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Core excitation effects in the breakup of the one-neutron halo nucleus 11Be on a proton target

A. M. Moro1,* and R. Crespo2,3,†
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We investigate the phenomenon of core excitation in the inelastic and breakup of two-body halo nuclei,
composed by a valence nucleon and a core. To evaluate the importance of this effect we propose a simple reaction
model based on an extension of the standard distorted wave Born approximation (DWBA) method. The model
takes into account core-excited admixtures in the states of the composite projectile, as well as the possibility
of dynamic core excitation due to the interaction of the core with the target. As an application of the model,
we present calculations for the breakup of 11Be on a proton target at an incident energy of 63.7 MeV/nucleon,
comparing it with the available data for this reaction. We find that the data are well reproduced by the model and
that the effect of dynamic core excitation is essential to explain the observed cross section.
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I. INTRODUCTION

Breakup and inelastic scattering are now standard tech-
niques to study the structure of halo nuclei. In particular,
the proton target is very appealing for spectroscopic studies
because the excitation occurs mainly due to the nuclear inter-
action, thereby exciting several multipolarities and revealing
the resonant structure of the projectile continuum [1,2]. To
extract reliable information from these data it is important
to identify the relevant excitation mechanisms. In the case
of a projectile composed by a valence particle weakly bound
to a core, it is commonly assumed that the main excitation
mechanism is due to the excitation of the valence nucleon
outside the core. This single-particle picture is behind many
few-body reaction formalisms used in the analysis of reactions
induced by halo and other weakly bound nuclei, such as
the continuum-discretized coupled-channels (CDCC) method
[3], the adiabatic approximation [4,5], the Alt, Grassberger,
Sandhas (AGS) formulation of the Faddeev equations [6,7],
and a variety of semiclassical approaches [8–13].

Despite the relative success of these methods, they typically
ignore the fact that the projectile states will contain, in
general, significant admixtures of several core components
and, therefore, the excitation of the projectile may be caused
also by transitions between these core states.

These effects are not included in the standard formulations
of the methods discussed above, although some efforts have
been made in recent years toward this direction. A recent
example is the extended version of the CDCC method (named
XCDCC) recently proposed by the authors of Ref. [14].

The effect of core excitation has also been studied [15],
using an extension of the adiabatic model of Ref. [16]. The
formalism was applied to the elastic scattering of 8B on a
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carbon target, and some contribution was found at large angles
due to the excitation of the 7Be core.

It is the purpose of this work to evaluate the influence of
these core excitation effects in the inelastic and breakup of
halo nuclei using a simple model, but retaining nevertheless
the key physics. The model presented here is an extension of
the core excitation model presented in a previous work [17].
Under the assumption that the DWBA approximation is valid,
and that core-recoil effects can be neglected, this model gives
a simple relation between the excitation of the projectile and
that of the core on the same target. The model was applied to
the breakup of 11Be on a proton target at 63.7 MeV/nucleon
incident energy, and compared with the data from Ref. [1].
Due to the experimental energy resolution, the experimental
angular distributions for the exclusive breakup were extracted
for two intervals of neutron-10Be core energy: (i) Erel = 0–
2.5 MeV and (ii) Erel = 2.5–5.0 MeV. In the first interval one
expects an important contribution coming from the low-lying
narrow 5/2+ resonance at a relative energy of 1.28 MeV [18].
This resonance has a dominant 10Be(0+) ⊗ ν1d5/2 parentage
and a small component 10Be(2+) ⊗ ν2s1/2. The cross section
for the second interval contains, presumably, contributions
coming from several resonances, namely, Ex = 2.64 MeV
(3/2−), 3.40 MeV (3/2−, 3/2+), 3.89 MeV (5/2−), and 3.95
(3/2−) [18]. In a previous work, we analyzed these data
using a simple version of the core excitation model [17], and
showed that the main contribution to the second interval comes
from the resonance at 3.40 MeV, for which we assumed a
3/2+ assignment, following the suggestion of the authors of
Ref. [19]. These calculations provided a reasonable agreement
with the data of Ref. [1] and, most importantly, evidenced the
importance of the core excitation mechanism in the breakup
of halo nuclei.

The calculations performed by the authors of Ref. [17]
assumed a simple single-particle configuration for the valence
neutron in the 11Be nucleus relative to the 10Be core. It is
the purpose of this work to extend this model to the more
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realistic situation in which the projectile states consist of
a superposition of different valence configurations and core
states.

The paper is structured as follows. In Sec. II we introduce
the Hamiltonian used in this work. In Sec. III, we describe
the core excitation reaction model used in the scattering
calculations. In Sec. IV we detail the structure model used to
describe the 11Be states. In Sec. V we present the calculations
for the 11Be + p reaction. Finally, Sec. VI is left for summary
and conclusions.

II. THE FEW-BODY HAMILTONIAN

The three-body Hamiltonian for the system has the form

H = TR + Hproj + Vct + Vvt , (1)

where TR represents the kinetic energy operator for the
projectile-target relative motion, Vct and Vvt are the core-target
and the valence-target interactions, and Hproj is the internal
Hamiltonian of the projectile, given by

Hproj = Tr + Vvc(�r, �ξ ) + hcore(�ξ ) , (2)

where �r is the relative coordinate between the valence and
the core, Tr the core-valence kinetic energy operator, and
hcore(�ξ ) the intrinsic Hamiltonian of the core, whose energies
and eigenstates are labeled by the angular momentum (I ) and
its projection (Mc), that is,

hcore|�IMc
〉 = εI |�IMc

〉. (3)

Additional quantum numbers, required to fully specify the
core states, are omitted for simplicity in the notation. The
core-valence and core-target interactions may depend upon
the internal core degrees of freedom �ξ . A given projectile state
with total angular momentum and projection JM will consist
on a linear superposition of several valence-core configurations

�JM (�r, �ξ ) =
∑

α=I,�,j

[
ψJ

α (�r) ⊗ �I (�ξ )
]
JM

, (4)

where ψJ
α (�r) are wave functions describing the motion of

the valence neutron relative to a given core state. The set of
quantum numbers s, �, and j refer to the intrinsic spin of the
valence particle, its orbital angular momentum relative to the
core, and their sum, respectively.

The wave functions ψJ
α (�r) will depend upon the adopted

structure model. For our case study this will be described in
Sec. IV.

III. THE REACTION APPROACH: CORE EXCITATION
REACTION MODEL

In this section we report in detail the core-excited reaction
formalism (C-ex) that shall be used to describe the excitation
of a projectile nucleus (p), from its ground state with total
angular momentum J to a final state J ′ due to its interaction
with a target (t). The projectile nucleus is assumed to be well
described by a valence particle (v) orbiting around a core
of nucleons (c). The target is assumed to be inert. In our
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FIG. 1. (Color online) Relevant coordinates for the scattering of
a two-body system, composed of a core (c) and a valence particle (v),
scattered off a target nucleus (t).

working example, this will correspond to the excitation of 11Be
(10Be + n) on a proton target to final states in the continuum,
but the formalism could be equally applied to the transition
between bound states. For simplicity, here we ignore the spin
of the proton target.

The differential cross section for the excitation from an
initial state |�i

JM〉 to a final state |�f

J ′M ′ 〉 of the projectile is
given in general by

dσpt

d�
= 1

Ĵ 2

μpt

(2πh̄2)2

K ′

K

∑
M ′,M

∣∣T JM,J ′M ′
pt

∣∣2
(5)

with Ĵ = √
2J + 1, μpt is the projectile-target reduced mass,

�K ( �K ′) the initial (final) linear momentum, and T
JM,J ′M ′
pt is the

transition amplitude. Within the DWBA approach, the latter is
given by

T JM,J ′M ′
pt = 〈

χ
(−)
�K ′ ( �R)�f

J ′M ′(�r, �ξ )
∣∣VT

∣∣χ (+)
�K ( �R)�i

JM (�r, �ξ )
〉
, (6)

where χ
(+)
�K ( �R) and χ

(−)
�K ′ ( �R) are distorted waves describing

the projectile-target relative motion in the initial and final
channels, respectively. In a core + valence model of the
projectile, the transition potential is

VT = Vvt ( �Rvt ) + Vct ( �Rct , �ξ ), (7)

where Vvt ( �Rvt ) and Vct ( �Rct , �ξ ) are the valence-target and core-
target potentials. The relevant coordinates for this problem are
depicted in Fig. 1.

The valence-target interaction is assumed to be central, and
hence Vvt ( �Rvt ) = Vvt (Rvt ). On the other hand, the core-target
interaction contains both central and noncentral parts, and is
written as the multipolar expansion

Vct ( �Rct , �ξ ) =
∑
L,M

V
(L)
ct (Rct , ξ )Y ∗

LM (R̂)YLM (ξ̂ ). (8)

We assume that the radial form factor does not depend on the
internal coordinates of the core [i.e., VL(Rct , ξ ) = VL(Rct )],
which is valid for the rotational model used here.

From Eqs. (6) to (8) the DWBA amplitude is expressed as
a sum of two terms:

T JM,J ′M ′
pt ( �K ′, �K) = T

JM,J ′M ′
val + T JM,J ′M ′

corex . (9)

The first term, that we denote valence amplitude for
shortness, is explicitly given by

T
JM,J ′M ′

val ( �K ′, �K) = 〈
χ

(−)
�K ′ ( �R)�f

J ′M ′(�r, �ξ )
∣∣Vvt (Rvt )

+V
(0)
ct (Rct )

∣∣χ (+)
�K ( �R)�i

JM (�r, �ξ )
〉
. (10)

054613-2



CORE EXCITATION EFFECTS IN THE BREAKUP OF THE . . . PHYSICAL REVIEW C 85, 054613 (2012)

This term contains only the central parts of the fragment-target
potentials Vvt and Vct and therefore it cannot induce transitions
involving excitations of the core. Using the general form (4)
for the initial and final states, this amplitude can be rewritten
as

T
JM,J ′M ′

val ( �K ′, �K) =
∑
α,α′

〈
χ

(−)
�K ′ ( �R)ψJ ′

α′ (�r)
∣∣Vvt (Rvt )

+V
(0)
ct (Rct )

∣∣χ (+)
�K ( �R)ψJ

α (�r)
〉
δI,I ′ . (11)

For each state I of the core contained in both the initial and
final states of the projectile, this amplitude is similar to that
found in conventional CDCC calculations and therefore can
be evaluated using the standard codes available for this kind
of calculations.

The second term of the transition amplitude is due to the
noncentral part of the core interaction, that is,

T JM,J ′M ′
corex ( �K ′, �K) =

∑
L>0,M

〈
χ

(−)
�K ′ ( �R)�f

J ′M ′ (�r, �ξ )
∣∣V (L)

ct (Rct )

×Y ∗
LM (R̂ct )YLM (ξ̂ )

∣∣χ (+)
�K ( �R)�i

JM (�r, �ξ )
〉
.

(12)

This term accounts for the dynamic excitation of the core
during the collision. It is the purpose of the present work
to evaluate this term approximately, but retaining the key
physics, to provide a simple estimation of the core excitation
effects.

In addition to the core excitation mechanism, the ampli-
tude (12) may also produce excitations in the core-valence rela-
tive motion. This is because the transition potential is evaluated
at �Rct . This coordinate can be expressed as �Rct = �R + γ �r
[γ = mv/(mv + mc)]. The dependence on the core-valence
coordinate (�r) produces a core-recoil effect that can induce
excitations of the projectile. However, because in our test case
γ � 1, we will assume that this effect can be neglected in
this amplitude [although it is fully taken into account in the
amplitude (11)], so we can make the approximation �R ≈ �Rct

in Eq. (12), which means that the distorted waves in Eq. (12)
are evaluated at the �Rct coordinate. This approximation leads
to what we shall call hereafter the core excitation (C-exc)
reaction model. We note that this model can be deduced from
the XCDCC formalism [14] by calculating the transition in the
Born approximation and neglecting the core-recoil effects for
L > 0.

The scattering amplitude for the C-exc approach factorizes
then into a sum of products of a reaction and a structure term

T JM,J ′M ′
corex =

∑
L>0,M

TLM ( �K ′, �K)

× 〈
�

f

J ′M ′(�r, �ξ )
∣∣YLM(ξ̂ )

∣∣�i
JM (�r, �ξ )

〉
, (13)

where we have introduced the quantities

TLM ( �K ′, �K) = 〈χ (−)
�K ′ ( �Rct )|V (L)(Rct )Y

∗
LM (R̂ct )|χ (+)

�K ( �Rct )〉,
(14)

which contain the dependence on the reaction part of the
transition amplitude.

Using the Wigner-Eckart theorem in the form [20], we can
write for the structure component〈

�
f

J ′M ′
∣∣YL,M (ξ̂ )

∣∣�i
JM

〉 = 〈J ′M ′|JMLM〉〈�f

J ′ ||YL(�ξ )||�i
J

〉
.

(15)

Noting that the operator appearing in the reduced matrix
element depends only on the core coordinates and that the
initial and final states are expressed in the form (4), this
matrix element can be written as (see, for instance, Ref. [20],
Appendix VI)〈

�
f

J ′ ||YL(�ξ )||�i
J

〉 =
∑
α,α′

〈
RJ ′

α′
∣∣RJ

α

〉
G

(L)
αJ,α′J ′ 〈I ′||YL(�ξ )||I 〉,

(16)

where we introduced the geometric factor

G
(L)
αJ,α′J ′ = δj,j ′ (−1)L+j+J ′+I Ĵ Î ′

{
J ′ J L
I I ′ j

}
. (17)

The reduced matrix element 〈I ′||YL(�ξ )||I 〉 appearing in
Eq. (16) depends on the structure model assumed for the core
and will be specified later. Collecting results, the scattering
amplitude for the core excitation reads

T JM,J ′M ′
corex =

∑
L>0,M

〈JMLM|J ′M ′〉TLM ( �K ′, �K)

×
∑
α,α′

〈
RJ ′

α′ |RJ
α

〉
G

(L)
αJ,α′J ′ 〈I ′||YL(�ξ )||I 〉. (18)

The different terms that enter in this transition amplitude
are relatively straightforward to calculate. The amplitudes
TLM ( �K ′, �K), defined by Eq. (14), are those appearing in stan-
dard DWBA calculations with local form factors, for example,
in inelastic scattering calculations. The radial functions RJ

α (r)
are the solution of a coupled set of differential equations and
the techniques to solve this problem are described elsewhere
(see, e.g., the Appendix VI of Ref. [21]). The rest of the terms
are just kinematical and geometrical factors.

The amplitude (18) can also be related to the two-body
inelastic amplitudes for a core-target scattering problem. To
make this relation explicit, let us consider a given transition
IMc → I ′M ′

c for the inelastic excitation of the core scattered
off the same target. In DWBA, the amplitude for this process
reads, similarly to Eq. (6),

T
IMc,I

′M ′
c

ct = 〈
χ

(−)
�K ′ ( �Rct )�

f

I ′M ′
c
(�ξ )

∣∣Vct ( �Rct , �ξ )
∣∣

×χ
(+)
�K ( �Rct )�

i
IMc

(�ξ )
〉
. (19)

Using the Wigner-Eckart theorem, this amplitude can be
also written as

T
IMc,IM ′

c

ct = 〈I ′M ′
c|IMcLM〉T̃ (LM)

ct (I → I ′) , (20)

with the reduced amplitudes

T̃
(LM)

ct (I → I ′) = TLM ( �K ′, �K)〈I ′||YL(ξ̂ )||I 〉, (21)

with TLM ( �K ′, �K) given by Eq. (14).
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Comparing with Eq. (18) and making use again of the no-
recoil approximation ( �Rct ≈ �R) we get the relation

T JM,J ′M ′
corex =

∑
L>0,M

〈J ′M ′|JMLM〉

×
∑
α,α′

〈
RJ ′

α′
∣∣RJ

α

〉
G

(L)
αJ,α′J ′ T̃

(LM)
ct (I → I ′). (22)

This amplitude is equivalent to that given by Eq. (18), but
emphasizes in a clear way the relation between the three-
body scattering amplitude, Eq. (12), and the corresponding
two-body amplitudes, under the approximations assumed by
the model. Equation (22) provides also a practical way to
numerically implementing the core-excited model since the
two-body amplitudes can be obtained from any standard
DWBA code.

In the extreme situation in which the valence excitation
is small compared with the core excitation mechanism,
the transition amplitude is given entirely by Eq. (18) and
the corresponding cross section is obtained inserting this
amplitude into Eq. (5). Furthermore, if there is a contribution
from a single multipole transition L, and a single config-
uration in the initial and final states, the projectile-target
cross section becomes proportional to the cross section for
the excitation of the core multiplied by a geometric factor and
the radial overlap, that is,

dσpt

d�

∣∣∣∣
corex

= Ĵ ′2

Ĵ 2

Î 2

Î ′2
∣∣G(L)

αJ,α′J ′
〈
RJ ′

α′ |RJ
α

〉∣∣2 dσct

d�
(I → I ′).

(23)

This particular case was used in a preliminary application of
this model to 11Be + p resonant breakup [17].

Note, however, that in general both the valence and the core
excitation mechanisms will contribute to the breakup process.
In this case, the corresponding amplitudes need to be added
coherently and hence interference effects will arise. In the
present work we take into account simultaneously the valence
and core excitation contributions.

IV. STRUCTURE MODEL

To calculate the initial and final states of the projectile
one needs to specify the structure model for the core. In the
calculations presented in this work for the 11Be + p system,
the projectile is treated within the particle-rotor model of Bohr
and Mottelson [21]. Then we assume a rotational model for the
10Be core with a permanent quadrupole deformation, which,
for simplicity, is taken to be axially symmetric. Therefore, we
can characterize the deformation by a single parameter β2. In
the body-fixed frame, the surface radius is then parametrized
as R(ξ̂ ) = R0[1 + β2 Y20(ξ̂ )], with R0 an average radius, to
be specified later. Starting from a central potential, V (0)

vc (r),
the full valence-core interaction is obtained by deforming this
central interaction

Vvc(�r, ξ̂ ) = V (0)
vc [r − δ2Y20(ξ̂ )], (24)

with δ2 = β2R0 being the deformation length. Transforming to
the space-fixed frame of reference, and expanding in spherical

harmonics, this deformed potential reads

Vvc(�r, �ξ ) =
∑
L,M

V (L)
vc (r)Y ∗

LM(r̂)YLM(ξ̂ ). (25)

The internal states of the projectile are expanded according
to Eq. (4). If we write ψJ

α (�r) = RJ
α (r)Y�sjm(r̂), withY�sjm(r̂) =

[Y�(r̂) ⊗ χs]jm, the projectile states become

�JM (�r, �ξ ) =
∑

α

RJ
α (r)[Y�sj (r̂) ⊗ �I (�ξ )]JM. (26)

The radial functions RJ
α (r) are then obtained by solving the

Schrödinger equation using the potential (25) and with the
appropriate boundary conditions.

For bound states, these radial functions decay exponentially
for r → ∞ giving rise to square-integrable functions. For
continuum states, the functions RJ

α (r) are also obtained by
solving a set of coupled radial equations, but subject to the
boundary condition that incident waves occur in a given
open channel characterized by a set of quantum numbers
α = {�, s, j, I }.

Although the calculations presented in this work could
be performed with the scattering states themselves, it is
numerically advantageous to adopt a binning procedure,
similar to that used in CDCC calculations. Then, the continuum
spectrum is divided into energy intervals. For each energy
interval, or bin, a representative square-integrable state is
constructed by a weighted superposition of scattering states
within the bin interval. The bin wave function for a given
incoming wave α is given by a square-integrable function,
with a structure similar to that of the bound states (26)

�bin
[k1k2]αJM (�r, �ξ ) =

∑
α′

RJ
[k1k2]αα′ (r)

× [Y�′sj ′ (r̂) ⊗ �I ′(�ξ )]JM, (27)

where [k1k2] denotes the momentum interval defining the bin.

V. APPLICATION TO 11Be + p RESONANT BREAKUP

We now apply the core-excited model to the breakup of 11Be
on a proton target and compare with the data of [1]. Before
presenting the calculations with this model, we consider
the case ignoring the effect of deformation in both the 11Be
structure and in the core-target interaction.

A. Calculations without deformation

The calculations with no-deformation were done with
the standard CDCC method, using the FRESCO code [22].
These calculations are similar to those presented in our
previous work [23]. The valence-core interaction contains
central + spin-orbit terms, of Woods-Saxon shape, with
parameters adjusted to reproduce the ground state separation
energy, the bound excited state (1/2−), and the position of
the low-lying 5/2+ resonance. The core-target interaction
corresponds to the Watson parametrization of Ref. [24]. For
the interaction between the valence neutron and the proton
target, we consider initially a simple Gaussian interaction
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FIG. 2. (Color online) Differential cross section as a function
of the n-10Be relative energy calculated with the Faddeev/AGS and
CDCC methods, using different choices for the valence neutron-
proton interaction. The solid line is the Faddeev calculation using
the realistic CD Bonn interaction. The dotted and dotted-dashed lines
are, respectively, the Faddeev and CDCC calculations using a p-n
Gaussian interaction adjusted to the 3S1s-wave phase-shifts: V (r) =
−72.15 exp[−(r/1.484)2]. The dashed line is the CDCC calculations
using the modified Gaussian interaction with the same geometry,
but with the reduced strength V0 = −45 MeV. All these calculations
ignore the 10Be deformation.

V (r) = −72.15 exp[−(r/1.484)2] [3], which reproduces the
deuteron binding energy and low-energy s-wave triplet (3S1)
phase shifts. The 11Be continuum was discretized in energy
intervals using the standard binning procedure. We included
n-10Be partial waves up to � = 2.

In Fig. 2 we represent the calculated energy spectrum
dσ/dErel that emerges by integrating the breakup cross section
over the solid angle d�c.m.. To assess the reliability of the
CDCC method in this case, we include also the Faddeev
calculation (quoted from Ref. [23]), performed with the same
two-body interactions. The CDCC calculation (dot-dashed
line) reproduces fairly well the Faddeev result indicating that,
at least in the limit of no-deformation, the CDCC is a reliable
tool to analyze this reaction.

It was found by the authors of Ref. [23] that the breakup
cross sections are very sensitive to the interaction between
the valence neutron and the proton target. This is illustrated
by the solid line in Fig. 2, which represents the Faddeev
calculation performed replacing the simple Gaussian potential
by the realistic CD Bonn interaction. This produces a sizable
reduction of the breakup cross section. Consequently, to get re-
liable results it is mandatory to use a realistic nucleon-nucleon
(NN) interaction. Unfortunately, existing implementations of
the CDCC method do not incorporate the possibility of using
these realistic NN interactions, such as Paris or CD Bonn.
Nevertheless, we have found that the effect of using a realistic
NN interaction can be well simulated reducing the depth of
the Gaussian interaction to V0 ≈ −45 MeV. The corresponding
CDCC calculation, depicted by the dashed line in Fig. 2, is seen
to reproduce fairly well the Faddeev result with the CD Bonn
potential.

The corresponding angular distributions are shown in Fig. 3.
The upper and bottom panels correspond to the relative

0

20

40

dσ
/d

Ω
c.

m
.  (

m
b/

sr
)

Faddeev: CD Bonn
CDCC: modified Gaussian
DWBA: modified Gaussian

10 20 30 40
θc.m.  (deg)

0

10

20

dσ
/d

Ω
c.

m
.  (

m
b/

sr
) (b) Erel=2.5-5 MeV

(a) Erel=0.0-2.5 MeV

FIG. 3. (Color online) Angular distribution for the breakup of
11Be on a proton target at 63.7 MeV/nucleon for Erel = 0–2.5 MeV
(upper panel) and Erel = 2.5–5.0 MeV (bottom panel) calculated
without deformation. The circles are the experimental data of
Ref. [1]. The solid line is the Faddeev calculation with the realistic
CD Bonn interaction. The dashed line is the CDCC calculation
using the modified Gaussian interaction (Vg = −45 MeV) and
the dot-dashed line is the CDCC calculation calculated in first
order.

energy intervals Erel = 0–2.5 MeV and Erel = 2.5–5.0 MeV,
respectively. In each panel, the solid line is the Faddeev
calculation using the realistic CD Bonn interaction, whereas
the dashed line is the CDCC calculation using the modified
Gaussian potential. It is seen that both calculations are in
reasonable agreement. There are discrepancies below 15◦,
where no data exist nevertheless. Since the calculations
including deformation are performed within the DWBA
approximation, we have included also in this plot the CDCC
calculation performed in first order, which is equivalent to
a DWBA calculation. It is seen that this calculation is very
close to the full CDCC result, justifying the use of the Born
approximation in this reaction. This plot shows also very
clearly that the single-particle excitation mechanism is not
adequate to describe these data, particularly in the higher
excitation energy interval.

From the calculations presented in this section, we conclude
that the CDCC method (even to first order), using an adequate
effective p-n interaction, provides a good approximation to
the more sophisticated Faddeev calculation with a realistic
NN interaction. In the following section, we introduce the
effect of core deformation using the C-ex model described in
Sec. III.
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B. Calculations with the core excitation model

To calculate the initial and final states of the projectile
[Eqs. (26) and (27)] we adopt the valence-core potential from
Ref. [25] (model Be12b) consisting of a central Woods-Saxon
potential, with radius R0 = 2.483 fm, diffuseness a = 0.65 fm,
and parity-dependent depth, with V0 = −54.239 MeV (V0 =
−49.672 MeV) for the even (odd) waves. This potential is
deformed using a deformation parameter β2 = 0.67, which
corresponds to a deformation length of δ2 = β2R0 = 1.64 fm.
A spin-orbit term, using the standard Woods-Saxon derivative
form for the radial shape, with the same radius and diffuseness
as the central part and a depth of Vso = 8.5 MeV, is also
included. For the 10Be core we consider only the ground state
(0+) and the first excited state (Iπ = 2+, Ex = 3.368 MeV).
The orbital angular momentum � is truncated at �max = 3.
We considered continuum states with Jπ=1/2+, 1/2−, 3/2−,
3/2+, and 5/2+.

With the assumed Hamiltonian and model space, the
ground state corresponds predominantly to a s1/2 configuration
coupled to the core in the ground state (≈85%), but with
a significant admixture of the |2+ ⊗ νd5/2〉 configuration
(≈13%).

This potential produces also the low-lying narrow reso-
nances 5/2+, 3/2−, and 3/2+ at relative energies of 1.2, 2.7,
and 3.2 MeV, respectively. These resonances can be identified
with the states observed by Fukuda et al. in the 11Be +
12C reaction at 70 MeV/nucleon [19]. The 5/2+ resonance
corresponds predominantly to a d5/2 configuration coupled to
the core in the ground state, whereas the 3/2+ resonance has
a dominant 10Be(2+) ⊗ νs1/2 parentage.

For the interaction between the valence neutron and
the proton target we use the modified Gaussian interaction
obtained in the previous section. For the central part of
the 10Be + p interaction we keep the Watson potential
[24]. This interaction is used to calculate the distorted
waves appearing in the DWBA transition amplitude. The
noncentral part of this interaction, required to allow for the
dynamic excitation of the core, is obtained deforming this
central potential using the same deformation length (δ2 =
1.64 fm).

In Fig. 4 we show the calculated breakup cross section, as
a function of the n-10Be relative energy, integrated over the
center-of-mass angular range θc.m. � 60◦. Figure 4(a) shows
the contribution of the dominant Jπ partial waves to the
calculated energy spectrum, as well as the total sum of all
included waves. It is seen that the breakup cross section is
dominated by the resonant 3/2+ and 5/2+ contributions and, at
low excitation energies, by the 3/2− nonresonant continuum.
The 1/2− and 1/2+ waves (not shown in this figure) give
also some contribution at small excitation energies. It is also
observed that the 3/2− resonance (located at Erel = 2.7 MeV
in this model) has a negligible effect on the cross section.

In Fig. 4(b), we show separately the valence and core
excitation contributions to the angle-integrated breakup cross
section. The low-energy spectrum is mostly due to the valence
excitation, and hence the dynamic core excitation is negligible
at these excitation energies. As the excitation energy increases
the effect of core excitation becomes more and more important.
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FIG. 4. (Color online) Differential energy cross section for
p(11Be,p)10Ben at 63.7 MeV/nucleon integrated over the center-
of-mass angular range θc.m. � 60◦, calculated with the C-ex model
proposed in this work. The upper panel shows the individual
contribution of the main partial waves and the sum of all included
partial waves. The bottom panel shows the separate contribution
coming from the valence excitation and dynamic core excitation
amplitudes. See text for details.

In particular, core dynamic effects are clearly dominant in the
region of the 3/2+ resonance and are also important in the
region of the 5/2 + resonance. We thus expect significant
changes in the corresponding angular distributions.

In Fig. 5 we compare our results for the breakup cross
section angular distribution dσ/d�c.m. with the experimental
data of Ref. [1] containing contributions within relative
neutron–10Be energy range 0–2.5 MeV [Fig. 5(a)] and
2.5–5 MeV [Fig. 5(b)]. Again, we show the separate con-
tributions coming from the valence excitation (dot-dashed
line) and dynamic-core excitation (dashed line), as well
as their coherent sum (solid line). In the lower energy
interval [Fig. 5(a)] the cross section is dominated by the
single-particle breakup mechanism. The calculated angular
distribution reproduces reasonably well the shape of the data,
although some overestimation of the absolute magnitude is
observed. On the other hand, in the higher energy interval
[Fig. 5(b)], both the single-particle and dynamic core excita-
tion mechanisms are important. The sum of both contributions
accounts reasonably well for the data, except for the first data
point, which is overestimated. The main contribution in this
excitation energy region comes from the population of the
3/2+ resonance, as can be expected from Fig. 4. These results
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FIG. 5. (Color online) Angular distribution for the breakup of
11Be on a proton target at 63.7 MeV/nucleon for Erel = 0–2.5 MeV
(upper panel) and Erel = 2.5–5.0 MeV (bottom panel). The circles
are the experimental data of Ref. [1]. The dashed-dotted and dashed
curves represent the valence and core excitation contributions,
respectively, whereas the solid line corresponds to their coherent
sum.

evidence the importance of the core excitation mechanism
and confirm our earlier findings using a more simplified
model [17].

Finally, we note that this reaction has been studied also by
the authors of Ref. [26] using an extended version of the CDCC
method, which incorporates equivalent core excitation effects
to those discussed here. However, contrary to our results, the
effect of core excitation was found to be very small in that
work. This result is unexpected given the large deformation of
the 10Be nucleus.

VI. CONCLUSION

In conclusion, we studied the problem of core excitation in
the breakup scattering of halo nuclei. To account for this effect
in a quantitative way, we developed a core excitation reaction
model, based on the DWBA approximation, which takes into
account the effect of core deformation in the structure of
the halo nucleus, as well as the possibility of dynamic core
excitation during the collision. We showed that, ignoring
core-recoil effects, the contribution to the scattering amplitude
arising from the core excitation can be written in terms of
a superposition of two-body amplitudes corresponding to the
inelastic scattering of the core scattered by the same target.

As an illustration of the model, we performed calculations
for the breakup of 11Be on protons at an incident energy of
63.7 MeV/nucleon. The initial and final states are treated
within the particle-rotor model and hence they are considered
as a superposition of several valence configurations coupled
to the 10Be core in either the ground state (0+) or the
first excited state (2+). The noncentral part of the 10Be +
proton interaction, which is responsible for the dynamic core
excitation, is obtained deforming the 10Be + proton potential.

We find that the core excitation mechanism gives an
important contribution and its inclusion permits a suitable
description of the data from Ref. [1]. We also showed
that the importance of dynamic core excitation becomes
more important at increasing excitation energies and is in
fact essential to account for the energy-integrated angular
distribution at Erel = 2.5–5.0 MeV.

From the calculations presented in this work, we may con-
clude that these core excitation effects will be also important
in other reactions induced by weakly bound projectiles with
deformed constituents. The method proposed here can provide
a useful and simple estimate of these effects in those situations
in which the assumptions of the model (i.e., the validity
of the Born approximation and the possibility of neglecting
core-recoil) are justified.
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