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Abstract. – Most location problems on networks consider discrete nodal demand. However, for
many problems, demands are better represented by continuous functions along the edges, in addition
to nodal demands. Several papers consider the optimal location problem of one or more facilities
when demands are continuously distributed along the network, and the objective function dealt with
is the median one. Nevertheless, in location of public services it is desirable to use an equity criterion.
One of the latter is variance of distance distribution which has been studied only for discrete nodal
demands. In this paper the variance problem has been generalized to the case where one allows the
demand to arise discretely on the nodes as well as continuously along the edges. Properties and
behaviour of the objective function are studied. Likewise we present an exact algorithm for solving
this problem in a network, which reduces the complexity of the exhaustive procedure.

1. INTRODUCTION

Most location problems on networks developed since the work of
Hakimi [8, 9] assume discrete nodal demand, in which customer demands
originate solely at the vertices of the network. However, as pointed out by
several authors [3, 5, 15] in many real applications demands do not occur
only at the vertices, but also along the edges. Restriction of demands to the
vertices quite often is not a satisfactory approximation (see [5, 15]).

Some real world applications corresponding to this situation are the
location of emergency or public services, or utility repair stations along
a motorway. In these cases, demands are better represented by continuous
functions along the edges in addition to nodal demands. As quoted in [3],
the resulting problem of approximating internodal demands by a number of
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artificial nodes can be intractable. More recent contributions have attempted
to accommodate this feature (see [3-5, 15, 18]).

In all formulations concerned with continuous edge demand the objective
is the minimisation of the weighted sum of distances from the facility to all
points of the network, this being the median function. Such problems are
called continuous median problems by Labbé [15].

Several results concerning the continuous median problem can be found
in [5, 15, 18]. The concavity of the objective function along any edge
contained in a cycle when the demand density is uniform is proved in [18].
In [5] the continuous median function is characterised in terms of the
location of the service facility, and a linear algorithm is developed to solve
the problem on tree networks. This algorithm is simplified in [15].

Other extensions of the problem involving continuous demands on edges
are oriented to find the 2-median of a tree network [3], or solve the-median
problem on a chain graph [4].

The criterion used in the above formulations for the selection of optimal
locations is one of various that may be employed to obtain efficiency.
However, in many settings, most notably the public sector, this criterion
is insufficient to generate acceptable decisions. More recently, increasing
attention has been paid to equity aspects of location. This gives rise to
several new location problems, in which an equity criterion is used based on
the dispersion of the distance distribution from the facility to all users.

The introduction of equity measures into location theory was first discussed
in [10], where two of them were described: the variance of distance travelled
by all customers to the facility and the Lorenz curve. Maimon [17] proposed
an time algorithm to minimise the variance measure on a tree network
whose demand occurs only at thevertices. Kincaid and Maimon [13, 14]
studied variance minimisation problems in triangular and in 3-cactus graphs,
and Hansen and Zheng [11] have presented an log time algorithm
for the variance problem in general networks.

The demand used in the model considered in the aforementioned problems
is restricted to nodal locations. However, following the initial reasoning, in
many applications, an equity criterion may be needed to be considered as
the variance in a continuous demand context along the edges.

In this paper we attempt to combine the variance measure with an arbitrary
spatial distribution of customers over the entire network. To this end, a density
function will be associated with each edge which will represent the level of
the demand at each point: and we will study the problem of finding a point in
the network which minimises the variance function which will be called the
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continuous variance problem. We present an exact algorithm for solving this
problem (as well as the continuous median one) which is less complex than
the exhaustive procedure. This algorithm is based on a decomposition of the
problem within several subproblems where the objective is minimised, and
the global optimum is chosen from the subproblem solutions. This procedure
was used by Hooker [12] in a model where the demand is discrete, and
where the objective function is convex in each subproblem. However, the
presence of continuous edge demands introduces important differences with
respect to the discrete case, since the objective function has no reason to be
convex, as happens when dealing with median and variance problems.

The algorithm which we propose decomposes each edge of the network
into closed segments (called “primary regions”) in which the demand will be
classified. In each primary region the continuous variance function will be
expressed in terms of the contribution of each type of demand, in order to
solve the subproblem restricted to such a region. We propose a method which
calculates recursively the expression of the objective function along the edge,
such that in each subproblem the data of the previous subproblem are used.
In this way the effort to obtain the function to be minimised will be reduced.

The present paper is organised as follows. We begin Section 2 by
introducing some definitions and notation, and by formulating the problem.
In Section 3 we investigate the behaviour and properties of the continuous
variance function. In Section 4 we determine the relationships between
primary regions which will be needed in the following section, where we
present the algorithm for solving both the continuous variance problem and
the continuous median problem. Finally, in Section 6 some computational
experience is provided.

2. PROBLEM FORMULATION

Let be a general finite, connected and undirected network with
vertex set 1 n and edge set , with . Consider
the edges to be rectifiable, and letjk be the positive length of each edge

jk j k . A point may lie anywhere along an edge, and the
distance between two points is determined by the length
of the shortest path from to .

For any two points 1 2 jk, let 1 2 denote the subset of points of
edge jk between 1 2 inclusive, and let 1 2 denote the corresponding
open set. Half-open sets are defined similarly.
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Choosing an arbitrary vertexj of edge jk as the initial point, any variable
point jk denotes both the point j k as well as the length of
the subedge j . Thus means coincides with j. In this way we
assume a well-defined orientation in each edge.

Some positive weights i, jk are associated with each vertexi and each
edge jk, respectively (e when the edge is denoted by). For a subset of
vertices 0 and a subset of edges0 we define

0

v 2V

i and 0

e2E

e

We denote these by and when 0 and 0 , respectively.
Without loss of generality we may assume that the total weight of the
network is

To allow the demand to be distributed throughout the network we define,
for each edge jk, a general density function for demandjk ( e when
the edge is denoted by). This function jk is a continuous non-negative
function in jk and has no impulses, such that the cumulative density

function jk

x

0
jk is a continuous function in jk ,

with jk and jk jk .

Associated with each distribution of demand are the central moments

jk

l

0
jk jk

l

0

2
jk

For each jk , jk and jk represent the functions

jk

x

0
jk jk

x

0

2
jk

The continuous median function for any is given by

m

v 2V

i i

e =[v ;v ]2E

jk

l

0
jk

The variation equity criterion is measured by the variance of the distance
travelled by all users of the facility with respect to the mean travel distance.
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Consequently, we define the continuous variance function for any by

�

v 2V

i i m
2

e =[v ;v ]2E

jk

l

0
m

2
jk

A point �
� is called acontinuous 1-variancepoint if

�
�

� �

PROPOSITION 1: For each , � satisfies

�

v 2V

i i
2

e =[v ;v ]2E

jk

l

0

2
jk m

2

3. THE CONTINUOUS VARIANCE IN A PRIMARY REGION

In this section we provide a characterisation of� when moves
continuously within a closed subedge in which the distance functioni
is linear for all vertices of . In the first place, we remark that, given

jk j k , for each the function is continuous, piecewise
linear and concave in jk , therefore the functionsm and �

are continuous in jk.

Each facility located at j k induces a classification of nodal
demand in which each vertexi is classified according to whether it is
supplied by via vertex j or via vertex k. However, such a classification
changes in certain points of edge. These points, called edge bottleneck points
were first introduced by Garfinkelet al. [7], and will play an important role
here.

An interior point t of edge j k is said to be an edge bottleneck point
with respect to vertex t if the travel distance t t via vertex j is
the same asvia vertex k (see Church and Garfinkel [6]). In such a case
we have t j j t t k k t . If t means j t ,
we therefore have

t
t k jk t j
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For simplicity’s sake, we will say bottleneck point instead of edge bottleneck
point. Let be the set of bottleneck points of. Since each vertex defines
at most one bottleneck point on each edge, the cardinal ofis at most .

To study the properties of continuous variance function in each edge,
we centre our interest on the portion of edge, or subedge, in which all
distance functions are linear and monotone. This notion was introduced by
Hooker [12] (who calls it “treelike segment”), and is the closed subedge
delimited by two adjacent points of . Henceforth such a segment will
be called a primary region (see Berman [2] and Chiu [5]).

Within each primary region we will develop an algebraic expression for
� by considering the contribution of each type of demand to the objective

function. To this end we select an arbitrary edge0 , whose length
is uv, and consider as the initial point of the edge such that each 0

means and thereforeuv .

The partition u v of induced by each is given by

u i i i uv

and v u . Consequently, the partition u v

[u;v] 0 of is defined as follows

u jk j k 0 j k u

v jk j k 0 j k v

[u;v] jk j k 0 j u and k v

Since the facility is located in 0 , this partition classifies the
edge demands of the set 0 into three types: an edge belongs tou
(to v ) if its two vertices belong to u (to v ), and an edge
belongs to [u;v] if one vertex belongs to u and the other vertex
belongs to v .

Let 1 k be the bottleneck points of edge0 , and let
0 , k+1 uv, (that is, 0 is equal to and k+1 is equal to ).

PROPOSITION2: [11] For , let j j�1 j be the half-
open set associated with the primary regionj�1 j , and let 0 0 0 .
Then, for each , the partition u v of is
unchanged when varies in j.

According to this proposition, when j the sets u , v will be
denoted by u j and v j , respectively. Therefore, when j neither
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u , v nor [u;v] are changed, and similarly we may extend the
above notation to these sets, which will be denoted byu j , v j , and

[u;v] j , respectively.

DEFINITION 3: Let j be a half-open set of edge0 , ( ).
For each edge ht h t we define the following functions inj:

e ht

l

0
ht j

e ht

l

0

2
ht j

e and e can be interpreted as the contribution of edgeht to the
continuous median functionm and to its square.

The expressions of these functions change according to the set of partition
of in which ht lies. When ht 0, the functions will be denoted by

e and e , respectively.

PROPOSITION 4: For each , when x varies in the primary
region j�1 j , the continuous variance function� can be expressed
as follows:

� j

v 2V (S )

i i
2

v 2V (S )

i i
2

e 2E (S )

e

e 2E (S )

e

e 2E (S )

e

e m j
2

j�1 j

where j�1 j

m j

v 2V (S )

i i

v 2V (S )

i i

e 2E (S )

e

e 2E (S )

e

e 2E (S )

e e

Proof: The Proposition holds for j from Proposition 2 and properties
of both partitions of and . For j�1 j the result is obtained by
continuity.
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In the following, we will develop each term of� j in order to obtain
an algebraic expression for the continuous variance function over the-th
primary region.

Nodal demands

This contribution is identified by the first two terms in� j , which
define the function j , and by the first two terms inm j ,
which define the function j .

Developing both functions, and applying i i

if i u j , and i i uv if i v j ,
we may write:

j j j

j j j
2

where the corresponding coefficients are given by

j u j v j

j u j v j v j uv

j

v 2V (S )

i i
2

v 2V (S )

i i uv
2

j u j v j uv v j

with u j

v 2V (S )

i i and v j

v 2V (S )

i i .

Edge demands

For any given edge ht h t of , we obtain four expressions
of e and e , depending on whether the demand considered
occurs on ht u j , on ht v j , on ht [u;v] j or on

ht 0 . In all cases we suppose thath is the initial point
of edge ht such that

ht h and t ht

ht h t u j

In this case, ht . Let ht h t

be the bottleneck point of edgeht relative to vertex . Then
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ht t ht h , ht being independent of the
location of j (Fig. 1a).

For each j the distance function is piecewise linear and
concave when varies in h t and can be expressed as follows

h if ht

t ht if ht ht

Figure 1.

Using these relationships and the definitions and properties associated
with density function ht in Definition 3, leads to

e ht ht ht

where ht t ht ht ht ht ht ht ht.
The same procedure applied toe gives

e ht
2

ht � ht ht � ht

where

� ht ht ht ht ht t ht ht ht

� ht h
2

ht ht ht t
2

ht ht h ht ht ht

ht t ht ht

ht h t v j

Now we have a symmetrical situation in which ht,
uv and the bottleneck point inht relative to vertex
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is given by ht t ht h (Fig. 1b). Therefore, the
distance function yields

uv h if ht

uv t ht if ht ht

and similar reasoning to the former case provides

e ht ht ht

e ht
2

ht � ht ht � ht

where the coefficients are given by

ht t ht uv ht ht ht ht ht ht

� ht ht ht ht ht uv t ht ht ht

� ht h uv
2

ht ht

ht uv t
2

ht ht

ht h uv ht ht

ht uv t ht ht

ht h t [u;v] j

In this case a pointht ht is associated with each j. Such
a point assumes the role of the “bottleneck point” relative to, that is

ht h h ht t t (see Fig. 2).
According to the orientation of edgeht from vertex h to vertex

t considered in (1), we obtainht t ht h .
Since h u j and t v j we have h h

Figure 2.
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and t t uv which implies ht t

uv ht h . It is easy to see that the function

ht is decreasing and varies in ht when j�1 j .
This dependence on induces non-linearity in e . In effect,

applying

h if ht

uv t ht if ht ht

leads to

e ht ht ht h ht ht

t ht uv ht ht

ht ht ht

The variation of ht with respect to gives rise to a continuous
change of demands on edgeht from “ –demands” to “–demands”,
and contributes to indetermination of curvature ofm within a primary
region (see Chiu [5]). In a similar manner,

e ht
2

ht ht h
2

h

ht ht t ht uv
2

t ht uv ht ht h t

ht uv ht t ht uv ht

0

The orientation considered in this edge implies that, for 0,

if
if uv

Therefore

e 0

x

0

0

l

x
0

0 0 0 0

Since 2 2, it follows that

e 0

l

0

2 2
0 0

2
0 0
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166 Ma CRUZ LÓPEZ DE LOS MOZOS and J.A. MESA

Using the expressions obtained in Proposition 4 for both functions in each
case, yields

m j j j u j v j

e 2E (S )

ht ht

e 2E (S )

ht ht

e 2E (S )

e 0 0 0 0

� j u j v j 0
2

j

e 2E (S )

ht � ht

e 2E (S )

ht � ht 0 0

e 2E (S )

e j 0 0

e 2E (S )

ht � ht

e 2E (S )

ht � ht

m j

2

We now analyse the behaviour of function� in a primary region. The
continuous medianm is convex over any edge in a tree network
(see Chiu [5]), however, the same does not occur with the function� .
In effect, the function � is neither concave nor convex over any edge
of a tree network, as can be observed in the counterexample presented in
Figures 3–5. This behaviour can be extended to a general network, and
therefore:

COROLLARY 5: The continuous variance function� is neither concave
nor convex over any primary region of a network.

As stated earlier, in order to illustrate these results we present a tree
network shown in Figure 3. In this example demand is assumed to be
uniformly distributed along the edges, and so only the length and weight of
each edge are shown. Node weights are written next to each node with small
numbers, edge weights with round brackets, and the lengths are indicated
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Figure 3.

Figure 4.

above each edge. Figure 4 shows the continuous variance function along
edges 1 3 , 2 3 , 3 4 , and 4 5 , in this order. Figure 5 shows
the corresponding second derivatives.

4. RELATIONSHIPS BETWEEN PRIMARY REGIONS

From the aforementioned results it follows that for solving the continuous
variance problem on a network it is necessary to find an efficient way to
find all local minima, that is, it is required to solve the restricted problem
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Figure 5.

� j j�1 j over each primary region (note that
restricted problems must be solved at most). The search for the minimum
of such problems involves a procedure to find the zeros of� j ,
(and a similar procedure must be applied to solve the continuous median
problem). This procedure is exhaustive in nature, and depends very much
on the edge density functions dealt with.

When only uniform density functions are considered, both functions (�

and m ) are polynomials over any primary region (of degree 4 and 2,
respectively), and the search for the local minimum takes constant time.
However, the identification of functions� j or m j over the -th
primary region requires examining all vertices and all edges in order to
determine the corresponding partitions ofand for obtaining all terms
of expressions (2) and (3). Supposing that the shortest distance matrix is
calculated already (in a preprocessing phase), the exhaustive procedure with
uniform density functions provides the minimum in time.

The only algorithm that tackles the continuous median problem is
heuristic [5]. In the following we present an exact procedure for solving
the continuous variance problem (as well as the continuous median problem,
as explained in the introduction). Even in the worst case, the complexity
of this algorithm will be lower than that of the exhaustive procedure, and
computational results will show that it runs in time for the
test networks used.
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Now we will develop some recursive relationships between a primary
region and its predecessor. To this end we introduce some definitions and
properties associated with the concept of bottleneck point.

DEFINITION 6: Let 1 k be the bottleneck points of edge0
and let 0 , k+1 uv. For , j denotes the set of
vertices relative to point j, and is given by

j t t j t uv j

Clearly j u j . The following proposition is introduced by Hansen
and Zheng [11], and its proof can be found in [16].

PROPOSITION 7: The following statements hold:

(i) i j , , .

(ii)
k+1

j=0

j .

(iii) u j u j�1 j�1 , and v j v j�1 j�1 ,
.

As a consequence, u j�1 u j and v j�1 v j ,
.

DEFINITION 8: For , define the following subsets of edges:

u j ht h t u j

either h j t j

or h j t j

u j ht h t u j h t j

[u;v] j ht h t [u;v] j

either h j t j

or h j t j

Set

u j u j u j

For the set u j contains those edges ofu j such
that either one of the end vertices (if ) or both (if ), belong to
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j . Similarly the edges of [u;v] j are edges of [u;v] j with

an unique end vertex in j . Therefore u j u j ,

u j u j and [u;v] j [u;v] j .

PROPOSITION 9: For ,

u j u j�1 u j�1

PROPOSITION 10: For ,

v j v j�1 [u;v] j�1 u j�1

PROPOSITION 11: For ,

[u;v] j [u;v] j�1 [u;v] j�1 u j�1

PROPOSITION12: Let be such that . The following
statements hold:

1. u j u q

2. [u;v] j [u;v] q

As a consequence of this Proposition, we have the bound

k+1

j=1

u j

Furthermore, for the intersection u j [u;v] q can

be non–empty, since for the sets u j and [u;v] q

are not necessarily disjointed. Thus, we can obtain the upper bound

k+1

j=1

[u;v] j u j

On the other hand, although
k+1

j=1

[u;v] j , the sets [u;v] j ,

have no cause to be disjointed. Therefore, the quantity
k+1

j=1

[u;v] j can not be bounded by . However, from (6) each set
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[u;v] j is the union of two disjointed sets, and therefore we can write

k+1

j=1

[u;v] j

k+1

j=1

[u;v] j�1 [u;v] j�1

k+1

j=1

u j�1

In order to estimate the value of this sum in computational terms, the
following definition is introduced.

DEFINITION 13: With each edge of is associated a quantity ,
whose value is given by

k

j=0

j

where for , j [u;v] j [u;v] j .
This definition yields

k+1

j=1

[u;v] j

k

j=0

u j

The sets [u;v] j [u;v] j are not disjointed in
general which supposes that, in the worst case, . However,
it is interesting to explore the average value of . In the computational
experience it will be seen that for not excessively large values of, (as
happens, for example, in planar networks, where ) the values
of are quite moderate. In fact we will obtain that
for the tested networks.

5. ALGORITHM AND COMPLEXITY

Before solving the restricted problem � j j�1 j

over the -th primary region, we need to compute all terms ofm j

and � j , given in expressions (2) and (3). Now it will be shown that,
except for the terms corresponding to the demand of edges[u;v] j , the
remaining can be recursively obtained from the former primary region.
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Nodal demands

The nodal contribution is obtained through coefficientsj, j, j and j.
They can be computed as follows:

j j�1 j�1 j�1 uv j�1

j j�1 j�1

j j�1

v 2B(�x )

i i uv
2

v 2B(�x )

i i
2

j j�1 j�1 j�1 uv j�1

Edge demands

Using (4) and (5) with the terms of (2) and (3) relative to edge contribution,
we find that when such demand is referred to edges belonging tou j

or to v j we can write

u j u j�1 u j�1

e 2E (S )

ht (�) ht

e 2E (S )

ht (�) ht

e 2B(E (S ))

ht (�) ht

where (�) denotes , � or � . Similarly, when ht v j ,

e 2E (S )

ht (�) ht

e 2E (S )

ht (�) ht

e 2B (E (S ))

ht (�) ht

e 2B (E (S ))

ht (�) ht

where again (�) denotes , � or � . However, these relations cannot
be used when demand arises on any edgeht [u;v] j . This demand

is obtained by means of functionse and e , that are ht

dependent functions. Both functions change whenchanges from one
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primary region to another. Therefore, their calculation requires the checking
of all edges of each set [u;v] j .

THEOREM 14: For each 0 and , the number of edges
and vertices of that must be examined to obtainm and � by means
of the procedure described by (7) to (13) is not greater than .

Proof: When j�1 j is � � j and m m j .
Suppose we know all necessary information to calculate� j�1 and
m j�1 . To obtain both functions overj requires computations of the

terms corresponding to:

nodal contribution. From relationships (7) to (10), their calculation
requires examining all vertices in j�1 .
Edge contribution. From relationships (11) to (13), for demand on
edges in u j or v j one has to check the sets u j�1 ,

[u;v] j�1 and u j�1 . For demand on edges in

[u;v] j it is necessary to check the set u j�1 together with
j�1 edges of .

Since u j�1 u j�1 , the number of vertices and
edges that must be examined to obtain� j and m j is given by

j�1 [u;v] j�1 u j�1 j�1

Therefore, to obtain � and m along edge it is sufficient to
extend the former quantity to all primary regions on . Hence, the total
number of elements examined takes the following value

k+1

j=1

j�1

k+1

j=1

[u;v] j�1 u j�1

k+1

j=1

j�1

where Proposition 7, definition of and consequences of Proposition 12
have been used.

Now we present the algorithm for finding the continuous variance point (or
the continuous median point, as already pointed out). First, some preliminary
calculations need to be executed:

(i) compute the shortest distance matrix .
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(ii) for each edge , put the bottleneck points1 k in increasing
order, and compute j , .

In planar networks these operations can be done in log time, using
Dijkstra’s algorithm times, and that of Heapsort times to rank the
bottleneck points (see [1]). This complexity increases when the network is
nonplanar and very dense, since the distance matrix is computed in3

time.

In the following we describe the pseudocode of the algorithm to solve the
continuous variance problem. The algorithm finds the local optimum in each
edge, and chooses the best solution as the global optimum. To obtain the
minimum in each edge the continuous variance function must be characterised
in all primary regions of the edge, and this process is recursively executed
by means of the relationships developed in the last section.

5.1. Main algorithm

Step 0.

Let Z be a suitably large number;x��  � ;; [u
�; v�]  � ;.

Step 1.

For e0 = [u; v] 2 E do

Let �x0 < . . . < �xk be the bottleneck points.

Zuv  � M (a large number);x��  � ;.

ComputeVu(S0), Vv(S0), Eu(S0), Ev(S0), E[u;v](S0).

while j < k + 1 do

ComputeVu(Sj); Vv(Sj), Eu(Sj); Ev(Sj); E[u;v](Sj), andB (E[u;v](Sj)),
B (Eu(Sj)) (q = 1; 2) by using (4), (5), (6).

Computez�(x;Sj) (zm(x;Sj)) by using (7) to (13).

Find the optimumx�� of minfz�(x;Sj); x 2 [�xj�1; �xj ]g.

If z�(x�� ;Sj) < Zuv , thenZuv  � z�(x�� ;Sj); x��  � x�� .

end while

If Zuv < Z, thenZ  � Zuv ; x��  � x�� ; [u�; v�]  � [u; v].

end for

Step 2.

Stop. The incumbentZ, x�� , [u�; v�] is the solution.

5.2. Complexity

We denote the complexity of the preprocessing phase by
(where can be log or 3, according to the type of network). In
order to analyse the complexity of the main procedure, we define
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On the assumption that all density functions are uniform, the main
computational effort is given by Step 1, where the global minimum in
each edge is calculated. From Theorem 14 this process requires a time
of . Since Step 1 is executed with edges, the main
algorithm can be performed in . Therefore, the overall
time to solve the problem is . However, in order
to compare this algorithm with the exhaustive procedure, we will centre our
interest on the complexity of the main procedure, since the computational
effort in the preprocessing phase is the same for both algorithms.

Although the complexity of the main algorithm depends on (whose
value is associated with each network), in the computational experience we
will see that for all networks tested, the values of were markedly less
than the corresponding worst case values.

We remark that including the worst case for (in which ),
the algorithm runs in less time than the exhaustive procedure. In effect, this
fact can be deduced from the following.

PROPOSITION 15: Even in the worst case, the number of vertices and edges
visited by the exhaustive procedure is greater than in the main algorithm.

Proof: The number of vertices and edges visited by the exhaustive
procedure is , and from Theorem 14, the number of visits
executed by the main algorithm is not greater than

[u;v]2E

However, this number is bounded by , since
for all . Therefore, it will be sufficient to prove that

. In effect, this relationship holds because in a network without

loops, .

6. COMPUTATIONAL EXPERIENCE

In this section some computational results are presented to analyse the order
of and so to analyse the complexity of the algorithm. Although we have
seen that the complexity of the main algorithm is , with

in the worst case, it is quite likely that the computational time
would be substantially reduced for most problems. This fact happens with
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networks of moderate density, as can be observed in the results displayed
in all tables of this section.

These tables show the behaviour of the main algorithm over a set of
networks. In most types of network we have considered not excessively
large values of . It will be seen that for all networks observed, the values
of were quite moderate; in fact we have found that in all
cases examined, and therefore the complexity of the algorithm will remain
reduced to time.

With the aim of showing the performance of, we introduce a parameter
, with , and we study whether occurs.

We have analysed randomly generated networks, with a variable number,
, of vertices, and for each inputwe have considered a variable number,,

of edges. The method used to generate each network started with a randomly
obtained generator tree whose number of edges was increased up to the
desired quantity . The resultant networks are not planar in general, since
the edges have been randomly placed. Weights and lengths were generated
uniformly in and , respectively.

For each type of network, 100 instances were tested. The values
of range from an initial to a final value, with a fixed increment (which is
0.5 in the first table, and 1 in the remaining tables). Tables 1, 2 and 3 show
the results obtained. In each table, each element represents the number of
times (or percentage) that occurred.

TABLE 1

N

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

30 65 100

40 1 32 84 100

50 6 44 80 95 100

60 2 33 81 97 100

70 4 37 81 97 100

80 15 61 90 99 100

90 3 48 92 98 100

100 1 41 76 89 100
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TABLE 2

N

1 2 3 4 5 6 7 8 9 10 11

60 78 100

80 27 66 100

100 2 37 89 100

120 19 55 99 100

140 26 81 100

TABLE 3

N

1 2 3 4 5 6 7 8 9 10 11

100 5 44 100

140 1 34 87 100

170 29 72 100

200 12 67 100

230 18 72 98 100

In all tables shown it can be observed that initially small values of
are sufficient to trap all the instances, and these values increase when
increases. However, even with a very dense network, (as happens in Tab. 1,
for and ), every single case is trapped with .
This means that , since is an upper bound of .
Likewise, a similar situation occurs in Tables 2 and 3: the upper bound of
all types and is obtained for and ,
respectively. It is highly probable that such values can be reduced when
planar networks are considered.

We remark that the bound was never reached, that is, the last
“ -value” of each row provided a strict upper bound for 100 instances
tested (for example, in the type , the greatest value of was
742, and in , such a value was 2109). Regarding these data, we
can infer that the running time of was in all networks tested in
these computational experiments.
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From these results we can expect that, when the underlying network
is of moderate density, the value of is bounded by a small value of

, and therefore the computational effort of the main algorithm would be
appreciably lower. When the network is very dense we cannot know the size
of this upper bound. However, we have already seen that, in such a case,
the number of visits made by the main algorithm is smaller than the visits
executed by the exhaustive procedure.

In conclusion, we have shown in this paper how to reduce the effort to
solve the continuous variance problem in a network by applying a recursive
procedure to compute the objective function along each edge. In order to
analyse the complexity we have considered uniform density functions, since
the minimum in each subproblem is obtained in constant time, and this has
no influence on the computational order. However, several questions remain
to be studied, as we comment in the following. When arbitrary density
functions are considered, a numerical procedure will be needed to compute
the minimum in each primary region, the difficulty of which will depend on
the type of density function involved. It would be interesting to know what
density function provides the worst complexity. Another question deals with
discretization of the problem by means of a number of artificial nodes, and
comparison of the complexity of the resultant problem with the continuous
case, together with determining the level of approximation of both solutions.
As far as the authors are aware there is no theoretical analysis of the
aggregation issue for continuous edge demand problems.

APPENDIX A

Proof of Proposition 1:Developing the first component of� relative
to nodal contribution we obtain

v 2V

i i
2

m
2

m

v 2V

i i

A similar procedure applied to the component of� relative to edge

contribution yields

e 2E

jk

l

0

2
jk m

2

m

e 2E

jk

l

0

jk
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where jk jk has been used. The Proposition holds by summing both
expressions and using the fact that .

Proof of Proposition 9: By the above relations, we have u j

u j�1 . First, suppose that ht u j . If it were true that

ht h t u j�1 then at least one of the end vertices (or both)
would belong to j�1 . Let h be such a vertex. From Proposition 7 it
follows that h u j , which contradicts the fact thath t u j .
This proves that u j u j�1 u j�1 .

Reciprocally if ht u j�1 u j�1 then h t u j�1

and h t j�1 (since u j�1 is the set of edges of u j�1

such that at least one vertex belongs to j�1 ). Then, from Proposition 7
it follows that h t u j and therefore ht u j , which proves
the converse inclusion. Both inclusions complete the proof.

Proof of Proposition 10:Since v j�1 v j , we have v j�1

v j . Consider ht u j�1 . Then h t j�1 ,
and therefore h t v j which implies ht v j . If ht

[u;v] j�1 , then an unique vertex of edgeht belongs to j�1 .
Suppose this vertex ish, then h v j . But, as j�1 u j�1

and ht [u;v] j�1 then h u j�1 which implies t v j , and
therefore ht v j . This reasoning proves

v j v j�1 [u;v] j�1 u j�1

On the other hand supposeht v j . Then h t v j j�1 . If

h t v j�1 or h t j�1 , the result is trivial. If h v j�1 ,
t j�1 , then t u j�1 which implies ht [u;v] j�1 . Since

h j�1 (otherwise we return to the former case) it follows that

ht [u;v] j�1 . This proves the desired inclusion and concludes
the proof.

Proof of Proposition 11:This relationship will be proved by using the
same procedure as in Proposition 10. First, supposeht [u;v] j .
Then h u j�1 j�1 , t v j�1 j�1 . The assumption

t v j�1 implies ht [u;v] j�1 [u;v] j�1 (otherwise
from (5) it follows that ht v j , which is a contradiction). If
t j�1 , ht u j�1 must hold from Proposition 7. Furthermore,

ht u j�1 since h j�1 . This reasoning proves the
relationship

[u;v] j [u;v] j�1 [u;v] j�1 u j�1
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180 Ma CRUZ LÓPEZ DE LOS MOZOS and J.A. MESA

Conversely if ht [u;v] j�1 [u;v] j�1 then h u j�1 ,
t v j�1 and h t j�1 . In effect, the supposition t

j�1 implies t u j�1 , which is a contradiction. Furthermore

h j�1 holds from the assumptionht [u;v] j�1 together
with t j�1 . Therefore ht [u;v] j since, from Proposition 7,

h u j , t v j . A similar reasoning proves thatht [u;v] j

is also obtained whenht u j�1 , and this completes the proof.

Proof of Proposition 12:Suppose that j q. First we show that the
Proposition holds for any two consecutive half-open setsj, j+1. The
general case ( ) will be obtained by repeating this process.

If , the first relationship follows directly from (4) and from the
fact that u j+1 u j+1 . Similarly the second expression is a
consequence of (6) and the fact that [u;v] j+1 [u;v] j+1 .

Glossary

� Continuous variance function.

m Continuous median function.

j Bottleneck points of the edge .
j�1 j –th. primary region.

j j�1 j –th. half open set.

u j v j Partition of associated to j.

u j v j [u;v] j Partition of associated to j.

j Set of vertices whose bottleneck point
is j.

u j
Edges of u j with an unique end
vertex in j .

u j
Edges of u j with the two end
vertex in j .

u j The set u j u j .

[u;v] j
Edges of [u;v] j with an unique
end vertex in j .

j The cardinal of the set

[u;v] j [u;v] j .
The sum of j along the edge

.
The maximum of values
over .
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