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We study parity violation in quasielastic electron-nucleus scattering using the relativistic impulse approxi-
mation. Different fully relativistic approaches have been considered to estimate the effects associated with the
final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed
its sensitivity to the different ingredients that enter into the description of the reaction mechanism: final-state
interactions, nucleon off-shellness effects, and current gauge ambiguities. Particular attention has been paid to
the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent
observable when the goal is to get precise information on the axial-vector sector of the weak neutral current.
Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative
corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the
interference γ − Z nuclear responses are also analyzed.
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I. INTRODUCTION

As is well known, the purely electromagnetic (EM) inter-
action clearly dominates electron scattering reactions, being
parity-conserving (PC) processes. However, the electron also
interacts through the weak neutral current (WNC) interaction
that does not conserve parity, i.e., via parity-violating (PV)
processes. Although the weak interaction is several orders
of magnitude smaller than the EM one, the role played by
the former in the scattering process can shed some light on
specific ingredients in the reaction mechanism that are not
accessible from studies considering only the EM interaction.
The main objectives pursued through the analysis of PV
electron scattering reactions are (i) to serve as a test of
the standard model, (ii) to serve as a tool to determine the
electroweak form factors of the nucleon, and (iii) to use the
weak interaction as a probe to study nuclear structure. In this
work we focus on the second goal, that is, getting information
on the nucleonic structure.

The measurement of PV effects in electron-nucleon and
nucleus scattering requires one to build observables that show
a very high sensitivity to the electroweak interaction and which
are insensitive to contributions arising from the dominant EM
force. The helicity asymmetry or PV asymmetry is defined as
the ratio between the difference and sum of cross sections with
opposite helicity of the incident electron,

APV = σ+ − σ−

σ+ + σ− = σ PV

σ PC
, (1)

where the superscript +/− denotes positive or negative
helicity. The numerator in Eq. (1) only differs from zero if
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PV effects are considered. Hence we denote the resulting
cross section as σ PV. On the contrary, the denominator in
Eq. (1) is dominated by the PC EM interaction, so it is denoted
as σ PC. It is important to point out that previous comments
refer to inclusive processes in which the target nucleus is not
polarized. In any other situation, nuclear responses linked only
to the EM interaction can also contribute to the numerator in
the PV asymmetry [1–3].

In this work we restrict our attention to the study of
inclusive PV electron-nucleus scattering processes, A(�e,e′)B.
We consider the quasielastic (QE) regime that corresponds
to the electron being scattered from a single nucleon that is
subsequently ejected from the target nucleus. Within the Born
approximation, in which the interaction is described by the
exchange of a single virtual boson, the Feynman diagrams
that represent the scattering process are those represented in
Figs. 1(a) [one-photon exchange (EM interaction)] and 1(b)
[one-Z0 exchange (WNC interaction)]. The first-order contri-
bution to σ PV in Eq. (1) arises from the interference between
Figs. 1(a) and 1(b). The helicity asymmetry, denoted also as the
PVQE asymmetry,APV

QE, provides a very useful tool to study the
WNC interaction. For some specific kinematical conditions,
which are analyzed in Sec. III, the PVQE asymmetry can help
in determining the isovector contribution in the axial-vector
form factor of the nucleon. This aspect of the problem
was already suggested in some previous works [4–7], and
it can complement the whole set of information provided
by the analysis of parity violation in elastic electron-proton
scattering. This latter process was studied in detail in
Refs. [8–10] with emphasis on the vector strange form
factors of the nucleon and the effects linked to the radiative
corrections. These ingredients also play a role in the case of
QE electron scattering. Furthermore, the complex structure
of the nuclear target introduces additional difficulties that
should be carefully addressed. Some questions of importance
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FIG. 1. (Color online) Feynman diagrams representing PVQE
electron-nucleon scattering in Born approximation: (a) EM
interaction–one photon (γ ) exchanged; (b) WNC interaction–one Z0

exchanged.

in describing PVQE electron scattering are as follows:

(i) Do the current nuclear models reproduce PC processes
with enough precision to be used for PV processes?

(ii) Which channels beyond the impulse approximation
(IA) contribute to the PVQE asymmetry?

(iii) How important are the modifications of the nucleon
form factors due to the nuclear medium and to their
off-shell character?

(iv) What role is played in the PV asymmetry by the
Coulomb distortion of the electron wave functions?

With regard to the first question, the relativistic model
considered in this work [relativistic mean-field model (RMF)]
has been widely and successfully tested in several previous
studies [11,12]. Within the RMF final-state interactions (FSI)
between the ejected nucleon and the residual nucleus are
incorporated using the same mean field employed in describing
the wave functions of the bound nucleons (we refer to it as
the RMF-FSI model). Particular attention should be drawn to
the phenomenon of scaling and the excellent description of
the experimental data [11] provided by the model. Contrary
to most nonrelativistic models, the RMF-FSI is capable of
describing not only the magnitude of the experimental scaling
function but also its asymmetric shape and the fact that it has
a long tail extending to large values of the transferred energy.
On the other hand, the PVQE asymmetry, being built as a
ratio of cross sections, is expected to be only mildly modified
by the uncertainties linked to the nuclear models. Also, the
contributions of the discrete spectrum have been shown to be
very small, of the order of 2% (see Refs. [13–16]).

In some previous work [17–19] it has been shown that ef-
fects connected to two-body currents are small in the transverse
responses attached to the interference between EM and WNC
currents (in what follows denoted simply as PV responses);
however, the situation clearly differs in the longitudinal
channel. Here effects beyond the IA can be very significant.
This result can make it difficult to get information on the nu-
cleonic structure from PVQE asymmetry data taken at forward

scattering angles (where the longitudinal response is not neg-
ligible). On the contrary, at backward angles the longitudinal
contribution is tiny (see Sec. III), and therefore, effects beyond
the IA lead to very mild changes in the PVQE asymmetry.

The potential modification of the form factors of the
nucleon due to the nuclear medium has been studied in some
previous works considering various theoretical approaches:
the quark-meson coupling model (QMC) [20,21] and the
light-front constituent quark model [22]. Both models provide
expressions for the EM form factors that depend on the
nuclear density. In Refs. [23–25] results for polarization
observables corresponding to the exclusive process A(�e,e′ �p)B
were computed using the form-factor prescription given by
QMC. These results do not differ significantly from those
computed using the free prescription of the form factors. Thus
in this work all results are computed using the free prescription
for the nucleon form factors. On the other hand, concerning
the strange form factors, Horowitz and Piekarewicz pointed
out in Ref. [26] that the strangeness content in the nucleon
is expected to increase in a significant way with the nuclear
density. Nevertheless, these results have not been confirmed
nor has realistic modeling of such effects yet been developed.
Consequently, in this work we assume that the strange
matrix elements in the nucleon do not depend on the nuclear
density.

The approximations used to deal with the off-shell vertex
are discussed in Sec. II. This subject has been treated in detail
in Refs. [27–30] in the case of PC electron scattering reactions.
Results shown in this work complement the more elaborated
study presented in our companion paper [3] where the focus is
placed on exclusive (�e,e′N ) reactions. Although the latter are
not adequate to analyze PV effects due to the presence of the
so-called fifth EM response function, we have considered its
analysis to be of interest in order to get some insight concerning
the off-shell and gauge ambiguities in the PV observables.

Finally, we briefly address the question of the Coulomb
distortion of electrons. This aspect of the problem has
been analyzed in previous work using nonrelativistic ap-
proaches [31,32] as well as a fully relativistic descrip-
tion [33,34]. The incorporation of Coulomb effects introduces
important complications in the treatment of the scattering pro-
cess. Not only does the required computational time explode
but also the clear separation between the leptonic and hadronic
tensors with the subsequent appearance of the response
functions does not work any more. On the other hand, the
heavier the target (and/or the lower the energy of the incident
electrons), the larger the effects introduced by the Coulomb
distortion. In this work we restrict our study to relatively light
nuclei 12C and 16O (and 40Ca in a few cases) and high energies.
Therefore, all results in this work have been computed within
the plane-wave Born approximation (PWBA), i.e., a single
virtual exchanged boson is responsible for the electron-
nucleon interaction and the wave functions of incident and
scattered electrons are described as Dirac plane waves.

In what follows we summarize how this work is organized.
In Sec. II we present the basics of the general formalism
involved in the description of PVQE electron-nucleus scat-
tering. Here we introduce the approaches considered in this
work as well as a brief discussion of the WNC nucleon form
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factors. In Sec. III we present and discuss our results for
the PV nuclear responses and the PVQE electron helicity.
Here we consider different kinematical situations and examine
in detail the effects associated with the description of FSI,
relativistic dynamics, off-shellness, and weak nucleon form
factors. In Sec. IV we apply scaling arguments to the PV
nuclear responses by constructing PV scaling functions to be
compared with the EM ones. Finally, in Sec. V we summarize
our basic findings and discuss our conclusions.

II. FORMALISM

In this section we present the basic formalism involved in
the description of PVQE electron-nucleus scattering. Here a
longitudinally polarized incident electron [characterized by
the four-momentum K

μ
i = (εi,ki)] interacts with the target

nucleus that is assumed to be at rest in the laboratory frame
[P μ

A = (MA,0)]. The interaction is described assuming the
Born approximation, i.e., only one virtual boson (photon
for the EM interaction and Z for the WNC one) with
four-momentum Qμ = (ω,q) is considered to be exchanged
in the process. The scattered electron carries a four-momentum
K

μ
f = (εf ,kf ) and the residual nuclear system is characterized

by P
μ
B = (EB,pB).

This work deals with the description of the QE regime
and we make use of the impulse approximation (IA), that is,
the boson exchanged is attached directly to a single nucleon
which is then ejected from the nucleus. Within this framework
the inclusive cross section corresponding to (�e,e′) processes is
simply given as an incoherent sum of single-nucleon scattering
processes. Although this is an important simplification in
the description of the electron-nucleus scattering mechanism
reaction, it has shown its validity when applied to the QE
kinematical domain. Hence, the inclusive differential cross
section, dσ/(d�f dεf ), is built from the exclusive one (see
Ref. [3] for details) by integrating over the variables of the
scattered nucleon [d�N = d(cosθN )dφ] and summing over
the A nucleons in the target nucleus. The general expression
for the (�e,e′) differential cross section can be written in terms
of nuclear response functions as:

dσ

dεf d�f

= σMott

{
vLRL + vT RT − A0

2
[(aV − haA)

× (vLR̃L + vT R̃T ) + (haV − aA)vT ′R̃T ′
]

}
, (2)

where σMott is the Mott cross section and vα the usual lepton
kinematical factors (see Ref. [35] for the explicit expressions).
The functions RL,T (R̃L,T ) are the longitudinal (L) and
transverse (T ) EM (PV) nuclear responses while R̃T ′

is the
PV transverse-axial nuclear response. h denotes the helicity
of the incident electron (h = ±1). We have also introduced
the function A0 = GF |Q2|/(2

√
2πα) that sets the scale of

the PV cross section. GF is the Fermi coupling and α the fine
structure constant. Finally, aA = −1 and aV = −1 + 4 sin2 θW

represent the vector and axial-vector WNC electron couplings,
θW being the weak mixing angle.

Within the IA the nuclear current operator, Ĵ μ(q), is taken
as a one-body operator. In momentum space the current matrix

FIG. 2. Hadronic vertex in RPWIA.

element can be simply written as

Jμ ≡
∫

dp �F (p + q)Ĵ μ�B(p), (3)

where �B (�F ) is the bound (scattered) nucleon wave function
and Ĵ

μ
N is the one-body current operator. Here we make use

of the RMF model, presented in detail in Refs. [36–39], to
describe the bound nucleon wave functions. On the contrary,
different aproaches are considered for the nucleon scattered
wave function. First we assume the relativistic plane-wave
impulse approximation (RPWIA). Here the outgoing nucleon,
�F , is described by a relativistic (four-component) plane
wave. This approach is schematically represented in Fig. 2.
The virtual boson transfers its energy, ω, and momentum,
q, to one nucleon [characterized by P μ = (E,p)] that is
subsequently ejected from the nucleus with a four-momentum
P

μ
N = (EN,pN ).

Final-state interactions (FSI) are an essential ingredient in
describing electron-nucleus scattering. Hence, we incorporate
FSI in our model by describing the wave function of the outgo-
ing nucleon, �F , as a scattered solution of the Dirac equation
in presence of the same scalar (S) and vector (V ) potentials
employed in the description of the bound wave function.
Contrary to the complex phenomenological potentials used for
(�e,e′N ) processes (see Ref. [3]), the real potential considered
in our present case (inclusive electron scattering) preserves
the flux. Moreover, the use of the same relativistic potential
for both the bound and scattered wave functions is consistent
with having the continuity equation fulfilled. Figure 3 shows
schematically the situation when FSI are considered. Note

FIG. 3. Hadronic vertex when FSI are considered (RMF-FSI
model).
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the difference between the four-momentum acquired by the
nucleon attached to the boson (P μ + Qμ) and the asymptotic
(final-state) value: P

μ
N = (EN,pN ).

With regards to the current operator we follow the usual
procedure, originally proposed in Ref. [40] and widely used in
many later works (see Refs. [41,42] and references therein),
that consists of taking the current operator corresponding
to free (on-shell) nucleons. Explicit expressions have been
shown in numerous previous works [27,41,43,44] and here
we make use of the notation introduced in our accompanying
work [3]. Following with the general discussion presented
in Ref. [3], the use of the two usual prescriptions, CC1
and CC2, that are totally equivalent for on-shell nucleons,
leads to different results in the case of bound or scattered,
i.e., off-shell, nucleons. Moreover, current conservation (for
the EM and vector weak currents) is not fulfilled, hence
results may differ significantly when different gauges are
selected. We consider the three usual options: (i) Landau (no
current conservation imposed, denoted as NCC1/NCC2), (ii)
Coulomb [vector current conservation is restored by using
J 3 = (ω/q)J 0, denoted as CC1(0) and CC2(0)], and (iii) Weyl
[current conservation imposed by J 0 = (q/ω)J 3, denoted as
CC1(3) and CC2(3)]. In the next section a detailed study of
the various PV inclusive responses and the PV asymmetry
is presented with emphasis on their sensitivity with FSI,
off-shellness, and the choice of current operator.

WNC nucleon form factors

The PVep asymmetry (defined for elastic electron-proton
scattering) provides an excellent tool to get information on
the electroweak structure of the proton. This subject was
investigated in detail in Ref. [8]. Here our interest is focused on
the analysis of PVQE electron-nucleus scattering. This process
may provide information on the nucleon structure that can
complement what is obtained from the PVep asymmetry, even
being aware of the uncertainties linked to nuclear effects. In
this section we summarize the basic points considered in this
work concerning the description of the EM and WNC form
factors. As already mentioned in the Introduction, there exist
different approaches that provide precise descriptions of the
purely EM nucleon form factors in the QE kinematical region
of interest for this work [8]. Here we have considered the GKex
model [45–47] to describe the electric and magnetic nucleon
form factors: G

p,n
E,M .

With respect to the weak sector, assuming charge symmetry,
the WNC nucleon form factors can be expressed as [7]:

G̃
p,n
E,M = (1 − 4 sin2 θW )

(
1 + R

p
V

)
G

p,n
E,M

− (
1 + Rn

V

)
G

n,p
E,M − (

1 + R
(0)
V

)
G

(s)
E,M, (4)

where G
(s)
E,M are the electric, E, and magnetic, M , strange form

factors. We assume the Q2 dependence of the strange form
factors to be described as follows: G

(s)
E (Q2) = ρsτGV

D(Q2)
and G

(s)
M (Q2) = μsG

V
D(Q2), where GV

D = (1 + |Q2|/M2
V )−2

is the dipole form factor with MV = 0.84 GeV.
The parameters ρs and μs determine the size of the

strange quark contributions to the electric and magnetic vector
current in the nucleon, respectively. In this work we make

use of the results given in Ref. [8]: ρs = 0.59 ± 0.62 and
μs = −0.02 ± 0.21. Notice that the previous uncertainties are
much larger than the ones shown in Ref. [8] but consistent with
those shown in Ref. [9]. This is due to the particular procedure
considered in their evaluation.

The WNC axial-vector form factor can be written as [7]:

GeN
A = [− 2

(
1 + RT =1

A

)
G

(T =1)
A τ3 +

√
3RT =0

A G
(8)
A

+ (
1 + R

(0)
A

)
G

(s)
A

]
GA

D(Q2), (5)

where the label N denotes proton or neutron and the isospin
index τ3 = 1 (−1) for proton (neutron) has been introduced.
The term G

(T =1)
A ≡ gA = 1.2695 represents the isovector

contribution to the axial-vector form factor while G
(8)
A ≡

(3F − D)/(2
√

3) = 0.58 ± 0.12 and G
(s)
A ≡ �s = −0.07 ±

0.06 are the octet and strange isoscalar contributions. We use
the standard dipole shape for the functional dependence of the
axial-vector form factor: GA

D(Q2) = (1 + |Q2|/M2
A)−2 with

MA = 1.03 GeV.
In Eqs. (4) and (5) the terms R represent the radiative

corrections. In this work we consider the values presented in
Ref. [48]. It is important to point out that the main sources
of uncertainties in the axial-vector form factor, once one
assumes a functional Q2 dependence, comes from the radiative
corrections, in particular, the corresponding ones that enter
into the isovector (T = 1) sector of the axial-vector form
factor that constitutes the main contribution to G

ep
A . Following

Ref. [48], we consider G
ep
A (0) = 1.04 ± 0.44, where the large

uncertainty comes from the error in RT =1
A = −0.258 ± 0.34.

In the next section we analyze in detail the effects of these
uncertainties on the PVQE asymmetry.

III. RESULTS

In this section we perform a detailed analysis of the PVQE
asymmetry with the goal of getting additional information
on the electroweak structure of the nucleon. To that end, it
is essential to evaluate the effects linked to non-nucleonic
ingredients, in particular, final-state interactions, off-shell nu-
cleon uncertainties, and effects from relativistic dynamics. We
investigate how these ingredients affect the PVQE asymmetry
and compare them with the ones associated with the particular
description of the EM and WNC nucleon form factors.

The PVQE asymmetry corresponding to (�e,e′) processes
can be written in terms of the nuclear response functions as
follows:

APV
QE ≈ A0

2G2
[aA(vLR̃L + vT R̃T ) − aV vT ′R̃T ′

], (6)

where we have defined G2 ≡ vLRL + vT RT . This means that
we neglect the contribution from the PV responses when
summing up the cross sections for both electron helicities,
i.e., σ+ + σ−. This approach works perfectly well because of
the extremely large difference between the magnitudes of the
purely EM and PV response functions, the latter being 4–5
orders of magnitude smaller.
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FIG. 4. (Color online) Inclusive PVQE asymmetry (red line) and
the three separate components: longitudinal (L, dashed black line),
transverse (T, dashed-dotted green line) and axial-transverse (T′,
dotted blue line). Results corresponding to two values of the
momentum transferred q = 0.5 GeV and q = 1 GeV are shown in
the upper and lower panels, respectively. The forward (backward)
scattering situation, θe = 15◦ (θe = 140◦), is represented in the panels
on the left (right) side. The NCC2 prescription is used to describe the
current and the model RPWIA has been employed.

To simplify the analysis of the results we decompose the
PVQE asymmetry into a sum of three contributions:

APV
QE = AL + AT + AT ′ , (7)

where AL, AT , and AT ′ are proportional to the corresponding
PV responses: R̃L, R̃T , and R̃T ′

. In Fig. 4 we present the total
asymmetry and the three separated contributions as functions
of the transferred energy, ω. As observed, the transverse term
AT dominates in all situations. Concerning the two remaining
terms, the relative predominance of one over the other depends
on the specific kinematics: AL dominates at forward scattering
angles, whereas AT ′ gets larger at backward angles. Also,
notice that AT ′ is negligible at forward angles (likewise for
AL at backward angles). These results apply to both q values
selected, q = 500 MeV (upper panels) and q = 1000 MeV
(lower), and can be understood from the behavior of the
leptonic factors, vL, vT , and vT ′ , in addition to the values
of the weak coupling factors and the particular role played by
the different nucleon form factors (see Ref. [49] for details).

A. FSI and dynamical relativistic effects

In Fig. 5 we present the PV responses computed using the
NCC2 prescription and the models: RPWIA and RMF-FSI.
Additionally, in order to estimate the effect of the lower
components of the nucleon wave function we present the
results computed in the “effective asymptotic momentum
approximation” [50–54]. Within this approach, which is
simply denoted as EMA, the nucleon wave function is
reconstructed by imposing that the relation between lower
and upper components is the same as the one for free spinors,
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FIG. 5. (Color online) PV responses computed with the models:
RPWIA (black line), RMF-FSI (dashed red line), and EMA (dotted
blue line). In the upper (lower) panels the momentum transferred is
q = 0.5 GeV (q = 1 GeV). The prescription NCC2 has been used.

that is,

ψd ( p) = σ · pas

Eas + MN

ψu( p), (8)

where ψd (ψu) represents the lower (upper) component of the
nucleon wave function. The terms Eas and pas refer to the
asymptotic energy and momentum of the nucleon, such that
E2

as = M2
N + p2

as. In the results shown in Figs. 5 and 6, the
EMA model has been applied to both the bound and scattered
nucleon wave functions; thus, for the scattered nucleon one
has pas ≡ pN , whereas for the bound state pas ≡ pN − q.

As observed in Fig. 5, the effects introduced by FSI
(RMF-FSI versus RPWIA) are, on the one hand, a shift in
the maximum of the responses to higher ω values, and, on
the other, a significant change in their shape: a pronounced
asymmetry with more strength in the tail (high transferred
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FIG. 6. (Color online) As in Fig. 4, but in this case the PVQE
asymmetry has been computed using the following models: RPWIA
(solid black line), RMF-FSI (dashed red line), EMA (dotted blue
line), and RFG (dashed-dotted green line).
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energies). Both effects tend to increase for larger q values. On
the contrary, the projection on positive energy states (RMF-FSI
versus EMA) does not change the shape of the responses,
although it modifies the global magnitude.

In what follows we discuss each response separately. In the
case of the transverse responses (R̃T and R̃T ′

), FSI (RMF-FSI
versus RPWIA) gives rise to a significant reduction of the
maximum (∼20%). On the other hand, the effect of projection
over positive-energy states (EMA) also produces a slight
decrease of the responses of the order of 6%.

The longitudinal response, R̃L, is approximately one order
of magnitude smaller than the two other PV responses.
Moreover, FSI produces a clearly different effect in this
response. Contrary to the situation observed in the transverse
channel, where FSI tends to decrease the maximum of the
responses compared with the results in RPWIA, the global
magnitude of R̃L computed in RMF-FSI (dashed red line) is
even larger than the result in RPWIA. On the contrary, the
projected L response (EMA, dotted blue line) is significantly
reduced compared with the full FSI result. This behavior
clearly differs from the one observed in the case of the
longitudinal EM response (see, for instance, Ref. [41]) where
its dependence with FSI and/or positive-energy projections
follows a similar trend to the one shown by the transverse
responses. Finally, the smallness of R̃L can be understood
considering its dependence on the matrix elements of the
current operator:

R̃L ∼ (
J

L,p
EM

)∗
J

L,p
WNC,V + (

J
L,n
EM

)∗
J

L,n
WNC,V

≈ (
J

L,p
EM

)∗
J

L,p
WNC,V + x

(
J

L,n
EM

)∗
J

L,p
WNC,V , (9)

where the label n (p) refers to neutron (proton). It is important
to point out that the EM longitudinal response of the neutron is
very small compared with the proton one due to the very minor
contribution of the electric form factor of the neutron Gn

E ; that
is, J

L,n
EM 
 J

L,p
EM . Additionally, in the previous expression in

Eq. (9) it has been assumed that G
p
E ≈ −G̃n

E . The smallness
of the term G̃

p
EG

p
E makes in general J

L,p
WNC,V to be of the same

order or even smaller than J
L,n
EM .

In what follows we investigate the impact that the previous
ingredients have on the PVQE asymmetry. In Fig. 6 we present
the asymmetry computed using the three models presented
previously: RMF-FSI, EMA, and RPWIA. We also add for
reference the result corresponding to the relativistic Fermi gas
(RFG) model (see Refs. [4,5] for details).

In the case of forward scattering (left panels), the maximum
dispersion in the results is reached at the extreme ω values,
i.e., far from the quasielastic peak (QEP). RMF-FSI and
EMA provide very similar asymmetries while RPWIA results
differ, at most, by ∼10% at ω < 0.1 GeV and q = 0.5 GeV.
It is important to point out that in the region around the
QEP (ω ∼ 150 MeV at q = 500 MeV and ω ∼ 500 MeV
at q = 1000 MeV), the three models (RPWIA, EMA, and
RMF-FSI) lead to very similar results, with a dispersion lower
than ∼1%.

At backward scattering angles (right panels), the discrep-
ancies between the three models get larger. The highest
dispersion is reached for ω values far from the center of the
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FIG. 7. (Color online) PVQE asymmetry computed with RMF-
FSI for several target nuclei: 16O (solid red line), 12C (dashed green
line), and 40Ca (dotted blue line). Here the organization of the panels
is the same as in Fig. 4.

QEP. At q = 500 MeV and ω ∼ 50 MeV the discrepancy is
of the order of 15% (RPWIA versus EMA). This difference
holds at ω ∼ 300 MeV (RPWIA versus RMF-FSI). In the ω
region close to the center of the QEP the dispersion between
the curves is always smaller than ∼5%.

Finally, the RFG curves are the ones that deviate the most,
particularly from the results that incorporate FSI, EMA and
RMF-FSI, with the difference being somewhat smaller with
respect to RPWIA results. In the ω region where the responses
reach their maxima (center of the QEP) the difference between
RFG and RMF-FSI is lower than 7%. This difference dimin-
ishes for increasing values of the momentum transferred, q.

In the previous paragraph our interest has been placed on the
role played by different descriptions of the final nucleon state.
All results have been presented for the case of 16O as target
nucleus. In what follows we analyze the effects stemming from
the use of different target nuclei. In Fig. 7 we show the PVQE
asymmetry corresponding to three different nuclear systems:
16O, 12C, and 40Ca. All results have been computed within the
RMF-FSI approach. As observed, the largest differences are
of the order of 10% (at ω ∼ 0.25 GeV and q = 1 GeV). This
result is consistent with previous studies [55] and it proves that
APV

QE can provide a useful tool, complementary to the elastic
electron-proton asymmetry, to get accurate information on the
electroweak structure of the nucleon. This subject is discussed
at length in the next sections.

B. Off-shell effects

Our aim in this section is to investigate the role of off-shell
effects in the PVQE asymmetry. Contrary to the case of
elastic electron-proton scattering, the use of nuclear targets
requires the description of nucleons that are not on-shell.
This subject has been treated in detail within the framework
of coincidence (e,e′N ) reactions. Moreover, its study in the
case of PV electron scattering has been presented in an
accompanying paper [3]. Here we extend these investigations
to the case of inclusive electron scattering. As is well known,
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FIG. 8. (Color online) PVQE asymmetry within RMF-FSI
model, with the same organization of the panels as in Fig. 4. The
results are computed using CC1 and CC2 currents in the different
gauges (see legend).

the off-shell character of the nucleons involved in electron-
nucleus scattering leads to results, cross sections, and nuclear
response functions that can differ significantly when different
expressions for the nucleon current operator and/or different
gauges are selected.

In this section we follow the general terminology introduced
in our previous work (see Refs. [27,41,42,44] for details)
and analyze how the PVQE asymmetry is modified when
several prescriptions are used: NCC1, NCC2, CC1(0), CC2(0),
CC1(3), and CC2(3). All results in this section have been com-
puted using the RMF-FSI model, that is, FSI are incorporated
in the general formalism making use of the same relativistic,
scalar and vector, potentials used for the bound nucleon states.
This model has been widely tested in the case of the purely
EM interaction comparing its prediction with a large body of
(e,e′) data (see Refs. [11,12,56]).

In Fig. 8 we analyze the sensitivity of the PVQE asymmetry
against different off-shell prescriptions. We observe that APV

QE
shows a tiny dependence with the gauge selected except in
the case of CC1(3) at forward scattering angles (left panels).
Although not presented here, the longitudinal responses from
CC1(3) are shown to dramatically differ from the correspond-
ing responses associated with the remaining prescriptions.
Moreover, the choice of the nucleon current operator (CC1
versus CC2) leads in general to important differences. At
forward angles (left panels) the discrepancies are of the order
of ∼30% (∼17%) at q = 0.5 GeV (q = 1 GeV) in the ω region
close to the center of QEP. On the contrary, at backward angles
(right panels) the differences are considerably reduced: ∼5%
(∼2.5%) at q = 0.5 GeV (q = 1 GeV) in the same ω region.

Summarizing, the use of the CC2 current operator leads to
very similar results for the three gauges within the scheme
of the RMF-FSI model. On the contrary, the CC1 option
produces significantly larger ambiguities. In the case of the
pure electromagnetic responses, current conservation and
gauge invariance are highly fulfilled with the CC2 operator and
RMF-FSI framework, i.e., using the same relativistic potentials

to describe the bound and scattered nucleon wave functions.
This result, which seems to favor the use of the CC2 operator
instead of CC1, is also consistent with the preliminary analysis
of the separated L and T experimental scaling functions, the
latter being larger by more than 20%. However, some caution
should still be exercised before more conclusive answers can
be reached.

C. Nucleon structure: WNC form factors

In this section we evaluate the impact that the description
of the nucleon form factors has in the PVQE asymmetry APV

QE.
One of the ingredients that makes the study of this observable
appealing is the presence of the neutronic channel in the
scattering process. In order to highlight the differences with the
elastic case, one can separate the contributions from protons
and neutrons in the PVQE asymmetry, i.e., APV

QE = Ap + An,
where

Ap,n = A0

2G2

[
aA

(
vLR̃L

p,n + vT R̃T
p,n

) − aV vT ′R̃T ′
p,n

]
, (10)

where R̃p,n are the proton (p) and neutron (n) PV responses.
The analysis presented in this work applies only to the case
of zero isospin nuclei, i.e., nuclei with the same number of
protons and neutrons. Although the results presented in this
section correspond to 16O, we have checked that the discussion
follows similar trends in the case of other nuclei such as 12C
and 40Ca.

In this work we use the GKex prescription to describe the
behavior of G

p,n
E,M , whereas for the WNC form factors we make

use of the results obtained in Ref. [8], also briefly summarized
in Sec. II A.

Before entering into a detailed discussion of the results,
some comments on the general procedure considered are
in order. We have checked that R̃T , computed within the
RMF-FSI approach, does show a small dependence on the
WNC electric form factor G̃E ; therefore, the asymmetry
contribution AT is very insensitive to the electric strangeness
content. Similarly, R̃L shows a weak dependence on G̃M ;
then the magnetic strange form factor Gs

M plays a very small
role in the asymmetry AL. Finally, the PV response R̃T ′

(see
Ref. [3]) is, by construction, independent of G̃M and G̃E ;
hence neither the electric nor the magnetic strangeness can
modify AT ′ . Therefore, the dependence of the PV asymmetry
with the nucleon strangeness enters only through the T channel
(magnetic strangeness) and the L one (electric). The latter only
occurs at very forward scattering angles. In what follows we
discuss these results in detail.

To address the impact on APV
QE linked to the description

of the magnetic strange form factor, we have computed the
PVQE asymmetry using the two extreme values of μs =
−0.02 ± 0.21. This is represented in Fig. 9 by the black band.
We observe that at forward scattering angles (left panels)
the width of the band is ∼4% (∼3.5%) at q = 500 MeV
(q = 1000 MeV). Similar results are found at the backward
kinematics (right panels): ∼3.5% for both q values, q = 500
and 1000 MeV.

This low sensitivity of APV
QE to the magnetic strange form

factor can be easily understood. As a first approximation,
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FIG. 9. (Color online) PVQE asymmetry at forward (left panels)
and backward (right panels) scattering angles. The upper (lower) pan-
els correspond to the momentum transfer q = 0.5 GeV (q = 1 GeV).
The black band represents the uncertainty in APV

QE due to the magnetic
strange parameter μs . The red band (left panels) shows the effect
of the electric strange parameter ρs while the green band (right
panels) corresponds to the impact associated with the uncertainty
in the isovector contribution to the axial-vector form factor (see text
for details).

the PV transverse response R̃T can be simply given by
the particular combination: R̃T

p,n ∼ G
p,n
M G̃

p,n
M . Hence we can

write:

R̃T
p ∼ (1 − 4 sin2 θW )

(
1 + R

p
V

)(
G

p
M

)2

− (
1 + Rn

V

)
G

p
MGn

M + (
1 + R

(0)
V

)
G

p
MGs

M (11)

and

R̃T
n ∼ (1 − 4 sin2 θW )

(
1 + Rn

V

)(
Gn

M

)2

− (
1 + R

p
V

)
Gn

MG
p
M + (

1 + R
(0)
V

)
Gn

MGs
M. (12)

Assuming G
p
M ≈ −Gn

M , it can be seen that the nucleon
magnetic strangeness does play a very minor role in the
transverse response, no matter which specific scattering angle
is considered. In other words, when adding proton and neutron
contributions, the last term goes as the isoscalar magnetic form
factor, which is very much smaller than the isovector one. Note
that in a case like 27Al there will not be as good a cancellation,
which may be interesting for the Qweak experiment [57,58]
where some of the PV asymmetry comes from the aluminum
windows. In summary, the nucleon magnetic strangeness is
also strongly reduced in the PVQE asymmetry, being much
smaller than the one found in the case of elastic electron-proton
scattering [8].

To study the effect of the electric strangeness in APV
QE

we restrict ourselves to the forward scattering kinematics
where the longitudinal contribution attains its largest value

(see Fig. 4). We consider the two extreme values for the
electric strange parameter: ρs = 0.59 ± 0.62. This produces
a dispersion of the order of ∼13% in the PVQE asymmetry
(red band in left panels in Fig. 9).

The longitudinal PV response can be approximated as
R̃L

p,n ∼ G
p,n
E G̃

p,n
E . Thus one can write:

R̃L
p ∼ (1 − 4 sin2 θW )

(
1 + R

p
V

)(
G

p
E

)2

− (
1 + Rn

V

)
G

p
EGn

E + (
1 + R

(0)
V

)
G

p
EGs

E (13)

and

R̃L
n ∼ (1 − 4 sin2 θW )

(
1 + Rn

V

)(
Gn

E

)2

− (
1 + R

p
V

)
Gn

EG
p
E + (

1 + R
(0)
V

)
Gn

EGs
E. (14)

Because of Gn
E 
 G

p
E , the role played by the electric

strangeness is much weaker in R̃L
n than in R̃L

p . This means
that the impact of Gs

E in the PVQE asymmetry comes almost
exclusively from the proton response.

From the previous discussion, a clear difference emerges
between the present QE regime and the elastic one described
in Ref. [8]. Due to the minor role played by the magnetic
strangeness in the PVQE asymmetry (<4%), the measure-
ment of APV

QE at forward kinematics could provide valuable
information on ρs , being rather independent of μs . This result
is clearly in contrast with the situation that is observed for the
PVep asymmetry where ρs and μs are strongly correlated [9].
In this sense, the analysis of the QE regime could help in getting
additional information on the electric strangeness content in
the nucleon, i.e., ρs (or Gs

E). However, some caution should be
drawn before arriving at definite conclusions. The analysis of
the forward scattering situation is not free from ambiguities.
We have already shown that off-shell effects may introduce
significant uncertainties in the PVQE asymmetry.

To conclude, we analyze the sensitivity of the PVQE
asymmetry with the axial-vector form factor. The axial
transverse PV response can be approximated by the product of
the magnetic and axial form factors, i.e., RT ′

p,n ∼ G
p,n
M G

e,(p,n)
A .

Then, the following expressions hold:

R̃T ′
p ∼ −2

(
1 + RT =1

A

)
GT =1

A G
p
M

+
√

3RT =0
A G

(8)
A G

p
M + (

1 + R
(0)
A

)
Gs

AG
p
M (15)

and

R̃T ′
n ∼ 2

(
1 + RT =1

A

)
GT =1

A Gn
M

+
√

3RT =0
A G

(8)
A Gn

M + (
1 + R

(0)
A

)
Gs

AGn
M. (16)

As already shown for the purely transverse response R̃T , the
approximation G

p
M ≈ −Gn

M leads to similar (but opposed)
proton and neutron contributions to the PVQE asymmetry.
Because of that, the effect of the axial-vector strangeness and
the contribution from the octet isoscalar G

(8)
A are very small. On

the contrary, this response shows a strong sensitivity against
any variation in the isovector contribution of the axial-vector
form factor. This analysis is presented in the right panels of
Fig. 9. The ambiguity associated to the use of the extreme
values: R

(T =1)
A = 0.082 and R

(T =1)
A = −0.598, is of the order

of ∼10% at q = 500 MeV, while at q = 1000 MeV it is slightly
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lower, ∼8%. This is represented by the green band in the right
panels of Fig. 9.

The entire analysis presented in this work corresponds
to the impulse approximation. Hence before more definite
conclusions can be drawn some words concerning the possible
role played by ingredients beyond the impulse approximation:
Meson-exchange currents (MEC) and correlation effects are
needed. Pionic correlations, which are difficult to evaluate,
have only been partially treated for the PV observables; the
contribution arising from two-body currents associated with
the weak vertex was missing. From the analysis presented
in Ref. [17], the PVQE asymmetry was shown to be very
insensitive to pionic effects at backward kinematics. This result
supports the idea introduced in Refs. [4–7] about using the
PVQE asymmetry as an important source of information on the
axial-vector form factor. On the contrary, at forward scattering
angles the effects linked to the vertex term in the L channel can
play an important role because of the increased importance of
the longitudinal response.

IV. SCALING IN THE PV RESPONSES

The analysis of inclusive electron scattering data in the QE
domain has proven the validity of the scaling phenomenon.
This means that the reaction mechanism in the process can
be properly described as the scattering between the electron
and the constituents, the nucleons, in the nuclear target.
Hence the differential (e,e′) cross section divided by an
appropriate single-nucleon cross section leads to the so-called
scaling function that is shown to depend only on a single
variable, named the scaling variable, assuming the transferred
momentum is high enough. Moreover, this function scales with
the nuclear species as the inverse of the Fermi momentum.
Hence a universal superscaling function, independent of
the transferred momentum and the nuclear system, can be
introduced. This property has been shown to be fulfilled quite
well by the longitudinal (e,e′) data, while it is violated in
the transverse channel, where ingredients beyond the impulse
approximation come into play: � resonance, meson exchange
currents, multi-nucleon excitations, and so on.

The superscaling approach has been studied in detail
in the past [12,35,59–62] and its predictions have been
extended to the analysis of neutrino-nucleus scattering pro-
cesses [11,56,63–71]. Moreover, scaling properties have also
been analyzed within the context of different models, in
particular, the RPWIA and the RMF-FSI approaches con-
sidered in this work. One of the most outstanding results
concerns the behavior shown by the superscaling function
extracted from the RMF-FSI model. Not only does the function
show an important asymmetry, with a long tail extended to
high transferred energies, in accordance with data, but also
the scaling functions corresponding to the longitudinal and
transverse channels present differences, the T response being
larger by ∼20%. This result, that is absent in most other
theoretical approaches, seems to be supported by the analysis
of data presented in Refs. [56,72].

In this work we extend for the first time the scaling or
superscaling analysis to the PV responses. We apply this
study to our models and evaluate the interference scaling
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FIG. 10. (Color online) EM (dashed lines) and interference (solid
lines) scaling functions computed using the NCC2 prescription, the
RPWIA model, and two target nuclei: 12C (black) and 16O (red). The
left (right) panels correspond to the momentum transfer q = 500 MeV
(q = 1000 MeV). We represent the longitudinal (L, upper panels),
transverse (T , central panels), and transverse axial (T ′, lower panels)
scaling functions. As a reference, the experimental longitudinal
scaling data are also represented (blue points) [62].

functions, f̃L,T ,T ′ , by dividing the corresponding PV nuclear
responses by the appropriate single-nucleon contributions. The
explicit expressions for the latter are given in the appendix. In
order to make clear how scaling arguments work for the PV
interference observables, these are compared with the purely
EM responses as well as with data.

In Fig. 10 we present the EM and PV interference (referred
simply as PV) scaling functions computed with the NCC2
prescription and corresponding to the RPWIA model. Results
are shown for two different target nuclei: 12C and 16O.
Although not shown, results are very similar for 40Ca. Two
values of the transferred momentum have been selected:
q = 500 MeV/c (left panels) and q = 1000 MeV/c (right
panels). In both cases the scaling function is presented for the
three (two) channels involved in PV (EM) electron scattering
processes: L (upper panels), T (medium), and T ′ (lower). In
all cases we include for reference the data corresponding to
the analysis of the purely EM longitudinal channel, i.e., f

exp
L .

As observed, RPWIA fulfills first, second, and third kinds
of scaling, namely the functions are almost independent of the
transferred momentum, the nuclear system, and the particular
channel considered. Moreover, the new PV scaling functions
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FIG. 11. (Color online) As in Fig. 10 but using the RMF-FSI
model and only for 16O.

coincide with the purely EM ones. This supports the idea
of a universal scaling function. However, RPWIA theoretical
predictions do not reproduce the shape nor the height of f

exp
L .

As already discussed in previous work [56], the RPWIA leads
to scaling functions that lack the strong asymmetry shown
by the analysis of data. This behavior also applies to the PV
responses.

In Fig. 11 we present the scaling functions but with FSI
described by means of the RMF model. This analysis has
been shown in detail in the past for the EM responses.
Here we extend our investigation to the PV observables. To
make clearer the discussion we only show results for 16O.
Other nuclear systems, such as 12C and 40Ca, lead to the
same conclusions with very similar results. Contrary to the
RPWIA case, note that the RMF-FSI model leads to scaling
functions that show some dependence with q, i.e., scaling
of the first kind is broken at some degree. However, this is
consistent with PC electron scattering data and their associated
uncertainties. In particular, for increasing q values (compare
left panels, q = 0.5 GeV, with the right ones, q = 1 GeV), the
peak of the scaling function is shifted to higher ψ (higher ω
values), the maximum being reduced and the tail enhanced.
Concerning the comparison with data (strictly speaking, this
should only apply to the purely EM longitudinal channel),
the accordance improves very significantly with respect to the
RPWIA predictions; RMF-FSI is able to reproduce not only
the height of the peak but also the particular asymmetrical
shape of f

exp
L .

With regard to the comparison between the EM and the
interference scaling functions evaluated with the RMF-FSI
model (Fig. 11), in the transverse channel one gets fT ≈
f̃T ≈ f̃T ′ . On the contrary, the role played by FSI clearly
differs in the longitudinal channel. Notice that the weak
interference longitudinal scaling function, f̃L, is significantly
larger than the purely EM one, fL: fL ≈ 0.6f̃L (fL ≈ 0.75f̃L)
at q = 500 MeV (1000 MeV). It is important to point out that
RMF-FSI leads to a function f̃L with its maximum being
considerably higher than the corresponding result in RPWIA.
This behavior is in contrast to the effects introduced by FSI
for all the remaining scaling functions, including the EM
longitudinal one. This particular result can be connected with
the smallness of the PV longitudinal response (see Fig. 5),
which consequently shows a very high sensitivity to the
distortion introduced by FSI. Notice that fL ≈ f̃L within
RPWIA.

To conclude, scaling of zeroth kind, which occurs when the
scaling functions corresponding to the different channels of the
cross section coincide, that is, fL = fT and f̃L = f̃T = f̃T ′ ,
is clearly violated by both the EM and the PV functions.
In the latter, one can express f̃T ≈ 0.75f̃L (f̃T ≈ 0.95f̃L)
at q = 500 MeV (1000 MeV), that is, the longitudinal
function exceeds the transverse contribution. In contrast, the
EM responses satisfy fL ≈ 0.85fT at both q values. This
result is consistent with previous studies [56] and with the
preliminary analysis of the separated EM transverse (e,e′)
data performed by Donnelly and Williamson [73] (see also
Ref. [72]). Although not shown, similar results are obtained
for 12C and 40Ca. Hence scaling of the second kind, namely
independence on the nuclear system, is fulfilled within the
RMF-FSI model.

V. SUMMARY AND CONCLUSIONS

This work has been devoted to the study of PVQE
electron-nucleus scattering. Our main interest has been to
explore new observables (in addition to the ones occurring
for the elastic electron-nucleon reaction) that allow us to get
new and precise information on the nucleon structure. In
particular, PVQE reactions on complex nuclei can provide
information on the WNC form factors that complements the
one obtained from other processes such as elastic scattering
off protons [8,9] and light nuclei [10,74–76], QE electron
scattering off deuterium [77,78], neutrino scattering, and so
on.

To simplify the analysis we have isolated in the PV
asymmetry (APV

QE) its L contribution (linked to R̃L), T (linked

to R̃T ), and T ′ (linked to R̃T ′
). We have found that the T

component dominates for all kinematics; on the contrary, the
L contribution is negligible at backward scattering angles,
while T ′ is small at forward angles.

We have performed a fully relativistic description of PV
(�e,e′) processes and have quantified the uncertainties in
the responses and the asymmetry linked to the following
ingredients:

(i) Treatment of FSI and description of the nucleon wave
function (Sec. III A). The addition of FSI produces a
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visible change in the shape of the responses (symmetric
in RPWIA and asymmetric with a more pronounced
tail with FSI on) that are also shifted to higher ω
values. In particular, FSI reduce the height of RL,T

and R̃T ,T ′
(in their maxima) around 15–20%. The role

played by the distortion of the lower components of
the nucleon wave functions (FSI versus EMA) in the
PV responses is of the order of ∼5–10%. However,
a different behavior is shown for the PV longitudinal
response R̃L. Here FSI do not reduce the height of
the maximum but tend to increase the total area under
the response, which is notably larger than in RPWIA.
This result can be a consequence of the smallness of
R̃L (one order of magnitude smaller than the others).
Dynamical relativistic effects, i.e., distortion of the
lower components in the nucleon wave functions, make
a very significant difference in R̃L. Notice that R̃L

computed with EMA presents a behavior similar to the
rest of responses. This is in contrast to R̃L evaluated
with full FSI.
With regard to the PVQE asymmetry, we find that in the
region of ω close to the maximum of the QE peak the
differences among the RPWIA, FSI-RMF, and EMA
results is ∼1% (∼5%) at forward (backward) scattering
angles. For values of ω away from the center of the
QE peak those differences are always below ∼10%
(∼15%) at forward (backward) angles.

(ii) Description of the hadronic vertex (off-shell effects,
Sec. III B). Effects in the transverse responses RT and
R̃T ,T ′

(with FSI) linked to the choice of the current
operator (CC1 versus CC2) deserve to be commented
on: Differences are of the order of 20–40%. These
discrepancies show up in the PVQE asymmetry. At
forward scattering angles the effects are of the order
of 15–30% in the region of ω around the maximum
of the responses. At backward angles the differences
are reduced, notably being lower than 5% in the
same region of ω. Finally, the three gauges, Landau,
Coulomb, and Weyl, provide very similar responses
when using CC2 and RMF-FSI. On the contrary, the use
of CC1 leads to significant differences in the responses,
particularly in the case of the Weyl gauge. The effects
in the asymmetry due to the choice of the gauge
are tiny at backward scattering angles because of the
negligible contribution of the longitudinal responses.
These effects remain small at forward scattering angles
except for the CC1(3) prescription.

In addition to the effects associated with the nuclear model
description, in Sec. III C the sensitivity of the PVQE asym-
metry to the nucleon form factors was investigated. The PV
asymmetry shows a very mild dependence with the magnetic
strangeness content in the nucleon because of cancellations
between the proton and neutron contributions. A similar
comment applies to the isoscalar contributions (including
the axial-vector strangeness). Regarding the sensitivity of
the PVQE asymmetry on the electric strangeness content, at
forward scattering angles it is of the order of ∼13% (for the q
values considered in this work). This result has been estimated

by using the extreme values of the parameter ρs = 0.59 ± 0.62
that are consistent with the analysis of the PVep asymmetry
data presented in Refs. [8,9]. It is important to point out that
getting nucleonic information from measurements of APV

QE at
forward scattering angles is not free from ambiguities. On
the one hand, the choice of CC1 and/or CC2 (off-shell effects)
gives rise to differences in the asymmetry of the order of ∼30%
(∼17%) at q = 500 MeV (q = 1000 MeV). On the other hand,
effects linked to MEC could modify in a significant way the
results obtained at these kinematics (see Ref. [17]).

Choosing backward scattering kinematics makes the anal-
ysis of results much more favorable. Here the choice of
RT =1

A within the range given by [−0.598 , 0.082] produces
a change in the PVQE asymmetry of the order of ∼10%
(∼8%) at q = 500 MeV (q = 1000 MeV). At backward
angles MEC effects in the asymmetry are expected to be
small: below ∼0.5% at q = 500 MeV and much smaller at
higher q (see Ref. [17]), and, furthermore, off-shell effects
are also significantly reduced: ∼5% (∼2.5%) at q = 500MeV
(q = 1000 MeV). Therefore, a measurement of the PVQE
asymmetry at backward scattering angles and transferred
momentum q ∼ 500–1000 MeV could be very useful to
estimate the radiative corrections that enter into the isovector
axial-vector sector of the weak neutral current, RT =1

A .
An important effect in the determination of the strange

form factors comes from the uncertainty linked to RT =1
A due to

the correlation between μs and RT =1
A at backward scattering

angles. In other words, μs values obtained from the analysis
of the PVep asymmetry data [8,48] are affected by the value
of RT =1

A employed in the fit. Moreover, due to the strong
correlation between μs and ρs , the value of the latter depends
strongly on the value of the former. This is clearly illustrated in
Ref. [9]. Thus, a more accurate determination of RT =1

A would
reduce significantly the theoretical uncertainties associated
with the vector strange form factors. This would also establish
constraints that any theoretical model aiming to describe the
so-called anapole effects (implicit in RT =1

A ) should fulfill.
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APPENDIX: DEFINITIONS OF THE INTERFERENCE
SCALING FUNCTIONS

In the context of the relativistic Fermi gas (RFG) the scaling
variable is defined as (see Refs. [59–61])

ψ ′ ≡ 1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(τ ′ + 1)

, (A1)

where ξF =
√

1 + (kF /M)2 − 1, κ = q/(2M), λ′ = ω′/
(2M), and τ = κ2 − λ′2. M is the nucleon mass and kF the
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Fermi momentum [62]. We have introduced the variable ω′
defined as ω′ = ω − Eshift, where the quantity Eshift depends
on the target nucleus [62].

The EM longitudinal, L, and transverse, T , scaling func-
tions are defined in Ref. [61]. Similarly, the interference scaling
functions are

f̃L,T ,T ′ ≡ kF

R̃L,T ,T ′ (κ,λ)

G̃L,T ,T ′(κ,λ)
. (A2)

We have introduced the functions:

G̃L,T ,T ′(κ,λ) = 1

2κD ŨL,T ,T ′(κ,λ), (A3)

where

ŨL(κ,λ) = κ2

τ
[H̃E + W̃2�], (A4)

ŨT (κ,λ) = 2τH̃M + W̃2�, (A5)

ŨT ′(κ,λ) = H̃A(1 + �̃). (A6)

Additionally,

H̃E = ZG
p
EG̃

p
E + NGn

EG̃n
E, (A7)

H̃M = ZG
p
MG̃

p
M + NGn

MG̃n
M, (A8)

W̃2 = 1

1 + τ
[H̃E + τH̃M ], (A9)

H̃A = 2
√

τ (τ + 1)
[
ZG

p
MG

e,p
A + NGn

MG
e,n
A

]
, (A10)

where Z and N represent the proton and neutron number of
the target nucleus, respectively. Finally,

� ≡ ξF (1 − ψ2)

[√
τ (τ + 1)

κ
+ 1

3
ξF

τ

κ2
(1 − ψ2)

]
, (A11)

�̃ ≡ 1

2κ

√
τ

1 + τ
ξF (1 − ψ2), (A12)

D ≡ 1 + 1

2
ξF (1 + ψ2). (A13)
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