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The physical mechanisms underlying bubble formation from a needle in a co-flowing liquid
environment at high Reynolds numbers are studied in detail with the aid of experiments and
boundary-integral numerical simulations. To determine the effect of gas inertia the experiments were
carried out with air and helium. The influence of the injection system is elucidated by performing
experiments using two different facilities, one where the constancy of the gas flow-rate entering the
bubble is ensured, and another one where the gas is injected through a needle directly connected to
a pressurized chamber. In the case of constant flow-rate injection conditions, the bubbling frequency
has been shown to hardly depend on the gas density, with a bubble size given by db /ro

��6U�k*U+k2� / �U−1��1/3 for U�2, where U is the gas-to-liquid ratio of the mean velocities, ro is
the radius of the gas injection needle, and k*=5.84 and k2=4.29, with db /ro�3.3U1/3 for U�1.
Nevertheless, in this case the effect of gas density is relevant to describe the final instants of bubble
breakup, which take place at a time scale much smaller than the bubbling time, tb. This effect is
evidenced by the liquid jets penetrating the gas bubbles upon their pinch-off. Our measurements
indicate that the velocity of the penetrating jets is considerably larger in air bubbles than in helium
bubbles due to the distinct gas inertia of both situations. However, in the case of constant pressure
supply conditions, the bubble size strongly depends on the density of the gas through the pressure
loss along the gas injection needle. Furthermore, under the operating conditions reported here, the
equivalent diameters of the bubbles are between 10% and 20% larger than their constant flow-rate
counterparts. In addition, the experiments and the numerical results show that, under constant
pressure supply, helium bubbles are approximately 10% larger than air bubbles due to the gas
density effect on the bubbling process. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2747996�

I. INTRODUCTION

The exhaustive theoretical, numerical, and experimental
effort dedicated to studying the break-up of liquid jets in air
is justified not only by their importance in technological ap-
plications but also by their widespread presence in daily life.
The first well known analytical study about the break-up of
liquid jets was performed by Rayleigh,1 although the role of
capillarity was previously described by Savart2 and Plateau.3

The stability analysis performed by Rayleigh is able to pre-
dict, with a high degree of accuracy, the wavelength or,
equivalently, the volume of the main drops formed when a
circular jet discharges in air. The formation of satellite drops
and the description of the latest instants prior to pinch-off
�see the review by Eggers4�, or the transition from the so-
called jetting regime to the dripping regime,5,6 are details
extensively reported in the literature. However, although the
generation of bubbles is a phenomenon as common as the
drop formation, and of great relevance in a large number of
industrial processes, our knowledge of the bubble formation
process is still far from being fully complete despite the re-

cent advances in the analytical and experimental description
of the bubble pinch-off at low7–9 and high9–13 Reynolds num-
bers. For example, the most studied geometry, due its sim-
plicity and importance in many chemical engineering appli-
cations, is the growth and subsequent pinch-off of a bubble
from an orifice, or needle, placed at the bottom of a liquid
pool.14–21 In this case, the formation of single bubbles at low
and moderate gas Weber numbers is a phenomenon relatively
well understood; but even such a simple situation presents
difficulties not found in the drop formation problem. Indeed,
the gas stream discharging from an orifice into a stagnant
liquid pool always generates bubbles nearby the orifice,
without forming a long ligament, because the configuration
is absolutely unstable independently of the gas Weber
number.22,23 In addition, if the pressure fluctuations origi-
nated by the unsteady liquid flow at the needle exit become
of the order of the pressure drop along the gas injection line,
there may exist a coupling effect between the feeding line
and the bubble formation process15,19,24,25 and, unlike the
case of liquid jets, the flow-rate exiting the needle may not
be constant during the bubbling time. Therefore, the forma-
tion of bubbles is a strongly nonlinear process, coupled with
the dynamics of the gas injection system.

Unfortunately the bubbles released from a needle into a
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stagnant liquid reservoir are not sufficiently small for most of
the engineering applications and different configurations
need to be employed to generate smaller ones, of the order of
O�1–100 �m�. Although nanobubbles can be generated
through porous membranes injecting the gas at a pressure of
the order of 10 MPa,26 a common way to reduce the bubble
size is to inject the gas stream within a liquid co-flow.27 This
technique also avoids the coalescence of bubbles and it is
nowadays extensively employed in microfluid applications.28

An example can be found in the large number of micro de-
vices based on the so-called flow-focusing configuration,
where an inner gas stream, surrounded by an outer liquid
co-flow, is driven through a small orifice.29–34 In this particu-
lar configuration, dimensional analysis and physical argu-
ments have provided with closed expressions for the scaling
of the bubble size based on the different control
parameters.29,32–36 However, although the proposed scaling
laws are valid for practical purposes because they predict the
bubble volume relatively well, a more detailed theoretical
and numerical approach would be desirable to fully compre-
hend the bubble formation mechanisms.

Making use of numerical simulations in the zero Rey-
nolds number limit �Stokes flow�, Jensen et al.37 have re-
cently derived scaling laws to predict the volume of bubbles
formed using the flow-focusing geometry that agree with
previous experimental results.32 Although a similar study in
the limit of high Reynolds numbers applied to the flow-
focusing geometry is still lacking, Oguz and Prosperetti19

analyzed the fundamental problem of bubble formation and
detachment from a needle using a boundary-integral method.
More importantly regarding the present context, they also
considered the possibility of including a liquid co-flow sur-
rounding the forming bubble. From the experimental point of
view, Sevilla et al.,23 and latter on Gañán et al.,38 performed
a series of experiments using the co-flowing geometry pre-
viously analyzed by Chuang and Goldschmidt27 and Oguz
and Prosperetti19 with the aim at determining the formation
mechanisms and scaling laws of air bubbles inside a laminar,
high-Reynolds-number water jet discharging in a still air at-
mosphere. In this work, the authors identify two different
regimes, namely a jetting regime and a bubbling regime,
depending on the Weber number and the gas-to-liquid veloc-
ity ratio. The jetting regime, experimentally observed if the
gas and liquid injection velocities are similar, is character-
ized by a long gas ligament that breaks far from the injection
needle by the growth of external noise. On the other hand,
the bubbling regime, observed when the gas stream flows
sufficiently faster than the surrounding liquid, is character-
ized by a periodic generation of bubbles which can be natu-
rally divided into two stages: an expansion stage and a col-
lapse stage.39 The transition from the jetting to the bubbling
regime was predicted by a change in the nature of the insta-
bility from a convective to an absolute instability. In addi-
tion, a simple description of the mechanisms governing the
collapse stage is given, providing a relevant time scale that
corresponds to a Kelvin-Helmholtz instability. Figure 1
shows a sketch of the periodic bubble formation process in
the bubbling regime. Notice that when a bubble is released, it
leaves behind an intact ligament of length li attached to the

injection needle �Fig. 1�a��. The intact gas stem starts to in-
flate during the expansion stage, which is comprised of the
detachment of a bubble �Fig. 1�a�� to the moment when a
neck is formed �Fig. 1�c��. At this point the radius of the
neck, rn, begins to decrease �Fig. 1�c�� during the collapse
stage until it pinches-off forming a new bubble �Fig. 1�d��.

The main purpose of the present paper is to provide a
detailed description of the entire bubble formation process
using the co-flowing geometry and making use of experi-
ments and numerical simulations. In particular, we will pro-
pose a suitable scaling for the bubbling time and bubble size
as a function of the control parameters and will provide ad-
ditional evidence that support the key role of the gas inertia
in the collapse stage comparing the experimental results with
our numerical simulations. The existing coupling between
the gas injection system and the bubble growth,15,19,24,25 and
subsequent collapse, will also be elucidated by performing
experiments using two different facilities, with the first one
designed to ensure a constant gas flow-rate feeding the
bubble during the formation process.

The paper is organized as follows: The experimental fa-
cility is described in Sec. II, along with a complete discus-
sion of the different conditions required by the injection sys-
tem to ensure a constant gas flow-rate or constant pressure
injection supply. The experimental results are discussed in
Sec. III with a detailed comparison with the numerics. Addi-
tionally, in Sec. III we also propose a scaling law for the
bubble formation frequency and bubble size as a function of

FIG. 1. Schematic representation of the bubble formation process.

077102-2 Gordillo, Sevilla, and Martínez-Bazán Phys. Fluids 19, 077102 �2007�



the relevant control parameters for each of the different set-
ups used in the study. Finally, Sec. IV is devoted to conclu-
sions and the Appendix describes the boundary integral nu-
merical method and the numerical scheme.

II. EXPERIMENTAL SETUP

The experimental facility used in the present study,
shown in Fig. 2, consists of a vertical water jet discharging
downwards from a cylindrical reservoir of 21 cm in diameter
and 4.5 cm of length through a nozzle of 8 mm diameter. A
perforated plate and a piece of foam were placed inside the
water vessel to attenuate any possible disturbances produced
when the water discharges into the vessel. The gas stream
was injected coaxially to the water jet with a hypodermic
needle whose length, l, and inner and outer radii, ri and ro

respectively, were varied depending on the experimental con-
ditions �see Table I�. The water flow was supplied from a
constant pressure tank, and controlled with a flow-meter pro-
vided with a high precision valve. The gas flow �either air or
helium� was supplied from a pressurized bottle and precisely
controlled with a Fisher Bioblock Scientific mass flow-meter.
The measurements were performed by recording the images
of the coaxial jet with a Photron APX RS high-speed camera

at a rate that varied from 30000 f.p.s., with a resolution of
256�256 pixels, to 50000 f.p.s. with a 256�128 pixel
resolution.

There are many studies in the literature which show that
the gas feeding system may affect the formation of bubbles
either through the pressure drop across the injection needle,19

or due to acoustic effects.25 One of the purposes of the
present work is to analyze the effect of the injection condi-
tions on the bubble formation process. Such effect will be
elucidated by using the two different experimental configu-
rations, hereafter referred to as setups 1 and 2, sketched in
Figs. 3�a� and 3�b�, respectively. As illustrated in Fig. 3, the
main difference between both configurations is that in setup
1 the gas stream flows through a very thin capillary tube
before heading the injection needle. The pressure drop along
the capillary tube is much larger than the pressure fluctuation
at the needle exit, �p�t�, ensuring a constant gas flow-rate
feeding the bubble, Qi, during the bubble formation process.
Note that one needs to be very careful to prevent the pres-
ence of void regions, of volume comparable to that of the
forming bubble, in the couplings with the capillary tube to
guarantee the constant flow-rate conditions. However, in

FIG. 2. Sketch of the water nozzle.

TABLE I. Geometrical properties of the different needles used in the experiments. Here, ri and ro are the inner and outer radius of the air injection needle,
while l denotes its length. The numbers in parentheses in the last column indicate the equation used to estimate �Qi /Qi. The use of Eq. �19� to estimate the
value of �Qi /Qi in setups of type 2 is justified in view of the values of St and St le / l are �O�1�.

Expt. Setup
ri

�mm�
ro

�mm�
l

�mm� le / l St St le / l �Qi /Qi

I 1 0.600 0.750 120 ¯ ¯ ¯ �1 �Eq. �6��
II 1 0.400 0.600 120 ¯ ¯ ¯ �1 �Eq. �6��
III 1 0.250 0.400 120 ¯ ¯ ¯ �1 �Eq. �6��
IV 2 0.597 0.8255 245 0.17–0.76 4.7–9.5 1.5–5.2 0.04–0.14 �Eq. �19��
V 2 0.419 0.635 240 0.11–0.57 3–8.1 0.9–3.5 0.03–0.17 �Eq. �19��
VI 2 0.419 0.635 585 0.047–0.215 7.5–20 0.8–3.2 0.015–0.08 �Eq. �19��
VII 2 0.292 0.451 215 0.14–0.47 3.96–7.65 0.9–2.73 0.05–0.17 �Eq. �19��
VIII 2 0.597 0.8255 200 0.55–1.77 1.8–5.2 2.5–4.4 0.015–0.032 �Eq. �19��
IX 2 0.419 0.635 200 0.37–1.77 2.5–4.3 3.3–6.3 0.028–0.059 �Eq. �19��
X 2 0.400 0.600 17 1.60–3.00 0.3–0.5 0.75–0.97 0.9–1.2 �Eq. �19��

FIG. 3. Detail of the two different experimental setups used in the present
work. In �a�, constant flow rate conditions are ensured by placing a very thin
capillary tube just upstream from the injection needle, while in �b� the gas
feeds the needle directly from a chamber of volume Vc� lri

2.

077102-3 Bubbling in a co-flow at high Reynolds numbers Phys. Fluids 19, 077102 �2007�



setup 2 the injection needle is directly connected to a cham-
ber whose volume Vc is much larger than the volume of the
needle, Vc��ri

2l. As a consequence, depending on the
needle geometry, Qi may vary during the bubble formation
period as described later on.

At this point it is important to determine the conditions
required to guarantee that both, the gas flow-rate measured
by the flow-meter, Qc, and the pressure in the feeding cham-
ber, pc, remain constant during the bubble formation process.
Thus, to estimate the relative variation of the gas flow-rate
downstream of the control valve, �Qc /Qc, we will consider
that the upper limit of the pressure fluctuations in the gas
reservoir is of the order of the pressure fluctuations within
the forming bubble, ��pc�max��p. Furthermore, a O��p�
perturbation of the pressure drop across the valve causes a
flow-rate variation, �Qc, given by

�p�t� � Kv�iQc�Qc ⇒
�Qc

Qc
�

�p�t�
p0 − pc

� 1, �1�

where �i is the gas density and Kv is the head loss coefficient
of the control valve, that indicates that, since in both setups
p0− pc��p, it can be ensured that Qc remains nearly con-
stant during the bubbling process. Moreover the pressure
fluctuations in the feeding chamber, �pc, can be estimated
using the energy conservation equation as

�pc

pc
�

�Qc − Qi�tb

Vc
, �2�

with tb being the characteristic bubbling time. In all our ex-
periments, and keeping in mind that typically tb

�O�10−3 s�, Vc was chosen to be sufficiently large for the
ratio given by Eq. �2� to be very small, even in the extreme
case where Qi−Qc was O�Qi�. Consequently, the condition
�pc / pc�1 was also accomplished in all the experiments per-
formed, thus ensuring nearly constant pressure conditions at
the gas chamber during a bubbling period.

Let us now proceed with the estimation of the pressure
fluctuations inside the bubble, �p�t�. Using the radial com-
ponent of the momentum equation, �p can be estimated as39

�p � �o
�vo

�t
ro � �o

vo

tb
ro, �3�

where �o is the density of the outer fluid and vo=�r /�t is the
radial velocity at the gas-liquid interface. Moreover, the ra-
dial velocity can be estimated, applying the continuity equa-
tion to the gas stream, as

2�rolivo + �ro
2uo = Qi → vo �

rouo

2li
�U − 1� , �4�

where U=Qi / ��ro
2uo� is the gas-to-liquid mean velocity ratio

and li is the length of the gas ligament attached to the needle
exit when the previous bubble has just detached �see Fig. 1�.
Notice that in Eq. �4� we have taken into account that the
axial elongation rate of the bubble is approximately given by
the liquid velocity, uo. Consequently, �p can be estimated as

�p �
�o

tb

ro
2uo

2li
�U − 1� , �5�

and, for typical values of tb�10−3 s, Qi / ��ri
2��10 m s−1,

uo�1 m s−1, li /ro�O�10� and the values of ri and ro pro-
vided in Table I, we find that �p�103 Pa.

Although the flow-rate measured by the flow-meter, Qc,
and the pressure in the chamber, pc, can be considered con-
stant, the gas flow-rate feeding the bubble, Qi, may vary with
time depending on the experimental conditions. However, in
setup 1, �Qi /Qi, can be estimated as

�Qi

Qi
�

�p

pc − pa
, �6�

where pa is the ambient pressure. Moreover, since the capil-
lary tube was selected to introduce a pressure drop such that
pc− pa��p, we can conclude that �Qi /Qi�1, indicating
that Qi remain nearly constant during the bubbling period in
all the experiments performed using setup 1.

Regarding the experiments performed with setup 2, the
gas flow-rate feeding the bubble, Qi, may vary during the
bubble formation process depending on the geometry of the
injection needle.19 Thus, to estimate �Qi /Qi as a function of
the control parameters, let us first discriminate between the
following different cases: �a� cases where the entrance
length, defined here as le=0.1Qi /	i, where 	i is the kinematic
viscosity of the gas, and is such that le / l
O�1� and, �b�
cases where le / l�1. In the former case, the pressure drop
along the needle can be estimated by

�pn � 8�ilQi/��2ri
4� , �7�

where �i is the gas viscosity. On the other hand, if le / l�1,
the pressure drop along the needle can be estimated as

�pn �
1

2
�i

Qi
2

�2ri
4 . �8�

The gas flow-rate feeding the bubble, Qi, will be constant if

�p

�pn
�

�Qi

Qi
� 1, �9�

with �pn given by Eqs. �7� and �8� depending on each par-
ticular case. At this point, note that Eq. �9� is a sufficient, but
not necessary condition to ensure a constant flow-rate at the
exit of the injection needle. Indeed, the additional pressure
drop along the needle caused by the unsteady gas accelera-
tion, �pu= l / ��ri

2��i�Qi /�t, can be dominant over �pn for
sufficiently small values of the bubble break-up time, tb.
Thus, to properly estimate �Qi /Qi, it is convenient to deter-
mine the dominant mechanism responsible for the pressure
drop along the injection needle. For this purpose, let us con-
sider the following two different situations that arise when
comparing the unsteady term, �pu, with either expressions
�7� and �8�:

�1� If le / l�1,
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�pu

�pn
�

l�ri
2

tbQi
= St, �10�

where the Strouhal number, St, can also be understood
as the needle-to-bubble volume ratio.

�2� If le / l
O�1�,

�pu

�pn
� St

le

l
. �11�

Consequently, if St�O�1� when le / l�1 or St le / l
�O�1� when le / l
O�1�, �Qi /Qi must be estimated through
the balance

�pu � �il
�Qi

tb�ri
2 � �p�t� , �12�

which leads to

�Qi

Qi
�

�ptb�ri
2

Qi�il
�

�o

�i

ri
2

2lil
�1 −

1

U
	 , �13�

with �p estimated from Eq. �5�. Furthermore, Sevilla et al.23

demonstrated that the condition �1−�ro
2uo /Qi��O�1� is

necessary to have a bubbling regime rather than a jetting
regime and, consequently, Eq. �13� may be further simplified
to

�Qi

Qi
�

�o

�i

ri
2

2lil
. �14�

The estimate of �Qi /Qi given by �14� should be modified if
ctb� l, where c is the sound speed in the gas, since, in such
case, the pressure perturbation at the needle exit would be
�pu��i�Qic /�ri

2. Consequently, l in Eq. �13� must be re-
placed by ctb. Nevertheless, this discussion might be only
relevant for the longest needles used in our experiments �l
�2�10−1 m�. However, even in those cases the length of
the injection needle was of the order of ctb and l does not
need to be substituted by ctb.

In view of the above discussion, the conditions that guar-
antee a constant gas flow-rate entering the bubble in setup 1
are

�p

�pv
� 1,

Qitb

Vc
� 1, �15�

together with a pressure drop along the capillary tube, pc

− pa, much larger than the pressure fluctuation at the needle
exit, �p�t�. Here �p can be estimated through Eq. �5� and
�pv�Kv�iQc

2 represents the pressure drop across the control
valve. However Qi will remain constant during the breakup
time when a configuration of type 2 is used if the conditions
in Eq. �15� are satisfied, together with the following addi-
tional conditions:

�1� If le / l�1 and St�1,

�p

�pn
� 1, �16�

with �pn given by Eq. �8�.
�2� If le / l�1 and St �O�1�

�o

�i

ri
2

2lil
� 1. �17�

�3� If le / l
O�1� and St le / l�1

�p

�pn
� 1, �18�

with �pn given by Eq. �7�.
�4� Finally, if le / l
O�1� and St le / l�O�1�,

�o

�i

ri
2

2lil
� 1. �19�

A large number of experiments, with gas and liquid ve-
locities within the ranges 3 m/s�Qi / ��ri

2��30 m/s and
1 m/s�uo�3 m/s, respectively, and gas Reynolds number
Rei=Qi / ��	iri��2300 �laminar pipe flow�, were performed
with injection needles of different length. Note also that the
liquid jet discharges directly into a stagnant air atmosphere
and, consequently, buoyancy effects are negligible in all the
experiments presented here and that the gas-to-liquid mean
velocity ratio was larger than unity �Qi / ��ro

2uo��1� to en-
sure a bubbling regime instead of a jetting one.23 A summary
of the experimental conditions of each experiment is pro-
vided in Table I, with the type of experimental setup em-
ployed indicated in the second column. In this table the ex-
perimental sets IV–VII correspond to experiments reported
in Sevilla et al.39

It is important to indicate that the experiments performed
with both type of experimental setups satisfied the conditions
given by Eqs. �1� and �2� and, therefore, the measured flow-
rate injected into the chamber, Qc, and the chamber pressure,
pc, were nearly constant during a bubbling period. Further-
more, as shown in Table I, the only experiments for which
the flow rate entering the bubble is strictly constant
��Qi /Qi�1� are those performed with setup 1 �data sets
I–III�. However, Qi can also be considered nearly constant
for the experiments performed with setup type 2 and long
injection needles �data sets IV–IX�. On the other hand, Qi

varies during the bubbling time for data set X since
�Qi /Qi�O�1�. Moreover, it will be shown in Sec. III that
the differences in the bubbling frequency obtained in several
experiments performed for the same values of uo, Qc, ri, and
ro but different needle lengths, rely on the distinct injection
conditions.

III. ANALYSIS OF RESULTS

This section is devoted to the presentation and analysis
of the experimental results obtained using the two experi-
mental setups described in Sec. II. Moreover, we will pro-
vide the correct scaling for both the bubbling frequency and
the bubble size as functions of the different control param-
eters. In order to gain more insight into the physics of the
phenomenon, a detailed comparison with corresponding nu-
merical results will also be reported and discussed.

077102-5 Bubbling in a co-flow at high Reynolds numbers Phys. Fluids 19, 077102 �2007�



A. Constant flow rate injection conditions

In this subsection we will compare the results of experi-
ments performed with setup 1 at constant flow rate condi-
tions with the numerical results obtained from the simula-
tions performed with the boundary integral method �BIM�
described in the Appendix. Although both the nonlinear evo-
lution of the bubble interface and the coupling with the in-
jection needle are taken into account in our approach, we can
anticipate that there will be some differences between the
numerics and the experiments. The discrepancies can be
partly attributed to the fact that unlike what experimentally
happens, the BIM considers an infinitely thin gas-water shear
layer. Moreover, in the simulations we assumed that the gas
is injected through a needle of zero wall thickness and radius
ro. However our experiments revealed that, after exiting the
needle through the inner radius, ri, the radius of the gas
interface expands to a value close to ro a few radii down-
stream of the needle exit. Although the ratio �1−ri /ro�

�0.3 is small, we observed that, keeping the rest of the
parameters constant, the bubble formation frequency de-
creased as the needle thickness increased.

Figures 4–6 compare the numerically calculated time
evolution of the bubble interface with that measured experi-
mentally for different values of the Weber number, defined
here as Weo=�ouo

2ro / with  being the surface tension, and
the gas-to-liquid mean velocity ratio, U=Qi / ��ro

2uo�. The
images shown in Fig. 4 were taken using the experimental
set III of Table I, while those of Figs. 5 and 6 correspond to
results obtained with the experimental set II. The figures il-
lustrate the differences on the bubble shape at detachment
with the Weber number. In addition, Figs. 4–6 also indicate
that the bubbling time decreases when U increases for a fixed
value of Weo, while it increases with Weo for a fixed value of
U �compare, for instance, Figs. 5�a� and 6�a��. Consequently,
both the difference of velocity between the gas and the liquid
streams, and the surface tension forces contribute to acceler-

FIG. 4. Comparison of the experimental visualizations
with the numerical simulations at Weo=10.24. �a� U
=1.86, �b� U=2.60, and �c� U=4.98. The experimental
conditions are those corresponding to experimental set
III reported in Table I.
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ate the bubble formation process. It is also interesting to note
that the presence of the liquid co-flow prevents bubble coa-
lescence even for values of U as large as 10.

To guarantee that the gas flow rate in setup 1 was indeed
constant during the bubbling process we measured the time
evolution of the bubble volume from the high speed movies

recorded. The result of this analysis has been displayed in
Fig. 7, where the dimensionless bubble volume obtained
from the images, Vb=
0

zt�rs
2�z�dz / ��ro

3�, has been plotted as
a function of dimensionless time, �= tuo /ro, for four different
cases, namely Weo=10.24, U=1.86 �a�, Weo=15.75, U
=3.84 �b�, Weo=24.61, U=4.82 �c�, and Weo=48.23, U

FIG. 5. Comparison of the experimental visualizations
with the numerical simulations at Weo=24.61. �a� U
=3.05, �b� U=3.94, and �c� U=4.82. The experimental
conditions are those corresponding to experimental set
II reported in Table I.

FIG. 6. Comparison of the experimental visualizations
with the numerical simulations at Weo=48.23. �a� U
=3.09, �b� U=3.77. The experimental conditions are
those corresponding to experimental set II reported in
Table I.
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=3.09 �d�. Here, rs�z� represents the radius of the interface
obtained from the image, z is the axial coordinate, and zt

denotes the bubble tip, defined as rs�zt�=0. Note that, with
this notation, a strictly constant flow rate implies the simple
bubble growth law Vb=V0+U�, where V0 is the initial bubble
volume and the slope corresponds to the velocity ratio pa-
rameter, U. The symbols in Fig. 7 indicate the experimental
data points, the solid lines are a linear fit for each bubbling
event, and the numbers are the corresponding slopes. Notice
the linearity appreciated in all the bubbling events �the cor-
relation coefficient was larger than 0.99 in all cases� and the
close agreement between the values of the slopes and the
corresponding nominal values of U. These results support
our premise that the setup 1 guarantees constant flow rate
conditions, as will be assumed in the remainder of the paper.
At this point we would like to emphasize that the only entries
for the numerical simulation are the experimentally mea-
sured values of Weo and U, as well as the initial length of the
gas stem attached to the needle exit, li. Since the dimension-
less time, �, is the same in both, the experiments and the
simulations, the agreement observed in Figs. 4–6 is obtained
without any free adjustable parameter. Moreover, we did not
take into account the interaction between neighboring

bubbles, whose influence has thus proven not to be essential,
in order to properly describe a bubbling period within the
range of parameters under study here.

Making use of the numerical simulations, we examined
the mechanisms leading to the bubble growth and subsequent
break-up in detail. First, to analyze the effect of the gas in-
ertia on the bubble formation process, we compared the
high-speed visualizations with the numerical simulations per-
formed including the gas convective terms as well as ne-
glecting them. Notice that, to perform the simulations ne-
glecting the gas inertia, as described in the Appendix, the
Bernoulli equation �A8� was used instead of Eq. �A6�. The
results of these comparisons are displayed in Fig. 8, where
the simulations without including gas inertia, Fig. 8�b�, fol-
low the observed experimental behavior except during the
final instants previous to pinch-off. In effect, note that in the
last frame of Fig. 8�b�, ��8.9, the neck of the gas stem is
still collapsing in the numerical simulations while the bubble
has already detached from the needle in the experimental
visualizations. On the other hand, as observed in Fig. 8�a�,
the whole process seems to be well captured if gas inertia is
included; the neck forms at �exp�4.9 and the bubble pinches
off at �b�7.3 in both the numerical simulations and in the

FIG. 7. Time evolution of the volume of the bubble. �a�
Weo=10.24, U=1.86, �b� Weo=15.75, U=3.84, �c�
Weo=24.61, U=4.82, and �d� Weo=48.23, U=3.09.
Symbols indicate the experimental data and the solid
line represents a linear fit.

FIG. 8. Comparison of the experimental visualizations
with the numerical simulations at Weo=15.75 and U
=3.84: �a� with gas inertia, and �b� without including
gas inertia. The experimental conditions are those cor-
responding to experimental set II reported in Table I.
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corresponding experiment. This result indicates that the pres-
sure drop along the minimum radius, rn, promoted by the gas
convective acceleration �the Venturi effect already described
in Sevilla et al.39 and Gordillo et al.11�, is not relevant to
describe the initial time evolution of the bubble interface,
although it is essential to describe the latest stages of the
breakup process. Moreover, the Venturi effect also explains
the discrepancy between the slender, symmetric evolution of
the neck provided by the numerical simulations which do not
include gas inertia11,12 �Fig. 8�b�� and the nonslender, asym-
metric evolution of the neck observed at the final instants of
pinch-off11 �Fig. 8�a��.

The role of gas inertia can be appreciated more clearly in
Fig. 9�a�, where we have compared the time evolution of the
radius of the neck given by our simulations, including and
without including the gas inertia, at Weo=15.75 and U
=3.84. Notice the rapid collapse of the neck, caused by the
Venturi effect, in the simulations that contemplate the gas
inertia. Moreover, the time evolution of the pressure at the
needle exit, �e=−�i /�o��i /��, and the contribution of the
convective terms to the pressure drop along the minimum
radius, �c=1/2�i /�o�U2−un

2� are also plotted in Fig. 9�b� for
both type of simulations with un being the dimensionless gas
velocity at the neck of the gas ligament of radius rn. It can be
observed in the inset of Fig. 9�b� that �c is the dominant
contribution for ���*�5, indicating that �c is the pressure
term that controls the final instants of bubble break-up. As
explained in Gordillo et al.,11 the large negative pressure
drop at rn is a consequence of the fact that the gas flow rate
through the minimum radius remains constant during the
pinch-off process, Qi / ��ri

2uo��rn
2un, which on physical

grounds, can be explained as follows. Far from the neck, the
radial liquid velocity at the bubble interface does not change
appreciably during times close to pinch-off. Thus, the rate of
change of the bubble volume is nearly constant during pinch-
off and, consequently, there is a constant flow-rate of gas

flowing through the neck which moves downstream with an
axial velocity approximately equal to the liquid velocity and,
thus, much smaller than un, uo�un.

In order to provide additional evidence of the relevance
of gas inertia in the description of the final instants of bubble
break-up at constant flow-rate injection conditions, we car-
ried out a series of experiments with the geometrical con-
figuration reported in set II of Table I, but using helium as a
working gas instead of air, under the same conditions of Qi,
uo, and �o of previous experiments performed with air
��air /�He�6.72�. It should be noticed that changes in the
nature of gas employed only affects to the gas density, modi-
fying by less than 0.1% the gas-water surface tension
coefficient.40 Figure 10 shows two bubbling periods corre-
sponding to experiments performed with helium �Fig. 10�a��,
and air �Fig. 10�b�� for Weo=15.75 and U=6. Since the gas
does not appreciably affect the surface tension of gas-liquid
interfaces, to obtain the Weber number in the experiments
performed with helium, the helium-water surface tension
was taken the same as that of air-water �=0.072 N m−1�.
Although we found that the density of the gas did not sig-
nificantly affect the bubbling frequencies at constant flow
conditions, the geometry of the formed bubbles differs sub-
stantially from each other. Indeed, Fig. 10 shows that the top
of the helium bubbles is flatter than that of the air bubbles. In
addition, it can also be observed that the surface of the he-
lium bubbles is smoother than the surface of the air bubbles.
These differences can be explained in terms of the different
inertia of the gas flow through the neck. Note that the pres-
sure inside the gas ligament in the region near the neck de-
creases as the density of the gas increases and, consequently,
the efficiency of the Venturi effect already mentioned before
also increases. The negative pressure inside the neck accel-
erates the liquid flow surrounding it, and produces a liquid
jet penetrating into the newly formed bubble at a given ve-
locity once the bubble detaches from the gas stem �observe

FIG. 9. �a� Time evolution of the radius of the neck
including gas inertia �solid line� and without including
gas inertia �dashed line�. �b� Time evolution of the pres-
sure at the needle exit, �e, and �c=1/2�i /�o�U2−un

2�
including gas inertia �solid line� and without gas inertia
�dashed line�. Here un is the dimensionless gas velocity
at the neck of the gas ligament, Weo=15.75 and U
=3.84.
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the sequences at �=3.09 and �=4.67 of Fig. 10�b��. To quan-
tify this effect, we considered the singular liquid jets that
penetrate into the gas bubbles immediately after their pinch-
off, and that are typical of a large number of cavity collapse
processes,41 and estimated the characteristic axial velocity of
the water jet entering the gas bubble by measuring the posi-
tion of the water drop marked by an arrow in Fig. 10 at two
different times. The analysis provided with a velocity of the
water drop inside the air bubble of approximately 5 m s−1,
whereas the droplet velocity inside the helium bubble was
approximately 3 m s−1. It seems clear that the velocity of the
water jet penetrating the bubble is substantially larger in air
than in helium, what leads to the different geometries ob-
served in the photographs of Fig. 10. In fact the frame at �
=4.67 in Fig. 10�b� shows the impact of the inner water jet
on the top of the air bubble, identified by a cusp or protuber-
ance on its surface, and not present on the helium bubble. In
addition, another evidence that supports the key influence of
gas density during the final instants previous to pinch-off is
that the gas inertia has also been shown to play an essential
role in the generation of satellite bubbles.43

After describing what happens in the region near the
neck at times close to pinch-off, let us now go back to Fig. 9
to analyze the time evolution of the pressure at the needle
exit, �e, and its effect on the bubble formation process. Al-
though, it has already been shown that the gas inertia is
crucial to describe the final instants of the breakup process,
the gas convective acceleration within the bubble is negli-
gible during the initial stages of the process as can be ob-
served by comparing the values of �e and �c from �=0 to
��5 provided by the numerical calculations performed with
and without convective terms and shown in Fig. 9�b�. This
result explains why our numerical simulations performed ne-
glecting the gas convective terms nearly follow the experi-
mental visualizations during most part of the formation pro-
cess, except at times close the breakup instant �see Fig. 8�b��.
Furthermore, observe in Fig. 9�b� that �e is initially positive

and causes an initial outwards radial acceleration of the liq-
uid surrounding the gas stem. However, �e becomes nega-
tive at ��1, leading to the inwards radial acceleration of the
liquid and the subsequent generation of the neck. Conse-
quently, the initial stages of the bubble formation process are
dominated by a balance among liquid inertia, surface ten-
sion, and the gas pressure at the needle exit. Thus, since the
gas convective acceleration within the bubble is not essential
to describe the initial formation of the bubble, the duration of
the expansion stage, or expansion time, is expected to scale
with the liquid convective time, texp�ro /uo, and to depend
only on U and Weo. In order to check our conjecture, we
measured the expansion time, texp, by processing the high-
speed visualizations. To perform the analysis, we decided to
define the end of the expansion stage as the moment when
the radius of neck was equal to 0.9rg, where rg is the radius
of the gas ligament upstream from the neck. Each case was
averaged over more than 15 bubbling events with the aim at
reducing the measurement errors as much as possible. The
result of the analysis is displayed in Fig. 11, where the ex-
pansion time, made dimensionless with the liquid convective
time, �exp= texp uo /ro, has been plotted as a function of U for
several values of Weo for the experimental sets III �Fig.
11�a�� and II �Fig. 11�b��. The figure shows that, for a fixed
value of the Weber number, �exp slightly increases when U
decreases, specially for small values of U, and that �exp in-
creases with Weo, what indicates that both surface tension
and gas-water shear tend to accelerate the formation of the
neck. Figure 11 also illustrates that the values of �exp ob-
tained in the experimental set III, whose needle has an inner-
to-outer radius ratio of ri /ro=0.625, are slightly larger than
those obtained in set II, where ri /ro=0.667. Thus, we can
infer that the needle thickness does in fact influence the time
scale of the expansion stage and the bubbling frequency,
such that the bubble formation frequency decreases as the
relative needle thickness increases. However, since �exp re-
mains nearly constant at large Weber numbers, and having in

FIG. 10. Time evolution of the bubble formation pro-
cess at Weo=15.75 and U=6 for two different gases: �a�
helium and �b� air. The experimental conditions are
those corresponding to experimental set II reported in
Table I.
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mind that it is just a rough approximation, we decided to
consider �exp a constant that only varies with the thickness of
the injection needle under consideration ��exp�k1�ri /ro�,
with k1�7.5 for ri /ro=0.625 and k1�6.5 for ri /ro=0.667
for needles III and II, respectively�.

Moreover, the bubbling time arises as the addition of the
expansion time plus the collapse time. As already discussed
above, the relevant time scale of the collapse stage can be
estimated by noting that the inward acceleration of the gas
ligament is produced by a favorable pressure gradient di-
rected towards the neck. In order to provide an estimation of
�e, which governs the initial instants of the collapse stage,
the bubble can be modeled as a cylinder of variable radius
rb�t� and constant length lb attached to cylindrical gas stem
of radius ro and a length that varies at rate of dl /dt=uo, as
revealed by the analysis of the experiments. Applying the
continuity equation to the forming bubble, one has

�
drb

2

dt
lb + �ro

2uo = Qi →
rb

ro
= �1 + �U − 1�

ro�

lb
	1/2

. �20�

Therefore the negative pressure accelerating the neck in-
wards can be estimated from the radial momentum equation
as �e�ouo

2 /ro�−�p /�r��o�
2rb /�t2. Since, as suggested

from Fig. 9, the negative gas pressure at the needle exit is the
dominant mechanism provoking the initial stages of collapse

process for large values of U, the preceding balance yields

�ouo
2�e � �orb

d2rb

dt2 � �orn
d2rn

dt2 . �21�

Thus, the estimate of rb through Eq. �20� provides the
following scaling for the collapse time:

tcol �
lb

uo

1

U − 1
. �22�

Since the gas ligament attached to the needle exit elongates
axially at a velocity �uo, lb in Eq. �22� can be estimated as
lb� li+uotexp� li+k1ro where k1 is a constant value. Conse-
quently, estimating li as li /ro�k2−k3U, with k2 and k3 also
constants of order unity, the collapse time in Eq. �22� yields

�col =
tcoluo

ro
�

�k1 + k2� − k3U

U − 1
�23�

and the total bubbling time tb= texp+ tcol, can be approximated
by

�b =
tbuo

ro
�

�k1 − k3�U + k2

U − 1
=

k*U + k2

U − 1
, �24�

with k*=k1−k3.
Figure 12 shows the dependence of the bubbling fre-

FIG. 11. Dependence of the expansion time, �exp, on the
gas-to-liquid velocity ratio, U, for several values of the
Weber number, Weo, for �a� experimental set III and,
�b� experimental set II. The error bars indicate the stan-
dard deviation of the measurements.

FIG. 12. Bubbling frequencies at constant flow-rate
conditions. Hollow symbols correspond to experiments
performed with air and solid symbols indicate experi-
ments performed with helium. The inset shows the ex-
perimental results obtained at Weo�1, together with
the fit provided by Eq. �24�, where k*=5.84 and k2

=4.29.
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quency, 6 /�b, with U for different values of Weo at constant
flow-rate conditions. Notice that the bubbling frequency in-
creases as U increases and the Weber number decreases.
Moreover, the inset in Fig. 12 indicates that Eq. �24� predicts
well the measured bubbling frequencies obtained experimen-
tally for large values of Weo and U�2. However, Eq. �24�
does not capture the behavior of the measured frequencies at
low values of U. This is a consequence of the fact that, in
this limit, the collapse stage is no longer clearly dominated
by the negative pressure at the needle exit. Indeed, at low
values of U the capillary pressure becomes of the order of �e

and contribute equally to the inward acceleration of the neck.
Figure 12 also displays that the bubble formation frequency
does not significantly depend on the gas density for large
values of U as can be observed by comparing the results for
air and helium at the same value of Weo.

The equivalent bubble diameter, calculated as db

= �6Qi / ��fb��1/3, with fb=1/ tb being the measured bubbling

frequency, has been represented in Fig. 13 as a function of
the gas-to-liquid mean velocity ratio for different Weber
numbers. Note that, consistently with Eq. �24�, the equiva-
lent bubble diameter is db /ro��6U�k*U+k2� / �U−1��1/3 for
large values of U and Weo, with db /ro�3.3U1/3 for U�1. At
this point, it is important to emphasize that, under constant
flow rate conditions, the bubbling frequency and, therefore,
the bubble size neither depend on the gas properties nor on
the gas feeding system. Therefore, the only parameters con-
trolling the dimensionless bubble size are Weo, U and the
geometrical ratio ri /ro. The influence of the gas density on
the bubble size has been proven to be small and can be
neglected. Indeed, gas density is only relevant to describe the
final instants of pinch-off, which takes place in a time scale
much smaller than the bubbling period. These conclusions
differ from the results presented in the following section,
where it will be shown that the type of gas used and the

FIG. 14. Comparison of the experimental visualizations
with the numerical simulations performed at constant
pressure supply conditions for Weo=15.75. �a� Uc

=2.76, �pc− pa� / ��ouo
2�=0.25, �b� Uc=3.87, �pc

− pa� / ��ouo
2�=0.37, and �c� Uc=3.85, �pc− pa� / ��ouo

2�
=0.25. The working gas is air in cases �a� and �b� and
helium in case �c�. The visualizations correspond to ex-
perimental set X in Table I.

FIG. 13. Bubble equivalent diameters at constant flow-
rate conditions. Hollow symbols correspond to experi-
ments performed with air and solid symbols indicate
experiments performed with helium. The inset shows
the experimental results obtained at Weo�1, together
with the fit provided by Eq. �24�, where k*=5.84 and
k2=4.29.
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injection system may affect the bubble formation process
under constant pressure supply injection conditions.

B. Injection conditions at constant pressure supply

This subsection provides experiments and numerical
simulations where constant flow rate conditions are no
longer ensured. The interest of this study relies on the fact
that the cost of producing bubbles needs to be minimized in
practical engineering applications, such as chemical reactors
or fluidized beds. Indeed, injection at nonconstant flow rate
conditions is given whenever the pressure drop from the gas
reservoir to the needle exit is of the order of �or lower than�
the pressure fluctuations at the needle exit, �p. This contrasts
with the much larger pressure drop along the feeding line
which is usually necessary to ensure constant flow-rate con-
ditions. In our case, the nonconstant flow rate experiments
were performed using setup 2, with needles shorter than

those used in the constant flow rate experiments �see Table
I�. As will be shown below, under the same operating condi-
tions, i.e., uo, the gas flow rate injected into the feeding
chamber, Qc, and ro, the bubble formation frequencies ob-
tained under constant pressure supply conditions are lower
than their constant flow rate counterparts and, therefore, the
equivalent diameter of the resulting bubbles is larger. More-
over, in the present case, the bubble formation frequency
strongly depends on the pressure drop along the feeding line
�the “flow resistance” in Oguz and Prosperetti19�, indicating
that the bubbling frequency and bubble size vary with the
gas density,18 gas viscosity, and the geometry of the injection
system. Thus, both the fact that the resulting bubbles are
bigger than in the case of constant flow rate, and that the
process depends on a large number of control parameters,
constitute a drawback of these types of injection systems.

Figure 14 displays the experimental visualizations at
constant pressure supply recorded for different values of the
operating conditions and performed at Weo=15.75 with the
same injection needle �experimental set X in Table I�. Fig-
ures 14�a� and 14�b� show the time evolution of an air bubble
while Fig. 14�c� displays the evolution of a helium bubble at
the same conditions given in Fig. 14�b�. Since Qi=Qi�t�
�Qc, the gas-to-liquid mean velocity ratio will be defined in
this case as Uc=Qc / ��ro

2uo� rather than U=Qi / ��ro
2uo� used

in the cases of constant flow-rate conditions. The fact that,
although Qc remains constant during the bubbling process,
the instantaneous velocity ratio, Qi / ��ro

2uo�, varies with time
is clearly observed in Fig. 15. Indeed, this figure shows that,
at the initial stages of the bubble growth, Qi�Qc, while Qi

�Qc at the final instants of the bubbling period. Note that
the bubble volume evolutions of Fig. 15 are quite different
from those shown in Fig. 7, where it can be observed that the
experimental slopes of Vb��� remain constant.

Moreover, Fig. 16 shows that, under flow rate conditions
that are not constant, the bubbling frequency decreases as the
gas density decreases �helium bubbles�. Also notice that, for
a given gas, the bubbling frequency obtained at constant
flow-rate conditions is considerably larger than that obtained
at constant pressure supply conditions. The periodicity of
bubble production implies that the averaged flow rate during
a bubbling period is equal to the gas flow-rate injected into
the chamber, Qc=V�tb� / tb, where tb indicates the break-up
time. Therefore, under the same operating conditions, �Weo,
Uc� and needle radius, ro, the size of the bubbles is smaller
under constant flow-rate conditions than under constant pres-
sure supply conditions. Moreover, under constant pressure
supply, the air bubbles are consistently smaller than the he-
lium bubbles. These conclusions are general and valid in the
whole range of parameters explored, as will be discussed
below.

Figure 14 also shows the comparison of the BIM nu-
merical simulations with the experimental visualizations.
The numerical simulations capture all the essential features
of the bubble formation process �see Fig. 14� at the same
time that reproduce the experimental time evolution of the
bubble volume �see Fig. 15�. In this case, the entries for the
numerical simulation are just the Weber number and the di-
mensionless pressure at the needle exit in Eq. �A9� of the

FIG. 15. Time evolution of the bubble volume at constant pressure supply
conditions for Weo=15.75. �a� Uc=2.76, �pc− pa� / ��ouo

2�=0.25, �b� Uc

=3.87, �pc− pa� / ��ouo
2�=0.37, and �c� Uc=3.85, �pc− pa� / ��ouo

2�=0.25. Sym-
bols are the experimental measurements, solid lines indicate the numerical
results, and dashed lines represent the time evolution of the volume that
would take place at constant flow-rate conditions. The working gas is air in
cases �a� and �b� and helium in case �c�. The data correspond to experimen-
tal set X in Table I.
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Appendix, �= �pc− pa� / ��ouo
2�−�line. The chamber pressure,

pc, was measured experimentally for each value of Qc and
uo. Similarly, �line= pline / ��ouo

2�, with pline the pressure drop
along the feeding line was also experimentally characterized
and, for our particular experimental setup, can be given, in
dimensionless form, as

�line =
1

2

�i

�o
� ro

ri
	4

Uc
2����3.9 +

16l

Rei ri
	

�
1

2

�i

�o
� ro

ri
	4

Uc
2���K�Rei ri/l� �25�

with Rei=Qi / ��	iri� the inner Reynolds number. During the
development of this work, we verified that bubble formation
strongly depended on �. In fact, if � was not adequately
determined for each particular experimental setup and gas
properties, the agreement between experiments and numerics
displayed in Fig. 14 would be lost. Consequently, in contrast
to the case of injection at constant flow conditions, the
bubble growth and detachment from a needle at constant
pressure supply conditions depend on the injection system,
gas density and gas viscosity. We have also checked that,
consistently with Oguz and Prosperetti,19 as the pressure
drop along the feeding line increases the volume of the
bubbles obtained decreases. Moreover the results corre-
sponding to constant flow rate conditions are recovered in
the limit of K�Rei ri / l��1.

Although the influence of the flow resistance on the size
of the resulting bubbles was clearly shown by Oguz and
Prosperetti,19 here we intend to explain, in very simple terms,
the influence of the feeding line on the bubble expansion

time. Note first that, assuming that the bubble is spherical,
the bubble growth after the detachment of the previous one
begins because pc− pa−2 /rb�0, with rb the bubble radius.
Consequently, the gas initially accelerates the liquid out-
wards, provoking the bubble surface to grow. Therefore, the
pressure at the needle exit, pexit, begins to decrease with time
until it eventually drops below the pressure of the feeding
chamber, pc. This is caused by the fact that pexit= pc

−1/2�iui
2�line, where the gas velocity, ui, is obtained using

the continuity equation �ro
2ui=4�rb

2drb /dt. To conclude with
this qualitative description, note that the expansion stage
ends at the instant texp when the pressure at a point of the
liquid stream on the bubble surface, pexit−2 /rb, drops be-
low the pressure of the outer, surrounding liquid, pa. There-
fore, the liquid begins to accelerate inwards at the instant texp

where pexit�texp�−2 /rb�texp�= pa. With the aim at calculating
the expansion time in a simplified manner, the time evolution
of the bubble interface can be approached by means of the
dimensionless Rayleigh-Plesset equation,

RR̈ +
3

2
Ṙ2 =

pc − pa

�ouo
2 −

2

Weo R

−
1

2

�i

�o
� ro

ri
	4

�4R2Ṙ�2K�Rei ri/l� , �26�

where R=rb /ro, and K represents the pressure loss coeffi-
cient obtained from the experiments. In view of the above
discussion, the condition which provides us with �exp can be
stated as

FIG. 16. Dependence of the bubbling frequency with
Uc for air �circles� and helium �triangles� at two differ-
ent values of the Weber number, �a� Weo=15.75 and �b�
Weo=24.61. The corresponding bubble diameter is
shown in �c� and �d�, respectively. Here CFC indicates
constant flow-rate conditions and NCFC indicates non-
constant flow-rate conditions.
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pc − pa

�ouo
2 −

2

Weo R��exp�

−
1

2

�i

�o
� ro

ri
	4

�4R2��exp�Ṙ��exp��2K�Rei ri/l� = 0, �27�

which can be calculated by solving Eq. �26� with the initial

conditions R�0�=1, Ṙ�0�=0.
Figure 17 shows the comparison between the expansion

times calculated through Eqs. �26� and �27� and those deter-
mined experimentally. The results of the simple model de-
scribed above quantitatively agree with the experimental
measurements, with the differences being just a consequence
of the distinct criterion used to determine the expansion time,
�exp. In fact, while Eq. �27� indicates that the expansion stage
finishes when the exit pressure is pexit= pa+2 /rb, the ex-
perimental values were determined when the radius of the
neck was rn=0.9rg. Notice that when pexit= pa+2 /rb the
outer liquid, which was moving radially outward, begins to
slow down until eventually stops and starts to move toward
the axis forming the neck in the gas ligament. This process
takes a certain time that depends on the liquid inertia, justi-
fying therefore the smaller values of �exp given by the model.
Moreover, since the liquid inertia increases with Uc, the dif-
ferences between the experimental values and those provided
by the model also increase with Uc.

IV. CONCLUSIONS

We have studied the mechanisms underlying the periodic
formation of gas bubbles within a laminar, high Reynolds
number liquid jet both experimentally and with the aid of
boundary-integral numerical simulations. Two different ex-
perimental setups were considered in order to elucidate the
role of the gas injection system. In addition, a detailed dis-
cussion of the differences between constant and nonconstant
flow rate injection conditions is provided, including the re-
quirements that a certain gas injection system needs to sat-
isfy to guarantee a constant bubble injection flow-rate.

From a morphological point of view, the bubbles formed
have different shapes depending on the Weber number; the
bubbles display a shape similar to an almond at low Weber
numbers while they look like a peanut for larger values of
Weo. Guided by the analysis of the numerical results the size
of the resulting bubbles has been properly scaled for each of

the two experimental setups analyzed as a function of the
gas-to-liquid mean velocity ratio, and the gas-to-liquid den-
sity ratio �i /�o. More precisely, in the case of constant flow-
rate injection conditions, the bubbling frequency has been
shown to hardly depend on the gas density, with a bubble
size that, for sufficiently large values of U and Weo, scales as
db /ro�U1/3.

In the case of constant pressure supply conditions, the
bubble size strongly depends on the pressure drop along the
feeding line and, consequently, on the density of the gas
injected. This dependence makes the control of the bubble
formation process considerably more difficult than in the
constant flow-rate case. Furthermore, under the operating
conditions reported here, the equivalent diameter of air and
helium bubbles is, respectively, about 10% and 20% larger
than the constant flow-rate counterpart. In addition, the ex-
periments show that, under constant pressure supply, helium
bubbles are approximately 10% larger than air bubbles due
to the gas density effect on the bubbling process.

Another conclusion which can be extracted from the
present work concerns the essential role of gas inertia in the
description of the latest stages previous to pinch-off. Indeed,
experiments and numerical simulations retaining gas inertia
agree both in the geometry of the bubbles and in the time
scale throughout the whole bubble formation process. How-
ever, simulations neglecting gas inertia do not reproduce the
experimentally observed behavior at times close to pinch-off.
These simulations show that the neck is still collapsing while
in the experimental visualizations the bubble has already
pinched-off. The experimental results indicate that, once the
neck is formed, the velocity of the gas through it increases,
the pressure decreases and, consequently, the neck collapses
more rapidly due to a Venturi effect; a phenomenon not taken
into account in this type of simulations. In addition, the evo-
lution of the neck in the numerical computations carried out
neglecting gas inertia is symmetric, in the sense that the
shapes of the interface upstream and downstream of the neck
are identical, while the experimental collapse takes place
asymmetrically. Moreover, a final evidence of the effect of
gas inertia on the final instants of the bubbling process has
been reported analyzing the velocity of the liquid jets pen-
etrating the forming bubble at the break-up moment. The
experiments performed under the same operating conditions
with air and helium indicated that the velocity of the pen-

FIG. 17. Comparison of the dependence of the expan-
sion time, �exp, on the gas-to-liquid velocity ratio, Uc,
given by the numerical simulations �filled symbols� and
the experimental visualizations �hollow symbols� for
several values of the Weber number, Weo, for air �a�
and helium �b�. The error bars indicate the standard
deviation of the measurements.
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etrating jets were considerably smaller in the cases of helium
bubbles than in the cases of air bubbles, which demonstrate
the key role of gas inertia in jet formation.
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APPENDIX: NUMERICAL PROCEDURE

Consider the situation displayed in Fig. 18, of a gas flow
at a constant velocity ui injected through a needle �inner fluid
in Fig. 18� and discharging into another fluid �outer fluid in
Fig. 18� whose velocity at infinity, uo, is parallel to the in-
jection needle and can be different from zero. The main dif-
ference between the present situation and that considered in
Oguz and Prosperetti19 is that the procedure presented here
permits us to take into account the inertia of both the inner
and outer fluids. Here we provide an axisymmetric boundary
integral method �BIM�, based on that described in
Rodríguez-Rodríguez et al.,42 which is especially useful
when both, the solid boundaries, and the free surface sepa-
rating two fluids with different densities are present. For the
problem at hand, the next set of parameters and dimension-
less variables will be considered:

��i,o� =
��i,o�

uoro
, � =

tuo

ro
, Weo =

�ouo
2ro


, U =

ui

uo
,

�A1�

where ��i,o� is the dimensionless potential, � is the dimen-
sionless time, Weo is the Weber number based on the outer
stream and, since the needle is assumed to have zero thick-
ness, ri=ro, U is the inner-to-outer fluid velocity ratio. For
numerical purposes, it proves convenient to divide the
boundary separating the inner and outer fluids into �N and
�F, which are simply the needle surface and the free surface,
respectively, with, �=�N��F �see Fig. 18�. The following
Green’s formula, applied to each fluid, provides the velocity
potentials ��i,o� for the boundary positions X= �R ,Z�:

��i,o��R,Z� = S�i,o��R,Z� + �
�N��F

g�i,o�
���i,o�

�n�i,o�
ds

− �
�N��F

h�i,o���i,o�ds , �A2�

where g and h are the kernel functions defined in Oguz and
Prosperetti19 and Rodríguez-Rodríguez et al.,42 n�i,o� is the
normal vector pointing out the inner �outer� boundaries and s
is the arc length along the needle boundary and gas-liquid
interface. Also notice that Si�R ,Z�=0 and So=2UZ.

Since the boundary has been divided in two, the dis-
cretized versions of the kernel functions g�i,o� and h�i,o� in Eq.
�A2�, g�i,o� and h�i,o� �see Rodríguez-Rodríguez et al.42� can
be written, in matrix form, as

g�i,o� = G�i,o�
NN

G�i,o�
FN

G�i,o�
NF

G�i,o�
FF �, h�i,o� = h�i,o�

NN

h�i,o�
FN

h�i,o�
NF

h�i,o�
FF � . �A3�

It needs to be pointed out that the needle surface is imper-
meable for the outer fluid, and ��o /�no=0 along �N. Simi-
larly, �N is also impermeable with respect to the inner fluid
except at the hemisphere placed upstream of the needle
where the inflow condition is imposed ���i /�ni�0� as
shown in Fig. 18.

The unknowns of the integral equation �A2� are the po-
tentials along the inner and outer sides of the needle ��i

N and
�o

N respectively�, the potentials along the free surface ��i
F

and �o
F�, and the normal velocity at the free surface

���i
F /�ni� Thus, the discretization of integral equation �A2�

provides the following system of equations:

Gi
NF��i

F

�n
− Hi

NF�i
F − Hi

NN�i
N = − Gi

NN��i
N

�n
,

Gi
FF��i

F

�n
− Hi

FF�i
F − Hi

FN�i
N = − Gi

FN��i
N

�n
,

�A4�

− Go
NF��i

F

�n
− ��i/�o�Ho

NF�i
F − Ho

NN�o
N = SN + Ho

NF� ,

− Go
FF��i

F

�n
− ��i/�o�Ho

FF�i
F − Ho

FN�o
N = SF + Ho

FF� ,

with HIJ=I+hIJ and S=−2UZ. Note, that in Eqs. �A4� we
have made use of the definition

� = �o
F − �i/�o�i

F, �A5�

where the modified potential � in Eq. �A5� is analogous to
that defined in Rodríguez-Rodríguez et al.42 Moreover, to
deduce Eqs. �A4�, we have taken into account the fact that
go=gi and ��i /�ni=−��o /�no. The vector �o

F is obtained
from Eq. �A5� once �i

F is determined from the solution of
the system �A4�. The only additional numerical detail that
needs to be addressed with respect to the numerical proce-
dure described in Rodríguez-Rodríguez et al.,42 is that the
node at the lip of the needle, which belongs simultaneously
to both the needle and the free surface boundaries, is in-
cluded in the needle matrices �the ones that contain the su-

FIG. 18. Sketch of the flow configuration considered in the numerical
simulations.
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perscript N�. Furthermore, for this special point, the left-hand
side of Eq. �A2� is multiplied by � /� in the case of the
internal fluid and by �2�−�� /� in the case of the external
fluid �see Fig. 18�. In terms of the dimensionless variables
and parameters defined in Eq. �A1�, the equation for the time
evolution of the modified potential �=�o− ��i /�o��i reads

Dn�

D�
= P0o − P0i + Weo

−1 C +
1

2
�1 −

�i

�o
	� ��

�n
	2

−
1

2
� ��o

�s
	2

−
�i

�o
� ��i

�s
	2� , �A6�

where P0o and P0i are the outer and inner stagnation pres-
sures, respectively, and C=� ·ni indicates the surface curva-
ture. Note that in the Bernoulli equation �A6�,

Dn�

D�
=

��

��
+ �1 −

�i

�o
	� ��

�n
	2

, �A7�

is the material derivative of � along the normal to the inter-
face and that ���i /�ni�2= ���o /�no�2= ��� /�n�2. In the fol-
lowing we will assume that P0o− P0i=1/2�1−�i /�oU2�
−Weo

−1, a function which is independent of time and realistic,
since it corresponds to the difference of pressure correspond-
ing to a cylindrical free surface at the exit of the injection
needle. As already mentioned in the main body of the paper,
simulations neglecting the gas convective terms in Eq. �A6�
were also performed. In those cases, Eqs. �4� were solved
together with

Dn�

D�
=

1

2
+ Weo

−1�C − 1� +
1

2
� ��

�n
	2

−
1

2
� ��o

�s
	2

. �A8�

In addition, we also performed some simulations where
the gas was injected at a constant pressure supply conditions,
rather than at a constant flow-rate conditions. In those cases,
for simplicity, the gas inertia within the bubble was also
neglected and, therefore, the corresponding Bernoulli equa-
tion for the outer flow potential should be given by

Dn�o

D�
=

1

2
− � + Weo

−1 C +
1

2
� ��

�n
	2

−
1

2
� ��o

�s
	2

, �A9�

where �= �pc− pa� / ��ouo
2�−�line, pc is the chamber pressure

and �line=�line�Rei ri / l� indicates the dimensionless pressure
loss along the feeding line. Note that the gas velocity enter-
ing the bubble �at the needle exit� is calculated as

ui =
dVb/�

d�
, �A10�

with Vb being the bubble volume. Furthermore, the liquid
normal velocity at the bubble free surface together with the
liquid potential along the needle surface are obtained by
solving the system

− Go
NF��i

F

�n
− Ho

NN�o
N = SN + Ho

NF�o
F,

�A11�

− Go
FF��i

F

�n
− Ho

FN�o
N = SF + Ho

FF�o
F.

In the numerical implementation reported here, we consid-
ered an injection needle of length 15, an initial bubble shape
given by a cylinder ended by a hemisphere, and the numeri-
cal intact length, li, taken from our experimental measure-
ments. Note that the nodes used to discretize the needle sur-
face were not equally distributed along its length, but they
were clustered near the exit.19 Moreover, the arc length of the
elements used to discretize the free surface was kept constant
and equal to 5�10−2 by adding more nodes as the length of
�N increased with time. For the cases of constant flow-rate,
the inner axial velocity along the permeable hemisphere of
�N �see Fig. 18�, was varied with time as 1− �1−U�
�exp�−5��. Consequently, except for a very short initial
transient, the injected flow rate remained constant during the
numerical simulations.
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