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The numerical study of the steady axisymmetric air-water flow in a vertical sealed
cylinder, driven by the rotating top disk, describes topological transformations as
the rotation intensifies. The air meridional flow (AMF) and swirl induce meridional
motions of opposite directions in water. For slow (fast) rotation, the effect of AMF
(swirl) dominates. For very fast rotation, large-scale regions of clockwise meridional
circulation in air and water are separated by a thin layer of anticlockwise circulation
adjacent to the interface in water. This pattern develops for other fluids as well.
Physical reasoning behind the flow evolution is provided. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4821361]

I. INTRODUCTION

The vortex breakdown (VB) development in one-fluid flows has been explored rather in detail.
Early studies were reviewed by Escudier1 and more recent research is discussed in the monograph
Counterflows.2 In contrast, VB in two-fluid flows has not attracted much attention. A few recent
works include the experimental study, motivated by applications in bioreactors,3 and the numerical
simulations of two-fluid flows in a sealed cylindrical container.4

An advantage of sealed cylinder is its closed domain with well-defined and controlled boundary
conditions. This allows for meaningful comparisons of experimental and numerical results. They
excellently agree for one-fluid VB flows as was first shown by Lopez.5

For free-surface flows however, some numerical and experimental results have discrepancies
even in flow topology, not only in quantitative data.3, 6 Brady et al.4 provided a detailed review which
indicates that further research is required of VB in free-surface and two-fluid flows.

Many works explored VB in a cylinder with one rotating end disk and fixed other walls. In
contrast to one-fluid flows, the cylinder orientation with respect to gravity is substantial for two-fluid
flows. Brady et al.4, 7 considered the vertical cylinder with the bottom disk rotating. In this case,
the interface deforms downward near the axis and upward near the sidewall, typical of whirlpools.
Our paper considers the opposite orientation, where the top disk rotates. In this case, the interface
deforms upward near the axis and downward near the sidewall, typical of water spouts. Another
important difference is that we focus on air and water in contrast to rather exotic fluids in Refs. 4
and 7. The difference is huge in the light-to-heavy fluid density ratio, which is ρr = 0.00122 here
and ρr = 0.5284 in Ref. 4.

A striking feature reported in our paper is the development of a thin circulation layer (TCL)
in water adjacent to the entire interface. This layer, where the meridional motion circulates anti-
clockwise, separates bulk regions of clockwise circulation in air and water. Next, we show that TCL
develops for the fluids studied in Refs. 4 and 7 as well. The TCL thickness decreases as the Reynolds
number, Re, characterizing the rotation strength, increases.

Since for Re < 3000, one-fluid steady axisymmetric VB flows in a sealed cylinder are typically
stable8 and our study is limited to Re ≤ 2000, we expect that the flows considered here are stable.
This expectation, however, must be checked in further research.

In the rest of this paper, we formulate the problem in Sec. II, discuss the simulation results in
Sec. III, and summarize the findings in Sec. IV.
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FIG. 1. Schematic of water-spout model.

II. PROBLEM FORMULATION

A. Flow geometry

Figure 1 is a schematic of the problem. The lower part, 0 < z < hw, of the cylindrical container
is filled with a heavy fluid (e.g., water), the upper part, hw < z < h, is filled with a light fluid (e.g.,
air); h is the cylinder height. With no motion, the interface is flat, z = hw (thin horizontal line in
Fig. 1). When the top disk (at z = h) rotates with angular velocity ω, the interface becomes deformed
as the curve in Fig. 1 schematically shows. This flow mimics a water spout where swirling air raises
water near the rotation axis. This feature is opposite to that in a whirlpool where the water level
decreases near the axis.

One control parameter is aspect ratio H = h/R; R is the radius of the cylinder which serves as
a length scale here. The dimensionless height of heavy fluid at rest is Hw = hw/R. Other control
parameters are the Reynolds number, Re = ωR2/νa, characterizing the swirl strength, the Froude
number, Fr = ω2R/g, which is a centrifugal-to-gravity acceleration ratio, and the Weber number,
We = ρwω2R3/σ , characterizing the effect of surface tension σ at the interface; g = 9.81 m2/s is
the gravity acceleration. We first focus on the air-water flow and then consider the fluids studied
by Brady et al.4, 7 In the air-water case, νa = 15 × 10−6 m2/s is the kinematic viscosity of air,
ρw = 1000 kg/m3 is the water density, and σ = 0.0715 kg/s2 at T = 300 K. We assume that pressure
on the interface at rest has its atmospheric value and the air density is ρa = 1.22 kg/m3.

Imagine a physical experiment where R = 1 mm, a = νa
2/(gR3) = 0.0225, and b = ρwνa

2/(Rσ )
= 0.00315 are fixed, while ω eventually increases. Therefore, Re, Fr = aRe2, and We = bRe2 also
increase.

B. Governing equations

Using R, ωR, and ρwω2R2 as scales for length, velocity, and pressure, respectively, renders all
variables dimensionless. We consider the steady axisymmetric flow of two viscous incompressible
immiscible fluids governed by the Navier-Stokes equations,9

r−1∂(ru)/∂r + ∂w/z = 0, (1)

u∂u/∂r + w∂u/∂z = v2/r − ρn∂p/∂r + νnRe−1(∇2u − u/r2), (2)

u∂v/∂r + w∂v/∂z + uv/r = νnRe−1(∇2v − v/r2), (3)

u∂w/∂r + w∂w/∂z = −ρn∂p/∂z + νnRe−1(∇2w), (4)

where ∇2 ≡ r−1∂(r∂/∂r)/∂r+∂2/∂z2, (u, v, w) are the velocity components in the cylindrical coordinate
(r, φ, z), and p is pressure. The coefficients, ρn and νn, are both equal 1 at n = 1 (in the heavy fluid)
while ρn = ρw/ρa and νn = νa/νw at n = 2 (in the light fluid). For the air-water case, νw = 10−6

m2/s is the kinematic viscosity of water.
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C. Boundary conditions

Equations (1)–(4) are solved under the following boundary conditions:

(i) Regularity at the axis, 0 < z < H, r = 0: u = v = 0, ∂w/∂r = 0.
(ii) No-slip at the walls: u = v = w = 0 at the still disk, 0 < r < 1, z = 0, and at the sidewall,

0 < z < H, r = 1; u = w = 0, v = r at the rotating disk, 0 < r < 1, z = H.
(iii) Continuity of all the velocity and stress components at the interface, z = F(r). In particular, the

balance for the normal stresses yields that

pw − pa = We−1∇ · n − Re−1n · (τw − μrτ a) · n − Fr−1(1 − ρr)z + C, (5)

where n is the unit vector normal to the interface, τw and τ a are tensors of the viscous stresses in
the heavy and light fluids, respectively, μr and ρr are the light-to-heavy fluid ratios of the dynamic
viscosities and densities, respectively, and C is a constant which is determined by imposing the mass
conservation of the heavy fluid inside the container as the interface is deformed,

2 0∫1 F(r)rdr = Hw. (6)

The conditions at the interface are similar to those formulated by Brady et al.4, 7

The numerical procedure, used in this paper, is described in detail in our previous study10 where
comparison with the results by Brady et al.4 is made, which validates the code.

III. DEVELOPMENT OF THIN LAYER WITH ANTICLOCKWISE MERIDIONAL
CIRCULATION

A. Vortex breakdown near the bottom disk center

First, we consider the air-water flow at H = 1 and equal volumes of air and water, Hw = 0.5.
The flow topology is illustrated by streamlines of the meridional motion, which are contours
� = constant, where � is the Stokes stream function, u = ∂�/∂z, w = −∂�/∂r. Figure 2 shows
streamline patterns at Re = 267 (a) and Re = 300 (b). The rotating top dick generates the centrifugal
force, which pushes air to periphery near the disk similar to that in the Kárman boundary layer.11

The Kárman pumping drives the clockwise circulation of air in region CR1 (Fig. 2(a)). This flow
induces the anticlockwise circulation of water in region CR2, which in turn generates the Moffat
corner eddies.12 Among them, only the largest eddy is resolved by our standard grid and denoted as
ME in the lower-right corner of the water flow in Fig. 2.

The flow pattern, presented in Fig. 2(a), remains topologically invariant as Re diminishes to
zero. In contrast as Re increases, the clockwise meridional circulation (vortex breakdown, VB)
develops near the axis-bottom intersection point in region CR3 (Fig. 2(b)). Figure 3 depicts the
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FIG. 2. Streamline patterns at Re = 267 (a) and Re = 300 (b) show development of circulation region CR3.
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FIG. 3. Profiles of velocity w on the axis at Re = 267 (1), Re = 300 (2), Re = 367 (3), and Re = 400 (4) show the emergence
and expansion of region CR3 (see Fig. 2(b)).

distribution of velocity w on the axis, r = 0, at Re = 267 (curve 1), Re = 300 (curve 2), Re = 367
(curve 3), and Re = 400 (curve 4). We plot w1/3(z) in Fig. 3 for convenient observation of regions
in water where w is very small compared with w values in air. At Re = 267 (curve 1 in Fig. 3), w is
positive in air and negative in water. The w profile in air remains nearly unchanged in this range of
Re. In contrast, w(z) significantly varies in water. Interpolation yields that region CR3, where w > 0
in water, emerges at Re = Re1 = 270. As Re increases, the w > 0 region (CR3) expands and the
w < 0 region (CR2) shrinks in water as curves 2, 3, and 4 illustrate in Fig. 3.

The water motion is driven by two factors: (i) meridional and (ii) swirl shear stresses at
the interface, both provided by the air flow. For small Re, factor (i) dominates and develops the
anticlockwise circulation in region CR2 (Fig. 2(a)). The effect of swirl on the meridional motion of
water occurs via the centrifugal force, v2/r. Since it is proportional to the squared swirl velocity, its
effect is negligible compared with that of the meridional stresses in a slow flow.

The meridional motion in region CR2 (Fig. 2(a)), being directed upward near the sidewall, blocks
the transfer of angular momentum downward and transports it toward the axis near the interface and
then toward the bottom disk near the axis. Therefore as Re increases, swirl mostly affects the water
flow near the axis-bottom intersection and results in the development of counter-circulation region
CR3 (Fig. 2(b)).

Physical reasoning behind the region CR3 development is similar to that for the Bödewadt
boundary layer.13 If a rotating fluid meets a normal wall, a secondary flow develops, which converges
to the rotation axis near the wall and goes away from the wall near the axis. The centrifugal force
balances the radial gradient of pressure away from the wall, ∂p/∂r = v2/r, but has the second-order
zero at the wall due to the no-slip condition, v = 0. The pressure gradient, being unbalanced by the
centrifugal force, pushes the fluid to converge near the wall (Bödewadt pumping) that results in a
tornado-like outflow near the rotation axis.

For small Re, the Bödewadt pumping is too weak to reverse the CR2 circulation. As the rotation
speeds up, i.e., Re increases, the tornado-like motion intensifies and overcomes the CR2 circulation
in the axis-bottom vicinity (Fig. 2(b)). The circulation reversal occurs as Re exceeds Re1. The
reversal results in that region CR3 emerges and eventually expands for larger Re; compare Figs. 2(b)
and 4(a).

B. Merging of vortex breakdown bubble and corner eddy

In contrast to CR3, region CR2 shrinks as Re increases. Curves 2, 3, and 4 in Fig. 3 illustrate
this trend showing how the distribution of velocity on the axis varies. Figures 2(b) and 4(a) also
illustrate the CR3 radial expansion.

At Re = Re2, which is around 580, vortex breakdown region CR3 and Moffatt corner eddy ME
merge. The two saddle stagnation points of meridional motion (S1 and S2 in Fig. 4(a)) coalesce and
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FIG. 4. Streamline patterns at Re = 467 (a) and Re = 600 (b) show separation of region CR2 from bottom.

disappear as Re increases. As a result, circulation region CR2 becomes separated from the bottom.
Figure 5 is a schematic helping to explain the separation process details.

The bold lines represent the bottom disk and the sidewall, thin curves are streamlines, the arrows
indicate the flow directions, and the half-bold curves separate the opposite-circulation regions. Saddle
points S1and S2 in Fig. 4(a) merge into saddle point S at Re = Re2 (Fig. 5(a)), which separates from
the bottom disk for Re > Re2 (Fig. 5(b)). As Re further increases, saddle S and the center, depicted
by the bold point in Fig. 5(b), coalesce at some Re = Re3, which is slightly larger than Re2, and
disappear for Re > Re3 (Fig. 4(b)). This bifurcation scenario was systematically studied by Brøns.14

Figure 5 also depicts the smaller Moffatt eddy at the right-lower corner (not resolved in Fig. 4).
The merging of CR3 and ME develops the vortex breakdown region (again denoted as CR3), which
extends from the axis to the sidewall for Re > Re2 (Fig. 4(b)).

Figure 6 depicts profiles of swirl, v, and meridional, vt, velocities at the interface for Re = 600;
subscript “t” underlines that vt is tangent to the interface (and normal to the swirl velocity). The
velocity distribution at the interface drives the water flow and, therefore, helps explain the pattern
shown in Fig. 4(b). Since v is significantly larger than |vt| (Fig. 6), region CR3, where the meridional
motion is driven by the centrifugal force, is large compared with region CR2, where the meridional
circulation is driven by vt. The |vt|/v ratio is very small near the axis and, accordingly, region CR2
is very thin there (Fig. 4(b)).

C. Transformation of region CR2 into thin layer

The dominance of swirl velocity over the meridional velocity at the interface becomes more
prominent, as Re increases. Figure 7 illustrates this by depicting the dependence on Re of the
maximal values of swirl, vm, and meridional, vtm, velocity magnitudes at the interface. In the entire
range of Re, vm is larger than vtm. For small Re, vtm increases proportionally to Re due to the
Kárman pumping. However, after region CR3 emerges in water, vtm reaches its maximal value

S 

S 
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FIG. 5. Schematic shows (a) merging of saddle points S1 and S2 in Fig. 4(a) into saddle point S and (b) separation of S from
the bottom disk. Arrows indicate flow direction.
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FIG. 6. Distribution of swirl, v, and meridional, vt, velocity on interface at Re = 600.
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FIG. 7. Dependence of maximal swirl, vm, and meridional, vtm, velocity magnitudes at the interface on Reynolds number.

FIG. 8. Streamline pattern at Re = 2000 shows thin region of anticlockwise circulation in water, separating regions of
clockwise meridional circulation.
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FIG. 9. Dependence between the Reynolds numbers, characterizing the water (Rew) and air (Re) flows.

and then decreases. The decrease occurs because the Bödewadt pumping, generating the clockwise
meridional motion in region CR3, suppresses the anticlockwise motion in region CR2. In contrast
to decreasing vtm, vm linearly grows for large Re.

This effect makes even larger the vm/vtm ratio, i.e., the dominance of the Bödewadt pumping
over the vt effect. This positive feedback yields that the thickness of region CR2 diminishes. First,
this mechanism makes region CR2 thin near the axis (Fig. 4(b)). As Re increase, the CR2 thickness
becomes small everywhere, including the sidewall vicinity, as Fig. 8 illustrates at Re = 2000.
However, region CR2 cannot totally disappear, because vtm > 0 (Fig. 7) and regions of the clockwise
meridional circulation, CR1 in air and CR3 in water, have opposite velocity directions near the
interface and therefore must be separated by a region of the anticlockwise circulation (CR2).

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r

z

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
0 0.5 1

0

0.2

0.4

0.6

0.8

1

r

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r

z

0 0.5 1
0

0.2

0.4

0.6

0.8

1

r
0 0.5 1

0

0.2

0.4

0.6

0.8

1

r

(d) (e) (f)

(c)(b)(a)

FIG. 10. Development of thin separation layer in the flow of two fluids with close densities: (a) Re = 200, (b) Re = 220, (c)
Re = 350, (d) Re = 500, (e) Re = 600, and (f) Re = 1000.
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FIG. 11. Dependence of maximal swirl, vm, and meridional, vtm, velocity magnitudes at interface on Reynolds number in
flow of two fluids with close densities.

Since the maximal swirl velocity in air (which equals 1) is significantly larger than that in water
(Fig. 7), the air flow is more pressed by the centrifugal force toward the sidewall than the water flow
is. Accordingly the center of meridional circulation in air is located closer to the sidewall than that
in water in Fig. 8.

Since the Bödewadt pumping dominates over the vt effect for large Re, the strength of water
flow can be characterized by the Reynolds number, Rew = (rv)max/νw, where (rv)max is the maximal
value of angular momentum rv, which is achieved at the interface. Figure 9 depicts the dependence
of Rew, characterizing the water motion, on Re, characterizing the air motion.

D. Development of thin separation layer in flow of two fluids with close densities

The interface deformation in the air-water flow is small even at Re = 2000 (Fig. 8), where the
maximal (minimal) height of interface is 0.51 (0.49). The deformation is small because the water
density is about thousand times the air density. To explore, whether the TCL development occurs for
other fluids as well, and to observe large deformations of interface in a steady axisymmetric flow,
we address now the media used in Ref. 4, where the light-to-heavy fluid density ratio is ρr = 0.5284
and dynamic viscosity ratio μr = 0.2. We keep the same values of the aspect ratio (H = 1) and the
height of the heavy fluid at rest (Hh = 0.5).

Figure 10 depicts streamlines of the meridional motion at Re values shown near the pictures.
Here Re = ωR2/νh where νh is the kinematic viscosity of the heavy (lower) fluid. The flow topology
transformations and the development of the thin separation layer, illustrated by Fig. 10, are similar to
those in the air-water flow. The difference is in the significant deformation of interface as Fig. 10(f)
depicts at Re = 1000. Figure 11 is an analog of Fig. 7 and reveals the same features: (i) dominance
of maximal swirl velocity, vm, over the maximal meridional velocity magnitude, vtm, on the interface
and (ii) decreasing of vtm for large Re. Thus, the flow features revealed for the air-water case remains
similar for the media used in Ref. 4.

IV. CONCLUSION

The numerical simulations of steady axisymmetric flows of two viscous incompressible im-
miscible fluids in a sealed vertical container with the rotating top disk reveal the development of
counter-circulation (vortex breakdown, VB) region of the meridional motion near the bottom center,
as the rotation speeds up (Fig. 2). If the rotation further increases, the VB region with the clockwise
meridional circulation expands and occupies nearly the entire water domain, being detached from
the interface by a thin separation layer of the anticlockwise meridional circulation (Fig. 8). The TCL
development is common for the air-water flow and for the flow of the two fluids studied in Ref. 4
(Fig. 10). This indicates that the flow pattern, consisting of two global regions, where the meridional
circulation is clockwise, and the thin separating layer of anticlockwise circulation, is typical of
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water-spout-like high-speed two-fluid flows. Physical reasoning behind this pattern development is
provided in terms of the Bödewadt and Kárman pumping mechanisms.
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