
 1



Abstract—The complexity reached by current applications of

industrial control systems has motivated the development of new

computational paradigms, as well as the employment of hybrid

implementation techniques that combine hardware and software

components to fulfill systems requirements. On the other hand,

continuous improvements in field programmable devices make

today possible the implementation of complex control systems on

reconfigurable hardware, although they are limited by the lack of

specific design tools and methodologies to facilitate the

development of new products. This paper describes a model-based

design approach for the synthesis of embedded fuzzy controllers

on FPGAs. Its main contributions are the proposal of a novel

implementation technique, which allows accelerating the

exploration of the design space of fuzzy inference modules, and

the use of a design flow that eases their integration into complex

control systems and the joint development of hardware and

software components. This design flow is supported by specific

tools for fuzzy systems development and standard FPGA

synthesis and implementation tools, which use the modeling and

simulation facilities provided by the Matlab environment. The

development of a complex control system for parking an

autonomous vehicle demonstrates the capabilities of the proposed

procedure to dramatically speed up the stages of description,

synthesis, and functional verification of embedded fuzzy

controllers for industrial applications.

Index Terms—Fuzzy controllers, Hardware/Software codesign,

Industrial control systems, Model-based design.

I. INTRODUCTION1

HE rapid evolution of microelectronics market causes a

continuous increment in the demand of new products with

higher levels of functionality and performance. In addition to

the constant improvements of integrated circuits technologies,

S. Sánchez-Solano is with the Instituto de Microelectrónica de Sevilla

(IMSE-CNM-CSIC), Seville, Spain (phone: +34 954466666; fax: +34

954466600; e-mail: santiago@imse-cnm.csic.es).

M. Brox is with the Department of Computer Architecture, University of

Córdoba, Córdoba, Spain (e-mail: mbrox@uco.es).

E. del Toro is with the Microelectronics Research Center (CIME-CUJAE),

Havana, Cuba (e-mail: ernesto@electrica.cujae.edu.cu).

P. Brox is with the Instituto de Microelectrónica de Sevilla (IMSE-CNM-

CSIC), Seville, Spain (e-mail: brox@imse-cnm.csic.es).

I. Baturone is with the Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC), Seville, Spain, and also with the University of Seville, Seville,

Spain (email: lumi@imse-cnm.csic.es).

to accomplish these requirements new computational

paradigms (like Soft-Computing) have been proposed and

developed in the last years [1]-[3]. In particular, the capability

of fuzzy logic–based inference systems to describe complex

control strategies by means of linguistic rules, avoiding the

need for mathematical models and providing good results in

terms of adaptability and robustness, has motivated an

increasing interest for the use of this technique to implement

intelligent control systems in applications related to industrial

control, robotics, and consumer electronics [4]-[6].

As a consequence, different implementation approaches for

fuzzy systems have been proposed in the literature, which

range from software implementation using computer programs

to microelectronic realization by means of application specific

integrated circuits (ASIC) or programmable devices [7]-[8].

Recent advances in FPGA technologies have promoted a boom

of this kind of devices, as current FPGA families provide

enough resources as to allow the implementation of a complete

system on a programmable chip (SoPC) [9]-[25].

On the other hand, the level of complexity reached by

current applications of industrial control systems, as well as

their requirements of speed, size, and/or power consumption,

makes fuzzy inference modules (FIM) to be conceived as

components of a whole system, which usually includes

different hardware (HW) and software (SW) components to

carry out its function [19]-[25]. In order to reduce the

development cycle of new products and make them more

competitive in market terms, the design of these hybrid

HW/SW systems requires the use of new methodologies and

design tools to facilitate the concurrent development of their

different components. A design strategy that allows the rapid

development of hybrid fuzzy controllers with adequate

characteristics of flexibility and performance was introduced

by the authors in [19].

 Advancing in that research line, this paper describes a

model-based codesign technique for the synthesis of embedded

fuzzy control systems on FPGAs. The proposed design flow

combines specific fuzzy system development tools from the

Xfuzzy environment [26], FPGA synthesis and implementation

tools from Xilinx, and modeling and simulation tools from

Matlab. The first advantage of this approach is that it allows

accelerating the exploration of the design space of inference

modules to be included in fuzzy control systems. In addition, it

facilitates their integration as peripheral of a general purpose

Model-Based Design Methodology for Rapid

Development of Fuzzy Controllers on FPGAs

Santiago Sánchez-Solano, María Brox, Ernesto del Toro, Piedad Brox, and Iluminada Baturone

T

 2

processor and makes possible the concurrent synthesis and

verification of hardware and software components in the

system.

The structure of the paper is the following. Key concepts

regarding FPGA implementation of embedded fuzzy control

systems are introduced in Section II. The main contribution of

this work is presented in Section III, where a novel

implementation technique for fuzzy systems is described. It is

based on the use of digital signal processing (DSP) design

tools in combination with a cell library developed by the

authors for efficient implementation of fuzzy inference

systems. The design flow associated to the proposed technique

is detailed in Section IV. The implementation of a complex

control system for parking an autonomous vehicle is illustrated

in Section V. Finally, Section VI summarizes the main

conclusions of this work.

II. FPGA IMPLEMENTATION OF EMBEDDED

FUZZY CONTROLLERS

The continuous evolution of programmable logic devices

has encouraged the use of FPGAs both as prototyping and

final platforms of industrial control systems (as the Takagi–

Sugeno recurrent fuzzy network used in [12] for water bath

temperature control, the adaptive fuzzy controller for a

permanent-magnet linear synchronous motor drive system

presented in [13], or the fuzzy logic controller for boost

converter output-voltage regulation proposed in [14]). Many

of these FPGA implementations of fuzzy controllers are used

in robotics applications to control the maneuvers of mobile

robots [15]-[17]. Different solutions have been also proposed

to cope with the increasing complexity of embedded control

systems. The system described in [18] takes advantage of the

run-time reconfiguration facility of modern FPGAs. Other

authors resort to hybrid HW/SW approaches using the soft

cores available in Xilinx’s [19]-[20] or Altera’s [21]-[24]

FPGAs.

According to the HW/SW strategy for implementation of

fuzzy controllers proposed in [25], an efficient solution for

complex control systems consists of using a general purpose

processor (to carry out initialization, communication, and

global control tasks) in combination with dedicated hardware

(to accelerate the fuzzy inference process). The design

approach described in this paper uses the MicroBlaze

processor, available as an Intellectual Property (IP) module for

Xilinx’s FPGAs, in combination with application specific

FIMs, also developed as IPs, to speed up the inference tasks.

MicroBlaze is a 32-bit RISC processor available as a soft

core optimized for implementation in Xilinx’s FPGAs. It is

based on a Harvard architecture that provides a Local Memory

Bus (LMB), for connections of local memory, and a Processor

Local Bus (PLB), for peripherals. There are many IP-modules

of configurable peripherals compatible with this standard,

which allow configuring systems according to specific

applications. Design tools included in Xilinx Platform Studio

(XPS) provide software drivers that ease the use of

MicroBlaze peripherals, as well as facilities for converting

custom hardware into PLB-compatible IP-modules [27].

Specific FIMs required by fuzzy control systems may be

implemented on Xilinx’s FPGAs as PLB-compatible

peripherals of the MicroBlaze processor. In order to obtain an

efficient realization of these modules, the active-rule based

architecture for fuzzy inference systems described in [19] is

used to implement the FIMs. This architecture allows an

efficient implementation of digital fuzzy system in terms of use

of resources, power, and speed. These characteristics are

accomplished by using a limited overlap degree of input

membership functions, implementing a processing strategy that

evaluates only the active rules, and employing simplified

defuzzification methods. The block diagram of the architecture

used for FIM implementation is shown in Fig. 1.

Fuzzy logic can be considered nowadays as a mature

technology. However the number of design environments and

CAD tools that are able to translate the high-level description

of a fuzzy system into an efficient hardware implementation is

small. The problem is even worst for HW/SW realizations,

because new specification, design, and verification methods

are needed to handle these cases where different languages and

design techniques are used within the same design. In order to

deal with this handicap, the Matlab/Simulink environment has

been used in this work because it provides a high-level

software platform for scientific computing and data

visualization, in addition to a potent interactive programming

environment. The main advantage of this model-based

approach is that designs can be defined, optimized, tested, and

debugged quickly [28]-[31].

III. SYNTHESIS OF FUZZY INFERENCE MODULES

WITH DSP TOOLS

FPGA manufactures have developed different design tools

to ease the implementation of digital signal processing (DSP)

algorithms on FPGAs. One of these facilities is the System

Generator tool (SysGen) from Xilinx [32]. It is based on

Simulink, the interactive tool for modeling, analysis, and

simulation of dynamic systems integrated in Matlab. SysGen

includes a Simulink library, named “Xilinx Blockset”, which

Fig.1. Active-rule based architecture for efficient implementation of

digital fuzzy controllers [19].

 3

provides basic building blocks for digital systems, as well as

software components required to perform the synthesis and

implementation on Xilinx’s FPGAs of the algorithms

described and simulated in Matlab.

The design flow with SysGen starts by describing the

system schematic by means of a Simulink model. The

verification stage is carried out by simulation, using the signal

generation and visualization facilities offered by Matlab.

Finally, the system implementation is performed by translating

the model to different kinds of netlists and generating the

bitstream file for the FPGA. When accomplishing the

verification stage, SysGen is also able to include the

appropriated interfaces to perform hardware co-simulation of

the complete Simulink model. This simulation mode allows the

combination of the hardware implementation of a part of the

system on an FPGA development board in conjunction with

the mathematical description of the rest of the model.

As a key element to support the design technique proposed

in this paper, a cell library named XfuzzyLib has been

developed using the SysGen tool. It includes different

alternatives to implement each of the basic elements of the

architecture for fuzzy controllers shown in Fig. 1. Fig 2 shows

the components included in XfuzzyLib grouped by

functionalities: membership function generators, active rule

selectors, antecedent connectives, rule memories, defuzzifiers,

and control elements. Membership function generators based

on arithmetic techniques are able to generate families of

membership functions corresponding to the types “triangular”

and “sh_triangular” defined in Xfuzzy (all the elements of a

sh_triangular family are functions with triangular shapes,

except the first and the last elements that can be Z- and S-

shaped functions, respectively). Fig. 3 shows the Simulink

model of this component, which is built as an optimized and

parameterized specific circuit using the basic building blocks

provided by the Xilinx Blockset library.

Two options (product or minimum) for the connective used

in the knowledge base of inference systems have been

implemented in the library. Depending on the kind of fuzzy

module being implemented, different defuzzifier blocks can be

used: FuzzyMean (FM), WeightedFuzzyMean (WFM), or

first-order Takagi-Sugeno (TS1), for interpolators; and

MaxLabel, for decision-making systems [7]. Fig. 4 illustrates

the simplified block diagrams of defuzzifiers available for the

first type of fuzzy systems. Finally, the library also contains a

set of crisp blocks that implement general purpose arithmetic,

such as addition, subtraction, multiplication or division

functions, and logic operations, as a selector.

As it happens to basic building blocks in “Xilinx Blockset”,

a set of parameters may be employed to define the size and

functionality of XfuzzyLib components. When these

Fig.2. XfuzzyLib components grouped by functionalities.

Fig. 3. Simulink model of the arithmetic membership function generator circuit (A_MFC) included in XfuzzyLib.

Fig.4. Simplified block diagrams of defuzzifiers included in XfuzzyLib.

 4

components are instanced in a higher hierarchical level,

parameters can be assigned using numerical values or by

means of Matlab variables. Numerical values of these

variables can be later defined using the Matlab command

window or an “.m” file.

Building a fuzzy inference system with XfuzzyLib requires

choosing, interconnecting, and defining the parameters of the

needed blocks. As an example, Fig. 5 shows the Simulink

model of a 2-input fuzzy module that uses the minimum

operator as antecedent connective and employs FuzzyMean

defuzzification method. System functionality can be verified at

any design stage using the facilities from Simulink to generate

excitation signals and to capture and display output data.

XfuzzyLib also includes elements describing archetypal

fuzzy logic controllers (FLCs) that differ in the number of

inputs, the connective used to calculate rule activation degrees,

and the defuzzification method. Current version of XfuzzyLib

incorporates 1-, 2-, and 3-input FLCs using minimum and

product as connectives and the different defuzzification

methods provided by the library. Blocks describing FLC

architectures are fully parameterizable, making it possible to

adapt its functionality according to the requirement of a

particular application by defining the parameters related to the

dimension of the system and the behavior of its knowledge

database. In addition, the hierarchical combination of FLCs to

define complex fuzzy systems is also possible.

IV. HW/SW CODESIGN APPROACH

The design flow proposed in this work combines the use of

specific tools for development of fuzzy systems from the

Xfuzzy environment, FPGA synthesis and implementation tools

provided by Xilinx, and simulation and modeling tools from

Matlab. The development of a fuzzy control system will be

carried out at the different stages illustrated in Fig. 6.

A. FIM High-Level Design

The first stage of the design flow of an embedded fuzzy

controller is about the description and functional verification

of the fuzzy inference module (FIM). This task can be easy

and rapidly accomplished using the tools included in the

Xfuzzy design environment. Xfuzzy provides description,

Fig. 5. Simulink model of a 2-imput 1-output FLC that uses minimum as connective and FuzzyMean defuzzification method.

FIM High Level

Design

XfuzzyLib

SysGen

xfsg

.mdl

.m .m

.c, .h

Java

xfsim

Simulink

xfedit

Edition
xfdm

Identification

xfsl

Tuning

XFL3

Simulation

.mdl

XPS

Synthesis

EDK

Hw-Cosimulation

Plant Model

FIM Synthesis

& Verification

FIM IP-Module

Implementation

System Integration

& Verification

Sw-Development

Plant Model

Fig. 6. Codesign approach for the synthesis of embedded fuzzy control

systems on FPGAs.

 5

simplification, learning, and simulation tools, which allow

defining and optimizing fuzzy inference modules, as well as

synthesis tools to implement them as software or hardware

components [26].

A fuzzy inference module is described in Xfuzzy by means

of a specification in Xfuzzy Specification Language (XFL3),

which can combine fuzzy blocks (to perform control and

decision-making task) and crisp blocks (to implement general

purpose arithmetic and logic functions). Knowledge rulebases

can be directly defined by an expert operator (and edited with

xfedit) or they can be extracted from numerical data using

identification (xfdm) and supervised learning (xfsl) tools.

Functional verification is carried out by analyzing the input-

output relation of the system, as well as simulating its closed-

loop behavior in combination with a Java-codified model of

the plant (xfsim).

Hardware synthesis tools provided by Xfuzzy allow

translating an XFL3 specification into a circuit description that

can be implemented on a programmable device or an

application specific integrated circuit [33]. To carry out the

design approach described in this work, a new synthesis tool

(xfsg), which is able to generate the files required by the

codesign strategy, has been recently developed by the authors

and incorporated to the Xfuzzy environment.

B. FIM Synthesis and Verification

The xfsg synthesis tool generates the files required to

synthesize FIMs according to the implementation technique

described in Section III. The Graphical User Interface (GUI)

of this tool is shown in Fig. 7. The upper left area contains the

knowledge base, structured as a pull-down menu with

components grouped under the categories “RuleBases” and

“CrispBlocks”. The right area gathers information about a

particular rulebase or crisp block. Information related to

membership functions and rules is directly extracted from the

XFL3 specification, while data corresponding to size of buses

are defined by means of parameters.

Once all the fuzzy system components have been

configured, the tool allows generating the output files.

Specifically, xfsg provides an “.mdl” file containing a

Simulink model of the FIM, and an “.m” file with the

parameters that define the size and functionality of FIM

components.

C. FIM IP-Module Implementation

The assembly of the FIM as IP-module and its integration

with MicroBlaze processor must be performed at the next

design stage. To accomplish this task, the input and output

signals of the fuzzy controller are first connected to shared

memory blocks (registers in this case) for communicating to

MicroBlaze. Next, a MicroBlaze EDK processor block,

available in Xilinx Blockset library, is added to the Simulink

model. This block uses a MicroBlaze project previously

generated from XPS.

During the import process, the shared memories are mapped

onto MicroBlaze address space, so providing a mechanism to

connect the FIM through a PLB interface. Basic drivers

required to use the IP-module in software applications are

automatically generated in this process.

D. System Integration and Verification

According to the application needs, various forms of

hardware synthesis and hardware co-simulation can be used to

complete the final design stage. These options are all provided

by the “System Generator” block. In particular, the use of

hardware co-simulation facilities allows an FPGA

implementation of the MicroBlaze processor to be simulated

with different FIM peripherals connected through shared

memory blocks in Matlab. This flexibility is a great advantage

for verification and tuning the control system.

Fig. 7. Graphical user interface of the xfsg synthesis tool included in the Xfuzzy environment.

 6

The development of hardware and software components is

jointly performed at this stage using different tools and

interfaces within Matlab environment. MicroBlaze software

applications are coded and compiled with the help of XPS

GUI, and are downloaded to the FPGA through the

MicroBlaze block interface. In order to confirm the

functionality of the control system into its real scenario, others

blocks describing the plant and the operational environment

should be also included in the Simulink model. Finally, blocks

to initialize parameters, simulation control, and result

visualization can be also incorporated to the model.

V. DESIGN EXAMPLE

The above described design strategy has been applied to the

realization of a fuzzy control system for autonomous parking

of an electric vehicle. Romeo-4R is equipped with traction and

steering motors, and different sensors that allow calculating

position, orientation, and speed of the vehicle in every control

cycle [34]. The goal of the control system is to act on the

traction and steering motors to fix the adequate speed and

wheel rotation angle so that the vehicle could park in a

predefined position.

Romeo-4R uses a digital signal processor (DSP) TMS-

320LF from Texas Instruments that acquires and processes

information from sensors and provides support for motors

control and communication links through a serial port, thus

easing the low-level control of the vehicle (Fig. 8). The fuzzy

control module interacts with the DSP using a communication

protocol over RS232. The DSP sends to the fuzzy module the

vehicle status information and, in response, transmits back to

the vehicle the speed and wheel rotation angle calculated by

the fuzzy controller.

In order to illustrate the design flow, this section describes

the development of a hierarchical fuzzy control system able to

implement a heuristic that allows parking the vehicle even

when the initial position is near to the objective. This control

system combines the strategies proposed in [19] (to park the

vehicle using forward and backward maneuvers) and in [35]

(to provide minimal-path in backward trajectories).

The structure of the FIM defined at the high-level design

stage is shown in Fig. 9a. It is composed by seven rulebases

and three crisp blocks. Rulebases called Position, Planning,

and Direction perform a decision-making system that

determines the direction of the vehicle. They use minimum as

antecedent connectives and MaxLabel defuzzification method.

Celerity and Forward are control rulebases that employ

FuzzyMean defuzzifiers and provide, respectively, the

absolute value of the vehicle speed and the wheel rotation

angle for forward trajectories. Rulebase Interpolation is a first-

order Takagi-Sugeno system that, in combination with

Smoothing and Diff crisp block, implements the hierarchical

fuzzy controller proposed in [35]. Finally, crisp blocks

Velocity and Decision correspond to a multiplier and a

multiplexer, respectively. Fig. 9b illustrates 1-, 2-, and 3-

segment trajectories followed by Romeo-4R when it departs

from different initial conditions.

Once the size of FIM components has been defined by

means of the xfsg GUI, during the FIM Synthesis stage, the

XFL3 specification is converted into the Simulink model

FLC DSP
RS232

Fig. 8. Interaction between low- and high-level controllers in the

Romeo-4R control system.

Fig. 9. a) XFL3 specification of the FIM used for autonomous parking of Romeo-4R. b) Trajectories for different initial conditions of the vehicle.

(a) (b)

 7

shown in Fig. 10a. FIM functionality is verified at this design

phase using the simulation and graphical facilities provided by

Matlab. As an example, Fig. 10b shows control surfaces that

manage the wheel angle in forward and backward trajectories.

The objective of the next design stage is to convert the FIM

into an IP-module that can be connected to the MicroBlaze

processor as a standard PLB-peripheral. The first step to

accomplish this task consists in associating shared memory

blocks (from/to registers) to FIM’s I/O ports, as illustrated in

the bottom part of the Simulink model shown in Fig. 11a.

Next, a MicroBlaze processor block, corresponding to a

previously generated XPS project, is added to the Simulink

Fig.10. a) Simulink model of the FIM generated by xfsg. b) Control surfaces for wheel angle in forward (top) and backward (down) maneuvers.

(a) (b)

Fig.11. Joint development and verification of hardware and software components using the proposed codesign methodology.

(a) (b)

 8

model. SysGen facilities allows implementing this subsystem

as a hardware co-simulation block (“MicroBlaze hwcosim”

block in Fig. 11a), which will be implemented in the FPGA

and will interact with other model components while

simulation is running. Using this strategy, different FIMs

alternatives may be tested without having to re-implement the

entire system, thus providing flexibility and ease of

development.

In order to carry out the joint development of hardware and

software components, during the system integration and

verification stage, other blocks should be included in the

Simulink model of Fig. 11a. “Romeo-4R” is a Simulink

description of the vehicle dynamics based on a mathematical

model, which allows verifying the system functionality in a

closed control loop. The “DSP” block models the interaction

between the low-level controller of Romeo-4R and the fuzzy

controller under development. This model includes an RS232

link to communicate with the FPGA-implemented MicroBlaze

processor by means of an ad-hoc communication protocol,

which emulates the TMS-320LF functionality using a C++

Matlab S-Function. Finally, some extra blocks are used in the

Simulink model of Fig. 11a to control the simulation and

visualize the results. As shown in Fig. 11b, Matlab interfaces

of the blocks “Romeo-4R” and “DSP” are used to set

parameters that define the initial vehicle position and

characteristics of the RS232 communication channel.

The communication protocol and the software drivers to

communicate with the FIM peripheral, as well as the general

control loop (coded in C and previously compiled) are

executed by “MicroBlaze hwcosim” block implemented in the

FPGA development board. Information between the hardware

implemented controller and other components included in the

Simulink model is transmitted through an RS232 cable

connecting the UART incorporated in the MicroBlaze system

and the serial port of the PC running Matlab. The FIM is able

to complete an inference process after 10 clock cycles. This

value is determined by the number of membership functions

used by the Smoothing rulebase. Communication and control

tasks carried out by MicroBlaze in each iteration require about

3 s, while the control cycle fixed by the DSP device used by

Romeo-4R is 50 ms.

Experimental results for different initial conditions obtained

after implementing the embedded control system in an FPGA

development board are shown in Fig. 12. As can be observed,

these results are similar to simulation results provided by

Xfuzzy in the FIM high-level design stage (Fig. 9b). Table I

compares FPGA resource utilization and operation speed for

the synthesis of the fuzzy controller, with different bit sizes, on

a Spartan 3A DSP FPGA from Xilinx. Ten, twelve, fourteen,

and sixteen bits for input and output precision are used in all

the rulebases (except for output of decision-making ones,

where only two or three bits are required to codify the different

situations). The results, both in terms of resource utilization

and operation speed, obtained by using the design technique

proposed in this work are similar to those previously obtained

using approaches based on VHDL descriptions [19]. However,

the time required to carry out the system development is now

drastically reduced. The fully-automated design flow based on

SysGen allows implementing a FIM like the one used in this

example in 10 or 15 minutes on a conventional workstation.

The time required to complete the same task with the tools

employed in [19] was at least an order of magnitude higher

due to lacking of mechanisms for direct synthesis of

hierarchical fuzzy modules.

This reduction in development time can be exploited, not

only to accelerate the exploration of the design space of a

given solution, but also to compare fuzzy controllers with

different heuristic strategies. As an example, Table II shows

implementation results for four fuzzy controllers of different

complexity. Case 1 corresponds to the simplest solution that

Fig. 12. Hardware co-simulation results for different initial conditions.

TABLE II

IMPLEMENTATION RESULTS FOR DIFFERENT FUZZY CONTROLLERS

 Case 1 Case 2 Case 3 Case 4

I/O Ports 31 (5%) 51 (9%) 73 (14%) 73 (14%)

Slices 199 (1%) 386 (2%) 1148 (6%) 1413 (8%)

DSP48As 4 (4%) 8 (9%) 16 (19%) 23 (27%)

RAM Blocks 1 (1%) 4 (4%) 7 (8%) 10 (11%)

Max. Freq.

(MHz)
66.251 53.225 67.150 50.940

TABLE I

IMPLEMENTATION RESULTS FOR DIFFERENT BIT-SIZE

 10-bit 12-bit 14-bit 16-bit

I/O Ports 73 (14%) 87 (16%) 101 (19%) 115 (22%)

Slices 1413 (8%) 1510 (9%) 1648 (10%) 1989 (11%)

DSP48As 23 (27%) 23 (27%) 23 (27%) 23 (27%)

RAM Blocks 10 (11%) 10 (11%) 10 (11%) 10 (11%)

Max. Freq.

(MHz)
50.940 46.260 47,181 50,431

 9

uses X-coordinate and vehicle orientation as inputs to perform

parking maneuvers using only backward movement [36].

Cases 2 and 3 are the hierarchical fuzzy controllers proposed

in [35] and [19], respectively. Finally, Case 4 is the proposal

analyzed in this paper. Ten bits for input and output precision

are used in all the cases. The new technique improves the

results of previously reported works. The first-order Takagi-

Sugeno defuzzification method included in XfuzzyLib allows

the hardware implementation of the control strategy described

in [35], whereas the capability of xfsg to directly synthesize

hierarchical fuzzy modules considerably speeds up the

implementation described in [19].

VI. CONCLUSIONS

A codesign strategy for FPGA implementation of fuzzy

embedded controllers for industrial applications is presented in

this paper. It allows the development of hybrid HW/SW

control systems that combine a general purpose processor and

specific fuzzy inference modules. The design approach is

supported by a parameterized cell library that provides

optimized building blocks for a wide variety of fuzzy modules,

and an automatic synthesis tool for rapid description and

implementation of hierarchical fuzzy systems. Combining

these elements with a model-based design flow supported by

different CAD tools running in the Matlab environment eases

the concurrent synthesis and verification of hardware and

software components in every design stage. The advantages of

the proposed technique are demonstrated through the

development of a fuzzy controller for automatic parking of an

autonomous vehicle. The described methodology allows

accelerating the design process of complex fuzzy controllers.

This reduction in development time can be exploited to

optimize a particular solution, as well as to compare different

solutions in order to obtain the best tradeoff between cost and

performance.

ACKNOWLEDGMENT

This work was partially funded by Spanish Ministerio de

Economía y Competitividad under the Project TEC2011-

24319 and by Junta de Andalucía under the Project P08-TIC-

03674 (both with support from FEDER), and by the European

Community through the MOBY-DIC Project FP7-INFSO-

ICT-248858 (www.mobydic-project.eu). The authors would

like to thank the Robotics, Vision, and Control Group from the

Engineering School of University of Seville for collaboration

to obtain the results with Romeo-4R.

REFERENCES

[1] L. A. Zadeh, Roles of soft computing and fuzzy logic in the conception,

design and deployment of information/intelligent systems, in: O.

Kaynak et al., editors, Computational Intelligence: Soft Computing and

Fuzzy-Neuro Integration with Applications, Springer Verlag, 1998.

[2] N. K. Sinha and M. M. Gupta, Soft Computing and Intelligent Systems:

Theory and Applications, Academic Press, 2000.

[3] A. Abraham, Intelligent systems: Architectures and perspectives, in: A.

Abraham, L. Jain, and J. Kacprzyk, editors, Recent Advances in

Intelligent Paradigms and Applications, Springer Verlag, 2002.

[4] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd ed., Wiley,

2004.

[5] J. Jarris, Fuzzy logic applications in engineering science, Springer

Verlag, 2006.

[6] R.-E. Precup and H. Hellendoorn, “A survey on industrial applications

of fuzzy control”, Computers in Industry, vol. 62, no. 3, April 2011, pp.

213–226.

[7] I. Baturone, A. Barriga, S. Sánchez-Solano, C. J. Jiménez, and D.

López, Microelectronic Design of Fuzzy Logic-Based Systems, CRC

Press, 2000.

[8] K. Basterretxea and I. del Campo, Electronic hardware for fuzzy

computation, in A. Laurent and M. J. Lessot, editors, Scalable Fuzzy

Algorithms for Data Management and Analysis: Methods and Design,

Information Science Reference, 2009.

[9] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.

W. Naouar, “FPGAs in Industrial Control Applications”, IEEE Trans.

on Industrial Informatics, vol. 7, no. 2, May 2011, pp. 224-243.

[10] N. Sulaiman, Z. A. Obaid, M. H. Marhaban, and M. N. Hamidon,

“Design and Implementation of FPGA-Based Systems - A review”,

Australian Journal of Basic and Applied Sciences, vol. 3, no. 4, 2009,

pp. 3575-3596.

[11] M. McKenna and B. M. Wilamowski, “Implementing a fuzzy system on

a field programmable gate array,” in Proc. Int. Joint Conference on

Neural Networks, July 2001, pp. 189–194.

[12] C.-F. Juang and J.-S. Chen, “Water bath temperature control by a

recurrent fuzzy controller and its FPGA implementation”, IEEE Trans.

on Industrial Electronics, vol. 53, no. 3, June 2006, pp. 941-949.

[13] Y.-S. Kung, C.-C. Huang, and M.-H. Tsai, “FPGA Realization of an

Adaptive Fuzzy Controller for PMLSM Drive”, IEEE Trans. on

Industrial Electronics, vol. 56, no. 8, August. 2009, pp. 2923-2932.

[14] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA Implementation of a

Single-Input Fuzzy Logic Controller for Boost Converter With the

Absence of an External Analog-to-Digital Converter”, IEEE Trans. on

Industrial Electronics, vol. 59, no. 2, February 2012, pp. 1208 –1217.

[15] T.-H. S. Li, S.-J. Chang, and Y.-X. Chen, “Implementation of human-

like driving skills by autonomous fuzzy behavior control on an FPGA-

based car-like mobile robot”, IEEE Trans. on Industrial Electronics,

vol. 50, no. 5, October 2003, pp. 867- 880.

[16] S. Islam, Md. Anwarul, Md. Saukat, and M. Othman, “Design and

Synthesis of Mobile Robot Controller using Fuzzy”, in Proc. 28th Int.

Conference on Software Engineering, May 2006, pp. 825-829.

[17] C. Huang, W. Wang, and C. Chiu, “Design and Implementation of

Fuzzy Control on a Two-Wheel Inverted Pendulum”, IEEE Trans. on

Industrial Electronics, vol. 58, no. 7, July 2011, pp. 2988-3001.

[18] D. Kim, “An Implementation of fuzzy logic controller on the

reconfigurable FPGA system”, IEEE Trans. on Industrial Electronics,

vol. 47, no. 3, June 2000, pp. 703-715.

[19] S. Sánchez-Solano, A. Cabrera, I. Baturone, F. J. Moreno-Velo, and M.

Brox, “FPGA Implementation of Embedded Fuzzy Controllers for

Robotic Applications”. IEEE Trans. on Industrial Electronics, vol. 54,

no. 4, August 2007, pp. 1937-1945.

[20] K. Basterretxea, I. del Campo, and J. Echanobe, “A semi-active

suspension embedded controller in a FPGA”, in Proc.2010 Int. Symp.

on Industrial Embedded Systems, July 2010, pp. 69 –78.

[21] H.-C. Huang and C.-C. Tsai, “FPGA Implementation of an Embedded

Robust Adaptive Controller for Autonomous Omnidirectional Mobile

Platform”, IEEE Trans. on Industrial Electronics, vol. 56, no. 5, May

2009, pp. 1604-1616.

[22] I. del Campo, J. Echanobe, G. Bosque, and J. M. Tarela, “Efficient

hardware/software implementation of an adaptive neuro-fuzzy system,”

IEEE Trans. on Fuzzy Systems, vol. 16, no. 3, June 2008. pp. 761-778.

[23] Y. Fu, H. Li, and M. E. Kaye, “Hardware/Software Codesign for a

Fuzzy Autonomous Road-Following System”, IEEE Trans. on Systems,

Man, and Cybernetics, vol. 40, no. 6, November 2010, pp. 690-696.

[24] Y.-S. Kung, C.-T. Hsu, H.-H. Chou, and T.-W. Tsui, “FPGA-realization

of a motion control IC for wafer-handling robot”, in Proc. 8th IEEE Int.

Conference on Industrial Informatics, July 2010, pp. 493 –498.

[25] A. Cabrera, S. Sánchez-Solano, P. Brox, A. Barriga, and R. Senhadji,

“Hardware/software codesign of configurable fuzzy control systems”,

Applied Soft Computing, vol. 4, no. 3, August 2004, pp. 271-285.

[26] Xfuzzy: Fuzzy Logic Design Tools, IMSE-CNM, CSIC. Available:

http://www.imse-cnm.csic.es/Xfuzzy

http://www.mobydic-project.eu/
http://www.imse-cnm.csic.es/Xfuzzy

 10

[27] MicroBlaze Processor Reference Guides, Xilinx, Inc.

[28] L. M. Reyneri and F. Renga, “Speeding-up the design of HW/SW

implementations of neuro-fuzzy systems using the codesimulink

environment”, Applied Soft Computing, vol. 4, no. 3, 2004, pp. 227-

240.

[29] I. H. Altas and A. M. Sharaf, “A Generalized Direct Approach for

Designing Fuzzy Logic Controllers in Matlab/Simulink GUI

Environment”, Int. Journal of Information Technology and Intelligent

Computing, vol. 1, no. 4, 2007.

[30] M. Shahrieel, S. Najib, E. Chee, I. Azmira, and Mohd Hendra,

“Comparison of Fuzzy Control Rules using MATLAB Toolbox and

Simulink for DC Induction Motor-Speed Control”, in Proc. 2009 Int.

Conference of Soft Computing and Pattern Recognition, December

2009, pp. 711-715.

[31] O. Kobyrynka, Y. Stekh, and O. Markelov, “Comparison analysis of

methods implemented in MATHLAB for fuzzy logic algorithms”, in

Proc. 2011 CAD Systems and Microelectronics, February 2011, pp.

239-240.

[32] System Generator for DSP User Guide, v12.4, Xilinx Inc., 2010.

[33] M. Brox, S. Sánchez-Solano, and L. L. Delgado, “XFVHDL4: A

Hardware Synthesis Tool for Fuzzy Systems,” in Proc. 11th Int.

Conference on Intelligent Systems Design and Applications, November

2011, pp. 385-390.

[34] F. Cuesta, F. Gómez-Bravo, and A. Ollero, “Parking maneuvers of

industrial-like electrical vehicles with and without trailer”, IEEE Trans.

on Industrial Electronics, vol. 51, no. 2, April 2004, pp. 257-269.

[35] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, and A. Ollero,

“Automatic design of fuzzy controllers for car-like autonomous robots”.

IEEE Trans. on Fuzzy Systems, vol. 12, no. 4, August 2004, pp. 447-

465.

[36] S. Sánchez-Solano, E. del Toro, M. Brox, I. Baturone, and A. Barriga,

“A Design Environment for Synthesis of Embedded Fuzzy Controllers

on FPGAs”, in Proc. IEEE Int. Conference on Fuzzy Systems, July

2010, pp. 1-8.

Santiago Sánchez-Solano received the B.Sc. degree

(with honors) in physics and the Ph.D. degree in

physics from the University of Seville, Seville,

Spain, in 1980 and 1990, respectively.

After six years as a System Analyst with the

Computer Center, University of Seville, he joined

the Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC), Seville, where he is currently a

Scientific Researcher. He is co-author of 2 books

and 150 scientific papers, and has participated in 25

research projects funded by different organisms, acting in 7 of them as lead

researcher. His research interests include very large scale integration design,

computer-aided-design tools for microelectronic design, and hardware

implementation of neuro-fuzzy systems.

María Brox received the B.Sc. degree (with honors)

in physics from the University of Córdoba, Córdoba,

Spain, in 2004 and the M.Sc. degree in

microelectronics from the University of Seville,

Seville, Spain, in 2008.

From 2005 to 2007, she had a postgraduate

fellowship from the Spanish Government in the

Instituto de Microelectrónica de Sevilla (IMSE-

CNM-CSIC), Seville, Spain. She is currently an

Assistant Professor in the Department of Computer Architecture, University

of Córdoba. Her research area is the development of automatic CAD tools for

the design of embedded fuzzy controllers on FPGAs.

Ernesto del Toro received the B.Sc. degree in

automation engineer and the M.Sc. degree in

electronics from the Instituto Superior Politécnico

J.A.E. of Havana (CUJAE) in 2004 and 2007,

respectively.

He had a MAEC-AECID PhD scholarship from

the Spanish Government in the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC),

Seville, Spain from 2008 to 2011. Currently, he is a

Professor of electronics and a Research Assistant at the Microelectronics

Research Center (CIME-CUJAE), Cuba. His research interests include

embedded computing, hardware/software codesign and algorithm

acceleration.

Piedad Brox received the degree in physics from the

University of Córdoba in 2002, and the Ph.D. degree

in physics (with honors) in 2009 from the University

of Seville.

Since 2002, she has been with the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC) or

at the University of Seville. Currently, she is a

Postdoctoral researcher under ‘Juan de la Cierva’

program funded by the Spanish Government. Her

research areas include the design and

implementation of neuro-fuzzy systems and its application in image

processing, and digital implementation of embedded controllers.

Iluminada Baturone received the B.Sc. 5-year

degree (with honors) in physics and the Ph.D. degree

(with honors) in physics from the University of

Seville, Seville, Spain, in 1991 and 1996,

respectively.

Since 1990, she has been with the Instituto de

Microelectrónica de Sevilla (IMSE-CNM-CSIC),

Seville, and since 1992, she has been teaching at

University of Seville, where she is currently

Associate Professor. She is co-author of 2 books and

more than 100 scientific papers, and has collaborated in more than 25

research projects (national and international). Her current research interests

include hardware/software co-design, neuro- and fuzzy systems, piecewise-

affine controllers, and microelectronic design of crypto-biometric systems.

