Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

María Jesús Diánez, María Dolores Estrada and Simeón Pérez-Garrido*

Instituto de Ciencias de Materiales de Sevilla and Departamento de Física de la Materia Condensada, CSIC-Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain

Correspondence e-mail: dianez@us.es

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.046$
$w R$ factor $=0.166$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(1E,3E)-4-(Tetra-O-acetyl-d-arabino-tetritol-1-yl)-1-(4-tolyl)-1,2-diaza-1,3-butadiene

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}$, the configurations of the three chiral centres are known from the synthesis, corresponding to a D-arabino configuration. Both double bonds show the E configuration in the solid state. Packing of the molecules is governed by normal van der Waals contacts.

Comment

Following current work on asymmetric synthesis from carbohydrates, Avalos et al. (1995) developed a general synthesis of sugar 1,2-diaza-1,3-butadienes. The title compound, (I), was prepared by treatment of D-mannose with aryl hydrazines, and the corresponding aryl hydrazones were readily obtained. Further conventional acetylation and thermal 1,4-elimination gave 1-aryl-1,2-diaza-1,3-butadienes. In all cases, aryl diazabutadienes were coloured crystalline compounds and could be stored for long periods without appreciable decomposition.

(I)

An X-ray investigation of compound (I) was carried out in order to elucidate unequivocally the molecular conformation of (I) in the solid state. A perspective view of (I) with the atom-numbering scheme is shown in Fig. 1.

Prinicpal geometric parameters are given in Table 1. Both double bonds exist in the E configuration in the solid state.

The arabino chain (C4/C41/C42/C43) is planar, with the terminal atom C44 having a maximum deviation from the least-squares plane of 0.017 (5) \AA. The configurations of the chiral centres $\mathrm{C} 41, \mathrm{C} 42$ and C 43 are R, S and R, respectively. The packing of the molecules is governed by normal van der Waals contacts.

Experimental

The title compound was synthesized from d-mannose (4-methylphenyl) hydrazone, according to the procedure of Avalos et al. (1995). Compound (I) was recrystallized from ethanol-water.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}$
$M_{r}=434.44$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=14.065(1) \AA$
$b=30.189(2) \AA$
$c=5.6414(3) \AA$
$V=2395.4(3) \AA^{3}$

$$
Z=4
$$

$M_{r}=434.44$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$D_{x}=1.205 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$a=14.065$ (1) A
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, light brown
$0.32 \times 0.28 \times 0.16 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 5210 measured reflections 2458 independent reflections

1196 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25^{\circ}$
3 standard reflections frequency: 60 min intensity decay: 6\%

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0855 P)^{2}\right. \\
\quad+0.3134 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.009 \\
\Delta \rho_{\max }=0.22 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{gathered}
$$

Figure 1
A view of the molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the most important H atoms are shown.
used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

The authors thank Dr Palacios, Universidad de Extremadura, Badajoz, Spain, for supplying the crystal, and the Junta de Andalucía for financial support.

References

Avalos, M., Babiano, R., Cintas, P., Jimenez, J. L., Palacios, J. C. \& Sanchez, J. B. (1995). Tetrahedron Asymmetry, 6, 954-956.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

