (62)

055502-9



CABALLERO, BARBARO, ANTONOV, IVANOV, AND DONNELLY PHYSICAL REVIEW C 81, 055502 (2010)

where

fRFG(ψ ′, k) = 3

4

[
1 −

(
kF |ψ ′|

k

)2
]⎧⎨
⎩1 +

(mN

k

)2
(

kF |ψ ′|
k

)2

×
⎡
⎣2 +

(
k

mN

)2

− 2

√
1 +

(
k

mN

)2
⎤
⎦
⎫⎬
⎭ .

(63)

Equation (62) is valid under the condition

lim
k→∞

[n(k)k3] = 0. (64)

From Eq. (62) one can estimate the possibility of obtaining
information about the nucleon momentum distribution from
the empirical data for the scaling function. If we keep only the
main term of the RFG scaling function from Eq. (63),

fRFG(ψ ′, k) 
 3

4

[
1 −

(
kF ψ ′

k

)2
]

(65)

and its derivative,

∂fRFG(ψ ′, k)

∂k

 3

2

(kF |ψ ′|)2

k3
, (66)

then

f (ψ ′) 
 3π

∫ ∞

kF |ψ ′|
n(k)k2

[
1 − 1

3

(kF |ψ ′|)2

k2

]
dk. (67)

In Eq. (67) ∫
n(k)dk = 1. (68)

Using Eq. (67), n(k) can be found by solving the integral-
differential equation:

n(k) = − 1

2πk2

∂f (ψ ′)
∂(kF |ψ ′|)

∣∣∣∣
kF |ψ ′|=k

− 1

k

∫ ∞

k

dk′n(k′). (69)

In this work we solve the Eq. (69) from CDFM using the
experimentally obtained scaling function. The latter can be
represented by the Gumbel probability density function in
Eq. (47). The results for the nucleon momentum distribution
obtained in this way are shown in Fig. 9 as dashed lines in
both cases: n<(k) for ψ < 0 (dashed line labeled n<

Gumbel)
and n>(k) for ψ > 0 (dashed line labeled n>

Gumbel). They
are compared with the results obtained using the expression
for n(k) through the derivative of the scaling function,
Eq. (49).

The momentum distributions n<(k) and n>(k) obtained
using Eq. (49) and the experimental scaling function presented
by Eq. (47) are given in Fig. 9 as solid lines. For comparison
we present in the same figure the momentum distributions
from the RFG model (nRFG), the shell-model results (using
Woods-Saxon single-particle wave functions) for 56Fe (nWS),
and the momentum distribution (nLFD) obtained within the
light-front dynamics approach [41] (see also Ref. [33] and
the late modification of the approach in Ref. [38]). The
latter is based on the nucleon momentum distribution in
the deuteron (including its high-momentum component) from

FIG. 9. (Color online) Nucleon momentum distribution extracted
from the scaling function. Solid lines: n< [light (green)] and n>

[dark (blue)] obtained through the derivative of the scaling function
[Eq. (49)]. Dashed lines: n< [light (green)] and n> [dark (blue)]
using the CDFM integral-differential equation [Eq. (69)]. The
Gumbel probability density function fG(ψ) [Eq. (47)] is used in
the calculations. For comparison, the momentum distributions from
the relativistic Fermi gas model (nRFG), from the shell model (nWS),
and from the light front dynamics (nLFD) are given. All momentum
distributions are normalized to unity [Eq. (68)].

the light-front dynamics method (e.g., Refs. [42] and [43],
and references therein). In the calculations kF = 1.2 fm−1. In
Fig. 9 all nucleon momentum distributions are normalized to
unity [Eq. (68)].

One can see from Fig. 9 that, in general, the results for n(k)
in CDFM confirm the considerations made in Secs. I–III:

(i) At k � 1.3 fm−1 the CDFM momentum distributions
[from Eq. (69)] n<(k) > n>(k), while at k � 1.3 fm−1,
n<(k) < n>(k). The same is valid for the momentum
distribution obtained using Eq. (49). This is in accord
with the general consideration from Sec. III.

(ii) The crossing point of the lines showing n<(k) and n>(k)
from Eq. (49) is at a slightly smaller value of k than
that for n<(k) and n>(k) obtained from Eq. (69). This
follows also from the comparison of the explicit forms
of Eqs. (69) and (49).

(iii) n<(k) from Eq. (69) is close to the result for n<(k)
from Eq. (49), while the difference between n>(k) from
Eq. (49) and n>(k) from Eq. (69) increases with k.
At k = 4 fm−1, n>(k) from Eq. (49) is about twice
larger than n>(k) from Eq. (69). At the same time, for
k � 1.2 fm−1, n>(k) from Eq. (69) is larger than n>(k)
from Eq. (49).

V. CONCLUSIONS

In the present work a study of the scaling function and
its connection with the momentum distribution is presented.

055502-10



SCALING FUNCTION AND NUCLEON MOMENTUM . . . PHYSICAL REVIEW C 81, 055502 (2010)

As is well known, a close relationship between the two
quantities exists using the PWIA and, under some conditions,
for the kinematically allowed region [�(q, ω)], once one has
accounted for the roles of FSIs, meson exchange currents,
rescattering processes, etc. Here these restricted approxima-
tions are considered in detail. The “usual” analyses performed
in the past to the region below the QE peak is extended to the
region above the peak, as the superscaling function is defined
for both negative and positive values of the scaling variable.
This is justified, as a “universal” superscaling function has
been extracted from the analysis of the separated longitudinal
data. The explicit expressions for the derivatives ∂F/∂y and
∂F/∂q for both negative- and positive-y regions are derived
and their dependences on q and y are analyzed.

The general integrodifferential equations connecting the
derivatives ∂F/∂y and ∂F/∂q with the spectral function are
derived. The results obtained allow us to revisit the “usual”
procedure to obtain the nucleon momentum distribution from
the analyses of the QE scattering data. The considerations
in the present work lead to results that are quite different
from those obtained solely in the negative-y scaling region
and provide information about the energy and momentum
distribution in the spectral function. It is shown that the expres-
sions for the nucleon momentum distributions ny<0(q, k) and
ny>0(q, k) have contributions from the momentum distribution
n0(k) of the ground state of the system with A − 1 nucleons,
as well as from the part of the spectral function S1(p, E) that
contains information about the excited states. It is shown that
for small momenta k, ny>0(q, k) <= n0(k) <=ny<0(q, k), while
as k grows the two functions, ny<0(q, k) and ny>0(q, k), get
closer, crossing each other at some value of k and yielding
ny>0(q, k) > ny<0(q, k) for higher k.

The general properties of the momentum distribution
established in the present work are validated by the results
obtained from the derivative analysis using the superscaling
function f (ψ) represented by the parameterized Gumbel
probability density function, which provides a good fit to
the experimental longitudinal scaling function f L

exp(ψ). It is
concluded that the high-momentum tail of the momentum
distribution is a clear signature for the important effects
stemming from nucleon-nucleon correlations.

The general properties of the nucleon momentum distribu-
tion obtained are also illustrated using the scaling function
obtained in the framework of a particular nuclear model,
namely, the CDFM, which includes collective long-range NN

correlations. It is shown that the momentum distribution in the
CDFM has the properties already pointed out in the general
consideration.
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