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Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields
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We study heavy-ion inelastic scattering processes in neutron-rich nuclei including the full response to the
different multipolarities. Among these we focus in particular on the excitation of low-lying dipole states commonly
associated to the pygmy dipole resonance. The multipole response is described within the Hartree-Fock plus RPA
formalism with Skyrme interaction. We show how the combined information from reactions processes involving
the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal
the characteristic features of these states. We have performed calculation for the excitation of 132Sn generated in
the reactions with 4He, 40Ca, and 48Ca at several incident energies, as well as for the system 17O + 208Pb. Our
results suggest that the investigation of the PDR states can be better carried out at low incident energies (below
50 MeV/nucleon). In fact, at these energies the PDR peak is relatively stronger than the giant dipole resonance
(GDR) one and the narrow width of the low-lying quadrupole and octupole states should not blur its presence.
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I. INTRODUCTION

In the last years the properties of collective states in
neutron-rich nuclei have been studied with special attention
to the presence of dipole strength at low excitation energy
[1]. Previous calculations [2] have shown that as soon as
the neutron number increases, some strength appears at low
energies in the dipole strength distribution, well below the
dipole giant resonance. This strength, carrying few percent of
the isovector EWSR, is present in many isotopes and has been
often associated to the possible existence of a new collective
mode of new nature: the pygmy dipole resonance (PDR).

These low-lying dipole modes have been studied and are
known since many years. To our knowledge it was Lane
[3] who first named them after the tiny strength of the
state as compared to the giant dipole resonance (GDR) one.
At the same time, macroscopic approaches were developed
like the incompressible three fluid model [4] (proton, neutron
of the core, and the neutron excess) on the same spirit of the
Steinwedel-Jensen model [5]. Within this model the existence
of the low-lying dipole state is found in a natural way, although
the calculated strength of the PDR was too weak. An improved
version of the model is given in Ref. [6] where only two
incompressible fluids were considered, namely the core and
the neutron excess. The so generated pygmy resonances have
a strength in reasonable agreement with the experimental
data available at that time [7], for some β stable nuclei
having few neutron excess. Another macroscopic approach
that takes explicitly into account the neutron skin [8] follows
the Goldhaber-Teller prescription [9], finding that the ratio
of the PDR to the GDR sum rule is similar to the one obtained
in Ref. [6]. Recently, a macroscopic model where the nucleus
is considered as a spherical piece of elastic continuous medium
[10] has investigated the PDR in terms of elastodynamics
excitation mechanism implying then the isoscalar nature of
the state.

These low-lying dipole modes have been extensively
studied within several microscopic many-body models [1]
among which we quote the Hartree-Fock plus random phase
approximation (RPA) with Skyrme interactions or quasipar-
ticle RPA [11]; the relativistic RPA (RRPA) [12]; and the
relativistic Hartree Bogoliubov (RHB) plus the relativistic
quasiparticle RPA (RQRPA) [13]; the RRPA plus phonon
coupling (PC) [14]; the QRPA plus the quasiparticle phonon
coupling (QPM) [15]. This is by no means an exhaustive list
of the literature devoted to this subject. Here we quote the
more significant references in order to provide to the interested
reader a first hint on the exploration of the entire subject. All
these approaches predict the presence of the low-lying states
with similar strengths and similar transition densities. Whether
such strength corresponds (or not) to a collective mode is still
under discussion. Several authors have taken as measure of the
collectivity the number of particle-hole configurations entering
in the RPA wave function with an appreciable weight [12,16].
Such criteria do not take into account the other fundamental
concept that underlies collectivity, that is coherence. Indeed,
in Ref. [17] we conclude that although the PDR are formed by
many particle hole configurations their collective nature may
be questioned if one takes into account also the coherence
properties.

Experimental information for these states have come from
high-energy Coulomb excitation processes with heavy ion
collisions produced at GSI on 132Sn [18,19] as well as on
68Ni [20]. They have clearly shown the presence of these states.
Another well-established method to study the PDR is by means
of nuclear resonance fluorescence (or real photon-scattering
experiments) performed on semimagic nuclei at Darmstadt
[21]. Recently, the same nuclei have been investigated by
means of the (α, α′γ ) coincidence method at KVI [22].

The experimental investigation, corroborated by theoretical
studies, clearly show that the PDR modes are connected to the
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neutron excess. The strength of the PDR has been related to the
neutron skins and to the density dependence of the symmetry
energy of nuclear matter [19,23]. In particular, recent studies
have also put a constraint to the kind of Skyrme force one has
to use in the mean field + RPA-like calculations [24]. One
should note, however, that the occurrence of different radii for
the proton and neutron densities and the consequent low-lying
strength also appears in neutron-rich stable nuclei.

Therefore a deeper knowledge of the properties of the
PDR is in order. But, as stated above, until now the evidence
for these states comes essentially from heavy-ion induced
Coulomb excitation processes which provide information only
on the B(Eλ) transition rates. In order to understand better
the nature of these states one has to obtain more explicit
information also on wave functions and transition densities.
To this end one can envisage different reactions where the
nuclear part of the interaction is involved. Indeed, due to the
mixed nature displayed by these states it is possible to excite
them also with an isoscalar probe like the one provided by
the nuclear part of the interaction. In this paper we will show
how the excitation probabilities are sensitive to the details of
the transition densities and the corresponding form factors and
how these can be probed by combination of different processes.
Indeed, by choosing, in an appropriate way, the projectile
mass, charge, bombarding energy, and scattering angle, the
relative role of the nuclear and Coulomb components can be
modified, as well as the relative population of the different
multipolarities and the relative importance of the low-lying
and high-lying parts of the response. Therefore a proper choice
of the reaction parameters can produce an enhancement of the
PDR population.

II. RPA DIPOLE STRENGTH DISTRIBUTION

The presence of low-lying strength in neutron-rich nuclei is
predicted by almost all theoretical models. We will show and

FIG. 1. (Color online) Isovector strength distributions for dipole
states for tin isotopes calculated with the SGII interaction (upper
frame). In the lower frame, the bars represent the results for the
discrete RPA dipole strength. In this case the B(E1)’s are in units
of (e2fm2). The solid curves are obtained by adopting a smoothing
procedure as described in the text.

discuss the microscopic results obtained in the simplest dis-
crete nonrelativistic RPA approach with Skyrme interactions.
We have performed calculations for several Sn isotopes [17].
To better appreciate the isotope dependence, three distributions
of dipole strength are shown together in the upper part (a) of
Fig. 1. The discrete RPA results are folded with Lorentzians
of 1 MeV width to produce the smoothed curves plotted in the
figures. As soon as we increase the mass number an increasing
amount of low-lying strength (carrying a fraction of the EWSR
of the order of few percent) below 10 MeV appears. These
are precisely the states that are candidates to be interpreted
as pygmy dipole resonances: they are generally associated
with the occurrence of neutron skins in the nuclear densities.
Actually, the presence of the low-lying dipole strength is not a
prerogative of exotic nuclei but it is also present in stable nuclei
with neutron excess as it is the case for 208Pb, whose dipole
strength distribution is shown in the lower part (b) of Fig. 1.
In the same frame we plot the discrete RPA results as well as
the smoothed curve. Indeed, in the figure one can appreciate
the presence of a small bump around 7.9 MeV whose strength
is about 1.1% of the EWSR. This state, as it is shown below,
has the same characteristic feature of the PDR. We note that in
208Pb the neutron and proton root mean square radii are 5.59
and 5.45 fm, respectively, while in 132Sn they are 4.86 and
4.66 fm.

Precise information on the specific nature of the states is
contained in their transition densities. As an example, in Fig. 2
we show the RPA transition densities for the low-lying dipole
states in two cases: 208Pb (lower frame) and 132Sn (upper
frame). They were calculated with the SGII interaction [25].
The neutron (dot-dashed) and proton (dashed) components
of the transition densities oscillate in phase in the interior
region, while in the external region only the neutrons give a
contribution to both isoscalar and isovector transition densities
which have the same magnitude. Such behavior, which has
been found also in all the other microscopic approaches, can be
taken as a sort of definition of PDR. The transition densities of
the two nuclei are very similar. The main difference manifests
in the isovector part which in the case of 208Pb has one more
node with respect to the 132Sn one. This may be simply related
to the different active major shells in the two nuclei and may
be a further manifestation of the non collective character of the
PDR states. Both of them show a strong isospin mixing in the
peripheral region of the transition density. This feature opens
the possibility to populate these states also via an isoscalar
probe [26]. Therefore we will investigate this new mode
with the help of a semiclassical model where the excitation
processes will be carried out by both nuclear and Coulomb
interactions.

In Ref. [17] these low-lying dipole states have been exten-
sively analyzed questioning their collective nature. Also, the
usual macroscopic interpretation of the neutron skin oscillating
against the proton + neutron core has been discussed and put
in doubt [27]. A simple macroscopic description of such model
yields transition densities which are similar to the microscopic
ones but not enough to give a conclusive interpretation of
the state in terms of the above macroscopic model. It should
be noted that, besides the requirement of the shape of the
transition density, the macroscopic picture should also involve
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FIG. 2. (Color online) RPA transition densities for the low-lying
dipole states for 208Pb (lower frame) and 132Sn (upper frame)
calculated with the SGII interaction. As indicated in the legend we
plot the proton, neutron, isoscalar and isovector components

a collective nature of the state, which was not found to be
fulfilled at least in our calculations [17].

III. SEMICLASSICAL MODEL AND FORM FACTORS

The reaction processes are described according to the
semiclassical model which assumes that the colliding nuclei
move on classical trajectories, while the internal degrees of
freedom are treated quantum mechanically. This model is
known to hold for heavy-ion grazing collisions. We will
consider, for simplicity, only target excitations. Therefore,
under these conditions, we can write the Hamiltonian as

HT = H 0
T + W (t), (1)

where H 0
T is the internal hamiltonian of the target and the

external field W describes the excitation of T by the mean field
UP of the partner nucleus, whose matrix elements depend on
time through the relative coordinate R(t):

W (t) =
∑
ij

〈i|UP (R(t))|j 〉a†
i aj + H.c. (2)

The sums over the single particle states, denoted by i and j , run
over both particle and hole states. Calling |�α〉 the eigenstates
of the internal Hamiltonian, the cross section can be calculated,
nonperturbatively, by solving the Schrödinger equation in the
space spanned by the |�α〉 states. Then the time dependent

state, |�(t)〉, of the target nucleus can be expressed as

|�(t)〉 =
∑

α

Aα(t)e−iEαt |�α〉, (3)

where the ground state is also included in the sum as the term
α = 0. The Schrödinger equation can be cast into a set of linear
differential equations

Ȧα(t) = −i
∑
α′

ei(Eα−Eα′ )t 〈�α|W (t)|�α′ 〉Aα′(t) (4)

whose solutions, the amplitudes Aα(t), are then used to
construct the probability of exciting the internal state |�α〉
as

Pα(b) = |Aα(t = +∞)|2 (5)

for each impact parameter b. Finally, by integrating Pα over
the impact parameters we obtain the cross section

σα = 2π

∫ +∞

0
Pα(b)T (b)bdb. (6)

The transmission coefficient T (b) takes into account processes
not explicitly included in the model space. It is usually taken
as a depletion factor that falls to zero as the overlap between
the two nuclei increases. A standard practice is to construct it
from an integral along the classical trajectory as

T (b) = exp

{
−2

h̄

∫ +∞

−∞
VI (R(t ′))dt ′

}
, (7)

where VI is the imaginary part of the optical potential
associated to the studied reaction. When the imaginary part
is not available from the experimental data we use the simple
assumption of taking it as half of the real part.

The internal structure of the colliding nuclei is provided by
the RPA approach. To reduce the complexity of the problem
we include in the coupled-channel calculation only the states
with a sizable EWSR percentage. In order to further reduce
their number, we bunch together states with significant strength
close in energy. The “bunching” procedure consists in taking as
energy the average energy of the states belonging to the group
with the condition that the EWSR must be preserved [17]. As
an example in Table I are shown the dipole states obtained
applying this procedure for 132Sn.

The real part of the optical potential, which together with
the Coulomb interaction determines the classical trajectory,
is constructed with the double folding procedure [28,29].
Taking also the isospin dependent part of the nucleon-nucleon
interaction and following the notation of Satchler’s book [29]
we write the central part of the local effective interaction v12

as composed by two terms, the isoscalar part v0 generating

TABLE I. Dipole states used in the calculations.

States E (MeV) EWSR %

1−
ll (PDR) 9.3 1.1

1−
ll2 11.3 4.4

GDR 13.9 56
1−

hl 18.3 25
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an isoscalar ion-ion potential and an isovector term v1 giving
an isospin dependent folding potential which has an explicit
dependence on the difference between the neutron and proton
densities:

v12 = v0(r12) + v1(r12)τ1 · τ2, (8)

where the τi’s are the isospin of the nucleons. This implies
that the neutron-neutron, proton-proton and neutron-proton
interaction will be

vnn = vpp = v0 + v1, vnp = v0 − v1. (9)

Then for the double folding we have

UF =
∫ ∫

ρP (r1)ρT (r2)v12dr1dr2

=
∫ ∫

[ρPn(r1)ρT n(r2)] + [ρPp(r1)ρTp(r2)]

×(v0 + v1)dr1dr2

+
∫ ∫

[ρPn(r1)ρTp(r2)] + [ρPp(r1)ρT n(r2)]

×(v0 − v1)dr1dr2, (10)

hence

UF0 =
∫ ∫

ρP (r1)ρT (r2)v0(r12)dr1dr2, (11)

UF1 =
∫ ∫

{ρPn(r1) − ρPp(r1)}
×{ρT n(r2) − ρTp(r2)}v1(r12)dr1dr2. (12)

Note that in the particular case when ρn = ρp(N/Z) =
ρ(N/A) the last expression reduces to

UF1 =
(

NT − ZT

AT

)(
NP − ZP

AP

)

×
∫ ∫

ρP (r1)ρT (r1)v1(r12)dr1dr2. (13)

For v0 and v1 we use the M3Y nucleon-nucleon interaction,
Reid type [30], whose explicit expressions are [28]

v0(r) =
[

7999
e−4r

4r
− 2134

e−2.5r

2.5r

]
− 262δ(r) (14)

and

v1(r) = −
[

4886
e−4r

4r
− 1176

e−2.5r

2.5r

]
+ 217δ(r), (15)

in MeV when r is given in fm. In the two above expressions
the zero range term is the pseudopotential which takes into
account, in an effective way, the single nucleon exchange [28].

The transition densities are the basic ingredients to con-
struct the nuclear form factors describing nuclear excitation
processes. These form factors can again be obtained by double
folding [28,29] the transition densities with the density of the
reaction partner and the nucleon nucleon interaction, including
again both isoscalar and isovector terms. If one proceeds as
in the case of the real part of the potential then the following

FIG. 3. (Color online) Form factors for three different systems
132Sn + α, 40Ca, 48Ca. The upper parts refer to the PDR states while
the lower ones are for the GDR. The different components are shown
together with the total one (solid black line).

expressions for the form factors are obtained:

F0 =
∫ ∫

[δρPn(r1) + δρPp(r1)]

×v0(r12)[ρTp(r2) + ρT n(r2)]r2
1 dr1r

2
2 dr2, (16)

F1 =
∫ ∫

[δρPn(r1) − δρPp(r1)]

×v1(r12)[ρT n(r2) − ρTp(r2)]r2
1 dr1r

2
2 dr2. (17)

These two components of the form factor are indicated in Fig. 3
as N0 and N1, respectively.

IV. INELASTIC CROSS SECTION

A. The 132Sn case

As a first example, we will consider the excitation of dipole
states in 132Sn by different partners: α, 40Ca, and 48Ca. The
form factors for the PDR (upper frames) and GDR (lower
frames) states are shown in Fig. 3. The Coulomb form factors
(dashed dotted line) are almost one order of magnitude smaller
for the PDR with respect to the GDR ones, as expected, from
their relative B(E1) strengths. On the other hand, the nuclear
components have almost the same magnitude, hence their
relative contribution in the excitation processes is stronger
for the PDR states. The different isospin components are
indicated with dashed line (the isoscalar part) and dotted
line (isovectorial part). We get strong contribution from the
isovector part only for the 48Ca case while for α and 40Ca the
contribution is inhibited because of their pure isoscalar nature.

The nuclear and Coulomb parts interfere destructively at
small radii and constructively at large radii. This is mainly
due to isoscalar part and to the fact that the isoscalar dipole
transition density displays nodes [2,31]. The interference is
less pronounced in the 48Ca case because of the presence of
the isospin dependent part of the nuclear form factor that

064602-4



EXCITATIONS OF PYGMY DIPOLE RESONANCES IN . . . PHYSICAL REVIEW C 84, 064602 (2011)

FIG. 4. (Color online) Square of the form factor for different
systems 132Sn + (α, 40Ca, 48Ca) as function of the energies. They
are calculated at a distance where the transmission coefficients take
the value of 0.5, namely 7.7 fm, 11.0 fm, and 11.3 fm for the three
cases. Coulomb and nuclear contributions to the total form factors
are separately shown. The same folding procedure used in Fig. 1 has
been applied also in this case. Note the different ordinate scale in the
left panel.

gives a contribution opposite to the Coulomb one without
changing its sign. As a consequence, we expect that the
excitation of the GDR state will be less pronounced when
the 48Ca is used as a target rather than 40Ca. Conversely, one
is not expecting significant change for the PDR state where
the nuclear contribution is dominated by the isoscalar part.
Indeed, this can be verified in a simple way by taking the
square of the nuclear and Coulomb form factors at the surface.
In Fig. 4 they are reported as a function of the excitation energy
for the dipole states given in Table I. So, without taking into
account the dynamics of the reactions, one can already at this
stage anticipate how different projectiles will alter the relative
intensities of the PDR and GDR states due to the different
interplay of their isoscalar and isovector contributions. The
above discussed properties are general enough and the use of
a different nucleon-nucleon effective interaction should not
change qualitatively the characteristic features of the form
factors.

The ratios between PDR and GDR cross section can be
modified by looking at the differential angular distributions.
In the semiclassical picture, these are associated to different
ranges of impact parameters. Nuclear contributions are known
to be enhanced at grazing angles, corresponding to grazing
impact parameters. This is clearly evidenced in Fig. 5, where
the “partial-wave cross sections” are shown as functions of
the impact parameter. We note that in all systems treated, at
grazing impact parameters, the Coulomb contribution for the
PDR is relatively smaller than the nuclear one. A different
behavior is seen for the GDR case except for the α particles
where the Coulomb excitation plays a less important role for
both PDR and GDR.

The energy differential total cross sections for the dipole
states are shown in Fig. 6 for the three cases considered at
30 MeV/nucleon incident energy. The discrete total cross
sections obtained with Eq. (6) are smoothed out by folding
them with Lorentzians whose widths depend on the energies.
Rather than using the crude prescription adopted by ourselves
in Ref. [17], we preferred to assign to the widths a smooth

FIG. 5. (Color online) ’Partial wave cross sections” vs. impact pa-
rameter b for the system 132Sn + (α, 40Ca, 48Ca) at 30 MeV/nucleon.
In each column are reported the results for the two dipole states, PDR
(left frame) and GDR (right frame). In each graph the Coulomb and
nuclear contributions are reported and explicitly indicated. Note the
different ordinate scales.

energy dependence as the one given by

 = 0.026E1.9 (18)

according to Ref. [32]. Indeed this energy dependence gives,
for the GDR and PDR, approximately the same widths as the
previous method used in Ref. [17]. The different contributions
from Coulomb and nuclear form factors are separately shown,
as well as the total ones. For the latter, we see that by changing
the partners of the reaction the balance between PDR and
GDR varies appreciably; for the Ca isotopes the PDR peak is
higher than the GDR one. In all the three case the GDR peak
is dominated by the Coulomb contribution. On the contrary,
for the PDR peak, we see that in the α case the nuclear part
is dominating while in the Ca isotopes cases the Coulomb
and nuclear contributions are equally important. Moreover
the previously discussed constructive interference in the form
factors for large radii shows up in all cases.

Calculations done so far only include dipole states. Of
course the excitation spectra are much richer than those we
have studied till now since other multipolarities are present in
the region of interest. In particular the low-lying quadrupole
and octupole states may have a high probability to be excited
at these incident energies. Therefore we have enlarged the
channel basis by including in the calculations the states
considered in Ref. [17], namely we add, to the already
considered dipole states the other states shown in Table II.
In the three panels of Fig. 7 we show the energy differential
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FIG. 6. (Color online) Differential cross sections as function of
the excitation energy for the systems 132Sn + α, 40Ca, 48Ca at 30 MeV
per nucleon. The Coulomb contribution is shown as a dashed line
(red). Of the two solid lines the lower one (black) corresponds to the
nuclear contribution while the higher one (blue) represents the total
cross section.

cross section for the 132Sn + 40Ca case at 30, 60, and
100 Mev/nucleon incident energy. In the upper (a) and middle
(b) panels, the nuclear and Coulomb contributions are shown.
In the lower (c) panel, the total cross section shows the
interplay between the Coulomb and the nuclear parts of the
interaction. We note that the excitation induced by the nuclear
part of the interaction is almost independent of the incident
energy. On the contrary, in the Coulomb case the variation
of the incident energies produces structurally different results.
Indeed, by increasing the incident energy the cross section gets
bigger in the GDR region while it decreases in the low energy
region part. This is due to the well-known adiabatic cut-off
effect that governs the transition amplitudes for Coulomb
excitation (see for example Ref. [33,34]).

TABLE II. RPA one-phonon basis for the nucleus 132Sn. For each
state, energy and percentage of the EWSR are reported.

States E (MeV) EWSR %

GMR 16.32 85
2+

ll 5.03 11
ISGQR 13.50 77
3−

ll 5.93 27

FIG. 7. (Color online) Differential cross sections as function of
the excitation energy for the systems 132Sn + 40Ca at three values of
incident energies. The nuclear (a) and Coulomb (b) contributions are
separately shown.

Nevertheless, it is important to single out the explicit
contribution of the dipole states. In Fig. 8 the inelastic cross
section for the system 132Sn + 40Ca is reported for three
different values of the incident energy. The dipole cross
sections are evidenced (shaded areas) against the total ones. We
clearly see that the peak around 9.3 MeV excitation energy (the
PDR region) contains essentially only dipole contributions,
and this is true for all the three considered incident energies.

As far as the other multipole states contributions are
concerned, one can have a more complete view of the relative
importance of the multipole states and their dependence on the
partners of the reaction looking at Fig. 9. There the inelastic
cross sections for the three systems 132Sn + (α, 40Ca, 48Ca) at
30 MeV/nucleon are reported and their multipole components
are separately shown. The change of the reaction partners
modifies the relative intensity of the inelastic cross section
especially for the low-lying quadrupole and octupole states.
This is due to the different behavior of the nuclear and
Coulomb fields in the excitation process.

A global vision of the contribution of different multipolar-
ities can be grasped by looking to Fig. 10 where the nuclear,
Coulomb and total inelastic cross section for the states of
different multipolarities used in the calculations as function
of the incident energy are shown. As one could expect the
pure isoscalar states are more excited by the nuclear field (a).
The mixed isoscalar and isovector components in the dipole
states makes them appreciably excited: the probability for the
PDR state is sensibly higher than the GDR one at low incident
energies.

The middle panel (b) shows the inelastic cross section
produced by the Coulomb field. Note the predominant role
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FIG. 8. (Color online) Same as Fig. 7. The solid lines correspond
to the total cross section while the shaded (red) area shows the
contribution of the dipole states.

of the GDR as far as the incident energy increases. In minor
measure also the GQR behaves in the same fashion. The
low-lying states get more excited at low incident energies
and then their excitation decreases with the increase of the
energy. Both these responses are clearly manifestations of the
adiabatic cut-off effect.

The third panel (c) shows the combination of the two
contributions described above. The results we have seen
until now suggest that the investigation of the PDR state
can be better carried out at low incident energy (below
50 MeV/nucleon). In fact, although the PDR cross section
is higher at higher incident energy, its peak may be blurred
by the strong tail of the giant resonance states. On the other
hand the PDR peak should not be masked by the presence of
the low-lying quadrupole and octupole states because of their
narrow widths.

B. The 208Pb case

As stated in Sec. II, the pygmy states are present also in
stable nuclei with neutron excess. The most known case is the
one of 208Pb whose transition densities show the same features
of the 132Sn as it can be seen in Fig. 2. Therefore one can
repeat the same analysis done until now for the 132Sn, with
the advantage that one is not limited in the possible range of
incident energies as it should be the case for the existing or
next future radioactive beams.

In Fig. 11 we present the calculations for inelastic cross sec-
tion for the system 17O + 208Pb at two incident energies. The
calculation have been done by taking into account all the states

FIG. 9. (Color online) Differential cross sections as function of
the excitation energy for the systems 132Sn + (α, 40Ca, 48Ca) at
30 MeV per nucleon. In each frame the multipole contributions
are shown. The pale (cyan) shaded area corresponds to the L = 3
multipole states while the dark (blue) area is the dipole contributions.
The thin (red) and the thick (black) line correspond to the L = 2 and
total, respectively.

listed in Table III. The behavior is the same already seen for
the 132Sn. The nuclear interaction produces similar results for
the two energies (20 and 50 MeV/nucleon) as can be seen in the
upper frame (a). The Coulomb excitation favors more the high
lying states when the incident energy increases [frame (b)].
The sum of the two contributions, in panel (c), shows clearly
the peak of the PDR. In the frame (d) the nuclear and Coulomb
contributions are shown together with the total one for a more
precise comparison.

FIG. 10. (Color online) Differential cross sections as function of
the incident energy per nucleon for the systems 132Sn + 40Ca for the
multipole states used in the calculations. The nuclear (a) and Coulomb
(b) contributions, as well as the total one (c), are shown in separate
frame.
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FIG. 11. (Color online) Differential cross sections as function of
the excitation energy for the systems 208Pb + 17O for two values
of incident energies. The nuclear (a) and Coulomb (b) contributions
are separately shown. In the frame (d) the contributions due to the
Coulomb and nuclear fields as well as the total one are shown for the
higher incident energy case.

The constituents of the inelastic cross section, in terms
of multipole states we have take into account, are shown in
Fig. 12 for the two incident energies considered here. As in
the previously analyzed case, the low-lying states are much
more excited but, because of their tiny widths, they do not
obscure the presence of the PDR peak which also in this case
is due essentially to the excitation of dipole states.

TABLE III. RPA one-phonon basis for the nucleus 208Pb. For each
state, energy and percentage of the EWSR are reported.

States E (MeV) EWSR %

GMR 14.0 86
PDR 7.9 1.2
GDR 12.4 60
1− 16.7 17
2+ 5.5 6
ISGQR 11.6 75
3−

1 3.4 22
3−

2 6.2 9

FIG. 12. (Color online) Differential cross sections as function of
the excitation energy for the systems 208Pb + 16O for two values of
incident energies. The different multipole contributions are separately
shown: The pale (green) shaded area corresponds to the L = 2
multipole states while the dark (red) area is the dipole contributions.
The thin (blue) and the thick (black) line correspond to the L = 3 and
total, respectively.

V. CONCLUSIONS

In the isovector dipole strength distribution the peak
appearing at low energy corresponds to a mode whose
isoscalar and isovector components are strongly mixed as it
is clearly manifested in their transition densities. This feature
allows the possibility to study these so-called pygmy dipole
resonance states by using an isoscalar probe in addition to
the conventional isovector one. Actually, this has been already
done for some semimagical nuclei like the ones studied in
Ref. [22]. There, by means of (α, α′γ ) coincidence method,
a splitting of the low-lying dipole bump has been found out.
Namely, it was shown that with this method only the low-lying
part of the bump is populated while the remnant is excited only
by a (γ, γ ′) experiment. This has been interpreted as due to
the properties of the α particle to probe the surface part of
the transition density of the nucleus. Hence, only the lower
part of the bump seems to show a strong isoscalar component
in the peripheral region of the transition density while the
states belonging to the high energy region of the bump should
have a predominantly isovector transition density. However,
all theoretical calculations and analyses done until now within
several microscopic many body models agree in considering
a transition density with the characteristic features shown in
Fig. 2 as a distinctive property of PDR states. Therefore, the
higher energy bump should not be interpreted as due to the
excitation of states of that nature. This shows in a very clear
way that comparing the results obtained by using different
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probes one can get valuable information on the structure
underlying the peaks observed experimentally.

These PDR states show up when a consistent neutron excess
is present in the nucleus; therefore their appearance is more
pronounced in nuclei far from the stability line but its presence
has been established also for very stable nuclei as 208Pb.
Indeed, by studying their transition densities, we have shown
that the same feature that characterize the PDR state for the
132Sn are duplicated in the 208Pb case.

We have shown that valuable informations on the nature
of the PDR can be obtained by excitation processes involving
also the nuclear part of the interaction. The use of different
bombarding energies, of different combinations of colliding
nuclei involving different mixture of isoscalar/isovector com-
ponents, together with the mandatory use of microscopically
constructed form factors, can provide the clue to reveal the
characteristic features of these states. These analyses have been
carried out on the 132Sn with different partners of the reaction
like 4He, 40Ca, and 48Ca. We found that the excitation induced
by the nuclear part of the interaction is almost independent
of the incident energy. On the contrary, in the Coulomb case
the variation of the incident energies produces structurally
different results. This is due to the well-known adiabatic cut-off
effect.

We have shown that the relative population of the PDR with
respect to the GDR may change by changing the parameters of
the reactions. In particular, at low incident energy the excitation
probability of the PDR state is sensibly high than the GDR

one. Our results then suggest that the investigation of the PDR
state can be better carried out at low incident energy (below
50 MeV/nucleon). In fact, at these energies the PDR peak
should not be masked by the presence of the low lying
quadrupole and octupole states because of their narrow widths.
On the contrary, at higher incident energy the PDR cross
section is higher but its peak may be blurred by the strong
tail of the giant resonance states.

Our conclusion is that the best conditions to reveal the PDR
can be achieved at relatively low incident energies (around
30 MeV per nucleon), where the interplay between the
Coulomb and nuclear interactions plays a fundamental role
in singling out these states. The last example analyzed (17O +
208Pb) has the advantage that, being the partners of the reaction
stable nuclei, it is allowed to explore a great variety of incident
energies.

ACKNOWLEDGMENTS

One of the authors (M.V.A.) acknowledges the financial
support provided by the Spanish Ministerio de Ciencia e
Innovación and the European regional development fund
(FEDER) under Project Nos. FPA2009-07653 and FIS2008-
04189; the Spanish Consolider-Ingenio 2010 Programme
CPAN (CSD2007-00042) and Junta de Andalucı́a under
Project Nos. P07-FQM-02894 and FQM160; the bilateral
agreement between the Spanish Ministerio de Ciencia e
Innovación and the Italian I.N.F.N., AIC10-D-000590.

[1] N. Paar, D. Vretenar, E. Khan, and G. Colò, Rep. Prog. Phys.
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H.-K. Chang, Phys. Lett. B 664, 258 (2008).
[11] D. Sarchi and P. F. Bortignon, and G. Coló, Phys. Lett. B 601,
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