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Abstract

We introduce a model described in terms of a scalar velocity field on a 1D lattice, evolving through
collisions that conserve momentum but do not conserve energy. Such a system possesses some of the
main ingredients of fluidized granular media and naturally models them. We deduce non-linear
fluctuating hydrodynamics equations for the macroscopic velocity and temperature fields, which
replicate the hydrodynamics of shear modes in a granular fluid. Moreover, this Landau-like
fluctuating hydrodynamics predicts an essential part of the peculiar behaviour of granular fluids, like
the instability of homogeneous cooling state at large size or inelasticity. We also compute the exact
shape of long range spatial correlations which, even far from the instability, have the physical
consequence of noticeably modifying the cooling rate. This effect, which stems from momentum
conservation, has not been previously reported in the realm of granular fluids.

1. Introduction

Since the seminal paper of Einstein [1], it has been well known that the fluctuating behaviour of systems at the
mesoscopic level reflects the hectic microscopic dynamics beneath. While the equilibrium behavior of
mesoscopic fluctuations has been investigated and understood in detail [2, 3], a big effort is still being carried out
to explore the fluctuating properties of non-equilibrium media [4]. These are known to lead, in great generality,
to the emergence of spatial correlations and pattern self-organization [5, 6]. In this context, the crucial task of
connecting microscopic and mesoscopic dynamics is considerably simplified when there exists a separation of
scales, which makes it possible to introduce slow fields evolving under the so-called hydrodynamic equations [7].

An important class of systems exhibiting patterns includes two types of complex fluids: active matter [8, 9],
such as bacteria or birds, and fluidized granular materials [10]. Interestingly, active and granular matter are often
associated [11-14]. They are not only relevant for applied and biomedical sciences, but also offer fascinating
challenges for kinetic theory [15]. Indeed, the lack of energy conservation in the microscopic dynamics makes
them intrinsically out-of-equilibrium systems [ 16]. In granular and active fluids, the spectacular emergence of
spatial patterns, particularly in vectorial fields such as momentum or orientation, is often understood in terms of
hydrodynamic equations [ 17]. Furthermore, a relevant role is played by fluctuations, as an inevitable
consequence of the relatively small number of their elementary constituents [ 18].

One of the most intensively investigated states in the realm of granular fluids is the homogeneous cooling
state (HCS) [19, 20]. Therein, the granular temperature decays in time following Haff’s law [21], whereas the
system remains spatially homogeneous. Remarkably, the HCS is the reference state for the hydrodynamic
description of granular fluids but it is unstable: for large enough inelasticity or system size, the scaled fluctuations
of the transverse velocity increase (shear instability) and eventually density inhomogeneities arise (clustering
instability) [22]. This instability for large system sizes makes it relevant to look into the finite size corrections to
the physical quantities, like the cooling rate, since a ‘thermodynamic limit’ in which the system size is infinitely
large cannot be taken without simultaneously making the inelasticity vanish. Notwithstanding, and to the best of

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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our knowledge, these finite size corrections have only been investigated for a system of smooth inelastic hard
spheres very close to the shear instability [23].

In deriving mesoscopic transport equations from microscopic rules, analytical results are needed and simple
models are good candidates for this [24, 25]. In this paper, we study a 1D lattice model which implements two
main ingredients of granular fluids: inelastic collisions and momentum conservation. Given the simplicity and
appealing physical picture of the model, this novel approach may help to improve our current understanding of
the complex behaviour of granular fluids. To start with, we recover some of the main features of granular fluids:
more specifically, the large size and inelasticity shear instability. In addition, we are able to compute exactly the
shape of velocity correlations, which allows us to, first, extend the known results of fluctuating hydrodynamics
[26] and, second, obtain the finite size corrections to the cooling rate. The latter has a non-trivial dependence on
the inelasticity and system size: for a given inelasticity, it changes sign at a certain value of the system size that is
smaller than the one corresponding to the shear instability.

Finally, we would like to stress that momentum conservation is a physical constraint that certainly has a
recognized role in the appearance of long-range spatial correlations [6, 27]. However, since it complicates the
description and the derivation of exact results, it is rarely considered in its entirety. Here, starting from the
microscopic dynamics, we are able to rigorously derive the mesoscopic equations that describe the average and
fluctuating behaviour at the hydrodynamic scale, taking into account momentum conservation in full.

2. Microscopic equations of the model

Fluctuating hydrodinamics in linear and nonlinear lattice diffusive models have been extensively studied in
recent years, both in the conservative [28—31] and in the dissipative cases [32—34]. Inspired by [35], we consider
a 1D lattice with N'sites and given boundary conditions, either periodic or thermostatted, depending on the
situation of interest. At a given time p, each site [ possesses a velocity v; , and the total energy of the system is

E,= ZZI pr. In an elementary time step of the dynamics, with a probability discussed below, a pair of nearest
neighbours (I, I + 1) collides inelastically and evolves following therule (0 < a < 1)

Vip+1 = Vip — (1+a) Al,p/za Vit+l,p+1 = Vitl,p + (I + a)Al,p/Z’ (1)
having defined the relative velocity
App =Vip — Vg1, (2)

Momentum is always conserved, v;, + vi41,, = Vi pt1 + Vig1,p+1, while energy, if & # 1,is not:
Vl?p+l + Vl2+1,p+1 - Vl?p - Vl2+1,p = (a* - I)Azz,p/z < 0.

The definition of the model implies that there is no mass transport, particles are at fixed positions and they
only exchange momentum and kinetic energy. We are also disregarding the so-called kinematic constraint in
[35], namely a colliding pair is chosen independently of the sign of its relative velocity. This can be understood as
the velocity of the particles representing not their motion along the lattice axis but rather along a transversal one:
in fact, the hydrodynamics derived here replicates transport equations for granular gasesin d > 1restricted to
the shear (transverse) velocity field; see figure 1.

In the context of granular fluids, the model may be physically motivated as follows. We start froma d > 1
system that has been divided into ‘slabs’ that are perpendicular to the lattice direction. Specifically, each particle
on the lattice represents one slab. In this sense, the parameter a that appears in the collision rule (1) should not
be confused with the usual restitution coefficient defined in granular media, since here a stands for an effective
inelasticity for the collisions between slabs. The connection with a ‘real’ granular fluid should be done at the level
of the cooling rate that appears in the hydrodynamic equations; see section 3.

Now we write down the evolution equation for the velocities. At time p, the probability that the nearest-
neighbours pair atsites (I, / + 1) collide is assumed tobe P,  |A;, |#. Then,

Vip+1 — Vip = _jl,p +].]_1’p3 jl,p =1+ a)Al,péyp,l/zr (3)
which is a discrete continuity equation for the (conserved) momentum, with j, , being the momentum current,

that s, the flux of momentum from site / to site /+1 at the time step p. Therein, 6 ypl 18 Kronecker’séand y,isa

random integer which selects the colliding pair with probability P; ,. The evolution equation for the energy is
obtained by squaring equation (3),

Vl?p+l - pr = _Il,p + ]l—l,p + dl,p- (4)
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Figure 1. The model is defined on a lattice, each site being characterized by a velocity v, and standing for a fluid slab. The dynamics
proceeds via nearest-neighbour collisions as defined in the text, in which part of the energy is dissipated. This model resembles a
sheared granular system at the mesoscopic level. To be specific, we show the sketch that corresponds to periodic boundary conditions.

Again, we have defined an energy current Jj , from site [ to site [+1 and the energy dissipation d; , at site /as

at—1
T(éyp,lAip + 5yp,1_1A12_1,p) <0. (5)

Ty = (Vl,p + Vig1p )jl,p’ dl,p =
The sink term d; , only vanishes in the elastic case a = 1.

Stochastic simulations of the model are done as follows. At any Montecarlo step p, one site /is picked with
probability Py, o |4, |/ and particles /and I+1 collide following the microscopic rules in equation (1). The
simplest choice for P; , corresponds to # = 0;all the pairs are chosen with uniform probability, P;, = 1/L,in
which L is the number of pairs. This is often called in the literature the model of inelastic Maxwell molecules
(MM) [35]. Note that L is basically equal to N but depends on the boundary conditions: for periodic boundary
conditions, itis L = N, but if we consider the system coupled to two extra sites 0 and N+ 1, which introduce the
appropriate boundary conditions, itis L = N+ 1. The periodic boundary conditions, sketched in figure 1,
correspond to the free (undriven) evolution of the system and if | = Nit is the pair (N, 1) that collides.

In the following, we discuss the hydrodynamic limit, fluctuations and correlations for a particular choice of
Py ,. Specifically, we consider the case of MM: such a choice is dictated by the will of simplifying the presentation
and making clear the essential points. We postpone a more complete and general discussion to a more technical
and detailed paper, in preparation. The theoretical results are compared to the numerical simulations described
above. A large enough value of L, which is indicated in the figures, has been used to ensure the hydrodynamic
limit, and we have averaged over 10° realizations of the stochastic dynamics. Aside from MM, results for HS
(f = 1) arealso shown in a few clearly marked cases.

3. Hydrodynamic limit: average equations and fluctuations

Let us define, as usual, the following local averages over initial conditions and noise realizations: v, = (v;,),
Ep=( vfp) and T}, = Ep, — ufp. Their evolution is obtained under a series of assumptions. With the choice of
MM, y, is a uniform distributed random integer, namely (6 ¥ n=1 / L, with L being the number of nearest
neighbour pairs. In addition, when considering the average dissipation at site [, there appear moments like
(Vi,pVi£1,p)- To thelowest order, we assume that neighbouring velocities are uncorrelated, that is,

(VipVis1,p) = Uipliis,p (see appendix A).

Now we assume that u; , and Ej , are smooth functions of space and time and introduce a continuum
(‘hydrodynamic’) limit (HL) by defining macroscopic scales: Ax ~ L~'and At ~ L=3. Each spatial derivative
introduces thus a factor L~! in the continuum limit: therefore, the difference between the current terms in the
balance equations is of the order of L=3. On the other hand, the dissipation goes as (1 — a?) L™, which makes it
useful to define the cooling rate as (see appendix A)

3
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V= (1 - az)Lz. (6)

Itis natural, on the scales defined by the HL, to define the mesoscopic fields u (x, t), E (x, ¢) and T (x, t),as well
as the average mesoscopic currents j (x, t) = limy_, o, [? (jl’p) = —d,u(x, t), J (x, t) = limy_, o L? (J1p) = =04
[1?(x, t) + T (x, t)]and the average mesoscopic dissipation of energy d (x, t) = lim;_, o L*(d; ) = —vT (x, t),
which depends only on the granular temperature but not on the average local velocity u (x, ), as expectedona
physical basis. After computations detailed in appendix A, we get the HL of equations (3) and (4),which are
oru(x, t) = —0yj (x, t)and 6,E (x, t) = —0,J (x, t) — vT (x, t) respectively. Then, we can write the average
hydrodynamic evolution equations

Ot = Optt,  0,T = —uT + 0T + 2<6xu)2 7)

over the length and time scales defined above. Note that, here, we have substituted 1 + a by 2, because
a* = 1 — vL7?,and we have already neglected L~! terms. These equations must be supplemented by appropriate
boundary conditions for the situation of interest. Technical details are deferred to a later paper.

Let us consider the fluctuations of the microscopic currents and dissipation, thatis, j, , = ]Nl » T Sips

Jip = ]Nl p + My and d;, = (Z » + 01, Tilde variables correspond to a partial average: they are averaged over the

fast variables y, p but not over the slow ones v; ,. Thus, for example, ]Nl b= 1+ a)A, / 2L.Itis clear that this
choice guarantees that all noises £, 17, , and 6}, have zero average. The noise correlations read

(88" ~AsS(x —x)o(t = t'),(mn') ~ Ao (x — x")6(t — t')and (00") ~ Apd (x — x) (t — t') with
amplitudes A; = 2L7'T (x, t), A, = 4L7'T (x, t) [T (x, t) + 2u?(x, t)]and Ag = 3L70* T?(x, t) (see
appendix B). In the above relations, we have used the notation & = £ (x, t)and &' = £ (x/, t'), and similar
notations for #, i, 8, &'. Thus, the current noises are delta correlated in space and time, and their amplitudes
scale as L™! with the system size L. On the other hand, the noise of the dissipation is subdominant with respect to
the moment and energy currents, its amplitude being proportional to L3, and therefore it is usually negligible.
Gaussianity for these noises can be easily demonstrated; see [32]. Interestingly, being in the presence of two
fluctuating fields, correlations between different noises appear. Theoretical predictions for noise correlations,
amplitudes and Gaussianity have been successfully tested in both MM and HS simulations; see appendices B
and C.

4. Solutions, HCS and instabilities

Here we focus our attention on the case of spatial periodic boundary conditions and an initial ‘thermal
condition’: v}y is a random Gaussian variable with zero average and unit variance, thatis, T,o = T (x, 0) = L.
Starting from this condition, the system is expected to typically fall into the so-called homogeneous cooling state
(HCS), in which the velocity and temperature fields remain spatially uniform, and the temperature decays in
time. Indeed, the spatially homogeneous solution of the average hydrodynamic equation (7) reads

u(x, t) =0, Tacs(x, t) = T (t = 0)e ™. (8)

The exponential decrease of the granular temperature is typical of MM, where the collision frequency is velocity-
independent. It replaces the so-called Haff’s law which was originally derived in the HS case, where Tycs ~ 72
because T o T3/2[21].

The HCS is known to be unstable: it breaks down in too large or too inelastic systems [36]. In our model and
in the hydrodynamic limit, this condition is expected to be replaced by a condition of large v. The stability is
studied by introducing rescaled fields U (x, t) = u (x, t)/+/ Tucs (t) and T=T (x, 1) / Tizcs (t) and by
linearizing the hydrodinamic equations near the HCS, i.e. T (x, t) = Tycs(t) + 6T (x, t)and
U (x, t) = U (x, t). The analysis of linear equations becomes straightforward by space Fourier transforming,
which gives

v — 2k?

0,0U (k, t) = SU (k, 1), 0,6T(k, t) = —k*T(k, 1). (9)

Therefore, U is unstable for wave numbers that verify v — 2k? > 0. In the continuous variables we are using,
the system size is 1, so that the minimum available wavenumber is k,;, = 2z. Thus, there is no unstable mode
for v (lengths) below a certain threshold ¢, (L.), with

ny
v=8r%  Lo=21VZ(1-a?) 2 (10)

On the other hand, for v > 1, (L > L.), the HCS is unstable and modes with wave numbers verifying k < /v/2
increase with time. This instability mechanism is identical to the one found in granular gases for shear modes
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Figure 2. Rescaled velocity profile maximum Up,,x = U (xy, t) asa function of time, where xy; = 1/4. Trajectories start from a
sinusoidal average velocity profile u (x, 0) = u, sin(27zx) (here 1y = 0.1), which gives hydrodynamic predictions
U (x, t) = ug sin(27x) e?“=%)!/2 (drawn as solid lines).

[26]. Theoretical predictions and simulations results perfectly agree, as plotted in figure 2. Itis important to
stress that the amplification appears in the rescaled velocity U (x, t) and not in the velocity u (x, ¢). The same
result is found and compares well with simulations in the HS case.

5. Spatial correlations and their effects in the HCS

Assuming space translation invariance, which is certainly valid in the HCS, we can write a hierarchy of equations
for the spatial correlations defined as Cy , = (v; ,vj+,p) at a distance of k sites, at time p:

Cops1= Cop + (a2 - 1)L—1(Co,p - Cl,p), (11)
Cipr1=Cip+ (1= @)L (Cop— Gp) + 1+ )L (Cop = Gy, (12)
Cip1= Crp+ (1 + a)L—l(ckH,p + Ciorp = 2Cip), 2K k< L ; L (13)
Crp = Crsi ). (14)

L-1)/2
A striking consequence of momentum conservation is the sum rule Cy , + 2 22—1 ) Ckp = 0. Then we expect
that correlations are of the order O (L™!). For example, in the elastic limit @ = 1, their equilibrium value is
(vivjiq1) = =T (L — 1), V I # 0. We take equations (11) and (13) in the continuum limit, x = (k — 1)/L and

t = p/L?, and retain only terms up to O (L™!), obtaining

dzt(t) = —U[T(t) - L‘ly/(t)] +0(L7) (15)
0.D(x, t) = 20D (x, t) + O (L‘z). (16)

Here, we have introduced the notations D (x, t) = LC (x, t) and y (¢) = lim,_ oD (x, t). Expression (15)
introduces a correction in the hydrodynamic average granular temperature, given by the nearest-neighbour-
particle velocity correlation, whereas equation (16) is a diffusion equation for spatial correlations. Boundary
conditions stem from equations (12) and (14), which give areflectingboundary at x = 1/2 and the sum rule for

172
momentum conservation, T (t) + 2 / D (x, t) = 0.In thelong time limit, we obtain the following scaled
0

stationary solution

14
T |—

D(x) = —A cos [zt /i (1 - 2x)], A= —VC, (17)
) (+7)
sin| z
17
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Figure 3. Amplitude A of the rescaled correlation function defined in equation (17) as a function of the dissipation rate v, both for
Maxwell molecules (MM) and hard spheres (HS). Trajectories start from a homogeneous mesoscopic velocity profile u (x, 0) = 0.
The theoretical prediction of equation (17) is also shown (line).

where D(x) = lim,_ o D (x, t)/Tiics (¢). Note that the Fourier transform of D (x) + & (x)" takes the form
S(k) = kz—k—i/z with k = 2zn and n is a positive integer, which has been derived for the correlations of the
velocity shear mode in d > 1 from Landau-like granular fluctuating hydrodynamics; see for instance [26]. This
result reinforces the motivation of our 1D model as a simple picture for the shear mode of the velocitiesin d > 1.
In figure 3, we compare the theoretical prediction in equation (17) for the MM case with numerical results.
Remarkably, such prediction compares well also with HS simulations, where the analytical computation appears
to be more challenging. In conclusion, the mechanism that induces spatial correlations in the system seems to be
independent of the particular interaction model.
Equation (15) suggests that the Haff law has a finite size correction. We consider a perturbation around the
HCS T (t) = Tycs (t) + L7'8T (t) + ...and D (x, t) = Dycs + L7'8D (x, t) + .... Making use of equation (15)
and defining 8T(t) = 8T (t)/ Tycs (t), we obtain %5? = Viiycs With

~ Wircs (1) v v
=—= " =—g|—cot|x |— | (18)
Yines Thcs (1) 12 12

Hence, the granular temperature follows
1. 5
T(t) = Tacs ()] 1 + zy/Hcsl/t + O(L ) . (19)

which is valid for not very long times (¢ not scaling with L). There is a critical dissipation value v, = 1,/4 = 2x*

where {7;;5 changes sign, and this determines a change of the time-derivative of § T'. Thus, at finite (large) values
of L, the temperature decays faster or slower than the Hafflaw if v < v, or v > v, respectively. In figure 4, we
compare the predicted Haff law finite size effect with the simulation results, obtaining excellent agreement.

6. Summary

In conclusion, we have discussed the rigorous hydrodynamic limit of a lattice model for granular fluids with
momentum conservation and energy dissipation. Macroscopic equations reproduce the realistic evolution of
the velocity shear mode, which is diffusive, as well as that of the temperature field, which includes heat diffusion,
inelastic dissipation and viscous heating. A crucial phenomenon of inelastic fluids, that is, the shear instability of
the homogeneous cooling state, is recovered.

The model allows us to derive the evolution of ~1/L spatial correlations, which present non-trivial long-
range extension due to momentum conservation and alter the temperature decay in an observable way. This
opens new interesting paths of investigation, such as trying to relate the deviation from the Haff law found here
with the renormalization of the cooling rate found in systems of smooth HS near the shear instability [23]. The

4 The delta function is needed to include the case of the autocorrelation (v?), since D(0) corresponds to {v;v;;,); see the paragraph above
equation (15).
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-0.05
0

Figure 4. Rescaled temperature 5T asafunction of time, for v = 10, 20, ..., 70 (from bottom to top). Numerical values (circles) are
plotted together with linear fits (lines) made on the second half of the trajectory. In the inset, we show the comparison between the
fitted slopes in the main panel (points) and the theoretical ones from equation (19) (blue line), as a function of v. The horizontal black
line at ;g = 0 shows the transition at v, = 272

appearance of long-range correlations under non-equilibrium conditions for conserved fields is a feature well
expected on general grounds [5, 6], but rarely derived in full analytical detail.

Finally, we stress the importance of considering finite size effects in granular systems, since large sizes are
rarely realized in experiments. In addition, the HCS is unstable for large L, and therefore finite size corrections
cannot be disregarded by considering an arbitrarily large system. These facts, together with the scarcity of studies
about finite size effects in granular matter, makes it worthwhile to further investigate this point in the near
future.
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Appendix A. Details for the derivation of the hydrodynamic equations

Average fields (over initial conditions and noise realizations) are defined as u;, = (v; ), E;, = ( vfp) and
T, = Ep - ufp. The microscopic equations for the evolution of averages at time p at site / are obtained by
averaging equations (3) and (4) of the main text, obtaining

Upr1 = Uip = _<jl,p> + (ip)> (20)
El,p+1 - El,p = _<]l,p> + (]l—l,p> + (dl,p>- (21)

Averages of currents and dissipation can be computed assuming the local equilibrium approximation (LEA),
which is explicitly stated as

1 _(vl—u]’p)z_ (Vl+l_1/‘l+l,p)2
P2 Vi, Vit p = —¢ Mp ZT"H»P . (22)
( ) '\,2717;,[7 w/277r'Tl+1,p

In the Maxwell molecules case (f# = 0), where one has (6 yp,l> =1 / L, computations using the LEA give”
1+a

<jl,p> = T(ul,p - ul+1,p), (23a)
1+ a
<]l)P> = 7L (Ti,p - ’Ii+1,p + ul?p - uli.l’p)) (23b)

Note that, in the MM case, for obtaining the averages in equation (23a) the LEA is only used to write that (v, vi41,p) = w1ptt141,p> thatis, we
assume that velocities at adjacent sites are uncorrelated. This hypothesis is somehow similar to the molecular chaos assumption when writing
the Boltzmann equation for a low-density fluid.
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a?-1 Tivrp + Ti-1p ( Uprp + ti-1,p ) Uity = Ui-1p )
dp) = T, + : — + | u, — . ) +( . ) . 23¢
( l>p> oL Lp 5 Lp 5 2 (23¢)

The hydrodynamic limit consists of a change of spatial and time scales, from (I,p) to (x,t), related by size-
dependent factors:

x=UL,  t=p/I’ (24)
This implies for a generic function f, ,
10 1
ﬁ+1,P —ﬁ’p = Iaf (X, t) + O(F), (25)
10 1
fior = fip = 5af (1) + O(F)’ (26)

which are introduced in equations (20) and (21) to get the final continuous equations in (x, f). Each discrete
spatial derivative introduces a L~! factor in the HL. Then, the difference between the current terms in the balance
equations is of the order of L=3, because the average currents (i, p) and (J; ) are of the order of L=2. Those terms,
therefore, perfectly balance the 1/L* dominant scaling on the left-hand side, i.e. the time-derivative. Since (dip)
isof the order of (1 — a?)/L, to match the scaling 1/L? of the other terms, we define the cooling rate to be

v = (1 — a? L2 whichisassumed to be order 1 when the limit is taken. This choice automatically implies that
when L increases one has that ¢ approaches unity, a further reason to expect the validity of the LEA.

By retaining only the highest order terms in the equations, we get expression (7) of the main text. Itis
interesting to note that our expansion in terms of L™ is similar in spirit to the Chapman—Enskog expansion up
to Navier—Stokes order, since we are keeping up to terms of the second order in the gradients (of the order of K,
with k being the wave vector, in Fourier space). From a purely mathematical point of view, (7) becomes exact in
thelimit L — oo,but v = (1 — @?)? of the order of unity, as stated in the previous paragraph. Interestingly, the
dissipation field d; , in equation (23¢) admits an expansion in even powers of the gradients, as is also the case of
granular fluids [37, 38]. However, in the above limit, the first terms in dj , including the gradients are of the
order of L=2 as compared to the contribution —¢T at the Navier—Stokes order, that is, they would only be
considered at the so-called Burnett order.

From a physical standpoint, equation (7) is approximately valid whenever the terms neglected upon writing
itare negligible against the ones we have kept. Since the correlations (v; ;) are expected to be of the order of L™!
as compared to the granular temperature’, we must impose that L > 1andalso t < L. On the other hand, the
term proportional to the correlations in the evolution equation for the granular temperature is therefore of the
order of (1 — a?) L~!, which must be negligible against the second spatial derivative terms, of the order of L=2.
Then, (1 — a?)L < 1 mustbe further imposed when the correlations are neglected in equation (7). This
condition, although less restrictive than 1 — a? = (@ (L™2), also reinforces the validity of the LEA. On the other
hand, when the correlations are fully taken into account, as is the case of equations (15) and (16) of the main
paper, the value of a is not restricted since the only assumption for writing them is that of homogeneity.

Appendix B. Computation of the correlations of the hydrodynamic noise

Noises with respect to averages appear in the currents j, b= ]Nl o T S Jip = 71,1, + My ps and in the dissipation

dip = 671 p + O1p, withnoises &, 1 , and 6, defined to have zero average. The idea is that each term x is made of
a X part which is an average over the fast noise (that is, the collisions, which are counted by the fast stochastic
variable A p), butat fixed v;, » Whose evolution is assumed to be slower than noise.

To obtain the correlations of noise, we exploit a series of conditions. Explicit calculations are discussed here
for the case of the momentum current noise &; .. It is clear that the definition ]Nl , =1+ a)h, / 2L
corresponds to the above prescription for the noise. First, it is straightforward that (£, , & ,/) = 0 for p # p’,
because y, and y pare independent random numbers. Second, we take into account that
(6yp, 16 e 1y =011 {6 yp,l> = o /L, and the fact that all the other contributions are of the order of L~2. Thus, for
p = p'wehave(&,& ) = (1 + a)? (Aip)él,l//4L + O (L™2). At this point, the quasi-elasticity of the
microscopic dynamics makes it possible to (i) substitute (1 + «)/2 by 1 and (ii) calculate (Ai p> by using the
LEA, to obtain

® For example, in the elastic case, the correlations (v;v;,x) do not depend on the distance k in equilibrium, and therefore
vivigry = =T (L — 1)L, V k # 0. See section 5 for more details.
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Figure Cl. Left panel: velocity current fluctuations profile rescaled by the local temperature, namely L (j2 (x, t))/T (x, t) asa function
of the continuum position x. The red lines correspond to the numerical result, whereas the black line gives the theoretical expected
value L (j?)/T = 2. Right panel: energy current fluctuations as a function of x. The numerical values of
L{J?(x, t))/4 T (x, t) — T (x, t) (inred) are compared to the numerical evaluation of the its theoretical value in the local equilibrium
approximation, 2 u? (x, t) (in black).

1
<§l,p§l/,p’> ~ E 2T1,p 5l,l/ 5p,p’- (27)

In thelarge size system, j; ) scalesas L2 (see [32]). Therefore, the mesoscopic noise of the momentum current is

defined as & (x, t) = limy_, o szl,p, and j(x, t) = ;(x, t) + & (x, t),in which, again, jN(x, t) = limy_ o Lzz,p.
Going to the continuous limit, remembering equation (24), and taking into account that §; ;/Ax ~ § (x — x’)
and 6,/ /At ~ & (t — t') we get the noise amplitude of the velocity current in the main text. Identical
considerations lead to the amplitude for the energy current noise. . For the fluctuations of dissipation, the
dissipation term is split again as dj , = =d, p + Oy with (dp) = (dl p)- Weknow from the dissipation current
definition that (0;,0) ,) = 0for p = p’. Making use of the LEA and in the large size system d; , scales as L and
itis expected that the noise should have the same scaling. Going to the continuous limit and taking in account
equations (24) and (27), the result in the main text is recovered.

The cross correlations between different noises are straightforwardly obtained, along similar lines, with the
result

(ECx DN D)= (n(x DEG, 1) = M
(E(x D8 1)) = (0(x, DE(x, 1) =0,
(6 D8(x, 1)) = (0.(x, D (x, 1)) = 0. (28)

Appendix C. Numerical comparison for the amplitude of hydrodynamic noises

A comparison for the amplitudes of noise for the velocity and energy currents is shown in figure C1 . A case with
the MM interaction (f = 0) is considered. The simulations are performed with periodic boundary conditions,
therefore without energy injection, and starting with a non-homogeneous initial condition. The initial
mesoscopic velocity profile and homogeneous granular temperature are u (x, 0) = u sin(27x) and

T (x, t) = Ty, respectively, with ug = Ty = 1.
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