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Abstract. Tissue P systems with cell division is a computing model in
the framework of Membrane Computing based on intercellular commu-
nication and cooperation between neurons. The ability of cell division
allows us to obtain an exponential amount of cells in linear time and to
design cellular solutions to NP-complete problems in polynomial time.
In this paper we present a solution to the Subset Sum problem via a fam-
ily of such devices. This is the first solution to a numerical NP-complete
problem by using tissue P systems with cell division.

1 Introduction

In the cell-like model of P systems [6], membranes are hierarchically arranged 
in a tree-like structure. Its biological inspiration comes from the morphology of 
cells, where small vesicles are surrounded by larger ones. This biological structure 
can be abstracted into a tree-like graph, where the root represents the skin of the 
cell (i.e. the outermost membrane) and the leaves represent membranes that do 
not contain any other membrane (elementary membranes). Besides, two nodes 
in the graph are connected if they represent two membranes such that one of 
them contains the other one.

Recently, new models of P systems have been explored. One of them is the 
model of tissue P systems where the tree-like membrane structure is not consid-
ered anymore, being replaced by a general graph.

This model has two biological inspirations (see [4]): intercellular communi-
cation and cooperation between neurons. The common mathematical model of 
these two mechanisms is a net of processors dealing with symbols and commu-
nicating these symbols along channels specified in advance. The communication 
among cells is based on symport/antiport rules, which were introduced as com-
munication rules for P systems in [5]. In symport rules objects cooperate to tra-
verse a membrane together in the same direction, whereas in the case of antiport 
rules, objects residing at both sides of the membrane cross it simultaneously but 
in opposite directions.

This paper is devoted to the study of the computational efficiency of tissue 
P systems with cell division. In literature different models of cell-like P systems



have been successfully used in order to design efficient solutions to NP-complete
problems (see, for example, [2] and the references therein). These solutions are
obtained by generating an exponential amount of workspace in polynomial time
and using parallelism to check simultaneously all the candidate solutions.

From the seminal definition of tissue P systems [3,4], several research lines
have been developed and other variants have arisen (see [1] and references
therein). One of the most interesting variants of tissue P systems was presented
in [8], where the definition of tissue P systems is combined with the one of P
systems with active membranes, yielding tissue P systems with cell division. The
biological inspiration is clear: alive tissues are not static networks of cells, since
cells are duplicated via mitosis in a natural way. One of the main features of such
tissue P systems with cell division is related to their computational efficiency. In
[8], a polynomial-time solution to the NP-complete problem SAT is shown, and
in [1] a linear-time solution for the 3-COL problem was presented. In this paper
we go on with the research in this model and present a linear-time solution to
another well-known numerical NP-complete problem: the Subset Sum problem.

The paper is organised as follows: first we recall some preliminary concepts
and the definition of tissue P systems with cell division. Next, recognising tis-
sue P systems are briefly described. A linear–time solution to the Subset Sum
problem is presented in the following section, including a short overview of the
computation and of the necessary resources. Finally, some conclusions and lines
for future research are presented.

2 Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string
u is the length of the string, and it is denoted by |u|. As usual, the empty
string (with length 0) will be denoted by λ. The set of strings of length n built
with symbols from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A
language over Σ is a subset from Σ∗. A multiset m over a set A is a pair
(A, f) where f : A → N is a mapping. If m = (A, f) is a multiset then its
support is defined as supp(m) = {x ∈ A | f(x) > 0} and its size is defined as∑

x∈A f(x). A multiset is empty (resp. finite) if its support is the empty set
(resp. finite). If m = (A, f) is a finite multiset over A, then it will be denoted as
m = {{a1, . . . , ak}}, where each element ai occurs f(ai) times. Multisets can
also be represented as strings in a natural way.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For details, see [7].

3 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [3,4] the membrane struc-
ture did not change along the computation. The main features of tissue P systems



with cell division, from the computational point of view, are that cells obtained
by division have the same labels as the original cell, and if a cell is divided, then
its interaction with other cells or with the environment is blocked during the
mitosis process. In some sense, this means that while a cell is dividing it closes
the communication channels with other cells and with the environment. This
features imply that the underlying graph is dynamic, as nodes can be added
during the computation by division and the edges can be deleted/re-established
for dividing cells.

Formally, a tissue P system with cell division of initial degree q ≥ 1 is a tuple
of the form Π = (Γ, w1, . . . , wq, E , R, i0), where:

1. Γ is a finite alphabet, whose symbols will be called objects.
2. w1, . . . , wq are strings over Γ .
3. E ⊆ Γ .
4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, . . . , q}, i �= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

5. i0 ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q cells
labelled by 1, 2, . . . , q. We shall use 0 as the label of the environment, and i0 for
the output region (which can be the region inside a cell or the environment).
Despite the fact that cell-like models include an explicit description of the initial
membrane structure, this is not the case here. Instead, the underlying graph
expressing connections between cells is implicit, being determined by the com-
munication rules (the nodes are the cells and the edges indicate if it is possible
for pairs of cells to communicate directly).

The strings w1, . . . , wq describe the multisets of objects placed initially in the
q cells of the system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them in an arbitrarily large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such
that u is contained in cell i and v is contained in cell j. The application of
this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object
a. The application of this rule divides this cell into two new cells with the same
label. All the objects in the original cell are replicated and copied in each of the
new cells, with the exception of the object a, which is replaced by the object b
in the first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e, in each step we apply a maximal set of rules. This way
of applying rules has only one restriction: when a cell is divided, the division
rule is the only one which is applied for that cell in that step; the objects inside
that cell do not move in that step.



4 Recognising Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision prob-
lems. Let us recall that a decision problem is a pair (IX , θX) where IX is a
language over a finite alphabet (whose elements are called instances) and θX is
a total boolean function over IX .

In order to study the computational efficiency, a special class of tissue P sys-
tems is introduced in [8]: recognising1 tissue P systems. The key idea is the same
one as from cell-like recognising P systems, that were introduced in [9] as the
natural framework to study and solve decision problems within Membrane Com-
puting. Note that deciding whether an instance of a problem has an affirmative
or negative answer is equivalent to deciding if a string belongs or not to the
language associated with the problem.

In literature, recognising cell-like P systems are associated in a natural way
with P systems with input. The data related to an instance of the decision
problem need to be provided to the P system in order to compute the appropriate
answer. This is done by codifying in unary form each instance as a multiset placed
in an input membrane. The output of the computation (yes or no) is sent to the
environment. In this way, cell-like P systems with input and external output are
devices which can be seen as black boxes, in the sense that the user provides the
data before the computation starts, and then waits outside the P system until
it sends to the environment the output in the last step of the computation.

A recognising tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, Σ, w1, . . . , wq, E , R, iin, i0), where

– (Γ, w1, . . . , wq, E , R, i0) is a tissue P system with cell division of degree q ≥ 1
(as defined in the previous section).

– The working alphabet Γ has two distinguished objects yes and no, present
in at least one copy in an initial multiset w1, . . . , wq, but not present in E .

– Σ is an (input) alphabet strictly contained in Γ .
– iin ∈ {1, . . . , q} is the input cell.
– The output region i0 is the environment.
– All computations halt.
– If C is a computation of Π , then either the object yes or the object no (but

not both) must have been released into the environment, and only in the
last step of the computation.

The computations of the system Π with input w ∈ Γ ∗ start from a configuration
of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w
to the contents of the input cell iin. We say that the multiset w is recognised by
Π if and only if the object yes is sent to the environment, in the last step of
all its associated computations. We say that C is an accepting (resp. rejecting)
computation if the object yes (resp. no) appears in the environment associated
with the corresponding halting configuration of C.

1 In [8] they were called recognizer tissue P systems.



Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognising tissue P systems
with cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (X, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every tissue P system Π(n) a con-
fluent condition, in the following sense: every computation of a system with
the same input multiset must always give the same answer. The pair of func-
tions (cod, s) are called a polynomial encoding of the problem in the family of P
systems.

We denote by PMCTD the set of all decision problems which can be solved
by means of recognising tissue P systems with cell division in polynomial time.

5 The Subset Sum Problem

The Subset Sum problem is the following one: Given a finite set A, a weight
function, w : A → N, and a constant k ∈ N, determine whether or not there
exists a subset B ⊆ A such that w(B) = k.

Next, we shall prove that the Subset Sum problem can be solved in a linear
time by a family of recognising tissue P systems with cell division. We shall
address the resolution via a brute force algorithm.

We will use a tuple (n, (w1, . . . , wn), k) to represent an instance of the problem,
where n stands for the size of A = {a1, . . . , an}, wi = w(ai), and k is the constant
given as input for the problem.

Theorem 1. SUBSET SUM∈ PMCTD.

Proof. Let A = {a1, . . . , an} be a finite set, w : A −→ N a weight function with
n = |A| and k ∈ N. Let g : N × N → N be a function defined by g(n, k) =



((n + k)(n + k + 1)/2) + n. This function is primitive recursive and bijective
between N

2 and N and computable in polynomial time. Let us denote by u =
(n, (w1, . . . , wn), k), where wi = w(ai), 1 ≤ i ≤ n, the given instance of the
problem. We define the polynomially computable function s(u) = g(n, k).

We will provide a family of tissue P systems where each P system solves all the
instances of the SUBSET SUM problem with the same size. The weight function w
of the concrete instance will be provided via an input multiset determined via
the function cod(u) = {{vj

i : w(ai) = j ∧ 1 ≤ i ≤ n}} ∪ {{qk}}, where vj
i (i.e.,

j copies of object vi) represents that j is the weight of the element ai.
Next, we will provide a family of recognising tissue P systems with cell division

which solve the SUBSET SUM problem in linear time. For each (n, k) ∈ N
2 we will

consider the system Π(n, k) = (Γ, Σ, ω1, ω2, R, E , iin, i0), where

– Γ = Σ ∪ {Ai, Bi, : 1 ≤ i ≤ n}
∪ {ai : 1 ≤ i ≤ n + 
log n� + 
log(k + 1)� + 11}
∪ {ci : 1 ≤ i ≤ n + 1}
∪ {di : 1 ≤ i ≤ 
log n� + 
log(k + 1)� + 4}
∪ {ei : 1 ≤ i ≤ 
log n� + 1}
∪ {Bij : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 
log(k + 1)� + 1}
∪ {b, D, p, g1, g2, f1, T, S, N, yes, no}

– Σ = {q} ∪ {vi : 1 ≤ i ≤ n}
– ω1 = a1 b c1 yes no
– ω2 = DA1 · · · An

– R is the following set of rules:
1. Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2 for i = 1, . . . , n
2. Communication rules:

r2,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , n + 
log n� + 
log(k + 1)� + 10
r3,i ≡ (1, ci/c2

i+1, 0) for i = 1, . . . , n
r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)
r6,i ≡ (2, ei/e2

i+1, 0) for i = 1, . . . , 
log n�
r7,i ≡ (2, di/di+1, 0) for i = 1, . . . , 
logn� + 
log(k + 1)� + 3
r8,i ≡ (2, e�log n�+1Bi/Bi1, 0) for i = 1, . . . , n
r9,i,j ≡ (2, Bij/B2

ij+1, 0) for i = 1, . . . , n, j = 1, . . . , 
log(k + 1)�
r10,i ≡ (2, Bi�log(k+1)�+1vi/p, 0) for i = 1, . . . , n
r11 ≡ (2, pq/λ, 0)
r12 ≡ (2, d�log n�+�log(k+1)�+4/g1f1, 0)
r13 ≡ (2, f1p/λ, 0)
r14 ≡ (2, f1q/λ, 0)
r15 ≡ (2, g1/g2, 0)
r16 ≡ (2, g2f1/T, 0)
r17 ≡ (2, T/λ, 1)
r18 ≡ (1, bT/S, 0)
r19 ≡ (1, Syes/λ, 0)



r20 ≡ (1, an+�log n�+�log(k+1)�+11b/N, 0) 
r21 ≡ (1, N no/λ, 0)

– E = Γ − {yes, no}
– iin = 2, is the input cell
– i0 = env, is the output cell

The design is structured in the following stages:

– Generation Stage: The initial cell labelled by 2 is divided into two new cells;
and the divisions are iterated n times until a cell has been produced for each
possible candidate solution. Simultaneously to this process, two counters (ci

and ai) evolve in the cell labelled by 1: the first one controls the step in
which the communication between cells 2 starts and the second one will be
useful in the output stage.

– Pre–checking Stage: When this stage starts, we have 2n cells labelled by 2,
each of them encoding a subset of the set A. In each such a cell, as many
objects p as the weight of the corresponding subset will be generated. Recall
that there are k copies of the object q in each cell labelled by 2 (since they
were introduced as part of the input multiset).

– Checking Stage: In each cell labelled by 2, the number of copies of objects
p and q are compared. The way to do that is removing from the cell in one
step all possible pairs (p, q). After doing so, if some objects p or q remain in
the cell, then the cell was not encoding a solution of the problem; otherwise,
the weight of the subset of A encoded on the cell equals to k and hence it
encodes a solution to the problem.

– Output Stage: The system sends to the environment the right answer accord-
ing to the results of the previous stage:

• Answer yes: After the checking stage, there is a cell labelled by 2 without
objects p nor q. In this case, such a cell sends an object T to the cell 1.
This object T causes the cell 1 to expel an object yes to the environment
(see rules r18 and r20).

• Answer no: In each cell labelled by 2 there exists an object p or q. In
this case, no object T arrives to the cell labelled by 1 and an object no
is sent to the environment.

The non-determinism of this family of recognising tissue P systems with cell
division lies in the division rules. These division rules are not competitive: the
non-determinism is due to the order in which the rules are applied. When the
generation stage ends, the same configuration is reached regardless the order of
application of the division rules: 2n cells labelled by 2, each of them with the
codification of a different subset of A.

6 An Overview of the Computation

First of all, we recall the polynomial encoding of the Subset Sum problem in the
family Π constructed in the previous section. Let u = (n, (w1, . . . , wn), k) be an



instance of the problem, s(u) = g(n, k) and cod(u) = {{vj
i : w(ai) = j ∧ 1 ≤

i ≤ n}}.
Next, we describe informally how the recognising tissue P system with cell

division Π(s(u)) with input cod(u) works. Let us start with the generation stage.
Recall that if a division rule is triggered, the communication rules cannot be
simultaneously applied. In this stage we have two parallel processes:

– On the one hand, in the cell labelled by 1 we have two counters: ai, which
will be used in the answer stage and ci, which will be multiplied until getting
2n copies in exactly n steps.

– On the other hand, in the cell labelled by 2, the division rules are applied.
For each object Ai (which codifies a member of the set A) we obtain two
cells labelled by 2: One of them has an element Bi and the other does not.

When all divisions have been done, after n steps, we will have 2n cells with label 2
and each of them will contain the encoding of a subset of A. At this moment,
the generation stage ends and the pre-checking stage begins.

For each cell 2, an object D is changed by a copy of the counter c. In this way,
in the cell 1 2n copies of D will appear and, in each cell labelled by 2 there will
be an object cn+1. The occurrence of such object cn+1 in the cells 2 will produce
the apparition of two counters:

(a) The counter di lets the checking stage start, since it produces the apparition
of the objects g1 and f1 after 
log n� + 
log(k + 1)� + 4 steps.

(b) The counter ei will be multiplied for obtaining n copies of e�log n�+1 in the
step n+ 
log n�+2. Then, we trade objects e�log n�+1 and Bi against Bi1 for
each element Ai in the subset associated with the membrane. After that, for
each 1 ≤ i ≤ n we get k + 1 copies of Bi�log(k+1)�+1. Then for each element
Ai in the subset associated with the membrane we get min{k + 1, w(ai)}
copies of object p, in the step n + 
log n� + 
log(k + 1)� + 5.

The checking takes place in the step n+ 
logn�+ 
log(k+1)�+6, when all pairs
of objects p and q present in any cell labelled by 2 are sent to the environment.
In this way, if the weight of the subset associated with a cell is equal to k, then
no object p or q remains in this cell in the next step. Otherwise, if the encoding
is not exactly of weight k, then at least one object p or q will remain in the cell.
In the next step the answer stage starts. Two cases must be considered for each
cell:

– If no object p or q remain in the cell, the object f1 does not evolve, g1 evolves
to g2, and in the step n+ 
log n�+ 
log(k +1)�+8 the objects f1 and g2 are
traded by T with the environment. In the next step T is sent to the cell 1,
and in the step n+
logn�+
log(k+1)�+10, the objects T and b are sent to
the environment traded by S. Finally in the step n+
log n�+
log(k+1)�+11
the objects S and yes are sent to the environment.

– If any object p or q remains in the cell, such object is sent to the environment
together with the object f1. This causes that the object b still remains in



the cell 2 after the step n + 
log n� + 
log(k + 1)� + 10. In this way, the
objects b and an+�log n�+�log(k+1)�+11 are traded by the object N with the
environment, and in the step n + 
log n� + 
log(k + 1)� + 12 the objects N
and no are sent to the environment.

6.1 Necessary Resources

Next, we show that the family Π = {Π(g(n, k)) : n, k ∈ N} defined in Theo-
rem 1 is polynomially uniform by Turing machines. To this aim we are going to
show that it is possible to build Π(g(n, k)) in polynomial time with respect to
the size of u.

It is easy to check that the rules of a system {Π(g(n, k)) : n, k ∈ N} of the
family are defined recursively from the values n and k. Besides, the necessary
resources to build an element of the family are of polynomial order with respect
to the same:

– Size of the alphabet: n · 
log(k + 1)� + 6n + 2
log(k + 1)� + 3
log n� + 28 ∈
O(n · log k)

– Initial number of cells: 2 ∈ θ(1).
– Initial number of objects: n + 6 ∈ θ(n).
– Number of rules: n·
log(k+1)�+5n+2
log(k+1)�+3
logn�+26 ∈ O(n·log k)
– Maximal length of a rule: 3.

7 Conclusions and Future Work

Natural Computing studies new computational paradigms inspired from various
well-known natural phenomena in physics, chemistry and biology. This paper
is devoted to a new field in Natural Computing: the study of the structure and
functioning of cells as living organisms able to process and generate information.

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many
results have been presented related to the computational power of membrane
devices, but up to now no implementation in vivo or in vitro has been carried out.
This paper deals with the study of algorithms to solve well-known problems and
in this sense it is a theoretical result, mainly related to computational efficiency.
Moreover, this paper represents a new step in the study of algorithms in the
framework of P systems because it exploits tissue P Systems with Cell Division
(a variant poorly studied) to solve an NP-complete problem.

The basic idea is to consider a distributed and parallel computing device,
structured as the cells of a tissue, by means of arrangement of cells where various
chemicals (we call them objects, to be free of any interpretation) evolve according
to local reaction rules. Because the chemicals from the compartments of a cell
are swimming in an aqueous solution, the data structure we consider is that
of a multiset – a set with multiplicities associated with its elements. Also, in
analogy with what happens in a cell, the rules are applied in a parallel and a
non–deterministic manner.



P systems are computational devices whose power has to be studied in a
deeper extent. In the last years, several papers have explored this power, both in
the framework of cell-like P systems and tissue-like P systems with membrane
creation. These papers have shown that NP-complete problems are solvable
(in polynomial time) by families of recognising P systems in such models. In
this paper we have shown that numerical NP-complete problems can also be
solved (in polynomial time) by families of recognising tissue P systems with
Cell Division, in a uniform way. The specific techniques for designing solutions
to concrete problems (generation, evaluation, checking, and output stages) are
quite different from a P system model to another, so the simulation of one model
in the other one is not a trivial question.

Other lines to follow in the future are the extension of the techniques presented
in this paper for the study of other numerical NP-complete problems and to
develop a software for simulating these computational processes.
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9. Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. A polynomial
complexity class in P systems using membrane division. In E. Csuhaj-Varjú, C.
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