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 

Abstract—The complexity reached by current applications of 

industrial control systems has motivated the development of new 

computational paradigms, as well as the employment of hybrid 

implementation techniques that combine hardware and software 

components to fulfill systems requirements. On the other hand, 

continuous improvements in field programmable devices make 

today possible the implementation of complex control systems on 

reconfigurable hardware, although they are limited by the lack of 

specific design tools and methodologies to facilitate the 

development of new products. This paper describes a model-based 

design approach for the synthesis of embedded fuzzy controllers 

on FPGAs. Its main contributions are the proposal of a novel 

implementation technique, which allows accelerating the 

exploration of the design space of fuzzy inference modules, and 

the use of a design flow that eases their integration into complex 

control systems and the joint development of hardware and 

software components. This design flow is supported by specific 

tools for fuzzy systems development and standard FPGA 

synthesis and implementation tools, which use the modeling and 

simulation facilities provided by the Matlab environment. The 

development of a complex control system for parking an 

autonomous vehicle demonstrates the capabilities of the proposed 

procedure to dramatically speed up the stages of description, 

synthesis, and functional verification of embedded fuzzy 

controllers for industrial applications. 

 
Index Terms—Fuzzy controllers, Hardware/Software codesign, 

Industrial control systems, Model-based design. 

I. INTRODUCTION1 

HE rapid evolution of microelectronics market causes a  

continuous increment in the demand of new products with 

higher levels of functionality and performance. In addition to 

the constant improvements of integrated circuits technologies,  
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to accomplish these requirements new computational 

paradigms (like Soft-Computing) have been proposed and 

developed in the last years [1]-[3]. In particular, the capability 

of fuzzy logic–based inference systems to describe complex 

control strategies by means of linguistic rules, avoiding the 

need for mathematical models and providing good results in 

terms of adaptability and robustness, has motivated an 

increasing interest for the use of this technique to implement 

intelligent control systems in applications related to industrial 

control, robotics, and consumer electronics [4]-[6]. 

As a consequence, different implementation approaches for 

fuzzy systems have been proposed in the literature, which 

range from software implementation using computer programs 

to microelectronic realization by means of application specific 

integrated circuits (ASIC) or programmable devices [7]-[8]. 

Recent advances in FPGA technologies have promoted a boom 

of this kind of devices, as current FPGA families provide 

enough resources as to allow the implementation of a complete 

system on a programmable chip (SoPC) [9]-[25]. 

On the other hand, the level of complexity reached by 

current applications of industrial control systems, as well as 

their requirements of speed, size, and/or power consumption, 

makes fuzzy inference modules (FIM) to be conceived as 

components of a whole system, which usually includes 

different hardware (HW) and software (SW) components to 

carry out its function [19]-[25]. In order to reduce the 

development cycle of new products and make them more 

competitive in market terms, the design of these hybrid 

HW/SW systems requires the use of new methodologies and 

design tools to facilitate the concurrent development of their 

different components. A design strategy that allows the rapid 

development of hybrid fuzzy controllers with adequate 

characteristics of flexibility and performance was introduced 

by the authors in [19]. 

 Advancing in that research line, this paper describes a 

model-based codesign technique for the synthesis of embedded 

fuzzy control systems on FPGAs. The proposed design flow 

combines specific fuzzy system development tools from the 

Xfuzzy environment [26], FPGA synthesis and implementation 

tools from Xilinx, and modeling and simulation tools from 

Matlab. The first advantage of this approach is that it allows 

accelerating the exploration of the design space of inference 

modules to be included in fuzzy control systems. In addition, it 

facilitates their integration as peripheral of a general purpose 
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processor and makes possible the concurrent synthesis and 

verification of hardware and software components in the 

system. 

The structure of the paper is the following. Key concepts 

regarding FPGA implementation of embedded fuzzy control 

systems are introduced in Section II. The main contribution of 

this work is presented in Section III, where a novel 

implementation technique for fuzzy systems is described. It is 

based on the use of digital signal processing (DSP) design 

tools in combination with a cell library developed by the 

authors for efficient implementation of fuzzy inference 

systems. The design flow associated to the proposed technique 

is detailed in Section IV. The implementation of a complex 

control system for parking an autonomous vehicle is illustrated 

in Section V. Finally, Section VI summarizes the main 

conclusions of this work.  

II. FPGA IMPLEMENTATION OF EMBEDDED 

FUZZY CONTROLLERS 

The continuous evolution of programmable logic devices 

has encouraged the use of FPGAs both as prototyping and 

final platforms of industrial control systems (as the Takagi–

Sugeno recurrent fuzzy network used in [12] for water bath 

temperature control, the adaptive fuzzy controller for a 

permanent-magnet linear synchronous motor drive system 

presented in [13], or the fuzzy logic controller for boost 

converter output-voltage regulation proposed in [14]). Many 

of these FPGA implementations of fuzzy controllers are used 

in robotics applications to control the maneuvers of mobile 

robots [15]-[17]. Different solutions have been also proposed 

to cope with the increasing complexity of embedded control 

systems. The system described in [18] takes advantage of the 

run-time reconfiguration facility of modern FPGAs. Other 

authors resort to hybrid HW/SW approaches using the soft 

cores available in Xilinx’s [19]-[20] or Altera’s [21]-[24] 

FPGAs. 

According to the HW/SW strategy for implementation of 

fuzzy controllers proposed in [25], an efficient solution for 

complex control systems consists of using a general purpose 

processor (to carry out initialization, communication, and 

global control tasks) in combination with dedicated hardware 

(to accelerate the fuzzy inference process). The design 

approach described in this paper uses the MicroBlaze 

processor, available as an Intellectual Property (IP) module for 

Xilinx’s FPGAs, in combination with application specific 

FIMs, also developed as IPs, to speed up the inference tasks. 

MicroBlaze is a 32-bit RISC processor available as a soft 

core optimized for implementation in Xilinx’s FPGAs. It is 

based on a Harvard architecture that provides a Local Memory 

Bus (LMB), for connections of local memory, and a Processor 

Local Bus (PLB), for peripherals. There are many IP-modules 

of configurable peripherals compatible with this standard, 

which allow configuring systems according to specific 

applications. Design tools included in Xilinx Platform Studio 

(XPS) provide software drivers that ease the use of 

MicroBlaze peripherals, as well as facilities for converting 

custom hardware into PLB-compatible IP-modules [27].  

Specific FIMs required by fuzzy control systems may be 

implemented on Xilinx’s FPGAs as PLB-compatible 

peripherals of the MicroBlaze processor. In order to obtain an 

efficient realization of these modules, the active-rule based 

architecture for fuzzy inference systems described in [19] is 

used to implement the FIMs. This architecture allows an 

efficient implementation of digital fuzzy system in terms of use 

of resources, power, and speed. These characteristics are 

accomplished by using a limited overlap degree of input 

membership functions, implementing a processing strategy that 

evaluates only the active rules, and employing simplified 

defuzzification methods. The block diagram of the architecture 

used for FIM implementation is shown in Fig. 1.  

Fuzzy logic can be considered nowadays as a mature 

technology. However the number of design environments and 

CAD tools that are able to translate the high-level description 

of a fuzzy system into an efficient hardware implementation is 

small. The problem is even worst for HW/SW realizations, 

because new specification, design, and verification methods 

are needed to handle these cases where different languages and 

design techniques are used within the same design. In order to 

deal with this handicap, the Matlab/Simulink environment has 

been used in this work because it provides a high-level 

software platform for scientific computing and data 

visualization, in addition to a potent interactive programming 

environment. The main advantage of this model-based 

approach is that designs can be defined, optimized, tested, and 

debugged quickly [28]-[31]. 

III. SYNTHESIS OF FUZZY INFERENCE MODULES  

WITH DSP TOOLS 

FPGA manufactures have developed different design tools 

to ease the implementation of digital signal processing (DSP) 

algorithms on FPGAs. One of these facilities is the System 

Generator tool (SysGen) from Xilinx [32]. It is based on 

Simulink, the interactive tool for modeling, analysis, and 

simulation of dynamic systems integrated in Matlab. SysGen 

includes a Simulink library, named “Xilinx Blockset”, which 

Fig.1. Active-rule based architecture for efficient implementation of 

digital fuzzy controllers [19]. 
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provides basic building blocks for digital systems, as well as 

software components required to perform the synthesis and 

implementation on Xilinx’s FPGAs of the algorithms 

described and simulated in Matlab. 

The design flow with SysGen starts by describing the 

system schematic by means of a Simulink model. The 

verification stage is carried out by simulation, using the signal 

generation and visualization facilities offered by Matlab. 

Finally, the system implementation is performed by translating 

the model to different kinds of netlists and generating the 

bitstream file for the FPGA. When accomplishing the 

verification stage, SysGen is also able to include the 

appropriated interfaces to perform hardware co-simulation of 

the complete Simulink model. This simulation mode allows the 

combination of the hardware implementation of a part of the 

system on an FPGA development board in conjunction with 

the mathematical description of the rest of the model. 

As a key element to support the design technique proposed 

in this paper, a cell library named XfuzzyLib has been 

developed using the SysGen tool. It includes different 

alternatives to implement each of the basic elements of the 

architecture for fuzzy controllers shown in Fig. 1. Fig 2 shows 

the components included in XfuzzyLib grouped by 

functionalities: membership function generators, active rule 

selectors, antecedent connectives, rule memories, defuzzifiers, 

and control elements. Membership function generators based 

on arithmetic techniques are able to generate families of 

membership functions corresponding to the types “triangular” 

and “sh_triangular” defined in Xfuzzy (all the elements of a 

sh_triangular family are functions with triangular shapes, 

except the first and the last elements that can be Z- and S-

shaped functions, respectively). Fig. 3 shows the Simulink 

model of this component, which is built as an optimized and 

parameterized specific circuit using the basic building blocks 

provided by the Xilinx Blockset library. 

Two options (product or minimum) for the connective used 

in the knowledge base of inference systems have been 

implemented in the library. Depending on the kind of fuzzy 

module being implemented, different defuzzifier blocks can be 

used: FuzzyMean (FM), WeightedFuzzyMean (WFM), or 

first-order Takagi-Sugeno (TS1), for interpolators; and 

MaxLabel, for decision-making systems [7]. Fig. 4 illustrates 

the simplified block diagrams of defuzzifiers available for the 

first type of fuzzy systems. Finally, the library also contains a 

set of crisp blocks that implement general purpose arithmetic, 

such as addition, subtraction, multiplication or division 

functions, and logic operations, as a selector.  

As it happens to basic building blocks in “Xilinx Blockset”, 

a set of parameters may be employed to define the size and 

functionality of XfuzzyLib components. When these 

Fig.2. XfuzzyLib components grouped by functionalities. 

Fig. 3.  Simulink model of the arithmetic membership function generator circuit (A_MFC) included in XfuzzyLib. 

Fig.4. Simplified block diagrams of defuzzifiers included in XfuzzyLib. 
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components are instanced in a higher hierarchical level, 

parameters can be assigned using numerical values or by 

means of Matlab variables. Numerical values of these 

variables can be later defined using the Matlab command 

window or an “.m” file.  

Building a fuzzy inference system with XfuzzyLib requires 

choosing, interconnecting, and defining the parameters of the 

needed blocks. As an example, Fig. 5 shows the Simulink 

model of a 2-input fuzzy module that uses the minimum 

operator as antecedent connective and employs FuzzyMean 

defuzzification method. System functionality can be verified at 

any design stage using the facilities from Simulink to generate 

excitation signals and to capture and display output data.  

XfuzzyLib also includes elements describing archetypal 

fuzzy logic controllers (FLCs) that differ in the number of 

inputs, the connective used to calculate rule activation degrees, 

and the defuzzification method. Current version of XfuzzyLib 

incorporates 1-, 2-, and 3-input FLCs using minimum and 

product as connectives and the different defuzzification 

methods provided by the library. Blocks describing FLC 

architectures are fully parameterizable, making it possible to 

adapt its functionality according to the requirement of a 

particular application by defining the parameters related to the 

dimension of the system and the behavior of its knowledge 

database. In addition, the hierarchical combination of FLCs to 

define complex fuzzy systems is also possible. 

IV. HW/SW CODESIGN APPROACH 

The design flow proposed in this work combines the use of 

specific tools for development of fuzzy systems from the 

Xfuzzy environment, FPGA synthesis and implementation tools 

provided by Xilinx, and simulation and modeling tools from 

Matlab. The development of a fuzzy control system will be 

carried out at the different stages illustrated in Fig. 6. 

A. FIM High-Level Design 

The first stage of the design flow of an embedded fuzzy 

controller is about the description and functional verification 

of the fuzzy inference module (FIM). This task can be easy 

and rapidly accomplished using the tools included in the 

Xfuzzy design environment. Xfuzzy provides description, 

Fig. 5.  Simulink model of a 2-imput 1-output FLC that uses minimum as connective and FuzzyMean defuzzification method. 
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Fig. 6.  Codesign approach for the synthesis of embedded fuzzy control 

systems on FPGAs. 
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simplification, learning, and simulation tools, which allow 

defining and optimizing fuzzy inference modules, as well as 

synthesis tools to implement them as software or hardware 

components [26]. 

A fuzzy inference module is described in Xfuzzy by means 

of a specification in Xfuzzy Specification Language (XFL3), 

which can combine fuzzy blocks (to perform control and 

decision-making task) and crisp blocks (to implement general 

purpose arithmetic and logic functions). Knowledge rulebases 

can be directly defined by an expert operator (and edited with 

xfedit) or they can be extracted from numerical data using 

identification (xfdm) and supervised learning (xfsl) tools. 

Functional verification is carried out by analyzing the input-

output relation of the system, as well as simulating its closed-

loop behavior in combination with a Java-codified model of 

the plant (xfsim). 

Hardware synthesis tools provided by Xfuzzy allow 

translating an XFL3 specification into a circuit description that 

can be implemented on a programmable device or an 

application specific integrated circuit [33]. To carry out the 

design approach described in this work, a new synthesis tool 

(xfsg), which is able to generate the files required by the 

codesign strategy, has been recently developed by the authors 

and incorporated to the Xfuzzy environment.  

B. FIM Synthesis and Verification 

The xfsg synthesis tool generates the files required to 

synthesize FIMs according to the implementation technique 

described in Section III. The Graphical User Interface (GUI) 

of this tool is shown in Fig. 7. The upper left area contains the 

knowledge base, structured as a pull-down menu with 

components grouped under the categories “RuleBases” and 

“CrispBlocks”. The right area gathers information about a 

particular rulebase or crisp block. Information related to 

membership functions and rules is directly extracted from the 

XFL3 specification, while data corresponding to size of buses 

are defined by means of parameters.  

Once all the fuzzy system components have been 

configured, the tool allows generating the output files. 

Specifically, xfsg provides an “.mdl” file containing a 

Simulink model of the FIM, and an “.m” file with the 

parameters that define the size and functionality of FIM 

components. 

C. FIM IP-Module Implementation 

The assembly of the FIM as IP-module and its integration 

with MicroBlaze processor must be performed at the next 

design stage. To accomplish this task, the input and output 

signals of the fuzzy controller are first connected to shared 

memory blocks (registers in this case) for communicating to 

MicroBlaze. Next, a MicroBlaze EDK processor block, 

available in Xilinx Blockset library, is added to the Simulink 

model. This block uses a MicroBlaze project previously 

generated from XPS. 

During the import process, the shared memories are mapped 

onto MicroBlaze address space, so providing a mechanism to 

connect the FIM through a PLB interface. Basic drivers 

required to use the IP-module in software applications are 

automatically generated in this process.  

D. System Integration and Verification 

According to the application needs, various forms of 

hardware synthesis and hardware co-simulation can be used to 

complete the final design stage. These options are all provided 

by the “System Generator” block. In particular, the use of 

hardware co-simulation facilities allows an FPGA 

implementation of the MicroBlaze processor to be simulated 

with different FIM peripherals connected through shared 

memory blocks in Matlab. This flexibility is a great advantage 

for verification and tuning the control system. 

Fig. 7.  Graphical user interface of the xfsg synthesis tool included in the Xfuzzy environment. 
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The development of hardware and software components is 

jointly performed at this stage using different tools and 

interfaces within Matlab environment. MicroBlaze software 

applications are coded and compiled with the help of XPS 

GUI, and are downloaded to the FPGA through the 

MicroBlaze block interface. In order to confirm the 

functionality of the control system into its real scenario, others 

blocks describing the plant and the operational environment 

should be also included in the Simulink model. Finally, blocks 

to initialize parameters, simulation control, and result 

visualization can be also incorporated to the model. 

V. DESIGN EXAMPLE 

The above described design strategy has been applied to the 

realization of a fuzzy control system for autonomous parking 

of an electric vehicle. Romeo-4R is equipped with traction and 

steering motors, and different sensors that allow calculating 

position, orientation, and speed of the vehicle in every control 

cycle [34]. The goal of the control system is to act on the 

traction and steering motors to fix the adequate speed and 

wheel rotation angle so that the vehicle could park in a 

predefined position. 

Romeo-4R uses a digital signal processor (DSP) TMS-

320LF from Texas Instruments that acquires and processes 

information from sensors and provides support for motors 

control and communication links through a serial port, thus 

easing the low-level control of the vehicle (Fig. 8). The fuzzy 

control module interacts with the DSP using a communication 

protocol over RS232. The DSP sends to the fuzzy module the 

vehicle status information and, in response, transmits back to 

the vehicle the speed and wheel rotation angle calculated by 

the fuzzy controller. 

In order to illustrate the design flow, this section describes 

the development of a hierarchical fuzzy control system able to 

implement a heuristic that allows parking the vehicle even 

when the initial position is near to the objective. This control 

system combines the strategies proposed in [19] (to park the 

vehicle using forward and backward maneuvers) and in [35] 

(to provide minimal-path in backward trajectories).  

The structure of the FIM defined at the high-level design 

stage is shown in Fig. 9a. It is composed by seven rulebases 

and three crisp blocks. Rulebases called Position, Planning, 

and Direction perform a decision-making system that 

determines the direction of the vehicle. They use minimum as 

antecedent connectives and MaxLabel defuzzification method. 

Celerity and Forward are control rulebases that employ 

FuzzyMean defuzzifiers and provide, respectively, the 

absolute value of the vehicle speed and the wheel rotation 

angle for forward trajectories. Rulebase Interpolation is a first-

order Takagi-Sugeno system that, in combination with 

Smoothing and Diff crisp block, implements the hierarchical 

fuzzy controller proposed in [35]. Finally, crisp blocks 

Velocity and Decision correspond to a multiplier and a 

multiplexer, respectively. Fig. 9b illustrates 1-, 2-, and 3-

segment trajectories followed by Romeo-4R when it departs 

from different initial conditions. 

Once the size of FIM components has been defined by 

means of the xfsg GUI, during the FIM Synthesis stage, the 

XFL3 specification is converted into the Simulink model 

FLC DSP 
RS232 

Fig. 8.  Interaction between low- and high-level controllers in the 

Romeo-4R control system.  

Fig. 9.  a) XFL3 specification of the FIM used for autonomous parking of Romeo-4R. b) Trajectories for different initial conditions of the vehicle.  

(a) (b) 
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shown in Fig. 10a. FIM functionality is verified at this design 

phase using the simulation and graphical facilities provided by 

Matlab. As an example, Fig. 10b shows control surfaces that 

manage the wheel angle in forward and backward trajectories. 

The objective of the next design stage is to convert the FIM 

into an IP-module that can be connected to the MicroBlaze 

processor as a standard PLB-peripheral. The first step to 

accomplish this task consists in associating shared memory 

blocks (from/to registers) to FIM’s I/O ports, as illustrated in 

the bottom part of the Simulink model shown in Fig. 11a. 

Next, a MicroBlaze processor block, corresponding to a 

previously generated XPS project, is added to the Simulink 

Fig.10.  a) Simulink model of the FIM generated by xfsg. b) Control surfaces for wheel angle in forward (top) and backward (down) maneuvers. 

(a) (b) 

Fig.11.  Joint development and verification of hardware and software components using the proposed codesign methodology. 

(a) (b) 
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model. SysGen facilities allows implementing this subsystem 

as a hardware co-simulation block (“MicroBlaze hwcosim” 

block in Fig. 11a), which will be implemented in the FPGA 

and will interact with other model components while 

simulation is running. Using this strategy, different FIMs 

alternatives may be tested without having to re-implement the 

entire system, thus providing flexibility and ease of 

development. 

In order to carry out the joint development of hardware and 

software components, during the system integration and 

verification stage, other blocks should be included in the 

Simulink model of Fig. 11a. “Romeo-4R” is a Simulink 

description of the vehicle dynamics based on a mathematical 

model, which allows verifying the system functionality in a 

closed control loop. The “DSP” block models the interaction 

between the low-level controller of Romeo-4R and the fuzzy 

controller under development. This model includes an RS232 

link to communicate with the FPGA-implemented MicroBlaze 

processor by means of an ad-hoc communication protocol, 

which emulates the TMS-320LF functionality using a C++ 

Matlab S-Function. Finally, some extra blocks are used in the 

Simulink model of Fig. 11a to control the simulation and 

visualize the results. As shown in Fig. 11b, Matlab interfaces 

of the blocks “Romeo-4R” and “DSP” are used to set 

parameters that define the initial vehicle position and 

characteristics of the RS232 communication channel. 

The communication protocol and the software drivers to 

communicate with the FIM peripheral, as well as the general 

control loop (coded in C and previously compiled) are 

executed by “MicroBlaze hwcosim” block implemented in the 

FPGA development board. Information between the hardware 

implemented controller and other components included in the 

Simulink model is transmitted through an RS232 cable 

connecting the UART incorporated in the MicroBlaze system 

and the serial port of the PC running Matlab. The FIM is able 

to complete an inference process after 10 clock cycles. This 

value is determined by the number of membership functions 

used by the Smoothing rulebase. Communication and control 

tasks carried out by MicroBlaze in each iteration require about 

3 s, while the control cycle fixed by the DSP device used by 

Romeo-4R is 50 ms. 

Experimental results for different initial conditions obtained 

after implementing the embedded control system in an FPGA 

development board are shown in Fig. 12.  As can be observed, 

these results are similar to simulation results provided by 

Xfuzzy in the FIM high-level design stage (Fig. 9b). Table I 

compares FPGA resource utilization and operation speed for 

the synthesis of the fuzzy controller, with different bit sizes, on 

a Spartan 3A DSP FPGA from Xilinx. Ten, twelve, fourteen, 

and sixteen bits for input and output precision are used in all 

the rulebases (except for output of decision-making ones, 

where only two or three bits are required to codify the different 

situations). The results, both in terms of resource utilization 

and operation speed, obtained by using the design technique 

proposed in this work are similar to those previously obtained 

using approaches based on VHDL descriptions [19]. However, 

the time required to carry out the system development is now 

drastically reduced. The fully-automated design flow based on 

SysGen allows implementing a FIM like the one used in this 

example in 10 or 15 minutes on a conventional workstation. 

The time required to complete the same task with the tools 

employed in [19] was at least an order of magnitude higher 

due to lacking of mechanisms for direct synthesis of 

hierarchical fuzzy modules. 

This reduction in development time can be exploited, not 

only to accelerate the exploration of the design space of a 

given solution, but also to compare fuzzy controllers with 

different heuristic strategies. As an example, Table II shows 

implementation results for four fuzzy controllers of different 

complexity. Case 1 corresponds to the simplest solution that 

Fig. 12.  Hardware co-simulation results for different initial conditions. 

TABLE II 

IMPLEMENTATION RESULTS FOR DIFFERENT FUZZY CONTROLLERS 

 Case 1 Case 2 Case 3 Case 4 

I/O Ports 31 (5%) 51 (9%) 73 (14%) 73 (14%) 

Slices                         199 (1%) 386 (2%) 1148 (6%) 1413 (8%) 

DSP48As 4 (4%) 8 (9%) 16 (19%) 23 (27%) 

RAM Blocks                  1 (1%) 4 (4%) 7 (8%) 10 (11%) 

Max. Freq. 

(MHz) 
66.251 53.225 67.150 50.940 

 

TABLE I 

IMPLEMENTATION RESULTS FOR DIFFERENT BIT-SIZE 

 10-bit 12-bit 14-bit 16-bit 

I/O Ports 73 (14%) 87 (16%) 101 (19%) 115 (22%) 

Slices                         1413 (8%) 1510 (9%) 1648 (10%) 1989 (11%) 

DSP48As 23 (27%) 23 (27%) 23 (27%) 23 (27%) 

RAM Blocks                  10 (11%) 10 (11%) 10 (11%) 10 (11%) 

Max. Freq. 

(MHz) 
50.940 46.260 47,181 50,431 
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uses X-coordinate and vehicle orientation as inputs to perform 

parking maneuvers using only backward movement [36]. 

Cases 2 and 3 are the hierarchical fuzzy controllers proposed 

in [35] and [19], respectively. Finally, Case 4 is the proposal 

analyzed in this paper. Ten bits for input and output precision 

are used in all the cases. The new technique improves the 

results of previously reported works. The first-order Takagi-

Sugeno defuzzification method included in XfuzzyLib allows 

the hardware implementation of the control strategy described 

in [35], whereas the capability of xfsg to directly synthesize 

hierarchical fuzzy modules considerably speeds up the 

implementation described in [19]. 

VI. CONCLUSIONS 

A codesign strategy for FPGA implementation of fuzzy 

embedded controllers for industrial applications is presented in 

this paper. It allows the development of hybrid HW/SW 

control systems that combine a general purpose processor and 

specific fuzzy inference modules. The design approach is 

supported by a parameterized cell library that provides 

optimized building blocks for a wide variety of fuzzy modules, 

and an automatic synthesis tool for rapid description and 

implementation of hierarchical fuzzy systems. Combining 

these elements with a model-based design flow supported by 

different CAD tools running in the Matlab environment eases 

the concurrent synthesis and verification of hardware and 

software components in every design stage. The advantages of 

the proposed technique are demonstrated through the 

development of a fuzzy controller for automatic parking of an 

autonomous vehicle. The described methodology allows 

accelerating the design process of complex fuzzy controllers. 

This reduction in development time can be exploited to 

optimize a particular solution, as well as to compare different 

solutions in order to obtain the best tradeoff between cost and 

performance. 
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