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Introduction

In this thesis we present a series of result that are framed in the theory of Matrix Orthog-
onal Polynomials, a branch of the very celebrated subject of Orthogonal Polynomials.

The theory of orthogonal polynomials dates back from the end of the 19th century
and its birth used to be attributed to the works of T. J. Stieltjes (1856-1894) and P. L.
Chebyshev (1821-1894). The first discovered the orthogonality relation of the denomina-
tors of certain continuous fractions and to him is also attributed a primitive version of
Farvard’s theorem. He also introduced what is now known as the moments problem, given
a sequence (µn)n find a measure dµ such that µn = ∫ xndµ(x).

Chebyshev, among other results, introduced the Chebyshev polynomials (nowadays
known as Chebyshev polynomials of the first kind) Tn in order to find the best polynomial
approximation for a continuous function.

However several authors had already introduced particular examples that had came to
them via physical or mathematical problems. For example, Adrien Marie Legendre (1752-
1833) introduced the Legendre polynomials (later generalized by Jacobi) related with the
resolution of planetary motion problems. After him, Charles Hermite (1822-1901) defined
the Hermite polynomial for the study of expansion series in R, although these polynomials
had already been considered and studied by Laplace in the context of probability theory.
In relation with the integral

∫
∞

x

e−x

x
dx,

E. N. Laguerre (1834-1886) introduced the Laguerre polynomials, that were generalized
by N. Sonin. In 1859 a work by K. G. J. Jacobi (1804-1851) gave a generalization of the
Legendre polynomials, known as Jacobi polynomials.

The first monograph dedicated to the subject of orthogonal polynomials appeared in
1939, Orthogonal polynomials by Gabor Szegö [97].

All these families of orthogonal polynomials happened to have some interesting prop-
erties in common, in particular they are all eigenfunctions of a second order differential
operator of the form

(1) D(⋅) = σ(x) d
2

dx2
+ τ(x) d

dx
,

where σ is a polynomial of degree at most two and τ is a polynomial of degree exactly one.
This property characterizes the families of Jacobi, Hermite and Laguerre polynomials, as it
was proven by S. Bochner in 1929, [8]. Some other properties were shown to characterize
these families. In 1887 Sonin proved that the only families of orthogonal polynomials
whose derivatives are also orthogonal were the Jacobi, Hermite and Laguerre polynomials.
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vi INTRODUCTION

We also want to mention a third characterization proposed by F. Tricomi, that is the fact
that these families can be expressed in terms of a Rodrigues formula.

pn(x) =
bn
ρ(x)

dn

dxn
(σn(x)ρ(x)) ,

where ρ(x) is the weight with respect to which the sequence is orthogonal. A very handy
characterizing property of these families of orthogonal polynomials is a distributional one,
the weights associated to these families satisfy a Pearson equation

(σ(x)ρ(x))′ = τ(x)ρ(x).

These families are called classical orthogonal polynomials and their associated weights
classical weights.

The classical orthogonal polynomials constitute a very important class of families of or-
thogonal polynomials because of their properties and applications. They can be expressed
in terms of hypergeometric functions

2F1(
−n, a
b

∣x) =
n

∑
k=0

(−n)k(a)k
(b)k

xk

k!
.

In 1949 two authors published what we could see as the seminal works for this the-
sis. The first one, W. Hahn (1911-1998) extended with Über Orthogonalpolynome die
q-Differenzengleichungen genügen, [73], the classical orthogonal polynomials by generaliz-
ing their properties. For q and w fixed numbers with q ≠ 1 let L be the linear operator

L f(x) = f(qx +w) − f(x)
(q − 1)x +w

.

Hahn proposed the following problem1: determine all sequences of orthogonal polynomials
(pn)n such that

1. (Lpn(x))n is also a sequence of orthogonal polynomials.

2. For all n ≥ 0, pn(x) satisfies an operator equation of the form

σ̃(x)L2 pn(x) + τ̃(x)Lpn(x) = λnpn(x) σ̃(x), τ̃(x) ∈ C[x], λn ∈ C.

3. pn(x) = Ln (R0(x)R1(x)⋯Rn(x)ρ(x))ρ(x)−1, where R0(x) is a polynomial and
Ri(x) = Ri+1(qx + w) and ρ(x) is the weight with respect to which (pn)n is or-
thogonal.

In this article Hahn proved that these properties determine one and the same class of
orthogonal polynomials and these polynomials can be constructed in terms of basic hy-
pergeometric functions.

For the particular case q = 1, w = 1 we recover what it is known as the classical discrete
orthogonal polynomials. The difference equation satisfied by these polynomials,

σ̄(x)∆∇p(x) + τ̄(x)∆p(x) = λp(x),
1Hahn’s problem involves two more equivalent properties that we have skipped because we do not

consider them in the matrix case.

vi



Introduction vii

where ∆(p)(x) = p(x+1)−p(x), ∇(p)(x) = p(x)−p(x−1), is a discretization in the lattice
x(s) = s of the differential equation satisfied by the classical orthogonal polynomials. This
particular problem was considered separately by O. E. Lancaster [83], and P. Lesky [86].
They showed that the only families of classical discrete orthogonal polynomials are the
Charlier, Meixner, Krawchuck and Hahn polynomials. These families satisfy a discrete
orthogonality property

κ

∑
k=0

pn(x)pm(x)ρ(x) = hnδn,m, κ ∈ N or κ =∞.

As the classical orthogonal polynomials they can be expressed in terms of hypergeometric
functions and their orthogonalizing weights satisfy a Pearson equation

∆ (σ̄(x)ρ(x)) = τ̄(x)ρ(x).

By setting q ∈ (0,1) and w = 0 in Hahn’s problem we recover one of the first families
of q-classical orthogonal polynomials discovered, the big q-Jacobi polynomials. The q-
classical2 orthogonal polynomials are families of orthogonal polynomials that satisfy a
second order q-differential equation,

σ̃(qx)DqDq−1p(qx) + τ̃(qx)Dqp(qx) = λp(qx),

where Dqf(x) =
f(qx) − f(x)

(q − 1)x
is the q-differential operator.

More characterizing properties of the q-classical orthogonal polynomials were accom-
plished at the end of the 20th century and the beginning of the 21st, as well as a complete
classification of them (see [3] and [90]). In particular the q-classical polynomials were
shown to satisfy a Rodrigues equation and their associated weights a Pearson equation.
These orthogonal polynomials can be described in terms of basic hypergeometric series

rϕs[
a1,⋯, ar
b1,⋯, bs

; q, x] =
∞
∑
k=0

(a1,⋯, ar; q)k
(b1,⋯, bs; q)k

xk

(q; q)k
.

According to the representation of the classical and the classical discrete orthogonal
polynomials in terms of hypergeometric functions the Askey-scheme provides a hierarchical
classification of them, establishing also some limit relations among the different families
of orthogonal polynomials (see for instance [4]).

The families of classical orthogonal polynomials can be obtained as limiting cases
of certain q-polynomials written in terms of 4ϕ3, the Askey Wilson polynomials, what
entailed the appearance of the q-Askey-scheme, where polynomials expressed in terms of
basic hypergeometric functions are treated and limit relations among them are shown (see
[77]).

A different treatment of the classical discrete and q-classical orthogonal polynomials is
due to A. F. Nikiforov and V. B. Uvarov and is based on the analysis of the discretization

2The term q-classical makes reference to a bigger class of orthogonal polynomials, those that satisfy an
operator equation that results form discretizing the second order differential equation in the q-quadratic
lattice. However in the present work we accomplished the term q-classical to this subclass, that used to
be referred as Hahn class.
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viii INTRODUCTION

of the second order differential equations satisfied by the classical orthogonal polynomials
in the uniform lattice x(s) = s, and the non-uniform lattice x(s) = c1q

s + c2q
−s + c3, [93].

The other author whose work is an starting point for this memory is M. G. Krein
(1907-1989). His publications from 1949, The fundamental propositions of the theory of
representations of Hermitian operators with deficiency index (m,m), [82], and Infinite J-
matrices and a matrix-moment problem, [81], are considered as the beginning of the theory
of matrix orthogonal polynomials.

In this theory one deals with the sesquilinear form defined by a matrix of measures W
in the space of matrix polynomials:

(2) ⟨P,Q⟩W = ∫ PdWQ∗.

Under mild assuptions on the matrix of measures W , one can always construct sequences
of orthogonal matrix polynomials with respect to W . These matrices of measures will be
called weight matrices.

Since its birth and until the last decade of the previous century, the works concerning
the theory of matrix orthogonal polynomials were somehow sporadic (see for instance [10],
[65]). This situation has radically changed in the last two decades, and since the end of
the 20th century more systematic works have appeared, bringing a solid and structured
knowledge concerning this theory.

Many basic results from the scalar theory of orthogonal polynomials have been ex-
tended to the matrix theory. Among them, there have been discovered recurrence formulas,
with extension of Favard’s theorem, algebraic aspects, properties of the zeros and Gaussian
quadrature formulas (see e.g [22], [25], [26], [27], [47], [54], [58], [96]). Also some density
problems and problems regarding matrix moments have been studied (e. g. [48], [49], [50],
[53], [84], [85]). The study of asymptotic properties for the matrix orthogonality has also
been considered (see e.g. [20], [21], [29], [55], [87], [88]). It is worth mentioning that these
properties haven’t been obtained by using tools derived from Riemmann-Hilbert, but from
quadrature formulas. However taking into account the efficiency of such methods for the
scalar case it would be convenient to develop the basis of these tools in the matrix setting
that allow its use in the matrix case. The construction and study of examples of matrix
orthogonal polynomials satisfying second order differential equations (e.g. [9], [12], [13],
[14], [15], [31], [30], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [66], [70], [71], [95],
[72], [94]), have shown that these families also posses the wealth of structural properties,
as their scalar relatives (e.g. [32], [33], [34], [39], [52]).

The theory of matrix orthogonal polynomials is linked to different areas of the mathe-
matics, pointing out the power of this theory. For instance, in [58] the authors established
the link between matrix orthogonal polynomials and scalar polynomials satisfying 2N +1-
recurrence relations. Other works, as e.g. [68], show the connection with probability
theory, and random matrices [74]. More applications of the theory of matrix orthogonal
polynomials can be found in e.g. [96].

For a more complete view of the matrix orthogonal polynomials theory we reefer the
readers to [19], [51] and references therein.

The existence of singular matrices as well as the non-commutativity of the matrix
product difficult the treatment of these objects and force us to developed new ideas and
techniques for its study.
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As we have already mentioned, the classical, classical discrete and q-classical polyno-
mials play an important role in the theory of scalar orthogonal polynomials, and one of the
characterizing properties that makes them so interesting is that of being eigenfunctions of
certain operators. In the theory of matrix orthogonal polynomials, the search of matrix
examples that satisfy an analogue property is a complicate issue. Such a complexity can
be seen in the fact that although the theory of matrix orthogonal polynomials was born in
the fifties it wasn’t until the last decade that the first examples of non-trivial matrix or-
thogonal polynomials being eigenfunctions of matrix operators (in particular second order
differential operators) have appeared.

As a first and primary consequence of the effect that non-commutativity has in the
treatment of this theory, we observe that when one wants to study matrix orthogonal
polynomials which are eigenfunctions of differential, difference or q-difference equations,
we need to take care of the order of multiplication of the coefficients and eigenvalues, as it
is explained in [28]. In the case of matrix differential operators, in order to avoid examples
which can be reduced to scalar ones, one needs to consider differential operators of the
form

M

∑
k=0

dk

dxk
Pn(x)Fk(x) = ΛnPn(x), Fk(x) ∈ CN×N [x], Λn ∈ CN×N ,

that is, the matrix coefficients are multiplying on the right and the eigenvalues on the left.
In the study of matrix operators with sequences of matrix orthogonal polynomials as

eigenfunctions, the concept of symmetry is a very important one. A matrix operator D is
said to be symmetric with respect to a weight matrix W if for all matrix polynomials P
and Q, ⟨D(P ),Q⟩W = ⟨P,D(Q)⟩W , where ⟨⋅, ⋅⟩W is defined by (2).

It happens that symmetric operators taking matrix polynomials into matrix polynomi-
als and such that they do not raise the degree of polynomials always have as eigenfunctions
a sequence of orthonormal polynomials (see Lemma 1.3.3). This apply to any kind of ma-
trix operators, whatever it is the nature of them.

Starting with the works of Durán, Grünbaum, Tirao and Pacharoni, [38], [66], [70],
[71], in the last decade numerous examples of matrix orthogonal polynomials satisfying
second order differential equations have been constructed. One of the starting points for
the discovery of those examples is the symmetry of a differential operator with respect to a
weight matrix. This symmetry can be reached through a set of commuting and differential
equations, under certain boundary conditions, for the coefficients of the matrix differential
operator and the weight matrix (see [28], [30] and Section 1.3 of the present thesis).

The solution of these set of matrix differential equations is far away from being direct
or simple, however different methods have been accomplished in the last years and have
led to different shorts of examples (see e.g. [38], [70]).

The link between representation theory and matrix-valued spherical functions, see [60],
gives another way to construct matrix-valued orthogonal polynomials that satisfy second
order differential equation. This approach was initiated by Grünbaum, Pacharoni and
Tirao [71] using invariant differential operators on SU(3)/U(2). Since then several papers
have appeared following this approach (see [67], [78], [94], [95], [101] etc.), showing the
powerful connection between matrix orthogonal polynomials and representation theory, as
happened in the scalar case (see e.g. [100]).

The families of orthogonal matrix polynomials mentioned in the last paragraphs have
allowed to discover many new and interesting phenomena which are absent in the well

ix



x INTRODUCTION

known scalar theory.
One of the phenomena is the fact that the elements of a family of orthogonal matrix

polynomials can be eigenfunctions of several linearly independent second order differential
or difference operators (while in the scalar case, the symmetric second order differential
operator is unique up to multiplicative and additive constants, see e.g. [14], [30], [35], [72],
[94]).

As a consequence of this phenomenon, the algebra of differential and difference oper-
ators are receiving some attention ([35], [72]). For the classical and the classical discrete
families this algebra is isomorphic to C[x]. In the matrix case the structure of these alge-
bras in much more complicated, and mostly we only have conjectures on them (see [14],
[35], [37], [99]).

As the dual situation to that mentioned in the previous paragraph we find that a differ-
ential operator D can have different families of orthogonal polynomials as eigenfunction,
and can also have different weights with respect to which it is symmetric, bringing into
the picture the two sets of weight matrices:

X(D) = {W ∣DPWn = ΛnP
W
n },

Υ(D) = {W ∣D is symmetric with respect to W}.

It happens that X(D) is a cone and Υ(D) a convex cone. In [36] the authors provided a
method to construct new weights in the convex cone of a differential operator.

In the matrix case one misses some of the equivalences among the characterizing prop-
erties for the classical orthogonal polynomials. For instance, for a sequence of matrix
orthogonal polynomials which are eigenfunctions of a second order differential or differ-
ence operator, it is not longer true that the sequence formed by its derivatives is again a
sequence of matrix orthogonal polynomials (for more details see [12], [39] and [57], [42],
[46]).

Finding structural formulas for the matrix orthogonal polynomials is in general much
more complicated in the matrix case that in the scalar one, for obvious reasons. Most
of the formulas that one can find in the literature are usually valid for lower dimension
cases (e.g. [39], [52]), although there are some examples that have been fully studied for
arbitrary size, [34].

As it has already been pointed out, the search for examples of matrix polynomials
which are also eigenfunctions of certain matrix operators becomes a rather difficult issue.
This difficulty is due to several reasons. The most important of these reasons is the increase
of the difficulties in the computations related with the non-commutativity of the matrix
product, and the existence of singular matrices. However, having a wide set of examples of
matrix orthogonal polynomials has shown to be decisive in the study and discovery of new
phenomena happening in the matrix orthogonality, as those that we have mentioned above.
This has been the case with the examples of matrix orthogonal polynomials satisfying
differential equations. An example of the increasing knowledge about these families of
orthogonal polynomials is shown in the last chapter of this memory. There lot of tools
developed in the last decades are used to build and study in deep an interesting family
of matrix orthogonal polynomials satisfying second order differential equations. Moreover
these families are shown to satisfy first order differential equations as well.

In the case of matrix orthogonal polynomials satisfying difference equations, very little
was known. Apart from the examples in size 2 × 2 in [35] (and some others reducible to

x
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the scalar case) there were no examples of such matrix orthogonal polynomials. With
this thesis this lack of examples starts to be solved. Moreover, we introduce a method
to construct examples of matrix orthogonal polynomials satisfying second order difference
equations, and by making use of it we give a variety of examples. Having such a method
is of the main importance, because we skip the complexity in the computations that made
the search of examples so difficult, and now dealing with matrix orthogonal polynomials
and matrix difference equations becomes much easier to handle. The method profits of the
factorization of a weight matrix and the symmetry equations obtained in [35] for a discrete
weight matrix and a difference operator. These symmetry equations are the starting point
to develop the method. Also, as in the continuous case, the availability of examples has
already been used to explore new features and properties satisfied by this objects (see
Section 3, [57], [56]).

For the case of matrix orthogonal polynomials satisfying q-difference equations, even
less was known. In this thesis we establish the symmetry equations for the q-difference
case, and we adapt the method developed for the difference case to obtain the first non-
trivial examples of matrix orthogonal polynomials satisfying second order q-difference
operator. That emphasizes the power of the method to build examples for the difference
case. With our method we construct an example of matrix orthogonal polynomials sat-
isfying q-difference equations, but this method can easily be used to get a wider class of
examples and to explore their properties.

With the content of this thesis we get a more complete view of the theory of matrix
orthogonal polynomials, and many questions can now be tackled, such as those concerning
limiting relations among matrix orthogonal polynomials satisfying second order difference
equations (or q-difference) and matrix orthogonal polynomials satisfying second order
differential equations.

The contents of this memory is as follows.

In Chapter 1 we show some background on the theory of matrix orthogonal polyno-
mials and matrix operators that are needed for the understanding of the foregoing work.
We also review some basic concepts and display some known results concerning hyperge-
ometric functions that will be used later.

Chapters 2, 3, 4 and 5 are formed by the original contents of this thesis.

Chapter 2 is devoted to the study of second order difference operators of the form

D(P )(x) = P (x − 1)F−1(x) + P (x)F0(x) + P (x + 1)F1(x)

with a sequence of matrix orthogonal polynomials (Pn)n as eigenfunctions, D(Pn)(x) =
ΛnPn(x). As for differential operators, in the discrete case similar considerations about
the order of multiplication of the coefficients and eigenvalues also applies, so we will just
consider difference operators with coefficients multiplying on the right and eigenvalues
multiplying on the left.

The symmetry of a generic difference operator D with respect to a discrete weight
matrix W can be achieved through a set of commuting and difference equations (the
symmetry equations) and boundary conditions regarding the coefficients of D and W ,
(see Theorem 1.3.19 or [35]). For a second order difference operator D and a discrete
weight matrix W supported on a subset of the natural numbers S ⊆ N the symmetry

xi



xii INTRODUCTION

equations are (see Theorem 1.3.7)

F1(x)W (x) =W (x + 1)F−1(x + 1)∗, x ∈S ∩ (−1 +S),(3)

F0(x)W (x) =W (x)F0(x)∗, x ∈S.(4)

In Chapter 2 we provide a method to solve these equations. For the benefit of the reader
we exhibit here Theorem 2.1.1, that shows the method.

Theorem 0.0.1. Let κ be either a positive integer or infinite, and F1 and F−1 matrix
polynomials. Assume that there exists a scalar function s(x) such that for x = 1,⋯, κ,
s(x) ≠ 0 and

F1(x − 1)F−1(x) = ∣s(x)∣2 I, x ∈ {1,⋯, κ}.

Write T for the solution of the first order difference equation

T (x − 1) = F−1(x)
s(x)

T (x), for x ∈ {1,⋯, κ}, T (0) = I.

Then, the weight matrix

W =
κ

∑
x=0

T (x)T ∗(x)δx,

satisfies the difference equation (3). Moreover if the matrix T (x)−1F0(x)T (x) is Hermitian
then, the difference equation (4) also holds.

With this method we construct four illustrative examples of matrix difference operators
that are symmetric with respect to discrete weight matrices. We display here an example
of size N ×N that will be treated with more detail in Chapter 2.

Let a be a positive real number, and W the discrete weight matrix given by

(5) W = ∑
x∈N

ax

x!
(I +A)x (I +A∗)x δx,

where A is the N ×N nilpotent matrix given by

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 v1 0 ⋯ 0
0 0 v2 ⋯ 0

⋱
0 0 ⋯ 0 vN−1

0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

and I the identity matrix. Then, the sequence of monic orthogonal polynomials (Pn)n,
with respect to W , satisfies the difference equation

aPn(x + 1) (I +A) + Pn(x) (−J − (I +A)−1 x) + Pn(x − 1) (I +A)−1 x = ΛnPn(x),

where

Λn = (a(I +A) − J − n(I +A)−1) ,

xii
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and J is the N ×N diagonal matrix given by

J =

⎛
⎜⎜⎜⎜⎜⎜
⎝

N − 1 0 0 ⋯ 0
0 N − 2 0 ⋯ 0

⋱
0 0 ⋯ 1 0
0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

The content of this chapter has been published in [2].
Chapter 3 is devoted to the study of the convex cone associated to a difference

operator D. For a fixed difference operator D of the form (1.33) we define the set of
weight matrices

Υ(D) = {W ∶D is symmetric with respect to W}.(6)

One straightforwardly has that if Υ(D) /= ∅ then, it is a convex cone: if W1,W2 ∈ Υ(D)
and γ, ζ ≥ 0 (one of them non null), then γW1 + ζW2 ∈ Υ(D). The convex cone associated
to a second order differential operator was studied in [36].

When Υ(D) /= ∅, it contains, at least, a half line: γW , γ > 0. In the scalar case, the
convex cone of positive measures associated to a second order difference operator always
reduces to the empty set except for those operators associated to the classical discrete
measures in which case the convex cone is the half line defined by the classical measure
itself. The situation is again rather different in the matrix orthogonality: in chapter 3
we show examples of second order difference operators D for which Υ(D) is a higher
dimensional convex cone.

We provide two methods to find such examples and show a collection of instructive
examples. We remark that the convex cones generated by both methods have a completely
different structure.

The first method consists in the following. Consider a weight matrix W factorized in
the form W (x) = T (x)T ∗(x), x ∈ Supp(W ). We then form a new weight matrix WS by
inserting between the factor T and its adjoint T ∗ a diagonal matrix of numbers S with
positive entries: WS(x) = T (x)ST ∗(x). Although the diagonal matrix S does not depend
on x, its effect on the orthogonal polynomials with respect to WS can be highly non lineal
(as we show with an example); of course, this is due to the non commutativity of the
matrix product. We then find suitable conditions on a second order difference operator D
and on the weight matrix factor T which guarantee the symmetry of D with respect to all
the weight matrices WS .

The second method shows once again the differences with what happens in the scalar
orthogonality. We take a weight matrix W having several linearly independent symmetric
second order difference operators. We then add to W a Dirac distribution M(x0)δx0 ,
where the real number x0 and the mass M(x0) (a Hermitian positive semidefinite matrix)
are carefully chosen. We show in Section 3.1 that, for certain numbers x0, we can produce,
under certain mild hypothesis, a positive semidefinite matrix M(x0) and a second order
difference operator D symmetric with respect to W and to any weight matrix of the form
γW + ζM(x0)δx0 , γ > 0, ζ ≥ 0. We illustrate this method with two examples, one of them
in size 2 × 2 and the other in arbitrary size. The latter can be considered as a matrix
relative of the Charlier scalar family. In this case, we add a Dirac delta at x0 = 0. The
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situation is different to that of the scalar case. Indeed, when we add a mass point at
0 to the classical weight of Charlier the existence of a symmetric finite order difference
operator automatically disappears (see [7]).

For the benefit of the reader, we exhibit now a couple of examples. For a > 0 and
b ∈ R/{0}, we consider the second order difference operator

D1(⋅) = s1(⋅)(
−a −ab
0 −a ) + s0(⋅)(

x + 1 −bx
0 x

) + s−1 (
−x xb
0 −x) .

Using the first method mentioned above, we will show that its convex cone is formed by
the weight matrices γWξ, γ, ξ > 0, where

Wξ = ∑
x∈N

ax

x!
(ξ + b

2x2 bx
bx 1

) δx

(notice that for ξ = 1 we recover the example exhibited above (5) for the case N = 2). On
the other hand, the convex cone for the second order difference operator D2 defined by

D2(⋅) =s−1(⋅)
⎛
⎝

0
x

a
− b2x(x − 1)

0 −bx
⎞
⎠
+ s1(⋅)(

b(x + 1) −b2(x + 1)(x + a)
1 −b(x + a) )

+ s0(⋅)
⎛
⎝

1

ab
− b(x + a) −(x

a
+ 1) + b2x(2x + a)

−1 2bx

⎞
⎠

will be constructed using the second method. We will show that

Υ(D2) = {γW + ξ (ab 1
1 1/(ab)) δ0, γ > 0, ξ ≥ 0},

where

W =
∞
∑
k=0

ax

x!
(1 + b2x2 bx

bx 1
) .

Notice that the weight matrix W belongs to both convex cone (that is, both operators D1

and D2 are symmetric with respect to W ).
The content of this chapter has been published in [56].
In Chapter 4 we study matrix orthogonal polynomials that are eigenfunctions of a

matrix q-difference operator of the form

D(P )(x) =
−r
∑
k=r

P (qkx)Fk(x), Fk(x) ∈ CN×N [x−1].

We also remark here that the considerations on the order of multiplication of the coeffi-
cients and eigenvalues also applies in the q-matrix case.

To find examples of matrix orthogonal polynomials satisfying q-difference equations
we exploit Lemma (1.3.3), so in fact we find examples of q-difference operators D that are
symmetric with respect to a weight matrix W .

We establish a set of commuting and q-difference equations that, together with certain
boundary conditions, assure the symmetry of a q-difference operator D of the form (1.34)
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with respect to a weight matrix W of the form (1.18) (see Theorem 1.3.21). For the
particular case of a second order q-difference operator

D(P )(qx) = P (qx+1)F1(qx) + P (qx)F0(qx) + P (qx−1)F−1(qx), Fk(x) ∈ CN×N [x−1],

the symmetry equations are given by

F0(qx)W (qx) =W (qx)F0(qx)∗, x ∈ N,
F1(qx−1)W (qx−1) = qW (qx)F−1(qx)∗, x ∈ N/{0},

and the boundary condition

W (1)F−1(1)∗ = 0.

q2xF1(qx)W (qx)→ 0, as x→∞,
qx (F1(qx)W (qx) −W (qx)F1(qx)∗)→ 0, as x→∞.

We provide a method to construct second order q-difference operators and q-weights
that satisfy the symmetry conditions. This method is based on that developed for the dis-
crete case and profits of the decomposition of the q-weight matrix W (qx) = T (qx)T (qx)∗.

By making use of this method we construct an example of arbitrary size that constitute,
as long as we know, the first non trivial example of matrix q-polynomials satisfying q-
difference equations.

As an extension of the matrix hypergeometric functions introduced by Tirao [98] we
define a matrix basic hypergeometric function. Such a matrix function can be used to
describe the rows of the matrix orthogonal polynomials which are eigenfunctions of a
particular second order q-difference operator, whose coefficients are related with the pa-
rameters of the matrix basic hypergeometric function.

In Chapter 4 we also carry an extensive study of the particular case of size N = 2,
exhibited below.

Let a and b be two real numbers such that 0 < a < q−1 and b < q−1. Consider the
matrices M , L and U given by

U = (0 v(1 − q)(q−1 − a)
0 0

) , M = (1 v
0 0

) , L = elog(q)M = (q −v(1 − q)
0 1

) .

The monic orthogonal polynomials (Pn)n with respect to

W (qx) = ax (bq; q)x
(q; q)x

Lx(L∗)x,

satisfy then the matrix q-difference equation

Pn(qx−1)(q−x − 1)L−1 + Pn(qx) (U − q−x(L−1 + aL)) + Pn(qx+1)(aq−x − abq)L = ΛnPn(qx),

where

Λn = (−q
−n−1 − abqn+2 v(1 − q)(abqn+1 − q1−n + q−1 − a)

0 −q−n − abqn+1 ) .

By profiting the factorization of the weight matrix, we provide formulas for the matrix
polynomials Pn in terms of little q-Jacobi polynomials. We also make use of the matrix

xv



xvi INTRODUCTION

basic hypergeometric function introduced in Section 4.2 to give an alternative expression
of the polynomials, and by making use of this expression we find a three term recurrence
relation for the 2 × 2 polynomials. Also a Rodrigues formula is found.

The content of this chapter can be found in [1].
Chapter 5 is related to the already mentioned connection between representation

theory and matrix orthogonal polynomials is showing to be a very fruitful one. In [78],
and [79] the authors studied the full spherical functions associated to the particular case
(SU(2) × SU(2), SU(2)) and related them with a family matrix orthogonal polynomi-
als. By profiting of the machinery of the representation theory the authors of [78] and
[79] showed that these matrix orthogonal polynomials satisfy a second order differential
equation, and also a first order differential equation.

In Chapter 5 we introduce a family of weight matrices labeled by a positive number

(W (ν))
ν>0

, and their sequences of orthogonal polynomials (P (ν)
n )n. For the particular case

of ν = 1 we recover the example in [78].
We define the weight matrices via its LDU-decomposition and we prove another equiv-

alent and useful expression for the weights in terms of Gegenbauer polynomials.
These weight matrices can be reduced to lower size, explicitly

W (ν)(x) = Y t
N
2

⎛
⎝
W

(ν)
+ (x) 0

0 W
(ν)
− (x)

⎞
⎠
YN

2
,

where YN
2

are the matrices given by

Yp+ 1
2
= 1

2

√
2( Ip+1 Jp+1

−Jp+1 Ip+1
) , Yp =

1

2

√
2
⎛
⎜
⎝

Ip 0 Jp
0

√
2 0

−Jp 0 Ip

⎞
⎟
⎠
, p ∈ N,

where Ip denotes the identity matrix of size p and

Jp =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
0 0 ⋯ 1 0

⋰
0 1 ⋯ 0 0
1 0 ⋯ 0 0.

⎞
⎟⎟⎟⎟⎟⎟
⎠

It is also worth to notice that W
(ν)
+ (x) ∈ Cr1×r1 and W

(ν)
− (x) ∈ Cr2×r2 , where r1 = ⌈N2 ⌉,

r2 = ⌊N2 ⌋, and ⌈ ⌉ and ⌊ ⌋ are the ceiling and floor functions,

⌈x⌉ = min{m ∈ Z ∣ m ≥ x} , ⌊x⌋max{m ∈ Z ∣ m ≤ x} .

Moreover they admit no more reduction.
For each ν > 0 we construct a pair of differential operators, one of order two D(ν) and

the other of order one E(ν), that satisfy the symmetry equations and boundary conditions
for W (ν). The operator D(ν) can also be reduced to lower size via the composition with
the matrices Y`, but the operator E(ν) does not reduce to lower size.

These operators can be combined to obtain a third differential operator,

D
(ν)
Φ,Ψ = d2

dx2
Φ(ν) + d

dx
Ψ(ν).
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The existence of such operator implies the Hermiticity of Φ(x)(ν)W (ν)(x) and that
the weight matrices W (ν) satisfy a Pearson-type equation as in [12],

(Φ(x)(ν)W (ν)(x))
′
= Ψ(ν)(x)W (ν)(x).

By exploiting the expression of the weights in terms of scalar Gegenbauer polynomials,
we can prove that in fact W (ν+1)(x) = Φ(x)νW ν(x), connecting the orthogonal polynomi-

als (P (ν)
n )n with (P (ν+1)

n )n. Moreover we can prove that the basic differential operator
d

dx
is a forward shift operator, i.e. if (P (ν)

n )n is the sequence of monic orthogonal polynomials
with respect to W (ν),

d

dx
(P (ν)

n ) = nP (ν+1)
n−1 .

And by carrying an integration by parts on ⟨ ddxP,Q⟩(ν) we can also give an operator,

(T (ν)Q)(x) = dQ

dx
(x)(Φ(ν)(x))∗ +Q(x)(Ψ(ν)(x))∗,

that satisfies T (ν)P
(ν+1)
n−1 = K(ν)

n P
(ν)
n , for certain matrices K

(ν)
n that can be determined

from Φ(ν)(x) and Ψ(ν)(x), that is T (ν) is a backward shift operator.
By combining the forward shift and backward shift operators we can get a compact

Rodrigues formula for the sequences of orthogonal polynomials (P (ν)
n )n,

P (ν)
n (x) = G(ν)

n

dn

dxn
(W (ν+n)(x))W (ν)(x)−1,

where G
(ν)
n are diagonal matrices.

We also provide expressions of the matrix orthogonal polynomials in terms of matrix-
valued hypergeometric functions as in [98]. From this expression we can calculate the
three term recurrence relation satisfied by the polynomials. From the LDU decomposition
of the weight matrix (5.5), and by performing an appropriate change of variables, we find

the expression of the matrix orthogonal polynomials (P (ν)
n )n in terms of Gegnbauer and

Racah polynomials.
We end this introduction by displaying an explicit example of size N = 3 of the weight

matrices W (ν) and the differential operators D(ν) and E(ν). For ν > 0 we define the weight
matrix W (ν) in (−1,1) by

W (ν)(x) = (1 − x2)(ν−1/2)(2 + ν)
⎛
⎜⎜
⎝

1 x
2x2(ν+1)−1

2ν+1

x x2ν+ν+1
2ν+1 x

2x2(ν+1)−1
2ν+1 x 1

⎞
⎟⎟
⎠
.

The weight matrix W (ν) can be decomposed in a two block matrix:

W (ν)(x) = (1 − x2)(ν−1/2)(2 + ν)Y 3
2

⎛
⎜⎜
⎝

x2(ν+1)+ν
2ν+1

√
2x 0√

2x νx2+ν+1
2ν+1 0

0 0 −2(x−1)(x+1)(1+ν)
2ν+1

⎞
⎟⎟
⎠
Y +

3
2

,
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where

Y 3
2
= 1√

2

⎛
⎜
⎝

1 0 1

0
√

2 0
−1 0 1

⎞
⎟
⎠
.

The sequence of monic orthogonal polynomials (P (ν)
n )n with respect to W (ν) satisfy the

following differential equations:

(1 − x2) (P (ν)
n (x))

′′
+ (2ν + 3) (P (ν)

n (x))
′ ⎛
⎜
⎝

−x(2ν + 3) 2 0
1 −x(2ν + 3) 0
0 2 −x(2ν + 3)

⎞
⎟
⎠

(7)

+ P (ν)
n (x)

⎛
⎜
⎝

−(v − 1)(3 + ν) 0 0
0 1 − (ν − 1)(3 + ν) 0
0 0 −(ν − 1)(3 + ν)

⎞
⎟
⎠
= Λn(D(ν))P (ν)

n (x),

(8)

(P (ν)
n (x))

′ ⎛
⎜
⎝

−x 1 0
−1/2 0 1/2

0 −1 x

⎞
⎟
⎠
+ P (ν)

n (x)
⎛
⎜
⎝

−3 − ν 0 0
0 −2 0
0 0 ν − 1

⎞
⎟
⎠
= Λn(E(ν))P (ν)

n (x)

(9)

where

Λn(D(ν)) =
⎛
⎜
⎝

(2ν + 3)−1−(ν − 1)(3 + ν) 0 0
0 (2ν + 3)−(ν−1)(3 +ν) 0
0 0 (2ν + 3)−1−(ν − 1)(3 + ν)

⎞
⎟
⎠
,

Λn(E(ν)) =
⎛
⎜
⎝

−4 − ν 0 0
0 −2 0
0 0 ν

⎞
⎟
⎠
.

Moreover the sequences of monic orthogonal polynomials (P (ν)
n ) satisfy

dk

dxk
P (ν)
n (x) = (n − k + 1)kP

(ν+k)
n−k (x), for all k ≤ n.

The content of this chapter can be found in [80].
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Chapter 1

Preliminaries

In this chapter we introduce some results concerning the theory of matrix orthogonal
polynomials that will be used in the forward chapters. We also provide some useful
formulas and establish some notation that will be used in the rest of the thesis.

1.1 Hypergeometric and basic hypergeometric function.

Far away from being a deep treatment in hypergeometric and basic hypergeometric func-
tions, we establish here some notation and define some important functions that will be
used in this thesis. We also list a few interesting and useful summation formulas that will
be needed in the forthcoming chapters. For a deeper understanding and study we refer
the reader to [6], [63], [76], [77], among others.

1.1.1 Hypergeometric functions

For a ∈ C, k ∈ N we set (a)k for the ascending Pochhammer symbol, that is

(a)k = a(a + 1)(a + 2),⋯, (a + k − 1) = Γ(a + k)
Γ(a)

.

We can extend this function for negative integers by the convention

(a)−k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if k ≥ a + 1
Γ(a + 1)

Γ(a − k + 1)
if k < a + 1

For a, b, c ∈ C the Gauss hypergeometric function is defined by

1 + ab
c
x + a(a + 1)b(b + 1)

c(c + 1)
x2

2!
+ a(a + 1(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)
x3

3!
+⋯ =

∞
∑
k=0

(a)k(b)k
(c)k

xk

k!
,

whenever it makes sense. Notice that if c ∈ Z with c < 0 then, this function is not defined
unless a ∈ Z with a < 0 and c ≤ a (or the same but with b). The Gauss hypergeometric
function converges for ∣x∣ < 1 and for x = 1 when R(c−a− b+1) > 0. It satisfies the second
order differential equation

(1.1) x(1 − x) d
2

dx2
(f(x)) + (c − (a + b + 1)x) d

dx
(f(x)) − abf(x) = 0.

1
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We will denote the Gauss hypergeometric function by

2F1(a, b; c ∣x) = 2F1(
a, b

c
∣x) =

∞
∑
k=0

(a)k(b)k
(c)k

xk

k!
.

If n ∈ N then, 2F1(−n,bc ∣x) is a polynomials in x of degree n that satisfies the second
order differential equation (1.1).

For a1, a2,⋯, ar ∈ C and b1, b2,⋯, bp ∈ C the generalized hypergeometric function is
given by

(1.2) rFp(
a1, a2,⋯, ar
b1, b2,⋯, bp

∣x) =
∞
∑
k=0

(a1)k(a2)k⋯(ar)k
(b1)k(b2)k⋯(bp)k

xk

k!
.

We now define balanced, well-poissed and very-well-poised series.

Definition 1.1.1. A hypergeometric series p+1Fp(a1, a2,⋯,ap+1b1, b2,⋯,bp ∣x) is called balanced (or

Saalschützian) if it satisfies

1 +
p+1

∑
k=0

ak =
p

∑
k=0

bk.

We say that p+1Fp is well-poised if it satisfies

1 + a1 = b1 + a2 = b2 + a3 = ⋯ = bp + ap+1.

And we say that p+1Fp is a very-well-poised series if it is well-poised and a2 = a1
2 + 1.

Summation formulas

We list here some summation formulas for hypergeometric series. They can be found in
e.g. [5], [6].

• Gauss summation formula. For R(c − a − b) > 0

(1.3) 2F1(
a, b

c
∣x) = Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
.

• Kummer’s summation formula

(1.4) 2F1(
a, b

1 + a − b
∣ − 1) =

Γ(1 + a − b)Γ(1 + 1
2a)

Γ(1 + a)Γ(1 + 1
2a − b)

.

• Pfaff-Saalschütz formula. For a 3F2 balanced series we have

(1.5) 3F2(
−n, a, b

c, a + b − n − c + 1
∣1) = (c − a)n(c − b)n

(c)n(c − a − b)n
.

• Whipple’s transformations. For a 4F3 balanced series we have

4F3(
−n, a, b, c
d, e, f

∣1) = (e − a)n(f − a)n
(e)n(f)n

4F3(
−n, a, d − b, d − c

d, a + 1 − n − e, a + 1 − n − f
∣1).(1.6)

• Dougall summation formula.

5F4(
a, a/2 + 1, c, d,−m

a/2, a − c + 1, a − d + 1, a +m + 1
∣1) = (a + 1)m(a − c − d + 1)m

(a − c + 1)m(a − d + 1)m
.(1.7)
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1.1.2 Basic hypergeometric functions.

In forthcoming chapters and sections we will occasionally work with q-orthogonal polyno-
mials, for what we need to introduce some notation and definitions.

For the rest of the thesis q stands for a real number with 0 < q < 1.

For m ∈ N the q-shifted factorial, (or simply q-factorial or q-Pochhammer symbol), is
defined by

(1.8) (α; q)m = (1 − α)(1 − qα)(1 − q2α)⋯(1 − qm−1α), (α; q)∞ =
∞
∏
k=0

(1 − aqk),

and the multiple q-shifted factorials

(α1, α2,⋯, αp; q)m =
p

∏
k=1

(αk; q)m.

We can extend the definition of q-shifted factorial for m ∈ Z by using the formula

(1.9) (αq; q)m = (α; q)∞
(αqm; q)∞

,

valid for a negative integer m provided αqm ≠ q−n for any n ∈ N.

The q-binomial coefficient is

[n
k
]
q
= (q; q)n

(q; q)k(q; q)n−k
.

We define the basic hypergeometric serie of parameters α1, α2,⋯, αp ∈ C and β1, β2,⋯, βr ∈
C by

pφr[
α1, α2,⋯, αp
β1, β2,⋯, βq

; q, x] =
∞
∑
k=0

(α1, α2,⋯, αp; q)k
(β1, β2,⋯, βr; q)k

xk

(q; q)k
,

see [63].

If for some k = 1,⋯, r, βk = q−n for some n ∈ N, then the function pϕr is not defined
unless αj = q−m with m < n for some j = 1,⋯, p. Notice that if αj = q−m for some j = 1,⋯, r
then,

pφr[
α1, α2,⋯, αp
β1, β2,⋯, βq

; q, x]

is a polynomial in x of degree at most m.

There is a q-analogue of the gamma function. The q-gamma function is defined by

Γq(x) =
(q; q)∞

(1 − q)x−1(qx; q)∞
.

It satisfies the functional equation

Γq(x + 1) = 1 − qx

1 − q
Γq(x).
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There is also a notion of q-derivation and q-integration. We define the q-derivative of
a function with derivative at x = 0 by

(1.10) Dqf(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(x) − f(qx)
(1 − q)x

if x ≠ 0

f ′(0) if x = 0.

The q-integral or Jackson integral is the inverse of the q-derivative,

(1.11) ∫
a

0
f(x)dqx =

∞
∑
k=0

(aqk−aqk+1)f(aqk), ∫
b

a
f(x)dqx = ∫

b

0
f(x)dqx−∫

a

0
f(x)dqx.

1.2 Matrix orthogonal polynomials

Let us denote by CN1×N2 the vector space of matrices of size N1 ×N2 whose entries are
complex numbers, and write CN for the vector space formed by the complex vectors of
size N , and we will specify whenever it is needed whether we are working with row or
column vectors.

Definition 1.2.1. A matrix polynomial P (x) is a polynomial whose coefficients are ma-
trices, all of them of the same size. We denote by CN1×N2[x] the vector space of all matrix
polynomials of size N1 ×N2,

CN1×N2[x] = {
m

∑
k=0

Mkx
k ∣Mk ∈ CN1×N2 , m ∈ N} .

For k ∈ N we denote by CN1×N2

k [x] ⊂ CN1×N2[x] the set of all matrix polynomials of size
N1 ×N2 with degree at most k.

In this work we focus on the particular case of square matrix polynomials, CN×N [x]
and we will restrict the variable x to the real line. There are also very interesting works
on the theory of matrix orthogonal polynomials on the complex plane, in particular on
the unit circle (see e.g. [23], [64], [89]), but it is out of the scope of this thesis.

The identity matrix in CN×N is represented by I. The symbol Ei,j stands for the N ×N
matrix with entry (i, j) equal to 1 and 0 otherwise. It is not difficult to see that these
matrices satisfy the following property

(1.12) Ei,jEk,l = Ei,lδj,k.

With this notation a matrix M ∈ CN×N can be written as M =
N

∑
i,j=1

mijEij , where mij ∈ C.

For a matrix M ∈ CN×N , we denote by M∗ its Hermitian conjugate, that is if M =
(mi,j)Ni,j=1 then, M∗ = (mj,i)Ni,j=1. The spectrum of a matrix M is denoted by σ(M),

σ(M) = {λi ∈ C∣det(M − λiI) = 0},

and we will denote by ρ(M) its spectral radius, that is

(1.13) ρ(M) = max
λ∈σ

(λ).

The orthogonality will be defined with respect to a weight matrix.
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Definition 1.2.2. An Hermitian square matrix of Borel measures W , all of them sup-
ported in the Borel set S ⊆ R, is said to be a weight matrix if it satisfies

1. For any Borel set B ⊆S, W (B) is a positive semi-definite matrix.

2. W has finite moments of every order, i.e., for all n ∈ N, µn = ∫S x
ndW (x) ∈ CN×N ,

where the integral is taken entrywise.

3. If P (x) is a matrix polynomial whose leading coefficient is non singular, ∫S P (x)dW (x)P (x)∗
is also non singular

We associate to a weight matrix W the Hermitian sesquilinear form

⟨⋅, ⋅⟩W ∶ CN×N [x]→ CN×N

defined by

(1.14) ⟨P,Q⟩W = ∫
S
P (x)dW (x)Q(x)∗, P, Q ∈ CN×N [x].

This form satisfies the following properties, for all A1,A2 ∈ CN×N and P,Q,R ∈
CN×N [x]

• ⟨A1P +A2R,Q⟩W = A1⟨P,Q⟩W +A2⟨R,Q⟩W

• ⟨P,Q⟩W = (⟨Q,P ⟩W )∗.

• ⟨P,P ⟩W ≥ 0, and ⟨P,P ⟩W = 0 if and only if P = 0,

where A ≥ 0 for a matrix A ∈ CN×N means that it is semi-definite positive. Abusing of
terminology we will say that the Hermitian sesquilinear form ⟨⋅, ⋅⟩W is the inner product
associated to W .

Notice that, since the matrix product is non commutative, there is an implicit choice
in the inner product we have just presented. One could also consider the following inner
product

(1.15) ⟨P,Q⟩RW = ∫
S
Q(x)∗dW (x)P (x).

Both inner products are related by the formula

⟨P,Q⟩RW = (⟨P ∗,Q∗⟩W )∗ ,

so the theories that can be developed by choosing one or another inner product are com-
pletely analogous.

In this thesis we deal with three particular types of weights: weights with a differen-
tiable density with respect to the Lebesgue measure,

(1.16) dW (x) =W (x)dx, ⟨P,Q⟩W = ∫
S
P (x)W (x)Q(x)∗dx, W ∈ C∞(S),

discrete weight matrices

(1.17) W =
κ

∑
x=0

W (x)δx, ⟨P,Q⟩W =
κ

∑
x=0

P (x)W (x)Q(x)∗,
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where κ ∈ N, or, κ =∞, and q-weight matrices

(1.18) W =
∞
∑
x=0

qxW (qx)δqx , ⟨P,Q⟩W =
∞
∑
x=0

qxP (qx)W (qx)Q(qx)∗, 0 < q < 1.

Notice that in the previous expressions we have used W to refer both the weight matrix
and the function that defines it. However the context will make clear which one we are
dealing with.

From now on whenever there is no place for confusion we leave out the W in the inner
product and we will simply write ⟨P,Q⟩ to denote the inner product of P and Q (1.14).

We can now introduce the concept of matrix orthogonal polynomials.

Definition 1.2.3. A sequence of matrix polynomials (Pn)n ⊂ CN×N [x] is said to be a
sequence of matrix orthogonal polynomials with respect to W if it satisfies

1. For all n, Pn(x) is of degree n with non-singular leading coefficient, det(Pnn ) ≠ 0.

2. For all n, m ∈ N, ⟨Pn, Pm⟩ = Γnδn,m, where δn,m is the Kronecker delta and Γn ∈
CN×N is an Hermitian matrix.

For any weight matrix W one can always construct a family of orthogonal polynomials
with respect to it (see e.g. [19], [47] [92]). Such a sequence is unique up to multiplication
on the left by a sequence of non singular matrices. To see different computational methods
to construct such a sequence we refer the reader to [92].

If ⟨Pn, Pn⟩ = I for all n we say that (Pn)n is a sequence of orthonormal polynomials
with respect to W , and we say that it is a sequence of monic orthogonal polynomials if
Pnn = I, for all n ≥ 0, where Pnn is the leading coefficient of Pn.

Given a sequence of polynomials (Pn)n orthogonal with respect to a weight matrix
W , we can construct a sequence of orthonormal polynomials with respect to W . If Γn =
⟨Pn, Pn⟩ then, because of the properties of a weight matrix, Γn is a non-singular Hermitian
matrix and it can be factorized as Γn = GnG∗

n, where Gn is a non-singular matrix. The
sequence (G−1

n Pn)n is a sequence of orthonormal polynomials:

⟨G−1
n Pn,G

−1
m Pm⟩ = G−1

n Γn(G−1
n )∗δmn = G−1

n GnG
∗
n(G−1

n )∗δmn = Iδmn.

Notice that if (Pn) is a sequence of orthonormal polynomials then, for any sequence
of unitary matrices (Un)n the sequence (UnPn)n is also a sequence of orthonormal poly-
nomials with respect to W .

As in the scalar case the orthonormality of a sequence of polynomials is equivalent to
a three term recurrence relation.

Proposition 1.2.4. [26, 47] Let (Pn)n be a sequence of matrix polynomials with initial
conditions P−1 = 0 and P0 a non singular matrix, such that it satisfies the recurrence
relation

(1.19) xPn(x) = An+1Pn+1(x) +BnPn(x) +A∗
nPn−1(x), n = 0,1,2,⋯

where An ∈ CN×N , n ∈ N are non singular matrices and Bn ∈ CN×N , n ∈ N are Hermi-
tian matrices. Then, there exists a weight matrix W such that (Pn)n is the sequence of
orthonormal polynomials with respect to it.
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Conversely, for any sequence of orthonormal polynomials with respect to a weight ma-
trix, (Pn)n, there exist a sequence of Hermitian matrices, Bn ⊂ CN×N , n ∈ N, and a
sequence of non singular matrices, An ∈ CN×N , n ∈ N, such that (1.19) holds.

It is clear that if (Pn)n is a sequence of orthonormal polynomials with respect to W
then, any other sequence of orthogonal polynomials with respect to W , (P̃n)n = (GnPn)n
satisfies a three term recurrence relation of the form

xP̃n = ÃnP̃n+1 + B̃nP̃n + C̃nP̃n−1,(1.20)

where Ãn = GnAn+1(Gn+1)−1, B̃n = GnBn(Gn)−1 and C̃n = GnA∗
n(Gn−1)−1.

A recurrence relation of the form (1.20) can be seen as a matrix second order difference
operators acting on matrix functions of two variables. That is, if we set P (n,x) = P̃n(x),
A(n) = Ãn, B(n) = B̃n and C(n) = C̃n then, (1.20) can be written as Θ(P (n,x)) =
xP (n,x) where

(1.21) Θ(P (n,x)) = A(n)P (n + 1, x) +B(n)P (n,x) +C(n)P (n − 1, x).

By writing

P(x) =
⎛
⎜⎜⎜
⎝

P (0, x)
P (1, x)
P (2, x)

⋮

⎞
⎟⎟⎟
⎠

the operator Θ can be seen as a semi-infinite block Jacobi matrix,

Θ =
⎛
⎜⎜⎜
⎝

B0 A0

C1 B1 A1

C2 B2 A2

⋱ ⋱ ⋱

⎞
⎟⎟⎟
⎠
,

satisfying
ΘP(x) = xP(x).

When working with matrix polynomials a very important concept is that of similar
weights.

Definition 1.2.5. Two weight matrices, W1 and W2 are similar if there exists a non-
singular matrix T ∈ CN×N independent of x such that W1(x) = TW2(x)T ∗.

If (P 1
n)n is a sequence of matrix orthogonal polynomials with respect to W1 then,

(P 2
n)n = (P 1

nT )n is a sequence of matrix orthogonal polynomials with respect to W2.
We say that a weight matrix W reduces to lower sizes if it is similar to a block weight

matrix

W (x) = T (Z1(x) 0
0 Z2(x)

)T ∗.

As a particular case we say that a weight matrix W reduces to scalar weights if it is
similar to a diagonal weight matrix

W (x) = T
⎛
⎜⎜⎜
⎝

w1(x) 0 ⋯ 0
0 w2(x) ⋯

⋱ 0
0 0 ⋯ wN(x)

⎞
⎟⎟⎟
⎠
T ∗.
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Notice that if a weight matrix W reduces to scalar weights, and (Pn)n is a sequence
of orthogonal polynomials with respect to W , then the following formula holds, up to
multiplication by a sequence of non-singular matrices,

Pn(x)T =
⎛
⎜⎜⎜
⎝

p1
n(x)

p2
n(x)

⋱
pNn (x)

⎞
⎟⎟⎟
⎠
, n ≥ 0,

where (pin)n is a sequence of orthogonal polynomials with respect to the measure wi.
Therefore the study of weight matrices that reduce to scalar weights belong to the study
of scalar orthogonality more that to the matrix one.

In general it is not an easy task to see whether a weight matrix reduces to scalar
weights or not, however in the case when a weight matrix W is of the form (1.16), (1.17)
or (1.18), as a consequence of [75, Theorem 4.1.6 ] (see also [38]) the following proposition
gives a very useful criterion to check if we are dealing with weight matrices that reduce to
scalar weights or not.

Proposition 1.2.6. Assume that there exists a ∈ S such that W (a) = I, then W reduces
to scalar weights if and only if W (s)W (t) =W (t)W (s) for all s, t ∈S.

We will use that an analytic function f at x0, with convergent power series given by

f(x) =
∞
∑
i=0

ai(x − x0)i, ∣x − x0∣ < ε,

defines the following function over the matrices M with ρ(M − x0I) < ε (ρ(M) stands for
the spectral radius of a matrix M , 1.13):

f(M) =
∞
∑
i=0

ai(M − x0I)i.

For any two matrices X and Y , we use the standard notation

(1.22) ad0
X Y = Y, ad1

X Y = [X,Y ] =XY − Y X, adn+1
X Y = [X,adnX Y ].

For any matrix G ∈ CN×N , we denote by GR and GL the operators right and left
multiplication, i.e. for all F ∈ CN×N

(1.23) Gr(F ) = FG, Gl(F ) = GF.

We will also use the following formula [91, Lemma 5.3, page 160]: if X and Y are
N ×N matrices we have

(1.24) e−XY eX =
∞
∑
k=0

(−1)k

k!
adkX Y.

We denote by A and J the nilpotent and diagonal matrices, respectively, defined by

(1.25) A =
N−1

∑
i=1

viEi,i+1, J =
N

∑
i=1

N − iEi,i,

where v1, v2,⋯, vN−1 ∈ C.
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1.3 Matrix Operators

The classical orthogonal polynomials are families of orthogonal polynomials characterized
for being eigenfunctions of a second order differential operator of the form

(1.26) D(⋅) = σ(x) d
2

dx2
(⋅) + τ(x) d

dx
(⋅), σ(x), τ(x) ∈ C[x], dgr(σ) ≤ 2, dgr(τ) = 1.

This property is equivalent to a bunch of interesting characterizing properties (see, for
instance [16]). For instance a sequence of classical orthogonal polynomials (pn)n with
respect to a weight ρ(x) can be expressed in terms of a Rodrigues formula

pn = Bn
dn

dxn
(σ(x)nρ(x))ρ(x)−1.

Also the weight satisfies a Person equation

d

dx
(σ(x)ρ(x)) = τ(x)ρ(x),

and the sequence of their derivatives (p′n)n is again a sequence of classical orthogonal
polynomials with respect to σ(x)ρ(x).

One can consider different discretizations of the operator (1.26) by replacing the deriva-
tive by certain approximations on a lattice.

Definition 1.3.1. [93] A lattice is a complex function x ∈ C2(Ω) where Ω is a complex
domain, N0 ⊆ Ω, and x(s), s = 0,1,⋯ are the points where we discretize (1.26).

By considering the uniform lattice x(s) = s the operator (1.26) becomes

(1.27) D(⋅) = σ̄(x)∆∇(⋅) + τ̄(x)∆(⋅), σ̄, τ̄ ∈ C[x], dgr(σ̄) ≤ 2, dgr(τ̄) = 1,

where ∆(p(x)) = p(x+1)−p(x) and ∇(p(x)) = p(x)−p(x−1) are the forward and backward
difference operators respectively. The families of orthogonal polynomials being eigenfunc-
tions of such a second order difference operator are called classical discrete orthogonal
polynomials. Like it happened in the continuous case, there are several properties that
characterize them, such as a Rodrigues formula

(1.28) pn = Bn∇n ([
n

∏
m=1

σ(x +m)]ρ(x + n)) ,

a Pearson equation,

∆(σ̄(x)ρ(x)) = τ̄(x)ρ(x),

and that the sequence of their difference polynomials (∇pn)n is a sequence of classical
discrete orthogonal polynomials with respect to σ̄(x)ρ(x).

If instead of the uniform lattice x(s) = s we consider a non uniform lattice of the form
x(s) = qs, for 0 < q < 1, the operator (1.26) becomes, after some linear manipulations

(1.29) D(⋅) = σ̃(x)DqDq−1(⋅) + τ̃(x)Dq(⋅), σ̃, τ̃ ∈ C[x], dgr(σ̃) ≤ 2, dgr(τ̃) = 1,
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where

(1.30) Dq(p(x)) =
p(qx) − p(x)

(q − 1)x

is the q-derivative. The orthogonal polynomials satisfying such a q-difference equation are
called q-classical polynomials (see [18], [90], [93]). One can also see that these orthogo-
nal polynomials are characterized by different properties, for instance the q-weight ρ(qx)
satisfies a Pearson equation

Dq(σ̃(qx)ρ(qx)) = τ̃(qx)ρ(qx),

the q-classical polynomials satisfy a Rodrigues formula

pn(qx) = BnDn
q−1 (ρ(q

x+n)
n

∏
k=1

σ̃(qx+k)) ,

and the sequence (Dqpn(qx))n is a sequence of orthogonal polynomials with respect to
σ(qx+1)ρ(qx+1) In fact the q-classical polynomials are a wider class to that presented
above, but for the purpose of this thesis we will just consider this subclass of q-classical
polynomials, that used to be called q-classical polynomials of the Hahn class.

The aim of this section is to introduce some basic definition and facts needed to
go through the study of matrix orthogonal polynomials being eigenfunctions of matrix
analogues of the previous operators.

Due to the non-commutativity of the matrix product and the existence of singular ma-
trices several considerations have to be done in the study of matrix operators. For instance
the order in which the coefficients and eigenvalues multiply in the operator equation has
to be carefully chosen ([28]). We also miss in general the equivalence of the properties sat-
isfied by the scalar classical, discrete classical and q-classical polynomials (see for instance
[12], [39], [46], [57]).

But if the non-commutativity and the existence of singular matrices bring a higher
complexity to this theory, such a complexity also implies new interesting features appearing
in the theory of matrix polynomials which are absent in the well known scalar theory of
classical, classical discrete or q-classical polynomials. One of these phenomena is that
the elements of a family of orthogonal matrix polynomials can be eigenfunctions of several
linearly independent (second order differential or difference) operators ([14], [30], [35], [72],
[94]). As a dual situation we can also find (differential) operators having several families
of orthogonal polynomials as eigenfunctions ([36]). We will study this fact for difference
operators in Chapter 2 below.

Before starting, we need to establish the sort of matrix operators we will consider.
Let D ∶ CN×N [x] → CN×N [x] be a matrix operator taking matrix polynomials into

matrix polynomials. As a matrix analogue of the situations discussed above we are going
to focus the study in those matrix operators such that

D(Pn(x)) = ΛnPn(x), Λn ∈ CN×N ,

for some family of matrix orthogonal polynomials (Pn)n. To do so we need to introduce
the key concept of a symmetric operator with respect to a weight matrix.
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Definition 1.3.2. Let D ∶ CN×N [x] → CN×N [x] be a matrix operator taking matrix poly-
nomials into matrix polynomails. We say that D is symmetric with respect to a weight
matrix W if it satisfies

(1.31) ⟨D(P ),Q⟩ = ∫ D(P )dWQ∗ = ∫ PdWD(Q)∗ = ⟨P,D(Q)⟩.

The following lemma establishes the relation between symmetric operators and matrix
operators having matrix orthogonal polynomials as eigenfunctions.

Lemma 1.3.3. [28] Let W be a weight matrix and (Pn)n a sequence of orthonormal
polynomials with respect to W . Let D be a matrix operator satisfying that for all polynomial
P , D(P ) is a polynomial with degree at most the degree of P . Then, D is symmetric
with respect to W if and only if D(Pn) = ΛnPn for certain sequence (Λn)n of Hermitian
matrices.

In this thesis we deal with three types of matrix operators

1. Matrix differential operators

(1.32) D(P (x)) =
k0

∑
k=0

dk

dxk
(P (x))Fk(x), Fk(x) ∈ CN×N [x].

2. Matrix difference operators:

(1.33) D(P (x)) =
r

∑
k=s

sk(P (x))Fk(x), sk(P (x)) = P (x + k), Fk(x) ∈ CN×N [x].

3. Matrix q-difference operators, for 0 < q < 1:

(1.34) D(P (x)) =
r

∑
k=s

Ek(P (x))Fk(x), Ek(P (x)) = P (qkx), Fk(x) ∈ CN×N [x−1].

Notice that all these three types of matrix operators have matrix coefficients multiply-
ing on the right, whereas the eigenvalues appearing in Lemma (1.3.3) are multiplying on
the left. There are several reasons why we focus on these kinds of matrix operators (see
[28], [38]).

Notice that if (Pn)n is a sequence of orthogonal polynomials then, for any sequence
of non-singular matrices (Λn)n, the sequence (ΛnPn)n is also a sequence of orthogonal
polynomials, but in general (PnΛn)n is not a sequence of orthogonal polynomials. This is
the reason why we multiply the eigenvalues on the left.

The reason for the order of multiplication of the coefficients in the case of continuous
weights and second order differential operators is explained in [28, Theorem 3.2 ], a result
that can be easily generalized for the case of difference and q-difference operators:

Theorem 1.3.4. The following conditions are equivalent:

(i) W is a continuous matrix weight (resp. discrete weight, q-weight) with a left-hand
side second order differential operator (resp. matrix difference, q-difference operator)
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(ii) A non-singular matrix S exists for which W = S∗WdS where Wd = ρI, with ρ a
classical scalar weight (resp. classical discrete weight, q-classical weight).

In the following sections we investigate those matrix operators of the form (1.32),
(1.33), (1.34) not raising the degree of matrix polynomials and being symmetric with
respect to some weight.

1.3.1 Matrix differential operators

In this section we study matrix-valued differential operators having a sequence of or-
thogonal polynomials as eigenfunctions. Such differential operators are related with a
discrete-continuous non-commutative bispectral problem (for more information on bispec-
tral problem we refer to [24], and to [69] for the non-commutative version). Recall that
the orthogonality of a sequence is equivalent to a second order difference operator given
by the three term recurrence relation (1.21). Then, if (Pn)n is a sequence of orthogo-
nal polynomials being eigenfunctions of a differential operator D, then they are common
eigenfunctions of two operators

D(Pn) =
k0

∑
k=0

dk

dxk
(Pn(x))Fk(x) = ΛnPn(x),

ΘPn(x) = AnPn+1(x) +BnPn(x) +CnPn−1(x) = xPn(x).

If D is a differential operator with a sequence of orthogonal polynomials as eigenfunc-
tions, then D is of the form [72]

D(⋅) =
k0

∑
k=0

dk

dxk
(⋅)Fk(x), Fk(x) ∈ CN×Nk [x].

The non-commutativity of the product of matrices entail the existence of sequences
of matrix orthogonal polynomials being eigenfunctions of several independent matrix dif-
ferential operator as one can see, for instance, in [14], what brings into the picture the
concept of algebra of operators associated to a weight matrix.

Let W be a weight matrix and (Pn)n a sequence of orthogonal polynomials with respect
to it. We define the set D(W ) as

(1.35) D(W ) = {D =
k0

∑
k=0

dk

dxk
(⋅)Fk(x) ∣ D(Pn) = ΛnPn, Fk ∈ CN×Nk [x], k0 ∈ N} .

Notice that if (Qn)n is another sequence of orthogonal polynomials with respect to W
then, there exists a sequence of non singular matrices (Mn)n such that Qn =MnPn and if
D ∈D(W ) we have

D(Qn) =D(MnPn) =MnD(Pn) =MnΛnM
−1
n Qn,

so the definition of the algebra D(W ) does not depend on the sequence chosen, but only
on the weight matrix.

It is worth observing that D(W ) is a subalgebra of the Weyl algebra

D(W ) = {D =
k0

∑
k=0

dk

dxk
(⋅)Fk(x) ∣Fk ∈ CN×N [x], k0 ∈ N} .
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Given a weight matrixW , and a sequence of orthogonal polynomials (Pn)n with respect
toW , a differential operatorD ∈D(W ) is determined by the sequence of eigenvalues (Λn)n.

Proposition 1.3.5. [72] Given a sequence (Pn)n of orthogonal polynomials with respect
to W , let us consider the algebra D(W ) defined in (1.35). Let Λ(D,n) = Λn(D) be the
eigenvalue associated to Qn. Then, D ↦ Λ(D,n) is a representation of D(W ) into CN×N .
Moreover the sequence (Λn)n separates elements of D(W ).

For D ∈ D(W ), D =
k0

∑
k=0

dk

dxk
Fk(x), with Fk =

k

∑
j=0

F jkx
j . The eigenvalues Λn associated

to the monic orthogonal polynomials (Pn)n form a sequence of polynomials in n of degree
at most the order of D, given by

(1.36) Λn =
k0

∑
k=0

(n
k
)k!F kk .

One can define a ∗-operation in the algebra of differential operators associated to a
weight matrix via the adjoint of operators.

Theorem 1.3.6. [72] For any D ∈D(W ) there exists a unique differential operator D∗ ∈
D(W ) such that ⟨D(P ),Q⟩ = ⟨P,D∗(Q)⟩, for all P, Q ∈ CN×N [x]. We shall refer to D∗

as the adjoint of D. The map D ↦ D∗ is a ∗-operation, and the orders of D and D∗

coincide.

By Lemma 1.3.3 it is clear that symmetric differential operators not raising the degree
of polynomials are always in D(W ). If we denote by S(W ) ⊂ D(W ) the subset of sym-
metric differential operators, we have that S(W ) is a real form of the space D(W ) (see
[72]),

D(W ) = S(W )⊕ iS(W ).

In the rest of the section we focus on second order matrix differential operators

(1.37) D(⋅) = d2

dx2
(⋅)F2(x) +

d

dx
(⋅)F1(x) + (⋅)F0

The following theorem establishes criteria to assure the symmetry of a differential operator
D of degree 2 with respect to a weight matrix having a differentiable density with respect
to the Lebesgue measure dW =W (x)dx.

Theorem 1.3.7. [38] Let D be a second order matrix differential operator of the form
(1.37) and W a weight matrix with a differentiable density with respect to the Lebesgue
measure dW =W (x)dx and supported on an interval I = (a, b) of the real line I ⊆ R (a and
b finite or infinite). If for all x ∈ I, the coefficients of D and W (x) satisfy the symmetry
equations

F2(x)W (x) =W (x)F2(x)∗

2 (F2(x)W (x))′ = F1(x)W (x) +W (x)F1(x)∗

(F2(x)W (x))′′ − (F1(x)W (x))′ + F0W (x) =W (x)F ∗
0 ,
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and the boundary conditions

lim
x→{a,b}

xnF2(x)W (x) = 0, lim
x→{a,b}

xn ((F2(x)W (x))′ − F1(x)W (x)) = 0, for all n ∈ N,

then, D is symmetric with respect to W .

The symmetry of a differential operator D, with respect to a weight matrix W , is also
equivalent to a set of identities involving the moments of W and the coefficients of D.

Theorem 1.3.8. [38] Let D be a second order matrix differential operator of the form
(1.37) and W a weight matrix. Let us denote by µn = ∫ xndW (x) the moments associated
to W , and we write

Fk(x) =
k

∑
i=0

F ikx
i, F ik ∈ C

N×N , k = 0,1,2.

for the coefficients of the differential operator (1.37). Then, the following properties are
equivalent,

(i) D is symmetric with respect to W .

(ii) For n = 2,3,⋯,

F 2
2 µn + F 1

2 µn−1 + F 0
2 µn−2 = µn (F 2

2 )
∗ + µn−1 (F 1

2 )
∗ + µn−2 (F 0

2 )
∗
.

For n = 1,2,⋯,

2(1 − n) (F 2
2 µn + F 1

2 µn−1 + F 0
2 µn−2) = F 1

1 µn + F 0
1 µn−1 + µn (F 1

1 )
∗ + µn−1 (F 0

1 )
∗
.

And for n = 0,1,⋯,

n(1 − n) (F 2
2 µn + F 1

2 µn−1 + F 0
2 µn−2) − n (F 1

1 µn + F 0
1 µn−1) + F 0

0 µn = µn (F 0
0 )

∗
.

As we have already mentioned, in the matrix case we lose some of the equivalences
among those properties that characterize the classical orthogonal polynomials. In general,
for a family of matrix orthogonal polynomials (Pn)n that are eigenfunctions of a second
order differential operator like (1.37), it is not true that the sequence formed by its deriva-
tives, (P ′

n)n, is a sequence of orthogonal polynomials with respect to some weight matrix.
In [12] the authors established criteria to assure the orthogonality of (P ′

n)n.

Theorem 1.3.9. [12] Let W be a weight matrix supported in the interval I = (a, b) ⊆ R,
and (Pn)n the sequence of monic orthogonal polynomials with respect to W . Then, the
following are equivalent,

(i) There exists two matrix polynomials Φ, Ψ with dgr(Φ) ≤ 2, dgr(Ψ) ≤ 1 satisfying
det(Φ(x)W (x)) ≠ 0 in I and such that

Φ(x)W (x) =W (x)Φ(x)∗,
d

dx
(Φ(x)W (x)) = Ψ(x)W (x), for all x ∈ I,

lim
x→{a,b}

Φ(x)W (x) = lim
x→{a,b}

Ψ(x)W (x) = 0.(1.38)

(ii) The sequence ( 1
nP

′
n)n is a sequence of monic orthogonal polynomials.

Moreover the sequence (P ′
n)n is orthogonal with respect to Φ(x)W (x).
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The matrix-valued hypergeometric equation

For some particular cases of second order matrix differential operators, the polynomial
eigenfunctions can be described in terms of matrix-valued hypergeometric functions. We
present here two matrix-valued hypergeometric functions introduced by Tirao in [98].
These matrix-valued functions characterize, under certain restrictions on the coefficients,
the vector-valued polynomial solutions around x = 0 of the matrix equation

x(1 − x)P ′′(x) + P ′(x)F1(x) + P (x)F0 = ΛP (x).

To do so we first make clear some notation that will be used.
Assume that A,B,C ∈ CN×N with σ(C) ∩ {0,−1,−2,⋯} = ∅. For m ∈ N we write

(A,B,C)m for the matrix function

(A,B,C)0 = I,
(A,B,C)m+1 = (A,B,C)m (B +mI)(A +mI)(C +mI)−1,

and [A,B,C]m for the matrix function

[A,B,C]0 = I,
[A,B,C]m+1 = [A,B,C]m (m2I +m(A − I) +B) (C +mI)−1 .

Definition 1.3.10. Let A,B,C ∈ CN×N such that σ(C) ∩ {0,−1,−2,⋯} = ∅, we define

(1.39) 2F1[
A,B

C
; z] =

∞
∑
n=0

zn

n!
(A,B,C)n .

Definition 1.3.11. Let C,U,V ∈ CN×N such that σ(C) ∩ {0,−1,−2,⋯} = ∅, we define

(1.40) 2H1[
U,V

C
; z] =

∞
∑
n=0

zn

n!
[U,V,C]n .

The following theorem characterizes the vector-valued analytic solutions of certain
second order matrix differential equations.

Theorem 1.3.12. [98] If σ(C) ∩ {0,−1,−2,⋯} = ∅ then,

1. The function 2H1[U,VC ;x] is analytic on ∣x∣ < 1 with values in CN×N .

2. If G0 ∈ CN , then 2H1[U,VC ;x]G0 is a solution of the hypergeometric equation

(1.41) x(1 − x)G
′′
+G

′
(C − xU) −GV = 0

such that G(0) = G0. Conversely any solution G at x = 0 is of this form.

In the particular case when there exist matrices A and B such that U = I +A+B and
V = AB, equation (1.41) can be solved by means of the matrix-hypergeometric function
(1.39).
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Theorem 1.3.13. [98] If σ(C) ∩ {0,−1,−2,⋯} = ∅ then,

1. The function 2F1[A,BC ;x] is analytic on ∣x∣ < 1 with values in CN×N .

2. If G0 ∈ CN , then 2F1[A,BC ;x]G0 is a solution of the hypergeometric equation

x(1 − x)G
′′
+G

′
(C − x(I +A +B)) −GAB = 0

such that G(0) = G0. Conversely any solution G at x = 0 is of this form.

Observation 1.3.14. In general and because of the different order in which the coefficients
and the eigenvalues are multiplied, the matrix equation

x(1 − x)P ′′
n (x) + P ′

n(x)F1(x) + Pn(x)F0 = ΛnPn(x)

does not fit in the form of the previous ones. However, for a differential operator D such
that there exists a family of orthogonal polynomials (Pn)n with DPn = ΛnPn and Λn is
a diagonal matrix for all n ≥ 0, then we can rewrite the previous equation as a set of N
differential equations for the rows of the matrix orthogonal polynomials Pn,i, and these
equations are of the form (1.41),

x(1 − x)P ′′
n,i(x) + P ′

n,i(x)(F1(x) − λiI) + Pn,i(x)F0 = 0.

Notice that, because of Lemma 1.3.3, for a symmetric differential operator D with respect
to a weight matrix W we can always find a sequence of orthogonal polynomials (Pn)n such
that D(Pn) = ΛnPn, and Λn are diagonal matrices.

1.3.2 Matrix difference operators

A finite difference operator can be expanded in terms of several basis. We can use powers
of the difference operators ∆ and ∇ defined by

∆(f(x)) = f(x + 1) − f(x), ∇(f(x)) = f(x) − f(x − 1).

Cross powers ∆i∇j are not needed since they are linear combinations of powers of ∆ and
∇ (it is an easy consequence of the formula ∆∇ = ∆ − ∇). We can also use the shift
operators, sl(F )(x) = F (x + l) with l ∈ Z. We can change from the basis ∆k,∇k, k ≥ 0, to
the basis sl, by using the formulas (k ≥ 0)

∆k =
k

∑
l=0

(−1)k−l(k
l
)sl, ∇k =

k

∑
l=0

(−1)l(k
l
)s−l,

sk =
k

∑
l=0

(k
l
)∆l, s−k =

k

∑
l=0

(−1)l(k
l
)∇l.

Since s−1 ○ s1 is the identity operator, all the shift operators are powers (positive or
negative) of s1. We will mostly use the shift operators sl, l ∈ Z (see (1.33)) to define
matrix difference operators, and eventually we will change to the ∆ and ∇ operators.

Taking into account Lemma 1.3.3, if a weight matrix W has a symmetric second order
difference operator D such that for any polynomial P , D(P ) is a polynomial with degree
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at most the degree of P , then their orthonormal polynomials (Pn)n (and then, any other
sequence of orthogonal polynomials with respect to W ) satisfy a second order difference
equations of the form

(1.42) Pn(x + 1)F1(x) + Pn(x)F0(x) + Pn(x − 1)F−1(x) = ΛnPn(x).

The following lemma (Lemma 3.2 of [35]) characterizes the coefficients of finite differ-
ence operators, D such that for every polynomial P , D(P ) is a polynomial with degree at
most the degree of P .

Lemma 1.3.15. [35] Let D be a finite difference operator

(1.43) D(⋅) =
r

∑
l=s
sl(⋅)Fl.

The following conditions are equivalent

(i) For any matrix polynomial P , D(P ) is also a polynomial with degree at most the
degree of P .

(ii) The functions Fl, l = s,⋯, r, are polynomials of degree at most r − s and

dgr(
r

∑
l=s
lkFl) ≤ k for k = 0,⋯, r − s.

Proceeding as we did for matrix differential operators with orthogonal polynomials
as eigenfunctions, one can relate matrix orthogonal polynomials being eigenfunctions of
difference operators with a discrete-discrete non-commutative bispectral problem.

In the discrete case one also finds families of orthogonal polynomials being eigenfunc-
tions of various independent difference operator. Given a weight matrix W and a sequence
of orthogonal polynomials with respect to it (Pn)n, we define the algebra D(W ) by

(1.44) D(W ) = {D =
r

∑
k=s

skFk(x) ∣D(Pn) = ΛnPn, s < r, n ≥ 0} .

Although we use the same notation for the algebra of difference operators and differential
operators, the context will make clear which we are dealing with. Because of the left
linearity of such a difference operator, it is clear that the definition does not depend on
the sequence of matrix orthogonal polynomials but only on the weight. We say that a
difference operator D of the form (1.43) with Fs, Fr ≠ 0 has order r − s and genre (r, s).

Fixed a sequence of orthogonal polynomials with respect to a weight matrix W , each
difference operator in D is determined by the sequence of eigenvalues (Λn(D))n.

Theorem 1.3.16. [35] Let D be a difference operator in D(W ) with D(Pn) = Λn(D)Pn.
Then, D is determined by the sequence (Λn(D))n. Set Λ(D,n) = Λn(D), for each n ≥ 0,
the application D → Λ(D,n) is a representation of D(W ) in CN×N and the sequence of
representation (Λn)n separates elements of D(W ).

If D ∈D(W ), then the n-th eigenvalue associated to the sequence of monic orthogonal
polynomials (Pn)n is a matrix polynomial in n with degree at most the order of D.
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Theorem 1.3.17. [35] Let D =
r

∑
l=s
slFl a difference operator such that D(Pn) = ΛnPn,

where (Pn)n is the sequence of monic orthogonal polynomials with respect to W . If Fl =
r−s
∑
i=0

F il x
i, then

Λn =
r−s
∑
k=0

(n
k
)

r

∑
l=s
lkF kl .

Hence the matrix Λn is a polynomial in n of degree at most the order r − s of D.

The algebra of difference operators associated to a weight matrix W can be endowed
with a ∗-operation.

Theorem 1.3.18. [35] For any D ∈ D(W ) there is a unique difference operator D∗ ∈
D(W ) such that ⟨D(P ),Q⟩ = ⟨P,D∗(Q)⟩. We shall refer to D∗ as the adjoint of D. The
map D ↦ D∗ is then a ∗-operation in the algebra D(W ). If the operator D has genre
(s, r) then, D∗ has genre (−r,−s).

By Lemma 1.3.3 it is clear that symmetric operators D not raising the degree of
polynomials are always in D(W ) and can be characterized in terms of its eigenvalues with
respect to a sequence of orthonormal polynomials. If we denote by S(W ) ⊂ D(W ) the
subset of symmetric difference operator, then S(W ) is a real form of the space D(W ),
[35],

D(W ) = S(W )⊕ iS(W ).
From theorem 1.3.18 it follows that a finite order difference operator D (1.43) sym-

metric with respect to a weight matrix and the degree of D(P ) is at most the degree of
P for all matrix polynomials P has genre (−r, r) and order 2r. The symmetry of a finite
order difference operator satisfying this condition with respect to a discrete weight matrix
W can be guaranteed by a finite set of commuting and difference equations together with
certain boundary conditions. In fact, the following theorem holds:

Theorem 1.3.19. [35] For r ≥ 0, let D be the finite difference operator

(1.45) D(⋅) =
r

∑
l=−r

sl(⋅)Fl(x),

where Fl(x), l = −r,⋯, r are matrix polynomials. Let W be the discrete weight matrix with
support S, given by

(1.46) W = ∑
x∈S

W (x)δx.

Suppose that the coefficients Fl and the weight matrix W satisfy the following equations

(1.47) Fl(x − l)W (x − l) =W (x)F ∗
−l(x), for x ∈ (l +S) ∩S, and l = 0,1,⋯, r,

and the boundary conditions

Fl(x − l)W (x − l) = 0, for x ∈ (l +S)/S, and l = 1,⋯, r,(1.48)

W (x)F ∗
−l(x) = 0, for x ∈S/(l +S), and l = 1,⋯, r.(1.49)

Then, the difference operator (1.45) is symmetric with respect to W .
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1.3.3 Matrix q-difference operators

In the whole thesis, q denotes a real number with 0 < q < 1. A q-difference operator can
be expressed in terms of q-differential basic operators (q-derivatives)

Dq(f(x)) =
f(x) − f(qx)

(1 − q)x
, Dq−1(f(x)) =

f(x) − f(q−1x)
(1 − q−1)x

or in terms of q-shift operators El(f(x)) = f(qlx). For a matter of simplicity in the
result exhibited here and in the foregoing chapters, we chose to study matrix q-difference
operators expressed in terms of q-shift operators. In particular, and because of Lemma
1.3.3 we focus our attention in those q-difference operators taking matrix polynomials into
matrix polynomials and not raising the degree, i.e

D ∶ CN×Nk [x]→ CN×Nk [x].

Then, we have to consider q-difference operators of the form

D(⋅) =
r

∑
l=s

El(⋅)Fl(x), Fl(x) ∈ CN×N [x−1],

where Fl(x) satisfy some degree conditions, as it is shown in the following theorem, that
is a straightforward adaptation of Theorem 3.2 [35]

Theorem 1.3.20. Let

D =
r

∑
l=s

El(⋅)Fl(x),(1.50)

with r, s integers such that s ≤ r. The following conditions are equivalent:

(i) D ∶ CN×Nk [x]→ CN×Nk [x] for all k ≥ 0.

(ii) Fl(x) ∈ CN×Nr−s [x−1] for l = s, . . . , r and ∑rl=s qlkFl(x) ∈ CN×Nk [x−1] for k = 0, . . . , r − s.

We say that a q-difference operator of the form (1.50) has order r − s and genre r, s).
It happens that if a q-difference operator is symmetric with respect to a weight matrix,
then s = −r. The following theorem establishes the symmetry equations and boundary
condition that assure the symmetry of a q-difference operator with order 2r and genre
(r,−r), with respect to a q-weight.

Theorem 1.3.21. For r ≥ 0, let D be the q-difference operator

(1.51) D =
r

∑
l=−r

El(⋅)Fl(x)

where Fl(x) are matrix polynomials in x−1. Let W be a q-weight given by

W =
∞
∑
x=0

W (qx)δqx .
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Suppose that the coefficients Fl and the q-weight matrix W satisfy the following equations

F0(qx)W (qx) =W (qx)F0(qx)∗, x ∈ N,(1.52)

Fl(qx−l)W (qx−l) = qlW (qx)F−l(qx)∗, x ≥ l(1.53)

and the boundary conditions

F−l(qx)W (qx) = 0, forx = 0,⋯, l − 1, and l = 1,⋯, r(1.54)

lim
x→∞

q2xFl(qx)W (qx)→ 0, for l = 1,⋯, r

lim
x→∞

qx (Fl(qx)W (qx) −W (qx)Fl(qx)∗)→ 0, for l = 1,⋯, r.

Then, the q-difference operator D is symmetric with respect to W .

Proof. Let D be a q-difference operator of the form (1.51) and W a q-weight such that
the symmetry equations (1.52) and (1.53) as well as the boundary conditions (1.54) hold.
For M large enough (much bigger that r) we consider the truncated inner product

⟨P,Q⟩M =
M

∑
x=0

qxP (qx)W (qx)Q(qx)∗.

It is clear that for any two matrix polynomials P, Q ∈ CN×N [x]

lim
M→∞

⟨P,Q⟩M = ⟨P,Q⟩.

We are going to prove that

⟨D(P ),Q⟩M = ⟨P,D(Q)⟩M +Θ(M,x)

where Θ(M,x) is a matrix function such that limM→∞ Θ(M,x) = 0.
Let P, Q ∈ CN×N [x]. Then,

⟨D(P ),Q⟩M =
M

∑
x=0

r

∑
k=−r

P (qk+x)Fk(qx)W (qx)Q(qx)∗qx
(1.55)

=
M

∑
x=0

r

∑
k=1

P (qx−k)F−k(qx)W (qx)Q(qx)∗qx +
M

∑
x=0

P (qx)F0(qx)W (qx)Q(qx)∗qx

+
M

∑
x=0

r

∑
k=1

P (qk+x)Fk(qx)W (qx)Q(qx)∗qx.

Taking into account the symmetry equation (1.53) we can write the first factor on the
previous sum as

r

∑
k=1

M

∑
x=0

P (qx−k)F−k(qx)W (qx)Q(qx)∗qx =
r

∑
k=1

M

∑
x=0

P (qx−k)qkF−k(qx)W (qx)Q(qx)∗qx−k

=
r

∑
k=1

M

∑
x=k

P (qx−k)W (qx−k)Fk(qx−k)∗Q(qx)∗qx−k

+
r

∑
k=1

k−1

∑
x=0

P (qx−k)F−k(qx)W (qx)Q(qx)∗qx.
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By the first boundary condition
k−1

∑
x=0

P (qx−k)F−k(qx)W (qx)Q(qx)∗qx = 0 for k = 1,⋯, r,

then, we get

r

∑
k=1

M

∑
x=0

P (qx−k)F−k(qx)W (qx)Q(qx)∗qx =
r

∑
k=1

M

∑
x=0

P (qx)W (qx)Fk(qx)∗Q(qx+k)∗qx
(1.56)

−
r

∑
k=1

M

∑
x=M−k+1

P (qx)W (qx)Fk(qx)∗Q(qx+k)∗qx

By proceeding as above we obtain the following identity concerning the third factor in
(1.55)

M

∑
x=0

r

∑
k=1

P (qk+x)Fk(qx)W (qx)Q(qx)∗qx =
r

∑
k=1

M

∑
x=0

P (qx)W (qx)F−k(qx)∗Q(qx−k)qx
(1.57)

+
r

∑
k=1

M

∑
x=M−k+1

P (qx+k)Fk(qx)W (qx)Q(qx)qx.

For the remaining factor in (1.55),
M

∑
x=0

P (qx)F0(qx)W (qx)Q(qx)∗qx it suffices to use

symmetry equation (1.52) to get

(1.58)
M

∑
x=0

P (qx)F0(qx)W (qx)Q(qx)∗qx =
M

∑
x=0

P (qx)W (qx)F0(qx)∗Q(qx)∗qx.

Taking into account (1.56), (1.57) and (1.58) we can write (1.55) as

⟨D(P ),Q⟩M =
M

∑
x=0

r

∑
k=−r

P (qx)W (qx)Fk(qx)∗Q(qx+k)∗qx +Θ(M,x)(1.59)

= ⟨P,D(Q)⟩M +Θ(M,x).

where
(1.60)

Θ(M,x) =
r

∑
k=1

(
M

∑
x=M−k+1

P (qx+k)Fk(qx)W (qx)Q(qx)qx −
M

∑
x=M−k+1

P (qx)W (qx)Fk(qx)∗Q(qx+k)∗qx−k) .

By taking limits in (1.59) we get

⟨D(P ),Q⟩ = ⟨P,D(Q)⟩ + lim
M→∞

Θ(M,x)

Then, it just remains to see that Θ(M,x) → 0 when M →∞ to obtain the desired result.
To see this write P (x) = P0 + xP̄ (x) and Q = Q0 + xQ̄(x). Then, by expanding the
expression in (1.60) and taking into account the second and third boundary conditions
(1.54) we obtain

lim
M→∞

Θ(M,x) = 0

and then, we can conclude that ⟨D(P ),Q⟩ = ⟨P,D(Q)⟩ for all P, Q ∈ CN×N [x].





Chapter 2

Matrix polynomials satisfying
difference equations

Recall that the discrete classical orthogonal polynomials are those families of orthogonal
polynomials satisfying a second order difference equation of the form

σ(x)∆∇p(x) + τ(x)∆p(x) = λp(x), σ, τ ∈ C[x], dgr(σ) ≤ 2, dgr(τ) = 1.

This difference equation can also be written in terms of shift operators

(2.1) f−1(x)s−1p(x) + f0(x)s0p(x) + f1(x)s1p(x) = λp(x),

where f1 = σ + τ , f0 = −2σ − τ , f−1 = σ.

The discrete classical orthogonal polynomials can be classified in four big families as
one can see, for instance, in [62], [77], [83], [93]. These families are

1. Charlier polynomials. For a > 0,

(2.2) can(x) = 2F0(
−n,−x
−

∣ − 1

a
) =

n

∑
k=0

(−1)ka−k(n
k
)(x
k
)k!.

They satisfy the orthogonality relation

∞
∑
x=0

ax

x!
can(x)cam(x) = a−nean!δmn.

2. Meixner polynomials. For c > 0, 0 < a < 1,

mc,a
n (x) = 2F1(

−n − x
c

∣1 − 1

mu
).

They satisfy the orthogonality relation

∞
∑
x=0

axΓ(x + c)
Γ(c)x!

mc,a
n (x)mc,a

r (x) = a−nn!

(c)n(1 − a)c
δnr.

23
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3. Krawtchouk polynomials. For κ ∈ N and 0 < p < 1, the Krawchuck polynomials
are defined by

kn(x) = 2F1(
−n,−x
−κ

∣ 1

p
).

They satisfy the orthogonality relation

κ

∑
x=0

(κ − x + 1)xpx(1 − p)κ−x

x!
kn(x)km(x) = (−1)nn!

(−κ)n
(1 − p

p
)
n

δnm.

4. Hahn polynomials. For κ ∈ N, a > −1 and b > −1 the Hahn polynomials are defined
by

hn(x) = 3F2(
−n,−n + a + b + 1,−x

a + 1,−κ
∣1).

They satisfy the orthogonality relation

κ

∑
x=0

(a + 1)x(b + 1)κ−x
x!(κ − x)!

hn(x)hm(x) = (−1)n(n + a + b + 1)κ+1(b + 1)nn!

(2n + a + b + 1)(a + 1)n(−κ)n(κ)!
δnm.

For more details on the classical discrete orthogonal polynomials and some interesting
relations among them we refer to [93], [76], [77].

We consider the following matrix analogue to (2.1)

(2.3) s−1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x),

where Fi are matrix polynomials satisfying the conditions given in Lemma 1.3.15 that, in
this particular case, take the form

dgr(Fi) ≤ 2, dgr(F1 − F−1) ≤ 1, dgr(F−1 + F0 + F1) = 0.

These conditions imply that the degree of D(P ) is, at most, the degree of P. The symmetry
equations (1.47) for such a difference equations are

F1(x − 1)W (x − 1) =W (x)F ∗
−1(x), for x = 1,2,⋯, κ,(2.4)

F0(x)W (x) =W (x)F ∗
0 (x), for x = 0,1,⋯, κ.(2.5)

and the boundary conditions (1.48) are given by

W (0)F ∗
−1(0) = 0,(2.6)

F1(κ)W (κ) = 0, if κ is a positive integer.(2.7)

In this chapter we present a method to solve the symmetry equations (2.4). Using this
method we will construct explicit examples of matrix difference operators and discrete
weights satisfying both (2.4) and (2.5) as well as the boundary conditions (2.6), (2.7).
That is, we construct pairs of difference operators and discrete weights (D,W) such that
D is symmetric with respect to W .

Along the rest of this chapter, W is a discrete weight matrix

W =
κ

∑
x=0

W (x)δx, κ ∈ Norκ =∞,

and D is a difference operator of the form (2.3)
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2.1 A method for solving the difference equations for the
weight matrix

We now describe a method for constructing discrete weight matrices W and matrix poly-
nomials F1 and F−1 such that the first order difference equation (2.4) holds. The method
is based on the following assumption on the coefficients F1 and F−1: there exists a scalar
function s such that for x ∈ {1,2,⋯, κ}, s(x) ≠ 0 and

F1(x − 1)F−1(x) = ∣s(x)∣2 I.

We now look for a weight matrix W factorized in the form

W =
κ

∑
x=0

T (x)T ∗(x)δx,

where T is the matrix function satisfying T (0) = I and the first order difference equation

T (x − 1) = F−1(x)
s(x)

T (x), for x ∈ {1,2,⋯, κ}.

With this choice of W we have

F1(x − 1)W (x − 1) = F1(x − 1)T (x − 1)T ∗(x − 1)

= F1(x − 1)F−1(x)
s(x)

T (x)T ∗(x)F
∗
−1(x)
s(x)

= F1(x − 1)F−1(x)
s(x)s(x)

W (x)F ∗
−1(x)

=W (x)F ∗
−1(x).

So equation (2.4) holds.

We have thus proved the following theorem.

Theorem 2.1.1. Let κ be either a positive integer or infinite, and F1 and F−1 matrix
polynomials. Assume that there exists a scalar function s(x) such that for x = 1,⋯, κ,
s(x) ≠ 0 and

F1(x − 1)F−1(x) = ∣s(x)∣2 I, x ∈ {1,⋯, κ}.

Write T for the solution of the first order difference equation

T (x − 1) = F−1(x)
s(x)

T (x), for x ∈ {1,⋯, κ}, T (0) = I.

Then, the weight matrix

W =
κ

∑
x=0

T (x)T ∗(x)δx,

satisfies the difference equation (2.4).
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2.2 Four families of illustrative examples

In this section we show four families of orthogonal polynomials satisfying second order
difference equations of the form

(2.8) Pn(x − 1)F−1(x) + Pn(x)F0(x) + Pn(x + 1)F1(x) = ΛnPn(x),

that we have constructed with our method. These families are classified in accordance
with the degree of the coefficient F1.

We recall that the matrices A and J are given by

A =
N−1

∑
i=1

viEi,i+1, J =
N

∑
i=1

(N − i)Ei,i,

where v1, v2,⋯, vN−1 ∈ C.

2.2.1 Example with dgr(F1) = 0

In our first example the coefficient F1 of its associated second order difference operator
does not depend on x. The example can be considered as a matrix relative of the Charlier
scalar weight.

Theorem 2.2.1. Let a be a positive real number. The second order difference operator

(2.9) D(⋅) = as1(⋅) (I +A) + s0(⋅) (−J − (I +A)−1 x) + s−1(⋅) (I +A)−1 x

is symmetric with respect to the weight matrix defined by

(2.10) W = ∑
x∈N

ax

x!
(I +A)x (I +A∗)x δx.

Moreover the monic orthogonal polynomials with respect to W are common eigenfunctions
of D with eigenvalues given by

Λn = a(I +A) − J − n(I +A)−1.

Before we prove Theorem 2.2.1 we announce an prove a Lemma that will be used.

Lemma 2.2.2. Let A and J be the matrices given by (1.25), and let f be an analytic
function at 0. Write S = f(A). Then, [S,J] = −Af ′(A). In particular, for S = log (I +A)
we have [S,J] = −I + (I +A)−1.

Proof. Write f(z) = ∑∞k=0 akz
k. It is easy to check that for k ≥ 0 [Ak, J] = −kAk. Then,

[S,J] =
∞
∑
k=0

ak [Ak, J] = −
∞
∑
k=0

kakA
k = −Af ′(A).
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Proof. For this example we have that κ is infinite and

F−1 = (I +A)−1 x,(2.11)

F0 = −J − (I +A)−1 x,(2.12)

F1 = a (I +A) .(2.13)

We now use Theorem 1.3.19 for r = 1 to prove that the operator D is symmetric. We
have to check the boundary condition W (0)F ∗

−1(0) = 0 and the equations

F1(x − 1)W (x − 1) =W (x)F ∗
−1(x), for x = 1,2,⋯

F0(x)W (x) =W (x)F ∗
0 (x), for x = 0,1,⋯.

We proceed in three steps.

First Step. Boundary condition W (0)F ∗
−1(0) = 0.

Since F−1(x) = (I +A)−1 x, we have F−1(0) = 0 and the boundary condition follows
straightforwardly.

Second Step. F1(x − 1)W (x − 1) =W (x)F ∗
−1(x) for x = 1,2,⋯.

We use Theorem 2.1.1 to prove that F1, F−1 and W satisfy this first order difference
equation.

We first check that for s(x) =
√
ax the matrix polynomials F−1 and F1 satisfy

F1(x − 1)F−1(x) = s2(x)I, x ≥ 1.

But this is straightforward from the definition of F−1 and F1 (see (2.11) and (2.13)).
We then factorize the matrix weight W in the form W = ∑∞x=0 T (x)T ∗(x)δx, where

T (x) =
√

ax

x!
(I +A)x.

Since T (0) = I, we only have to check that for x ≥ 1, T (x − 1) = F−1(x)
s(x)

T (x). Indeed, we

have

F−1(x)
s(x)

T (x) = (I +A)−1 x√
ax

√
ax

x!
(I +A)x =

√
x

a

√
ax

x!
(I +A)−1 (I +A)x

=

¿
ÁÁÀ ax−1

(x − 1)!
(I +A)x−1 = T (x − 1).

Theorem 2.1.1 gives now that F1, F−1 and W satisfy F1(x−1)W (x−1) =W (x)F ∗
−1(x)

for x = 1,2,⋯.

Third Step. F0(x)W (x) =W (x)F ∗
0 (x) for x ∈ N.

Since W (x) = T (x)T ∗(x) the equation F0W =WF ∗
0 is straightforwardly equivalent to the

Hermiticity of the function

χ(x) = T−1(x)F0(x)T (x), x ∈ N.
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We now explicitly compute the function χ to see that actually it is a real diagonal matrix
function. To do that, we expand the function χ(x) in a power series. By writing S =
log (I +A) we get (I +A)x = eSx. Taking into account that A and S commute, and using
formula (1.24), we have

χ(x) = T−1(x)F0T (x) = e−Sx (−J − (I +A)−1x) eSx

=
∞
∑
i=0

(−1)i+1

i!
adiS Jx

i − (I +A)−1 x.

To compute adiS J , i ≥ 1, we use Lemma 2.2.2 and we get

adS J = [S,J] = (I +A)−1 − I.

For adiS J , i ≥ 2, since S commutes with A, we have

adiS J = adi−1
S (adS J) = adi−1

S ((I +A)−1 − I) = 0.

Hence, we get
χ(x) = −J − xI.

That is, the matrix function χ is real diagonal, and then Hermitian.
Thus, Theorem 1.3.19 for r = 1 shows that the second order operator D (3.5) is sym-

metric with respect to W .
We now use Lemma 1.3.3 to prove that the orthogonal polynomials are common eigen-

functions of the operator D. Since we have already proved that D is symmetric with
respect to W , it is enough to check that for any polynomial P the degree of D(P ) is at
most the degree of P . But that is a consequence of Lemma 1.3.15 taking into account that

dgr(Fi) ≤ 2, for i = 0,1,−1,

dgr (F1 − F−1) = dgr (a(I +A) − (I +A)−1x) = 1,

dgr (F0 + F1 + F−1) = dgr (−J + a(I +A)) = 0.

The expression for the eigenvalues follows by Theorem 1.3.17. This completes the proof.

2.2.2 Example with dgr(F1) = 1 and unbounded support.

Our second example can be considered as a matrix relative of the Meixner scalar weight.
It has unbounded support and the coefficient F1 of its associated second order difference
operator is a polynomials of degree 1.

Theorem 2.2.3. Let A and J be the N ×N nilpotent and diagonal matrices, respectively,
given by (1.25). Given two positive real numbers a and c, with 0 < a < 1, we consider the
matrix

(2.14) RA,a = (I −A) (I − aA)−1 ,

and the weight matrix defined by

(2.15) W = 1

Γ(c)

∞
∑
x=0

axΓ(x + c)
x!

RxA,a (R∗
A,a)

x
δx.
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Then, the second order difference operator

(2.16) D(⋅) = s1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x),

where

F−1(x) = R−1
A,ax,(2.17)

F0(x) = (a − 1)J − x(aRA,a +R−1
A,a),(2.18)

F1(x) = a(x + c)RA,a,(2.19)

is symmetric with respect to the weight matrix W . Moreover, the monic orthogonal poly-
nomials with respect to W are common eigenfunctions of D, with eigenvalues given by

Λn = (a − 1)J + acRA,a + n (aRA,a −R−1
A,a) .

Proof. We use again Theorem 1.3.19 for r = 1 to prove that the operator D is symmetric.
We have to check the boundary condition W (0)F ∗

−1(0) = 0 and the equations

F1(x − 1)W (x − 1) =W (x)F−1(x), for x = 1,2,⋯,(2.20)

F0(x)W (x) =W (x)F ∗
0 (x), for x = 0,1,⋯.(2.21)

We omit the proofs of the boundary condition and the equation (2.20) because they are
similar to those in Steps 1 and 2 in Theorem 2.2.1 (just taking here s(x) =

√
a(x + c − 1)x).

To prove F0(x)W (x) = W (x)F ∗
0 (x) for x ∈ N, we proceed as follows. We first write

W (x) = T (x)T ∗(x), where

T (x) =

¿
ÁÁÀaxΓ(x + c)

Γ(c)x!
RxA,a.

As we have already pointed out, the equation F0(x)W (x) =W (x)F ∗
0 (x) is then equivalent

to the Hermiticity of the matrix function χ(x) = T−1(x)F0(x)T (x). We are going to show
that this is, in fact, a real diagonal matrix.

Consider now the analytic function at 0

f(z) = log ( 1 − z
1 − az

) ,

and write S = f(A). This gives eS = RA,a and e−S = R−1
A,a, and hence

χ(x) = T−1(x)F0(x)T (x)
= e−Sx ((a − 1)J − aeSx − e−Sx) eSx

=
∞
∑
i=0

(−1)i

i!
(a − 1)adiS Jx

i − aeSx − e−Sx.

We now compute explicitly the function χ
Using Lemma 2.2.2, we see that −(a − 1)[S,J] − aeS − e−S is, in fact, a multiple of the

identity matrix. Indeed, since

f ′(z) = a

1 − az
− 1

1 − z
,
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according to this lemma, we have

[S,J] = A(1 −A)−1 − aA(1 − aA)−1.

On the other hand, a simple computation gives

−aeS − e−S = −(a + 1)I − a(a − 1)A(1 − aA)−1 + (a − 1)A(I −A)−1.

Then, we get

−(a − 1)[S,J] − aeS − e−S = −(1 + a)I.

For the rest of the coefficients, we proceed as in Theorem 2.2.1 to get adiR J = 0 for
i ≥ 2.

We have then that

χ(x) = (a − 1)J − (1 + a)Ix.

This is a real diagonal matrix for all x ≥ 0, and so Hermitian. Then, F0(x)W (x) =
W (x)F ∗

0 (x) holds for x ∈ N.
Using Theorem 1.3.19 for r = 1 we can conclude that the second order difference

operator (2.16) is symmetric with respect to the weight matrix W (2.15).
We now use Lemma 1.3.3 to see that the matrix orthogonal polynomials with respect

to W are common eigenfunctions of the difference operator (2.16). Since we have already
proved the symmetry of D, we have just to see that for any polynomial P , D(P ) has
degree at most the degree of P . This is a consequence of Lemma 1.3.15 since

dgr(Fi) ≤ 2, for i = 0,1,−1,

dgr (F1 − F−1) = dgr (a(x + c)RA,a −R−1
A,ax) = 1,

dgr (F0 + F1 + F−1) = dgr ((a − 1)J + acRA,a) = 0.

The expression for the eigenvalues follows by Theorem 1.3.17.
The proof of the theorem is now complete.

2.2.3 Example with dgr (F1) = 1 and finite support

Our third example can be considered as a matrix relative of the Krawtchouk scalar weight.
It has then finite support and the coefficient F1 of its associated second order difference
operator is a polynomial of degree 1 (the proof will be omitted because is similar to that
of theorems 2.2.1 and 2.2.3).

Theorem 2.2.4. Let A and J be the N ×N matrices given by (1.25). Given a positive
integer κ and a positive real number a, we consider the matrix

(2.22) RA,a = (I +A) (I − aA)−1 ,

and the matrix weight defined by

(2.23) W =
κ

∑
x=0

axΓ(κ + 1)
Γ(κ + 1 − x)x!

RxA,a (R∗
A,a)

x
δx.
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Then, the second order difference operator

(2.24) D(⋅) = s1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x),

where

F−1(x) = R−1
A,ax,

F0(x) = − (a + 1)J + aRA,ax −R−1
A,ax,

F1(x) = −aRA,ax + aκRA,a,

is symmetric with respect to W. Moreover, the monic orthogonal polynomials with respect
to W are common eigenfunctions of D and its eigenvalues are given by

Λn = −(a + 1)J + aκRA,a − n (aRA,a +R−1
A,a) .

2.2.4 Example with dgr(F1) = 2

Our third example seems not to have any scalar relative. The weight matrix has bounded
support and the difference coefficient F1 has degree two.

For a positive integer κ and complex numbers vi ∈ C, 1 ≤ i ≤ N − 1, we define the
nilpotent matrices (with order of nilpotency 2 and N − 1 respectively)

B = −2v1

κ + 1
E1,2,(2.25)

C = v2E1,3 +
N−1

∑
i=1
i≠2

viEi,i+1.(2.26)

We also define the diagonal matrix

(2.27) L = E1,1 + 5E2,2 +
N

∑
i=3

(2i − 3)Ei,i.

It is a matter of computation to check that these matrices satisfy the following equations

B2 = 0,(2.28)

BC = CB = 0,(2.29)

adC L = 2C − (κ + 1)B,(2.30)

adCk L = 2kCk, for k ≥ 2,(2.31)

adB L = 4B.(2.32)

We are now ready to introduce our last example.

Theorem 2.2.5. Let B, C and L be the matrices defined by (2.25), (2.26) and (2.27)
respectively. We consider the matrix

(2.33) RC = (I − 1

2
C)(I + 1

2
C)

−1
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and the weight matrix defined by

(2.34) W =
κ

∑
x=0

Γ(κ + 1)
Γ(κ + 1 − x)x!

(RxC −B
x(x + 1)

2
)((R∗

C)
x −B∗x(x + 1)

2
) δx.

Then, the second order difference operator

(2.35) D(⋅) = s1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x),

where

F1 = Bx2 + ((1 − κ)B −RC)x + κ (RC −B) ,(2.36)

F0 = −2Bx2 − (R−1
C + (1 − κ)B −RC)x +L,(2.37)

F−1 = Bx2 +R−1
C x,(2.38)

is symmetric with respect to the weight matrix W (2.34). Moreover, the monic orthogonal
polynomials with respect to W are common eigenfunctions of D and its eigenvalues are
given by

Λn = L + κ (RC −B) + n ((1 − κ)B −RC −R−1
C ) + n(n − 1)B.

Proof. We use Theorem 1.3.19 for r = 1 to prove the symmetry of D with respect to W .
For this we have to check the boundary conditions, F1(κ)W (κ) = 0 and W (0)F ∗

−1(0) = 0
and the equations

F1(x − 1)W (x − 1) =W (x)F ∗
−1(x), for x = 1,⋯, κ,

F0(x)W (x) =W (x)F ∗
0 (x), for x = 0,1,⋯, κ.

We skip over the proof of the boundary conditions and the first symmetry equation since
it is similar to that for Theorem 2.2.1 (taking now s(x) =

√
x(κ + 1 − x)).

We write W = ∑κx=0 T (x)T ∗(x)δx for

T (x) =

¿
ÁÁÀ Γ(κ + 1)

Γ(κ + 1 − x)x!
(RxC −B

x(x + 1)
2

) .

Then, the equation F0(x)W (x) = W (x)F ∗
0 (x) is equivalent to the Hermiticity of the

matrix function

χ(x) = T−1(x)F0(x)T (x).

We again compute explicitly the function χ to see that it is in fact a real diagonal matrix.
Consider the analytic function at 0

(2.39) f(z) = log(
1 + z

2

1 − z
2

) ,

and write S = f(C). This gives R−1
C = eS and RC = e−S . The function f(C) only contains

odd powers of C, then by the property (2.29) we get that SB = BS = 0, and so

eSxB = BeSx = B = e−SxB = Be−Sx.
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Taking into account this remark as well as the property (2.28) we can write

T−1(x) =

¿
ÁÁÀΓ(κ + 1 − x)x!

Γ(κ + 1)
(e−Sx −Bx(x + 1)

2
)
−1

=

¿
ÁÁÀΓ(κ + 1 − x)x!

Γ(κ + 1)
((I −Bx(x + 1)

2
) e−Sx)

−1

=

¿
ÁÁÀΓ(κ + 1 − x)x!

Γ(κ + 1)
(I +Bx(x + 1)

2
) eSx.

Because of (2.28) and (2.32), we have adiB L = 0 for i ≥ 2. Taking into account all these
properties we can write χ(x) as the power series

χ(x) = L + ((κ − 1)B + e−S − eS + adS L +
1

2
adB L)x(2.40)

+ (−2B + 1

2
adB (L + adS L) +

1

2
ad2

S L)x2

+
∞
∑
i=3

(1

2
adB (adi−1

S L

(i − 1)!
+ adi−2

S L

(i − 2)!
) + adiS L

i!
)xi.

We now prove that, except the first one, all the coefficients above vanish. To do that,
we use the following lemma.

Lemma 2.2.6. Let B, C and L be the matrices defined by (2.25), (2.26) and (2.27). For
an analytic function f at 0 the following equations hold

((κ + 1)f ′(0) − 2)B + adf(C)L +
1

2
adB L = 2Cf ′(C),(2.41)

adi+1
f(C)L = 0, for i ≥ 1,(2.42)

adB (adf(C)L) = 0.(2.43)

Proof. Write f(z) = ∑k≥0 akz
k. Taking into account equations (2.30) and (2.31), we get

adf(C)L = ∑
k≥0

ak [Ck, L] = 2∑
k≥0

akkC
k − (κ + 1)a1B = 2Cf ′(C) − (κ + 1)f ′(0)B,

and then, using equation (2.32) we get

((κ + 1)f ′(0) − 2)B + adf(C)L +
1

2
adB L =((κ + 1)f ′(0) − 2)B + 2Cf ′(C)

− (κ + 1)f ′(0)B + 2B = 2Cf ′(C).

Since BC = CB = 0, any power of C commute with B then, we have

adi+1
f(C)L = adif(C) (2Cf ′(C) − (κ + 1)a1B) = 0, for i ≥ 1,

adB (adf(C)L) = adB (2Cf ′(C) − (κ + 1)a1B) = 0.
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Using now equation (2.41) of Lemma 2.2.6 for the function f in (2.39) (for which
f ′(0) = 1) and S = f(C), we get

(κ − 1)B + e−S− eS+ adS L +
1

2
adB L = e−S − eS + 2Cf ′(C)(2.44)

= e−S− eS+((I + C
2
)
−1

+ (I − C
2
)
−1

)

= 0.

On the other hand, using equations (2.42) and (2.43) of Lemma 2.2.6, we obtain

−2B + 1

2
adB (L + adS L) +

1

2
ad2

S L = 0,(2.45)

1

2
adB (adi−1

S L

(i − 1)!
+ adi−2

S L

(i − 2)!
) + adiS L

i!
= 0, i ≥ 3,(2.46)

where we have also used the equation (2.32).
Equations (2.40), (2.44), (2.45) and (2.46) then give that χ(x) = L, which it is a real

diagonal matrix. So F0(x)W (x) =W (x)F0(x) for x = 0,1,⋯, κ.
By Theorem 1.3.19 for r = 1, we conclude that D is symmetric with respect to W .

To see that the orthogonal polynomials with respect to W are common eigenfunctions
of D, we use Theorem 1.3.3. Since we have already proved that D is symmetric with
respect to W , it remains to see that for any polynomial P , D(P ) is a polynomial with
degree at most the degree of P . This is a consequence of Lemma 1.3.15, since

dgr (Fi) ≤ 2 for i = −1,0,1,

dgr (F1 − F−1) = dgr (((1 − κ)B − e−S − eS)x + κ (e−S −B)) = 1,

dgr (F0 + F1 + F−1) = dgr(L + κ (e−S −B)) = 0.

Finally to obtain the expression for the eigenvalues we apply Theorem 1.3.17







Chapter 3

The convex cone associated to a
difference operator

It has already been mentioned that in the matrix case the family of orthogonal polyno-
mials can be eigenfunctions of several matrix difference operators, and the set of all these
different operators form an algebra, D(W ). In this chapter we show what one can call the
dual situation of this fact. For a fixed difference operator D of the form

(3.1) D(⋅) =
r

∑
k=−r

sk(⋅)Fk(x), Fk(x) ∈ CN×Nk [x],

we define the set of weight matrices

Υ(D) = {W ∶D is symmetric with respect to W}.

One straightforwardly has that, if Υ(D) /= ∅ then, it is a convex cone i.e., if W1,W2 ∈ Υ(D)
and γ, ζ ≥ 0 (one of them non null) then, γW1 + ζW2 ∈ Υ(D).

When Υ(D) /= ∅, it contains, at least, a half line: γW , γ > 0. In the scalar case, the
convex cone of positive measures associated to a second order difference operator always
reduces to the empty set except for those operators associated to the classical discrete
measures in which case the convex cone is the half line defined by the classical measure
itself. The situation is again rather different in the matrix orthogonality setup. The
purpose of this chapter is to show examples of second order difference operators D for
which Υ(D) is at least a two dimensional convex cone.

We provide two methods to find such examples (Section 3.1) and show a collection of
instructive examples (Section 3.2). We remark that the convex cones generated by both
methods have a completely different structure.

For similar results for the convex cone of weight matrices associated to a differential
operator see [36]

3.1 Some necessary and/or sufficient conditions for symme-
try

In this section we prove some necessary and/or sufficient conditions for the symmetry of
a difference operator with respect to a weight matrix. These conditions will allow us to

37
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develop the two methods for studying the convex cone of weight matrices associated to a
difference operator reported in the previous paragraph.

The first method is based on the method introduced in Chapter 2 to construct pairs
of weights W and difference operators D satisfying the symmetry equations (1.47).

Lemma 3.1.1. Let κ be either a positive integer or infinite, and consider the weight matrix

W =
κ

∑
x=0

T (x)T ∗(x)δx,

where T is certain matrix function satisfying that T (0) = I. Let D be the second order
difference operator

D = s−1F−1(x) + s0F0(x) + s1F1(x),

where F−1 and F1 satisfy that F−1(0) = 0 and if κ is finite, F1(κ) = 0. Assume that there
exists a scalar function s(x) such that for x = 1,⋯, κ, s(x) ≠ 0 and

F1(x − 1)F−1(x) = ∣s(x)∣2 I, x ∈ {1,⋯, κ},

T (x − 1) = F−1(x)
s(x)

T (x), for x ∈ {1,⋯, κ},

T−1(x)F0(x)T (x) is diagonal for all x = 0,⋯, κ.

Then, for any diagonal matrix of numbers S with positive entries, the difference operator
D is symmetric with respect to the matrix weight

WS =
κ

∑
x=0

T (x)ST ∗(x)δx.

Proof. In order to prove the symmetry of D with respect to WS , we use Theorem 1.3.19
for r = 1. It is clear that the boundary conditions (1.48) and (1.49) hold since F−1(0) = 0
and if κ is finite F1(κ) = 0. By Theorem 2.1.1 it is clear that the first symmetry equation
holds.

Now for the weight matrix WS = ∑κx=0 T (x)ST ∗(x)δx, the symmetry equation (1.47)
for l = 0 holds if and only if the matrix T−1(x)F0(x)T (x)S is Hermitian for all x in the
support. But this is a diagonal matrix, since by hypothesis T−1(x)F0(x)T (x) is diagonal.
We have then that for any diagonal matrix S with positive entries, the second order
difference operator D is symmetric with respect to WS .

The assumptions in the previous Lemma are not so restrictive as at a first glance
appeared to be. In fact, all the examples of weight matrices constructed in Chapter 2
satisfy those assumptions.

The next lemma provides a second method to construct convex cones associated to a
difference operator. Given a difference operator D, we show how to choose a real number
x0 and a positive semidefinite matrix M(x0) such that the difference operator D is also
symmetric with respect to all the weight matrices of the form γW +ζM(x0)δx0 , γ > 0, ζ ≥ 0.

In the next Section, we will use this method to study the convex hull of two second
order difference operators. In one case the real number x0 belongs to the support of W
(Theorem 3.2.5) and in the other it does not (Theorem 3.2.4).
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Lemma 3.1.2. Let D be a difference operator like (3.1) with s = −r. Assume that for
x0 ∈ R, there exists an Hermitian matrix Mx0 such that

(3.2) Fl(x0)Mx0 = 0, l /= 0,−r ≤ l ≤ r, F0(x0)Mx0 =M
∗
x0F

∗
0 (x0).

If D is symmetric with respect to W then, for all real numbers γ > 0, ξ ≥ 0, D is also
symmetric with respect to the weight matrix γW + ξMx0δx0.

Proof. Notice that (3.2) easily implies that

D(P (x0))Mx0Q
∗(x0) = P (x0)Mx0D(Q(x0))∗.

Hence, the inner product defined by Ŵ = γW + ξMx0δx0 satisfies that

⟨D(P ),Q⟩Ŵ = γ⟨D(P ),Q⟩W + ξD(P (x0))Mx0Q
∗(x0)

= γ⟨P,D(Q)⟩W + ξP (x0)Mx0D(Q(x0))∗ = ⟨P,D(Q)⟩Ŵ ,

where we have used the symmetry of D with respect to W . This shows that D is also
symmetric with respect to Ŵ .

The above Lemmas in this Section provide two methods for constructing weight ma-
trices in the convex cone Υ(D) of a second order difference operator D. In some of the
examples in the next Section we will prove that both methods produce all the weight ma-
trices in the convex cone Υ(D). The key to prove that is the next lemma where we state
necessary conditions for the symmetry of a second order difference operator with respect
to a weight matrix in terms of the (generalized) moments of the weight matrix.

Lemma 3.1.3. Let W be a weight matrix and write µn for its generalized moments µn =
∫ (x

n
)dW (x), n ≥ 0. Consider the second order difference operator D = s−1F−1+s0F0+s1F1.

Write

F−1(x) = F−1,2(
x

2
) + F−1,1(

x

1
) + F−1,0, F1(x) = F1,2(

x

2
) + F1,1(

x

1
) + F1,0,

G0 = F−1 + F0 + F1.

If D is symmetric with respect to W and the degree of D(P ) is at most the degree of P
then,

(3.3) G0µ0 = µ0G
∗
0 ,

and for n ≥ 1

[(n
2
)F1,2 + (n

1
)F1,1 − (n

1
)F−1,1 +G0]µn(3.4)

+ [(n − 1

2
)F1,2 + (n − 1

1
)F1,1 + F1,0]µn−1 − F−1,0

n−1

∑
j=0

(−1)j+n−1µj = µnG∗
0 .
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Proof. Using the basic identities (x
n
) = (x − 1

n
) + (x − 1

n − 1
), and

(x − j
l

)(x
j
) = (j + l

l
)( x

j + l
), (x − 1

n − 1
) =

n−1

∑
j=0

(−1)j+n−1(x
j
),

we get

D(x
n
) =(n + 1

2
) [F1,2 − F−1,2] (

x

n + 1
)

+ [2(n
2
)F1,2 + (n

1
)F1,1 − (n

2
)F−1,2 − (n

1
)F−1,1 +G0] (

x

n
)

+ [(n − 1

2
)F1,2 + (n − 1

1
)F1,1 + F1,0] (

x

n − 1
) − F−1,0

n−1

∑
j=0

(−1)j+n−1(x
j
).

Since the degree of D(P ) is at most the degree of P , we have that F−1 − F1 and G0 are
polynomials of degree at most 1 and 0 respectively (see Lemma 1.3.15). Hence F1,2−F−1,2 =
0 and D(1) = G0. Then,

D(x
n
) = [(n

2
)F1,2 + (n

1
)F1,1 − (n

1
)F−1,1 +G0] (

x

n
)

+ [(n − 1

2
)F1,2 + (n − 1

1
)F1,1 + F1,0] (

x

n − 1
) − F−1,0

n−1

∑
j=0

(−1)j+n−1(x
j
).

Since D is symmetric, we have ⟨D(x
n
),1⟩ = ⟨(x

n
),D(1)⟩, n ≥ 0, from where (3.3) and (3.4)

are deduced.

3.2 Examples

Using the methods explained in the previous Section, we now study some illustrative
examples of convex cones of weight matrices associated to some second order difference
operators.

3.2.1 Examples constructed by using the first method

This Section will be devoted to a couple of examples of convex cones constructed by using
the first method mentioned in the Introduction (for more details see Lemma 2.1.1).

We first consider the second order difference operator

(3.5) D(⋅) = s1(⋅)(
−a −ab
0 −a ) + s0(⋅)(

x + 1 −bx
0 x

) + s−1 (
−x xb
0 −x) .

We will show that its convex cone Υ(D) is formed by the weight matrices γWξ, γ, ξ > 0,
where

Wξ = ∑
x∈N

ax

x!
(1 bx

0 1
)(ξ 0

0 1
)( 1 0
bx 1

) δx.
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First of all, we stress that the perturbation produced by the matrix (ξ 0
0 1

) has a

nonlinear effect on the orthogonal polynomials with respect Wξ (this is due to the non
commutativity of the matrix product). To evaluate this effect we next display an explicit
expression of the orthogonal polynomials with respect to Wξ.

Lemma 3.2.1. For a > 0, let (can)n be the Charlier polynomials given by (2.2). Consider
the matrices Y1(n, ξ), Y2(n) and Y3(n) defined by

Y1(n, ξ) = (0 b2an + ξ
1 −(n + a)b) , Y2(n) = (nab −nb2a(a + n − 1)

0 nab
) ,(3.6)

Y3(n) = (0 n(n − 1)a2b2

0 0
) .(3.7)

Then, for ξ > 0, the polynomials (Pn,ξ)n defined by

Pn,ξ(x) = can(x)Y1(n, ξ) + can−1(x)Y2(n) + can−2(x)Y3(n),

are orthogonal with respect to the weight matrix Wξ.

Proof. Notice first that the leading coefficient of Pn,ξ is (−1)nY1(n, ξ) which is a non
singular matrix.

We then have to check that the polynomials Pn,ξ, n ≥ 0, satisfy the orthogonality
condition ⟨Pn,ξ, xm⟩Wξ

= 0, for m < n. To do that, we rewrite the weight matrix Wξ as

Wξ(x) =
ax

x!
R(x, ξ) with

R(x, ξ) = (ξ + b
2x2 bx

bx 1
) = x2R2 + xR1 +R0(ξ),

where

(3.8) R2 = (b
2 0
0 0

) , R1 = (0 b
b 0

) , R0(ξ) = (ξ 0
0 1

)

Accordingly, the inner product ⟨Pn,ξ, xm⟩Wξ
can be rewritten as

⟨Pn,ξ, xm⟩Wξ
=

∞
∑
k=0

ax

x!
Pn,ξ(x)R(x, ξ)xm(3.9)

=
∞
∑
k=0

ax

x!
Pn,ξ(x) (x2R2 + xR1 +R0(ξ))xm.

Using the three term recurrence relation for the Charlier polynomials [77], pp. 247-249,
we get

x2can(x) = can+1(x) − (2n + 2a + 1)can+1(x) + ((n + 1)a + (n + a)2 + na)can(x)
− ((n + a)na + na(n + a − 1))can−1(x) + na2(n − 1)can−1(x).
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By carrying a careful computation, using the previous recurrence relation for the Charlier
polynomials, as well as the expression of Pn,ξ in terms of (3.6), (3.7) and (3.8), one can
see that

(1/ξ 0
0 1

)Pn,ξ(x)(x2R2 + xR1 +R0(ξ))

=( b(−can+1(x) + (n + a)can(x)) can(x)
b2can+2(x) − (b2 + nb2 + b2a)can+1(x) + (nb2a + ξ + b2a)can(x) −bcan+1(x)

) .

Since the Charlier polynomials can, n ≥ 0, are orthogonal with respect to the measure

ρ =
∞
∑
x=0

ax

x!
δx, we get from (3.9) that ⟨Pn,ξ, xm⟩Wξ

= 0 for m < n. Hence the polynomials

Pn,ξ, n ≥ 0, are orthogonal with respect to Wξ.

We now prove that the family of weight matrices γWξ, γ, ξ > 0, form the convex cone
of the difference operator D (3.5).

Theorem 3.2.2. For real numbers a and b with a > 0 and b /= 0, let D be the second order
difference operator defined by (3.5). Then,

Υ(D) = {γWξ ∶ γ, ξ > 0}.

Proof. Write T (x) =
√

ax

x!
(1 bx

0 1
). An easy calculation shows that

T (x − 1) = −1√
ax
F−1(x)T (x), T −1(x)F0(x)T (x) = (x + 1 0

0 x
) , F1(x − 1)F−1(x) = axI,

where F−1, F0 and F1 are the coefficients of s−1, s0 and s1 in the second order difference
operator D (3.5). Lemma 3.1.1 gives then that γWξ ∈ Υ(D), γ, ξ > 0.

We now prove that actually the family γWξ, γ, ξ > 0, provides all the weight matrices
in the convex cone Υ(D), that is

Υ(D) = {γWξ ∶ γ, ξ > 0}.

Lemma 3.1.3 gives that the generalized moments µn = ∫ (x
n
)dU(x), n ≥ 0, of each weight

matrix U ∈ Υ(D) have to satisfy the moment equations (3.3) and (3.4). If we write

F−1(x) = F−1,2(
x

2
) + F−1,1(

x

1
), F1(x) = F1,2(

x

2
) + F1,1(

x

1
) + F1,0,

G0 = F−1 + F0 + F1,

these moment equations are (take into account that F−1,0 = 0), for n = 0,

(3.10) G0µ0 = µ0G
∗
0 ,

and for n ≥ 1

[(n
2
)F1,2 + nF1,1 − nF−1,1 +G0]µn(3.11)

+ [(n − 1

2
)F1,2 + (n − 1)F1,1 + F1,0]µn−1 = µnG∗

0 .
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In our example we have that

(n
2
)F1,2 + nF1,1 − nF−1,1 +G0 = (n + 1 − a −nb − ab

0 n − a ) , G∗
0 = (1 − a −ab

0 −a ) .

For a fixed n ≥ 2, the matrices (n
2
)F1,2 + nF1,1 − nF−1,1 + G0 and G∗

0 do not share any
eigenvalue. This implies that the equation (3.11) defines µn, n ≥ 2, in an unique way from
µ0 and µ1 (see [61], p. 225). But µ1 has to be Hermitian, since U is a weight matrix,
hence it is easy to see that equation (3.11) for n = 1 also defines µ1 in an unique way from
µ0.

It is just a matter of calculation to see that the set of solutions µ0 of the equation
(3.10) is formed by the matrices

( η abγ
abγ γ

) ,

where γ > 0 and η > γa2b2 (since we are assuming that µ0 is the first moment of a weight
matrix, and so it has to be a positive definite matrix). On the other hand, the first moment
of γWξ, γ > 0, ξ ∈ R, is

γea (ξ + ab
2 + a2b2 ab
ab 1

) .

By choosing ξ = η/γ − ab2 − a2b2, we see that for each weight matrix U ∈ Υ(D) there exist
γ > 0 and ξ ∈ R such that U has the same first moment µ0 as γe−aWξ. Hence, since the
(generalized) moments µn, n ≥ 1, of U and γWξ are uniquely defined from µ0, we conclude
that U and γWξ have the same generalized moments µn, n ≥ 0. It is then clear that U
and γWξ have also the same moments sn, n ≥ 0, where sn = ∫ xndU(x).

We now prove that actually U = γWξ and then, ξ > 0 (since U is a weight matrix).
This can be done by different approaches. One of them uses Fourier transform and it
works as follows: consider the Fourier transform F(X) of a weight matrix X defined by
F(X)(x) = ∫R e

itxdX(t), x ∈ R. F(X) is a matrix C∞-function in R and

( d

dx
)
n

(F(X)(x)) = ∫
R
(it)neitxdX(t), x ∈ R.

This shows that the moments of X are just (d/dx)n (F(X))(0)/in, n ≥ 0.
Since U and γWξ have the same moments sn, n ≥ 0, we have that the Fourier transforms

F(U) of U and F(γWξ) of γWξ have at 0 the same derivatives of any order. These
derivatives are equal to insn, n ≥ 0.

It is easy to see that the Fourier transform F(γWξ) is actually a matrix entire function,
and accordingly

lim
n→∞

∣(sn)i,j ∣
rn

n!
= 0,

for all r > 0, where Yi,j denotes the (i, j) entry of a matrix Y . Since sn, n ≥ 0, are the
moments of the weight matrix U and the even moments s2n of a weight matrix are positive
definite matrices, we conclude that

lim
n→∞

Tr(s2n)
r2n

(2m)!
= 0.
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Since U and γWξ have the same moments, according to Lemma 2.1 of [36], there exists
an entire function Φ such that Φ(x) = F(U)(x), x ∈ R. Hence, the corresponding Fourier
transforms of U and γWξ are entire functions which have at 0 the same derivatives of any
order. That is, the entire functions Φ and F(γWξ) are equal and then, F(γWξ)(x) =
F(U)(x), x ∈ R. So U = γWξ.

As we wrote in the previous Section, the assumptions in the Lemma 3.1.1 are not
so restrictive as at a first glance appeared to be. In fact, all the examples of weight
matrices constructed in Chapter 2 satisfy that assumptions. For the sake of completeness,
we display a second example (the proof is omitted), now in arbitrary size, using the same
method and based again in an example from Chapter 2. In this case the convex cone
Υ(D) is, at least, N -dimensional.

For this example we recover the matrices, A, J in (1.25) and introduce the N × N
matrix RA,a:

(3.12) A =
N−1

∑
i=1

viEi,i+1, J =
N

∑
i=1

(N − i)Ei,i, RA,a = (I −A) (I − aA)−1 ,

where symbol Ei,j stands for the N ×N matrix with entry (i, j) equal to 1 and 0 otherwise,
and v1,⋯, vN−1 are complex numbers.

Theorem 3.2.3. For real numbers a and c with 0 < a < 1 and c > 0 let D be the second
order difference operator defined by

D(⋅) = s1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x),

where

F−1(x) = R−1
A,ax, F1(x) = a(x + c)RA,a,

F0(x) = (a − 1)(J −(N − 1)I) − x(aRA,a +R−1
A,a).

Then, {γWξ1,⋯,ξN−1 ∶ γ, ξi > 0, i = 1,⋯,N − 1} ⊆ Υ(D) where

Wξ1,⋯,ξN−1 =
1

Γ(c)

∞
∑
x=0

axΓ(x + c)
x!

RxA,a

⎛
⎜⎜⎜
⎝

ξ1 0 ⋯ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ ξN−1 0
0 ⋯ 0 1

⎞
⎟⎟⎟
⎠
(R∗

A,a)
x
δx.

3.2.2 Examples constructed by using the second method

We now use the second method to study the convex cone of some second order difference
operators.

We first consider the second order difference operator

(3.13) D(⋅) = s1(⋅)F1(x) + s0(⋅)F0(x) + s−1(⋅)F−1(x).
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where F−1, F0, F1 are the matrix polynomials given by

F−1(x) = (−b (x − 1) (a − 1) ab2x (x − 1) (a − 1)
−1 xba

) ,

F0(x) = (b (a (c + x) − x) − b
−1 −ax (b2 (c + 2x) (a − 1) − 1)

1 −2xba
) ,

F1(x) = (0 a (c + x) ((x + 1) b2 (a − 1) − 1)
0 b (c + x)a ) ,

along with the weight matrix

W =
∞
∑
x=0

axΓ(x + c)
x!

(x + b
2 (a − 1)2 x2 b (a − 1)x
b (a − 1)x 1

) δx.

Theorem 3.2.4. For real numbers a, b and c with 0 < a < 1,0 < c, a /= 1/2 + 1/(2b2) and
b /= 0, let D be the second order difference operator defined by (3.13). Then,

Υ(D) = {γW + ξ ( a∣b∣c − sign(b)
− sign(b) 1/(a∣b∣c)) δ−c ∶ γ > 0, ξ ≥ 0},

where sign(b) stands for the sign of b.

Proof. It is a matter of calculation to check that W and D satisfy the symmetry equations

F1(x − l)W (x − l) =W (x)F ∗
−1(x), for x ≥ 1

F0(x)W (x) =W (x)F ∗
0 (x), for x ≥ 0,

as well as the boundary condition W (0)F ∗
−1(0) = 0. By Theorem 1.3.19 we can conclude

that W ∈ Υ(D).
To simplify the writing, we set

M = ( a∣b∣c − sign(b)
− sign(b) 1/(a∣b∣c)) .

For x = −c we then, have

F−1(−c)M = (b (c + 1) (a − 1) acb2 (c + 1) (a − 1)
1 −cba )( a∣b∣c − sign(b)

− sign(b) 1/(a∣b∣c)) = 0,

F1(−c)M = (0 0
0 0

)( a∣b∣c − sign(b)
− sign(b) 1/(a∣b∣c)) = 0,

F0(−c)M = (
−1+cb2

b −ac (cb2a − cb2 + 1)
1 2cba

)( a∣b∣c − sign(b)
− sign(b) 1/(a∣b∣c))

= (sign(b)c2a2b2 −a∣b∣c
−a∣b∣c − sign(b)) ,

MF ∗
0 (−c) = ( a∣b∣c − sign(b)

− sign(b) 1/(a∣b∣c))(
−1+cb2

b 1

−ac (cb2a − cb2 + 1) 2cba
)

= (sign(b)c2a2b2 −a∣b∣c
−a∣b∣c − sign(b)) .
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By Theorem 3.1.2, the weight matrix γW + ξMδ−c, γ > 0, ξ ≥ 0, is also in the convex cone
Υ(D) of D.

We now prove that actually this family of weight matrices provides all the weight
matrices in the convex cone Υ(D), that is Υ(D) = {γW + ξMδ−c ∶ γ > 0, ξ ≥ 0}. The proof
is similar to that of Theorem 3.2.2, hence we only sketch it.

Lemma 3.1.3 gives that the generalized moments µn = ∫ (x
n
)dU(x), n ≥ 0, of each

weight matrix U ∈ Υ(D) have to satisfy the moment equations (3.3) and (3.4). If we write

F−1(x) = F−1,2(
x

2
) + F−1,1(

x

1
) + F−1,0, F1(x) = F1,2(

x

2
) + F1,1(

x

1
) + F1,0,

G0 = F−1 + F0 + F1,

these moment equations are, for n = 0,

(3.14) G0µ0 = µ0G
∗
0 ,

and for n ≥ 1

[(n
2
)F1,2 + (n

1
)F1,1 − (n

1
)F−1,1 +G0]µn(3.15)

+ [(n − 1

2
)F1,2 + (n − 1

1
)F1,1 + F1,0]µn−1 − F−1,0

n−1

∑
j=0

(−1)j+n−1µj = µnG∗
0 .

In our example, (n
2
)F1,2 + nF1,1 − nF−1,1 +G0 and G0 are upper triangular matrices with

diagonal entries equal to

b(a − 1)n + abc + ab − b − 1/b, abc − ab, abc + ab − b − 1/b, abc,

respectively. Hence, for a fixed n ≥ 1, and except for the values a = 1/2 + 1/(2b2) and
a = 1 + 1/((n + 1)b2), the matrices (n

2
)F1,2 + nF1,1 − nF−1,1 +G0 and G∗

0 do not share any
eigenvalue. We need not to consider these exceptional values: a = 1 + 1/((n + 1)b2), since
we assume a < 1, and a ≠ 1/2 + 1/(2b2). Hence, equation (3.15) defines µn, n ≥ 1, in an
unique way from µ0 (see [61], p. 225).

It is just a matter of calculation to see that the set of solutions µ0 of the equation
(3.14) is formed by the matrices

( η −abcτ
−abcτ τ

) ,

where τ > 0 and η > τa2b2c2 (since we are assuming that µ0 is the first moment of a
weight matrix, and so it has to be a positive definite matrix). On the other hand, the first
moment of γW + ξMδ−c, γ, ξ ∈ R, is

γΓ(c)
(1 − a)c

⎛
⎜
⎝

ac(a2b2c − ab2(c − 1) − 1 − b2)
a − 1

−abc
−abc 1

⎞
⎟
⎠
+ ξM.

It is then easy to see that given τ and η there exist γ, ξ ∈ R such that U has the same first
moment µ0 as γW + ξMδ−c. Hence, since the generalized moments µn, n ≥ 1, of U and
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γW + ξMδ−c are uniquely defined from µ0, we conclude that U and γWξ have the same
generalized moments µn, n ≥ 0. It is then clear that U and γW + ξMδ−c have also the
same moments sn, n ≥ 0, where sn = ∫ xndU(x).

In order to prove that actually U = γW +ξMδ−c, we can use again the Fourier transform
(as in the proof of Theorem 3.2.2), taking into account that F(U) and F(γW + ξMδ−c)
have at 0 the same derivatives of any order, that F(γW + ξMδ−c) is an analytic function
in the open half plane {z ∈ C ∶ log a < Iz} and that 0 is contained in that half plane (since
0 < a < 1).

We finally display an example in arbitrary size N ×N .
Consider again the N ×N matrices given by (1.25),

A =
N−1

∑
i=1

viEi,i+1, J =
N

∑
i=1

(N − i)Ei,i,

where the parameters vi satisfy the following constrains: for i = 1,⋯,N − 2,

(3.16) (N − i − 1)a∣vi∣2∣vN−1∣2 + (N − 1)∣vi∣2 − i(N − i)∣vN−1∣2 = 0.

Let W be the discrete weight matrix given by

(3.17) W =
∞
∑
x=0

ax

x!
(I +A)x(I +A∗)xδx.

It was shown in Theorem 2.2.1 that the difference operator

D1(⋅) = s−1(⋅)(I +A)−1x + s0(⋅)(−J − (I +A)−1x) + as1(⋅)(I +A)

is symmetric with respect to the weight matrix (3.17). In [57, Theorem 3] it was proved
that, under the constrains (3.16), the difference operator

D2(⋅) = s−1(⋅)H−1(x) + s0(⋅)H0(x) + s1H1(x)

where

H−1(x) = [(I +A)−1 − I]x2 + ( N − 1

a∣vN−1∣2
I + J)x,

H1(x) = [(I +A)−1 − I]x2 + (2J −NI − aA + (I +A)−1)x

+ a(I +A)( N − 1

a∣vN−1∣2
I + J)(I +A∗),

H0(x) = −H−1(x) −H1(x),

is also symmetric with respect to W .

Theorem 3.2.5. Let w be the non zero (row) vector in CN whose entries satisfy

(3.18) wi+1 =
(N − i)
av̄i

wi, w1 = 1,
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and write M0 for the N ×N positive semidefinite matrix M0 = w∗w. For

λ = −(N − 1)(1 + a∣vN−1∣2)
a∣vN−1∣2

,

consider the operator D3 = λD1 +D2. Then,

{γW + ξM0δ0 ∶ γ > 0, ξ ≥ 0} ⊆ Υ(D3).

Proof. Since D3 is a linear combination of two symmetric operators with respect to W , it
is also symmetric with respect to W . Write

D3(⋅) = s−1(⋅)F−1(x) + s0(⋅)F0(x) + s1F1(x).

By Lemma 3.1.2, if we prove that D3 satisfies the conditions

(3.19) F1(0)M0 = 0, M0F
∗
−1(0) = 0, F0(0)M0 =M∗

0 F
∗
0 (0),

then, we have that D3 is symmetric with respect to the weight matrices γW +ξM0δ0, γ > 0
and ξ ≥ 0, i.e. γW + ξM0δ0 ∈ Υ(D3).

The coefficients of D3 are given by

F1(x) = [(I +A)−1 − I]x2 + [2J −NI − aA + (I +A)−1]x

+ a (I +A) [λI + ( N − 1

a∣vN−1∣2
I + J)(I +A∗)] ,

F−1(x) = [(I +A)−1 − I]x2 + [ N − 1

a∣vN−1∣2
I + J + λ (I +A)−1]x,

F0(x) = − F−1(x) − F1(x) − λ(J − a(I +A)).

It is obvious that the second condition in (3.19) holds since F−1(0) = 0. To see that the
first condition in (3.19) holds, we point out that under the constrains (3.16) we have

F1(0) =a (I +A) [λI + ( N − 1

a∣vN−1∣2
I + J)(I +A∗)]

=a (I +A) [−(N − 1)I + J + N − 1

a∣vN−1∣2
A∗ + JA∗]

=a (I +A) [
N

∑
i=1

(1 − i)Ei,i +
N

∑
i=2

((N − 1)v̄i−1

a∣vN−1∣2
+ (N − i)v̄i−1)Ei,i−1]

=a (I +A) [
N

∑
i=1

(1 − i)Ei,i +
N

∑
i=2

(i − 1)(N − i + 1)
avi−1

Ei,i−1] ,

where the last equality holds because of the constrains on vi, (3.16). Now it is straightfor-
ward to see that, because of (3.18), w∗ is in the kernel of F1(0), and hence F1(0)M0 = 0.

For the third condition in (3.19), notice that

F0(0)M0 = (−F1(0) − F−1(0) − λ (J − a(I +A)))w∗w = −λ (J + λa (I +A))w∗w.
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And also M0F
∗
0 (0) = −λw∗w (J − a (I +A∗)) . Then, to see that F0(0)M0 = M∗

0 F
∗
0 (0)

it suffices to check the following equality, (−J + aA)w∗w = w∗w (−J + aA∗). We write

w =
N

∑
i=0

wiei, where (ei)Ni=1 is the canonical base of CN . Then, we have that

(−J + aA)M0 = (
N

∑
i=1

(i −N)Ei,i + a
N

∑
i=1

viEi,i+1)w∗w

= (
N

∑
i=1

((i −N)w̄i + aviw̄i+1)ei)w

=
N

∑
i,j=1

((i −N)w̄iwj + aviw̄i+1wj)Ei,j ,

M0(−J + aA∗) =
N

∑
i,j=1

((j −N)w̄iwj + av̄jw̄iwj+1)Ei,j .

So we have that (−J + aA)M0 =M0(−J + aA∗) if and only if

(i −N)w̄iwj + aviw̄i+1wj = (j −N)w̄iwj + av̄jw̄iwj+1.

By dividing both sides of the previous equality by w̄iwj we get that (−J + aA)M0 =
M0(−J + aA∗) if and only if

(i −N) + avi
w̄i+1

w̄i
= (j −N) + av̄j

wj+1

wj
.

But this is true since by (3.18)
w̄i+1

w̄i
= (N − i)

avi
, and then both sides of the previous equality

are, indeed, 0. With this last equality it is proved the third condition in (3.19).





Chapter 4

Matrix polynomials satisfying
q-difference equations.

In the theory of scalar orthogonal polynomials, those families of orthogonal polynomials
being solutions of a q-differential equation of the form (1.29)

σ(x)Dq−1 (Dq(p(x))) + τ(x)Dq(p(x)) = λp(x),

where σ and τ are polynomials and Dq is the q-differential operator (1.30), are called
q-classical polynomials of the Hahn class (we will refer to them simply as q-classical poly-
nomials).

The previous q-differential equation can be written in terms of q-shift operators,
El(f(x)) = f(qlx) for l ∈ Z, by

(4.1) f−1(x)E−1p(x) + f0(x)E0p(x) + f1(x)E1p(x) = λp(x),

where

f−1(x) = −
σ(x)

(1 − q2)x2
f0(x) =

(1 + q−1)σ(x)
(1 − q)(1 − q−1)x2

+ τ(x)
(1 − q)x

,

f1(x) = −
σ(x)

(1 − q)(1 − q−1)x2
− τ(x)

(1 − q)x
.

We consider here a matrix analogue of the q-difference operator, defined by

E−1(⋅)F−1(x) +E0(⋅)F0(x) +E1(⋅)F1(x),

where Fi(x) are matrix polynomials in x−1 such that dgr(Fi) ≤ 2, dgr(qF1+F0+q−1F−1) ≤ 1
and dgr(F1 + F0 + F−1) = 0.

Such a q-difference operator is symmetric with respect to a q-weight if it satisfies the
symmetry equations

F0(qx)W (qx) =W (qx)F0(qx)∗, x ∈ N,(4.2)

F1(qx−1)W (qx−1) = qW (qx)F−1(qx)∗, x ∈ N/{0},(4.3)
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and the boundary conditions

W (1)F−1(1)∗ = 0,(4.4)

q2xF1(qx)W (qx)→ 0, as x→∞,(4.5)

qx (F1(qx)W (qx) −W (qx)F1(qx)∗)→ 0, as x→∞.(4.6)

In this chapter we introduce a method to solve the symmetry equation (4.3) for a
second-order q-difference operator with respect to a q-weight

(4.7) W =
∞
∑
x=0

qxW (qx)δqx .

We then construct a matrix relative of the little q-Jacobi polynomials and we explore
some of their properties.

The following lemma give us a method to solve equation (1.53) in Theorem 1.3.21. We
omit the proof for being completely analogous to that of Theorem 2.1.1.

Lemma 4.0.6. Let s(x) be a scalar function satisfying s(qx) ≠ 0 for x ∈ N/{0}. Assume
that F1 and F−1 are matrix-valued polynomials such that

F1(qx−1)F−1(qx) = q∣s(qx)∣2I, ∀x ∈ N/{0}.(4.8)

Let T be a solution of the q-difference equation

T (qx−1) = s(qx)−1F−1(qx)T (qx), x ∈ N/{0}, T (1) = I.(4.9)

Then, the q-weight defined by W (qx) = T (qx)T (qx)∗ satisfies the symmetry equation

F1(qx−1)W (qx−1) = qW (qx)F−1(qx)∗, x ∈ N/{0}.

4.1 A matrix-valued relative of the little q-Jacobi polyno-
mials

In this section we construct a family of matrix orthogonal polynomials that can be con-
sidered as a matrix relative of the little q-Jacobi polynomials.

For α ∈ R/{0} consider the matrix

(4.10) R = αA − aelog(q)(J+A) − e− log(q)(J+A),

where A and J are the matrices given by (1.25). Notice that, since −aelog(q)(J+A) −
e− log(q)(J+A) has different eigenvalues, so does R, therefore it can be diagonalized. Let S
be a matrix such that S−1RS is diagonal,

(4.11) S−1 (αA − aelog(q)(J+A) − e− log(q)(J+A))S = −aelog(q)J − e− log(q)J = −aqJ − q−J .

We set the matrices

(4.12) M = S−1(J +A)S, L = qM = S−1qJ+AS, U = αS−1AS.
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Theorem 4.1.1. Let α ∈ R/{0}, 0 < a < q−1 and b < q−1, and consider the matrices M , L
and U given by (4.12). The q-difference operator

(4.13) D(⋅) = E−1(⋅) (x−1 − 1)L−1 +E0(⋅) (U − x−1(aL +L−1)) +E1(⋅)(ax−1 − abq)L

is symmetric with respect to the weight matrix W supported on qN and given by

(4.14) W (qx) = a
x(bq; q)x
(q; q)x

Lx(L∗)x, x ∈ N.

Proof. To prove that (4.13) is symmetric with respect to (4.14) we apply Theorem 1.3.21
for r = 1. Then, it suffices to show that the symmetry equations (4.2), (4.3) and the
boundary conditions (4.4), (4.5) and (4.6) hold. We proceed in three steps.

First Step. The symmetry equation F1(qx−1)W (qx−1) = qW (qx)F−1(qx)∗ holds for
x ∈ N.

We use Lemma 4.0.6 to see that this q-difference equation holds. To do so notice that
the coefficients F1 = (aq−x+1 − abq)L and F−1 = (q−x − 1)L−1 satisfy

F1(qx−1)F−1(qx) = (aq−x+1 − abq) (q−x − 1)LL−1 = ∣s(qx)∣2I, x ≥ 1,

and s(qx) =
√

(aq−x+1 − abq) (q−x − 1) ≠ 0 for x ≥ 1. On the other hand, the q-weight (4.14)
can be factorized as

(4.15) W (qx) = T (qx)T (qx)∗, T (qx) =

¿
ÁÁÀax(bq; q)x

(q; q)x
Lx,

and T satisfies T (qx−1) =
√
q

s(qx)
F−1(qx)T (qx):

√
q

s(qx)
F−1(qx)T (qx) =

√
q(q−x − 1)

√
(aq1−x − abq)(q−x − 1)

¿
ÁÁÀax(bq; q)x

(q; q)x
L−1Lx

=

¿
ÁÁÀ q(1 − qx)

qa(1 − bqx)
ax(bq; q)x
(q; q)x

Lx−1 =

¿
ÁÁÀax−1(bq; q)x−1

(q; q)x−1
Lx−1

= T (qx−1).

Then, Lemma 4.0.6 applies, and the symmetry equation

F1(qx−1)W (qx−1) = qW (qx)F−1(qx)∗

holds.

Second step. The symmetry equation F0(qx)W (qx) =W (qx)F0(qx)∗ holds for x ∈ N.

By using the factorization W (qx) = T (qx)T (qx)∗ this symmetry equation is equivalent
to the Hermiticity of the matrix function

(4.16) T (qx)−1 (U − q−x(aL +L−1))T (qx), for all x ∈ N.
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We see that this matrix is actually a real diagonal matrix for all x ∈ N, hence it is Hermitian.
Taking into account formulas (1.22), (4.15) and the definition of the matrix L (4.12), we
can write

T (qx)−1 (U − q−x(aL +L−1))T (qx)

= q−Mx (U − q−x(aS−1qJ+AS + S−1q−(J+A)S)) qMx

=
∞
∑
i=0

(−1)i

i!
xi log(q)i (AdjiM U − aS−1qJ+AS − S−1q−(J+A)S) .

Notice that the matrices U and M given by (4.12) satisfy

[M,U] = αS−1(J +A)SS−1AS − αS−1ASS−1(J +A)S = αS−1 (JA −AJ)S = αS−1AS = U.

Therefore AdjiM U = U for all i ≥ 0 and then,

T (qx)−1F0(qx)T (qx) =
∞
∑
i=0

(−1)i

i!
xi log(q)i (U − aS−1qJ+AS − S−1q−(J+A)S)

=
∞
∑
i=0

(−1)i

i!
xi log(q)iS−1 (αA − aq(J+A) − q−(J+A))S.

By (4.11) we get

T (qx)−1F0(qx)T (qx) =
∞
∑
i=0

(−1)i

i!
xi log(q)i (−aqJ − q−J) ,

since all the parameters involved are real, this is an Hermitian matrix for all x ≥ 0, therefore
the second symmetry equation (4.3) holds.

Third Step. Boundary Conditions.
It just remains to check the boundary conditions

W (1)F−1(1)∗ = 0(4.17)

lim
x→∞

q2x(F1(qx)W (qx)) = 0(4.18)

lim
x→∞

qx(F1(qx)W (qx) −W (qx)F1(qx)∗) = 0.(4.19)

It is clear that the boundary condition (4.17) hold since F−1(x) = (x−1 − 1)L−1. To see
that (4.18) is satisfied, we use the factorization of W (4.15). Write W = ρ(qx)Lx(Lx)∗

where ρ(qx) = a
x(bq; q)x
(q; q)x

is the q-weight associated to the little q-Jacobi polynomials, then,

qxW (qx)→ 0 when x→∞, and we get

lim
x→∞

q2x(F1(qx)W (qx)) = lim
x→∞

q2x(aq−x − abq)LW (qx) = 0.

For the last boundary condition (4.19) we see that

qx (F1(qx)W (qx) −W (qx)F1(qx)∗) = qx
ax(bq; q)x
(q; q)x

K(qx) = qxρ(qx)K(qx),
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where K(qx) is a matrix polynomial in qx. Then, since ρ(qx) is the scalar weight for the
little q-Jacobi polynomials, we have that

lim
x→∞

qxρ(qx)K(qx) = 0.

Notice that for the matrices J and A (1.25), J + A can be diagonalized and so does
S−1(J + A)S. Let S1 be the matrix such that (S1)−1S−1(J + A)SS1 = J , then, since
L = S−1elog(q)(J+A)S we have (S1)−1LS1 = qJ and

Lx+1 (L∗)x −Lx (L∗)x+1 = S1 (qJ(x+1)(S1)−1(S∗1 )−1qJx − qJ(x+1)(S1)−1(S∗1 )−1qJx)S∗1
= S1q

Jx (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ) qJxS∗1 .

We write

(4.20) qJx =

⎛
⎜⎜⎜⎜
⎝

q(N−1)x

q(N−2)x

⋱
1

⎞
⎟⎟⎟⎟
⎠

= Q̃(x) + ENN ,

where we recall that Ei,j is the matrix with 1 in its (i, j) entry and zero otherwise. Then,

Lx+1 (L∗)x −Lx (L∗)x+1 = S1(Q̃(x) + ENN) (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ) (Q̃(x) + ENN)S∗1
= S1Q̃(x) (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ) Q̃(x)S∗1 +Θ(x)
= q2xK1(x) +Θ(qx),(4.21)

where K1(qx) is a matrix polynomial in qx and

Θ(x) = S1ENN (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ) Q̃(x)S∗1
+ S1Q̃(x) (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ)S∗1ENN
+ S1ENN (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ)ENNS∗1 .

Notice that ENN (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ)ENN = 0, therefore

Θ(x) = S1ENN (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ) Q̃(x)S∗1
+ S1Q̃(x) (qJ(S1)−1(S∗1 )−1 − (S1)−1(S∗1 )−1qJ)S∗1ENN
= qxK2(qx),(4.22)

where K2(qx) is a matrix polynomial in qx. Then, it follows from (4.15), (4.21) and (4.22)
that

lim
x→∞

qx (F1(qx)W (qx) −W (qx)F1(qx))

= lim
x→∞

qx(aq−x − abq)a
x(bq; q)x
(q; q)x

(Lx+1 (L∗)x −Lx (L∗)x+1)

= lim
x→∞

qx(aq−x − abq)a
x(bq; q)x
(q; q)x

(q2xK1(qx) + qxK2(qx))

= lim
x→∞

qx
ax(bq; q)x
(q; q)x

(a − abqx+1) (qxK1(qx) +K2(qx)) = 0,
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so the third boundary condition (4.19) also holds, and we have seen that Theorem 1.3.21
applies. Then, we can conclude that the q-difference operator given by (4.13) is symmetric
with respect to the weight matrix W given by (4.14).

Since the coefficients F1, F0 and F−1 satisfy the degree conditions given in Theorem
1.3.20, the q-difference operator D takes polynomials into polynomials and it does not
raise the degree of polynomials. Then, we have the following corollary.

Corollary 4.1.2. Let (Pn)n be the sequence of monic orthogonal polynomials with respect
to the q-weight (4.14), then

D(Pn) = ΛnPn, Λn = −q−1L−1 +U − abqn+1L.

Observation 4.1.3. The weight matrix presented in the previous theorem cannot be re-
duced to scalars. To see that, notice that from the definition of A, (1.25), for v1,⋯, vN−1 ∈
C not all of them zero, the matrix A is not normal, which implies that W (qx)W (qy) ≠
W (qy)W (qx) for all y ≠ x.

4.2 A matrix valued q-hypergeometric function

As in the continuous case, for certain vector-valued q-differential equation one can describe
its analytic solutions around x = 0 in terms of a matrix analogue of basic hypergeometric
functions. This can be used to describe the rows of the eigenfunctions of a matrix q-
difference operator with diagonal eigenvalues.

In this section we introduce a matrix-valued basic hypergeometric function and show
how this matrix function defines the analytic solutions of a q-difference equation. This
work is based in the matrix-valued hypergeometric functions introduced by Tirao [98] and
presented in the preliminaries. It is worth to mention that the matrix function that we
introduce here is different form that introduced in [17], where some extra factorization
assumption are required.

We start by defining the matrix basic hypergeometric function 2η1.

Definition 4.2.1. Let A,B,C ∈ CN×N where σ(C) ∩ q−N/{0} = ∅. Define

(A,B;C; q)0 = I,

(A,B;C; q)k = (A,B;C; q)k−1 (I − q
k−1A − q2k−2B) (I − qkC)−1

, k ≥ 1.

Define the function 2η1 by

2G1[
A,B

C
; q, x] =

∞
∑
n=0

(A,B;C; q)n
xn

(q; q)n
.(4.23)

Theorem 4.2.2. Let A,B,C ∈ CN×N such that σ(C) ∩ q−N/{0} = ∅. Then, for Q0 ∈
CN ,Q0 ≠ 0

Q(x) = Q0
2G1[

A,B

C
; q, qx](4.24)
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is a solution of the vector-valued q-difference equation

Q(q−1x)(1 − x) +Q(x) (−I −C + xA) +Q(qx) (C + xB) = 0,(4.25)

with initial condition Q(0) = Q0. Conversely, any vector-valued analytic solution Q(x)
around 0 of (4.25) with initial condition Q(0) ≠ 0 is of the form (4.24).

Proof. We will prove that any analytic solution of (4.25) is of the form (4.24).

Let Q =
∞
∑
k=0

Qkxk be an analytic solution of (4.25) with Q0 ≠ 0. Applying the Frobenius

method we get the following recursions formulas for the coefficients of Q:

Q0 = Q0,

0 = Qk ((q−k − 1)I + (qk − 1)C) +Qk−1 (−q−k+1I +A + qk−1B) , k ≥ 1.

Then, we get

Qk = −Qk−1 (−q−k+1I +A + qk−1B) ((q−k − 1)I + (qk − 1)C)−1

= Qk−1q−k+1 (I − qk−1A − q2k−2B) ((q−k − 1)I + (qk − 1)C)−1

= Qk−1q (I − qk−1A − q2k−2B) ((1 − qk)I − qk(1 − qk)C)−1

= q

(1 − qk)
Qk−1 (I − qk−1A − q2k−2B) (I − qkC)−1

.

By iterating this process we obtain

Qk = qk

(q ∶ q)k
Q0(A,B;C; q)n,

and therefore, Q is given by 4.24.

4.3 The 2 × 2 case in depth.

In this section we study in depth a family of matrix valued orthogonal polynomials intro-
duced in Section 4.1 for the size N = 2. First, by exploiting the factorization of the weight
matrix we can write the polynomials in terms of scalar little q-Jacobi polynomials. Then,
we apply the results presented in the previous sections to write the orthogonal polynomials
as basic hypergeometric functions. We also provide a Rodrigues formula as well as a three
term recurrence relation for this family of polynomials.

The next theorem is just Theorem 4.1.1 for N = 2 and α = (1 − q)(q−1 − a).

Theorem 4.3.1. Assume a and b satisfy 0 < a < q−1 and b < q−1. For v ∈ C define matrices

U = (0 v(1 − q)(q−1 − a)
0 0

) , M = (1 v
0 0

) , L = elog(q)M = (q −v(1 − q)
0 1

) .(4.26)

The q-difference operator given by

D = E−1F−1(x) +E0F0(x) +E1F1(x),(4.27)

F−1(x) = (x−1 − 1)L−1, F0(x) = U − x−1(L−1 + aL), F1(x) = (ax−1 − abq)L,
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satisfies DPn = ΛnPn, where (Pn)n≥0 are the monic polynomials orthogonal with respect to
a weight matrix of the form (4.7) with

W (qx) = ax (bq; q)x
(q; q)x

Lx(L∗)x,(4.28)

and the eigenvalues are

Λn = (−q
−n−1 − abqn+2 v(1 − q)(abqn+1 − q1−n + q−1 − a)

0 −q−n − abqn+1 ) .(4.29)

4.3.1 Expression in terms of little q-Jacobi polynomials.

For N = 2 and α = (1 − q)(q−1 − a) the weight function (4.14) takes the form

W (qx) = a
x(bq; q)x
(q; q)x

(q
2x + ∣v∣2 (1 − qx)2 −v(1 − qx)
−v̄(1 − qx) 1

) ,

and by Theorem (4.3.1), the sequence of monic orthogonal polynomials (P̃n)n with respect
to W satisfy

(4.30) P̃n(q−1x)L−1 + P̃n(x) (U − x−1(aL +L−1)) + (ax−1 − abq)P̃n(qx)L = ΛnP̃n(x),

where

(4.31) Λ̃n = (−q
−n−1 − abqn+2 v(1 − q)(abqn+1 − q1−n + q−1 − a)

0 −q−n − abqn+1 ) .

The following theorem gives the explicit expression of the matrix orthogonal polyno-
mials in terms of the little q-Jacobi polynomials.

Theorem 4.3.2. The monic matrix-valued orthogonal polynomials are of the form

P̃n(x) =M−1
n ( κn11pn(x;aq2, b; q) κn12pn+1(x;a, b; q) + κn11(1 − x)vpn(x;aq2, b; q)

κn21pn−1(x;aq2, b; q) κn22pn(x;a, b; q) + κn21(1 − x)vpn−1(x;aq2, b; q)) ,

where

Mn =
⎛
⎜
⎝

1 −
µn

1 − abq2n+2
v

0 1

⎞
⎟
⎠
,(4.32)

pn(x;a, b; q) are the little q-Jacobi polynomials

pn(x;a, b∣q) = 2φ1[
q−n, abqn+1

aq
; q, qx],(4.33)

and the coefficients κni,j are given by

κn11 = (−1)nq(
n
2
) (aq3; q)n
(abqn+3; q)n

, κn12 = (−1)n+1vq(
n+1
2

) (aq; q)n+1

(abqn+2; q)n+1
,(4.34)

κn21 = ξnaq−n+2 (1 − qn)(1 − bqn)
(1 − aq)(1 − aq2)

κn−1
12 , κn22 = ξn

κn−1
12

v
,
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where

ξn = (1 + aq∣v∣2 (1 − qn)(1 − bqn)
(1 − abqn+1)(1 − aqn+1)

)
−1

.

Proof. Let (Pn)n be the sequence of orthogonal polynomials given by Pn =MnP̃n. Then,

D(Pn)) =M−1
n Λ̃nMnPn = ΛnPn.

A straightforward computation gives that for Mn and Λ̃n given by (4.31), the following
holds

Λn =M−1
n Λ̃nMn = diag(−q−n−1 − abqn+2,−q−n − abqn+1).

We now write

Pn(qx) =MnP̃n(qx) = (p̃
n
11(qx) p̃n12(qx)
p̃n21(qx) p̃n22(qx),

) ,

Qn(qx) = Pn(qx)Lx = (q
xp̃n11(qx) p̃n12 − (1 − qx)vp̃n11(qx)
qxp̃n21(qx) p̃n22 − (1 − qx)vp̃n21(qx)

) = (r
n
11(qx) rn12(qx)
rn21(qx) rn22(qx)

) .(4.35)

Taking into account that the sequence of monic orthogonal polynomials, (P̃n)n satisfies
(4.30) and that L−xF0(qx)Lx is diagonal (see Theorem 4.1.1) we obtain

(DPn)(qx)Lx =Pn(qx−1)(q−1x)L−1Lx + Pn(qx)LxL−x (U − x−1(aL +L−1))Lx

+ (ax−1 − abq)Pn(qx)LLx

=(q−x − 1)Qn(qx−1) +Qn(qx)q−x (
−(q−1 + aq) 0

0 −(1 + a))

+ (aq−x − abq)Qn(qx+1)
=diag(−q−n−1 − abqn+2,−q−n − abqn+1)Qn(qx).(4.36)

Since the eigenvalues, as well as all the matrix coefficients involved, are diagonal, (4.36)
gives four uncoupled scalar-valued q-difference equations. These equations can be matched
with the q-difference equation for the little q-Jacobi polynomials, giving

pn11 = κn11pn(x;aq2, b; q), pn12 = κn12pn−1(x;aq2, b; q),
rn21 = κn21pn+1(x;aq2, b; q), rn22 = κn22pn(x;a, b; q),

where pn(x;a, b; q) are little q-Jacobi polynomials, and κij ∈ C are constants that need to
be determined. Then, we can write

Pn(x) = ( κn11pn(x;aq2, b; q) κn12pn+1(x;a, b; q) + κn11(1 − x)vpn(x;aq2, b; q)
κn21pn−1(x;aq2, b; q) κn22pn(x;a, b; q) + κn21(1 − x)vpn−1(x;aq2, b; q)) .

From the expression of the leading coefficient of Pn, Mn, the coefficients κn11 and κn12

are determined and one can easily see that they are given by (4.34). The expression of
Mn also gives the relation

κn22 = q−n
(q, aq; q)n

(q−n, abqn+1; q)n
− κn21vq

n−1 (1 − aq)(1 − aq2)
(1 − abqn+1)(1 − aqn+1)

.(4.37)

By using the orthogonality of Pn we can determine completely κn21 and κn22 and they are
given by (4.34). This completes the proof of the theorem.
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Corollary 4.3.3. For the matrix-valued polynomials (Pn)n≥0 with diagonal eigenvalues
we have

⟨Pm, Pn⟩W =Hnδm,n,

where Hn is the diagonal matrix

Hn = diag(∣κn11∣2hn(aq2, b; q) + ∣κn12∣2hn(a, b; q), ∣κn21∣2hn(aq2, b; q) + ∣κn22∣2hn(a, b; q)),
(4.38)

and hn(a, b; q) = ∥pn(a, b; q)∥2.

4.3.2 Expression as a matrix-valued q-hypergeometric function

Let Pn,i be the i-th row of the matrix-valued polynomial Pi. Since the matrix polynomials
Pn satisfy D(Pn) = ΛnPn where D is given by (4.27) and Λn are diagonal matrices, this
q-difference equation can be written as two decoupled row equations

DPn,i(x) = Pn,i(q−1x)F−1(x) + Pn,i(x)F0(x) + Pn,i(qx)F1(x) = λn,iPn,i,(4.39)

where i = 1,2, λn,1 = −q−n−1 − abqn+2, λn,2 = −q−n − abqn+1 and Pn,i are the rows of the
matrix polynomials Pn.

We rewrite (4.39) by multiplying on the right by xL, where L is given by (4.26), we
get fro i = 1,2,

Pn,i(q−1x) (1 − x) + Pn,i(x) (x (U − λn,iI)L − (I + aL2)) + P (qx) ((a − abqx)L2) = 0.

(4.40)

Proposition 4.3.4. The vector-valued orthogonal polynomial solution of (4.40) is given
by

Pn,i(x) = Pn,i(0)2G1[
UL − λn,iL,−abqL2

aL2
; q, qx].(4.41)

Proof. Since σ(aL2) ∩ q−N/{0} = {1, q2} ∩ q−N/{0} = ∅, we apply Theorem 4.2.2 on (4.40) to
get (4.41).

Notice that the initial values of the terminating series (4.41) can be determined by
Theorem 4.3.2, and are given by

Pn(0) = (κ
n
11 κn12 + κn11v
κn21 κn22 + κn21v

) .

4.3.3 The three term recurrence relation and the Rodrigues formula

In this section we compute the coefficients of the three term recurrence relation for (Pn)n
and we show a Rodrigues formula for them.
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Theorem 4.3.5. The sequence of orthogonal polynomials (Pn)n satisfies the three term
recurrence relation

xPn(x) = AnPn+1(x) +BnPn(x) +CnPn−1,(4.42)

where the matrices An, Bn and Cn are given by

An =MnM
−1
n+1 Cn = AnHnH

−1
n−1,

Bn = −AnPn+1(0)(Pn(0))−1 −CnPn−1(0)(Pn(0))−1,

and Mn and Hn are given by (4.32) and (4.38) respectively.

Proof. Consider the recurrence relation

xPn(x) = AnPn+1(x) +BnPn(x) +CnPn−1.(4.43)

By comparing the leading coefficients of (4.43) we get

An =MnM
−1
n+1 =

⎛
⎜⎜
⎝

1 −
qn(1 − q)(1 − aq)(1 + abq2n+3)

(abq2n+2; q2)2
v

0 1

⎞
⎟⎟
⎠
.

From (4.43) we can compute Cn as

Cn = An⟨Pn, Pn⟩⟨Pn−1, Pn−1⟩−1.

Therefore by Corollary 4.3.3 we can write Cn = AnHnH
−1
n−1. To find Bn we first recall

that, by Theorem (4.3.2),

Pn(0) = (κ
n
11 κn12 + κn11v
κn21 κn22 + κn21v

)

and det(Pn(0)) = κn11κ
n
22 − κn21κ

n
12 > 0, by Theorem 4.3.2. If we plug-in x = 0 in (4.43) we

find

Bn = −AnPn+1(0)(Pn(0))−1 −CnPn−1(0)(Pn(0))−1.

The following theorem gives a Rodrigues formula for (Pn)n.

Theorem 4.3.6. Let R(n) be the matrix function given by

R(n) =
⎛
⎜
⎝

(1 − aqn+2)(1 − abqn+3) + av2q2(1 − qn)(1 − bqn+1)
1 − abq2n+3

0

−(1 − qn)avq2 1 − aqn+2

⎞
⎟
⎠
.

Then, the expression

P̄n(qx) = q−xDn
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
LxR(n)(Lx)∗

⎞
⎠
W (qx)−1,(4.44)

defines a sequence of matrix polynomials orthogonal with respect to (4.28)
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Before we prove Theorem 4.3.6 we formulate a Lemma that will be proved later.

Lemma 4.3.7. For 1 < k < n,

Dn−k
q

⎛
⎝
ax+k−1q(n+1)(x+k−1)(bq; q)x+k−1

(q; q)x+k−n−1
T (qx+k−1)R(n)T (qx+k−1)∗

⎞
⎠
Dk
q (qxm)∣

x=0
= 0,(4.45)

and

Dn−k
q

⎛
⎝
ax+k−1q(n+1)(x+k−1)(bq; q)x+k−1

(q; q)x+k−n−1
T (qx+k−1)R(n)T (qx+k−1)∗

⎞
⎠
Dk
q (qxm)∣

x=∞
= 0.

(4.46)

We will also make use of the q-Leibniz rule

(4.47) Dn
q (f(qx)g(qx)) =

n

∑
k=0

[n
k
]Dn−k

q f(qk+x)Dk
q g(qx),

and the following formula

(4.48) Dn
q (f(qx)) = 1

(1 − q)nq(
n
2
)qnx

n

∑
j=0

(−1)n−j[n
j
]q(

n−j
2

)f(qj+x).

Proof of Theorem 4.3.6. We need to prove that for all n ≥ 0, P̄n is a matrix-valued poly-
nomial of degree n with non-singular coefficient and they satisfy an orthogonality relation
with respect to (4.28).

First step. P̄n is a matrix polynomial of degree n with non-singular coefficient.

Let us write qxW (qx) = ρ(qx)Lx (Lx)∗, where the matrix L is given by 4.26 and

ρ(qx) = qxa
x(bq; q)x
(q; q)x

is the weight associated to the scalar little q-Jacobi polynomials with

parameters a and b. Taking into account that LxR(n) (Lx)∗ is a matrix-valued polynomial
of degree 2 in qx and the q-Leibniz rule (4.47), we can write P̄n as

P̄n(qx) =Dn
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
LxR(n)(Lx)∗

⎞
⎠
W (qx)−1

(4.49)

=Dn
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
⎞
⎠
(ρ(x))−1LxR(n)(Lx)∗ (Lx(Lx)∗)−1

+ [n
1
]
q
Dn−1
q

⎛
⎝
ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x−n+1

⎞
⎠
(ρ(x))−1Dq (LxR(n)(Lx)∗) (Lx(Lx)∗)−1

+ [n
2
]
q
Dn−2
q

⎛
⎝
ax+2q(n+1)(x+2)(bq; q)x+2

(q; q)x−n+2

⎞
⎠
(ρ(x))−1D2

q (LxR(n)(Lx)∗) (Lx(Lx)∗)−1
.
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Let us first deal with the scalar part of (4.49). By making use of the formula (4.48)
we can write

Dn
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
⎞
⎠
ρ(qx)−1 = 1

(1 − q)nq(
n
2
)

n

∑
j=0

(−1)n−j[n
j
]
q

q(
n−j
2

)q(n+1)jaj

× (bqx+1; q)j(qx−n+j+1; q)n−j
=tn(qx),(4.50)

Dn−1
q

⎛
⎝
ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n

⎞
⎠
ρ(qx)−1 = qx

(1 − q)n−1q(
n−1
2

)

n−1

∑
j=0

(−1)n−j−1[n − 1

j
]
q

q(
n−j−1

2
)

× q(n+1)(j+1)aj+1(bqx+1; q)j+1(qx−n+j+2; q)n−j−1

=qxrn(qx)(4.51)

Dn−2
q

⎛
⎝
ax+2q(n+1)(x+2)(bq; q)x+2

(q; q)x+2−n

⎞
⎠
ρ(qx)−1 = q2x

(1 − q)n−2q(
n−2
2

)

n−2

∑
j=0

(−1)n−j−2[n − 2

j
]
q

q(
n−j−2

2
)aj+2

× q(n+1)(j+2)(bqx+1; q)j+2(qx−n+j+3; q)n−j−2

=q2xsn(qx),(4.52)

where tn, rn and sn are polynomials of degree n. Moreover, one can directly see that these
polynomials have leading coefficients given by

tnn =
1

(1 − q)nq(
n
2
)

n

∑
j=0

(−1)n−j[n
j
]
q

q(
j+1
2

)q(n+1)jajbj ,(4.53)

rnn =
1

(1 − q)n−1q(
n−1
2

)

n

∑
j=0

(−1)n−j−1[n − 1

j
]
q

q(
j+2
2

)q(n+1)(j+1)aj+1bj+1,(4.54)

snn =
1

(1 − q)n−2q(
n−2
2

)

n

∑
j=0

(−1)n−j−2[n − 2

j
]
q

q(
j+3
2

)q(n+1)(j+2)aj+2bj+2.(4.55)

By applying the q-Leibniz rule (4.47) to the matrix part of (4.49) we can write

Dq(LxR(n)(Lx)∗)(L−x)∗L−x =
1

(1 − q)qx
LxR1(n)L−x,(4.56)

D2
q(LxR(n)(Lx)∗)(L−x)∗L−x =

1

(1 − q)2q2x
LxR2(n)L−x,

where

R1(n) = R(n) −LR(n)L∗, R2(n) = R(n) − (1 + q−1)LR(n)L∗ + q−1L2R(n)(L∗)2.

Taking into account (4.50), (4.51), (4.52) and (4.56), we can write (4.49) as

P̄n(qx) = tn(qx)LxR(n)L−x + [n
1
]
q

qxrn(qx)
(1 − q)qx

LxR1(n)L−x + [n
2
]
q

q2xsn(qx)
(1 − q)2q2x

LxR2(n)L−x.

(4.57)
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By plugging in the explicit expressions of the polynomials tn, rn and sn and of the matrices
R(n), R1(n), R2(n) and Lx and carrying direct computations we get that (4.57) is a
polynomial of degree n with non-singular leading coefficient.

Second step. The orthogonality relation.
To prove that the sequence of polynomials given by (4.44) is orthogonal, we see that for
n ≥ 1 and 0 ≤m < n, ⟨Pn, xmI⟩W = 0 holds.

By using the q-Leibniz rule (4.47), the formal identity given in (4.48) Lemma 4.3.7, we
get

⟨Pn, xm⟩W =
1

q − 1

∞
∑
x=0

Dn
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
LxR(n)(Lx)∗

⎞
⎠
qxm

=Dn−1
q

⎛
⎝
axq(n+1)x(bq; q)x

(q; q)x−n
LxR(n)(Lx)∗

⎞
⎠
Dq(qxm)∣

∞

x=0

+ 1

q − 1

∞
∑
x=0

Dn−1
q

⎛
⎝
ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n
LxR(n)(Lx)∗

⎞
⎠
Dq(qxm)

= 1

q − 1

∞
∑
x=0

Dn−1
q

⎛
⎝
ax+1q(n+1)(x+1)(bq; q)x+1

(q; q)x+1−n
LxR(n)(Lx)∗

⎞
⎠
Dq(qxm),

By repeating this process we obtain

⟨Pn, xm⟩ =
1

q − 1

∞
∑
x=0

Dn−m−1
q

⎛
⎝
ax+m+1qn(x+m+2)(bq; q)x+m+1

(q; q)x+m+1−n
LxR(n)(Lx)∗

⎞
⎠
Dm+1
q (qxm)qx

= 0

because Dm+1
q (qxm) = 0. This gives the desired result.

We now prove Lemma 4.3.7.

Proof of Lemma 4.3.7. To see that the first boundary condition (4.45) holds, we use the
expression

1

(q; q)x−n
= (qx−n+1; q)n

(q; q)x
,

that vanishes at x = 0. Any other quantity involved in (4.45) is bounded in x = 0, then,
we have that (4.45) holds.

For (4.46), use that 0 < a < q−1 and so ax+k−1q(n+1)(x+k−1) goes to 0 when x goes to ∞.
Since all the other quantities remain bounded when x goes to ∞, we obtain the desired
result.







Chapter 5

A family of matrix polynomials
satisfying second order differential
equations.

In this chapter we introduce a family of continuous weight matrices and their sequences
of orthogonal polynomials. We start by presenting the weights via an LDU-decomposition
(see [75]) and we give an alternative expression of them in terms of scalar Gegenbauer
polynomials. We then show that the sequences of orthogonal polynomials are eigenfunc-
tions of two independent differential operators. This property can be exploited to obtain
a matrix Pearson equation for the weight matrices in the sense of [12] and a compact
Rodrigues formula for the polynomials. We also show how the families of polynomials
introduced here can be expressed in terms of matrix hypergeometric functions introduced
in Chapter 1, and we give the expression of these matrix polynomials in terms of scalar
Racah polynomials and Gegenbauer polynomials.

Along the whole chapter we will make use of several summation formulas regarding
hypergeometric functions. Such formulas are listed in Section (1.1).

For a matter of simplicity in the formulas exhibited in this chapter, we perform a tinny
change in the notation used for the matrices, by shifting the index summation range. From
now, a matrix M ∈ C(N+1)×(N+1) will be written as

M =
N

∑
i=0

N

∑
j=0

MijEi,j ,

and Ei,j is the matrix with a 1 in its (i + 1, j + 1) entry, and zero othewise.

5.1 The weight matrix

We define a family of weights matrices (W (ν))ν>0 absolutely continuous with respect to
the Lebesgue measure on (−1,1). Then their densities (that we also denote by W (ν)) are
positive semi-definite matrices on (−1,1) so they can be expressed in terms of an LDU
decomposition of the form L(x)D(x)L∗(x) where L(x) is a triangular unipotent matrix
and D(x) is a positive semi-definite diagonal matrix for all x ∈ (−1,1). In the rest of the

67
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chapter we will use the term weight matrix to refer both to the weight matrix itself and
to the matrix functions that defines it, dW (ν)(x) =W (ν)(x)dx.

To do so we will use the Gegenabuer polynomials defined by (see, for instance, [76],
[59])

(5.1) C(ν)
n (x) = (2ν)n

n!
2F1 (

−n,n + 2ν
1
2 + ν

;
(1 − x)

2
) .

The Gegenbauer polynomials satisfy the orthogonality relation

(5.2) ∫
1

−1
C(ν)
n (x)C(ν)

m (x)(1 − x2)ν−1/2dx =
(2ν)n

√
πΓ(ν + 1

2)
n!(n + ν)Γ(ν)

δm,n.

For ν > 0 and ` ∈ 1
2N, N = 2`+1, we define the matrix polynomials L(ν)∶ [−1,1]→ CN×N

by

(5.3) (L(ν)(x))
m,k

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if m < k
m!

(2ν + 2k)m−k k!
Cν+km−k(x) if m ≥ k,

for k, m = 0,⋯,2`. Notice that they are unipotent lower triangular matrices.

We also introduce the diagonal matrix polynomial

T (ν)∶ [−1,1]→ CN×N

(T (ν)(x))
k,k

= t(ν)k (1 − x2)k, k = 0,⋯,2`

t
(ν)
k = k! (ν)k

(ν + 1/2)k
(2ν + 2`)k (2` + ν)

(2` − k + 1)k (2ν + k − 1)k
.

(5.4)

A direct check shows that T (ν)(x) is a positive definite matrix for all x ∈ (−1,1) and for
all ν > 0.

Definition 5.1.1. Let ν > 0 and ` ∈ 1
2N, set N = 2`+1. Let W (ν) be the continuous weight

matrix supported on (−1,1) and given by dW (ν) =W (ν)(x)dx, where

(5.5) W (ν)(x) = L(ν)(x)T (ν)(x) (L(ν)(x))
∗
.

Observation 5.1.2. Notice that

(L(ν)(1))
i,j

= (i
j
), (L(ν)(−1))

i,j
= (−1)i−j(i

j
), for i ≥ j,

it is also clear that (T (ν)(±1))
k,k

= t(ν)0 δk,0. If we write W (ν) = (1 − x2)ν−1/2W
(ν)
pol (x) then

we get

(5.6) (W (ν)
pol (1))i,j = t

(ν)
0 = 2` + ν, (W (ν)

pol (−1))
i,j

= (−1)i−j(2` + ν).



5.1. The weight matrix 69

Observation 5.1.3. The matrix L(x) is invertible, and it is remarkable that the inverse
is again completely described in terms of hypergeometric series. Explicitly, see Cagliero
and Koornwinder [11, (4.7), Thm. 4.1],

(5.7) ((L(ν)(x))−1)
k,n

= k!

n! (2ν + k + n − 1)k−n
C

(1−ν−k)
k−n (x), k ≥ n,

where we follow the convention of [11] for C
(−p)
n (x) for p ∈ N,

C−p
n = (−2p)n

n!
2F1 (

−n,n − 2p
1
2 − p

;
(1 − x)

2
) .

The next theorem gives an alternative expression for the weight matrices W (ν) in terms
of scalar Gegenbauer polynomials.

Theorem 5.1.4. For ` ∈ 1
2N and ν > 0, the weight function W (ν) can be expressed as

(W (ν)(x))
i,j

= (1 − x2)ν−1/2
i

∑
t=max(0,i+j−2`)

α
(ν)
t (i, j)C(ν)

i+j−2t(x),(5.8)

α
(ν)
t (i, j) = (−1)i j! i! (i + j − 2t)!

t! (2ν)i+j−2t (ν)i+j−t
(ν)j−t(ν)i−t

(j − t)! (i − t)!
(i + j − 2t + ν)
(i + j − t + ν)

(5.9)

× (2` − i)!(j − 2`)i−t(−2` − ν)t
(2` + ν)
(2`)!

,

where C
(ν)
n stands for the Gegenbauer polynomials (5.1), i, j ∈ {0,1,⋯,2`} and j ≥ i, and

(W (ν)(x))
i,j

= (W (ν)(x))
j,i

for j < i.

Before we prove Theorem 5.1.4 we announce a lemma that is needed and will be proved
afterwards.

Lemma 5.1.5. For ν > −1/2, i ≤ j, and t, k ∈ {0,1,⋯, i} the following holds

α
(ν)
t (i, j)

(2ν)i+j−2t
√
πΓ(ν + 1

2)
(i + j − 2t)!(i + j − 2t + ν)Γ(ν)

=
i

∑
k=0

i! j! t
(ν)
k

k!k! (2ν + 2k)i−k(2ν + 2k)j−k
(5.10)

×∫
1

−1
C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
i+j−2t(x) (1 − x

2)k+ν−1/2 dx.

We can now prove Theorem 5.1.4.

Proof of Theorem 5.1.4. Because of the symmetries of the matrices involved it suffices to
see that for i ≤ j the (i, j)-entry of (5.5) is equal to the right hand side of (5.8), that is

(5.11)
i

∑
t=0

α
(ν)
t (i, j)C(ν)

i+j−2t(x) =
i

∑
k=0

i! j! t
(ν)
k (1 − x2)k

k!k! (2ν + 2k)i−k(2ν + 2k)j−k
C

(ν+k)
i−k (x)C(ν+k)

j−k (x),

By the orthogonality relation for the Gegenbauer polynomials (5.2), (5.11) is equivalent
to see that for r ≠ i + j − 2t, t = 0,⋯, i,
(5.12)

i

∑
k=0

i! j! t
(ν)
k

k!k! (2ν + 2k)i−k(2ν + 2k)j−k ∫
1

−1
C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
r (x)(1 − x2)k+ν−1/2 = 0,
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and for r = i + j − 2t with t = 0,⋯, i,

(5.13) α
(ν)
t (i, j)∣∣C(ν)

i+j−2t∣∣
2
ν =

i

∑
k=0

i! j! t
(ν)
k ∫

1
−1C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
j+i−2t(x)(1 − x

2)k+ν−1/2

k!k!(2ν + 2k)i−k(2ν + 2k)j−k
.

To see that (5.12) holds, we apply the connection formula of C
(ν)
r and the linearization

formula for the product C
(ν+k)
i−k C

(ν+k)
j−k (see for instance [76]),

C(γ)
r =

[ r
2
]

∑
j=0

(γ − β)j(γ)r−j
j!(β + 1)r−j

β + r − 2j

β
C

(β)
r−2j ,(5.14)

C(γ)
n C(γ)

m =
min(m,n)
∑
j=0

(n +m − 2j + γ)(n +m − 2j)!(γ)j
(n +m − j + γ)j!(n − j)!(m − j)!

(5.15)

×
(α)n−j(α)m−j(2α)m+n−j
(α)m+n−j(2α)m+n−2j

C
(α)
n+m−2j ,

and we obtain

∫
1

−1
C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
r (x)(1 − x2)k+ν−1/2 = 0

for i + j − r odd and r < j + i or r > i + j. That is r ≠ i + j − 2t for t = 0,⋯, i. So (5.12) is,
indeed, equal to zero. For (5.13), we apply Lemma 5.1.5 and we have the result since by
(5.2),

∣∣C(ν)
i+j−2t∣∣

2
ν =

(2ν)i+j−2t
√
πΓ(ν + 1

2)
(i + j − 2t)!(i + j − 2t + ν)Γ(ν)

.

We now prove Lemma 5.1.5.

Proof of Lemma 5.1.5. To see that (5.10) holds we start by evaluating the integral on the
right hand side

∫
1

−1
C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
i+j−2t(x) (1 − x

2)k+ν−1/2 dx.(5.16)

By applying the the connection formula, (5.14) and the linearization formula, (5.15) for
the Gegenbauer polynomials, we get that (5.16) can be written as

(ν + k)i−k(2ν + 2k)j−k(−i)i−t(ν)j−tΓ(ν + k + 1/2)
(i − k)! (j − k)! (i − t)! Γ(ν + i + j − t + 1)

√
π

× 4F3 (
k − i,−i − k − 2ν + 1, t − i, ν + 1 + j − t

−i,−i − ν + 1, j − i + 1
; 1) ,

where we have also used the orthogonality relations for the Gegenbauer polynomials (5.2).
Using Whipple’s transformation, (see 1.6), twice (once with (n, a, d) of as (i − k,−i − 2ν −
k + 1,−i) and the second time as (t,−i − j − ν + t,−i)) the 4F3-series can be rewritten as

(5.17)
(1 − j − i − 2ν)i−k(−j)t(ν)t

(1 + j − i)i−k(1 − ν − i)t(1 − i − j − 2ν)t
4F3 (

−k, k + 2ν − 1,−t, t − i − j − ν
−i, −j, ν

; 1) .
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Then, the integral (5.16) remains

∫
1

−1
C

(ν+k)
i−k (x)C(ν+k)

j−k (x)C(ν)
i+j−2t(x) (1 − x

2)k+ν−1/2 dx =(5.18)

√
π
(ν + k)i−k(2ν + 2k)j−k(−i)i−t(ν)j−t

(i − k)! (j − k)! (i − t)!
Γ(ν + k + 1/2)

Γ(ν + i + j − t + 1)

× (1 − j − i − 2ν)i−k(−j)t(ν)t
(1 + j − i)i−k(1 − ν − i)t(1 − i − j − 2ν)t

×
min(k,t)
∑
m=0

(−k)m(k + 2ν − 1)m(−t)m(t − i − j − ν)m
(−i)m(−j)m(ν)mm!

.

We now plug (5.18) in (5.10) We next interchange the summations over k and m, and in
the summation ∑ik=m we replace k = p+m. This gives for the inner sum (the k-dependent
part)

(2ν + 2`)m(1 − j − i − 2ν)i−m(2ν +m)m
(−2`)m(2ν +m)i(i −m)! (1 + j − i)i−m

× 5F4
⎛
⎝

2ν + 2m − 1, ν +m + 1
2 ,m − j,2ν + 2l +m,m − i

ν +m − 1
2 ,2ν +m + j,−2` +m,2ν + i +m

; 1
⎞
⎠

= (1 − j − i − 2ν)i(j − 2`)i
(−2`)ii! (1 + j − i)i(2ν + j)i

(2ν + 2`)m(−i)m(−j)m
(1 − j − i + 2`)m

where we have used the Dougall summation formula for a very-well-poised 5F4-series, (1.7).
This shows that the right hand side of (5.10) can be written as a single sum; explicitly

(−i)i−t(ν)j−t
√
π(−j)t(ν)tj! (2` + ν)(ν)iΓ(ν + 1

2)(1 − i − j − 2ν)i(j − 2`)i
(i − j)! (i − t)! Γ(ν + i + j − t + 1)(1 − ν − i)t(1 − i − j − 2ν)t(−2`)i

× 1

(1 + j − i)i(2ν + j)i
3F2 (

−t, t − i − j − ν,2ν + 2`

ν,1 − i − j + 2`
; 1) .

The balanced 3F2-series is summable to
(1−i−j−2ν)t(−2`−ν)t

(ν)t(2`+1−i−j)t by the Pfaff-Saalschütz for-

mula, (1.5). Next, a straightforward verification using the expression of α
(ν)
t (i, j) in (5.9)

shows that this is equal to the left hand side of (5.10), which proves Lemma 5.1.5.

As it was mentioned in the preliminaries, given a weight matrix one can always con-

struct a sequence of orthogonal polynomials with respect to it. We denote by P
(ν)
n the

corresponding monic matrix orthogonal polynomial of degree n, thus

∫
1

−1
P (ν)
n (x)W (ν)(x)(P (ν)

m (x))∗ dx = δn,mH(ν)
n ,

P (ν)
n (x) = xnI + xn−1P

(ν)
n,n−1 +⋯ + xP (ν)

n,1 + P (ν)
n,0 , P (ν)

n,n = I,P (ν)
n,i ∈ C2`+1×2`+1,

(5.19)

where H
(ν)
n is a positive definite matrix. We denote the matrix inner product by

(5.20) ⟨P,Q⟩(ν) = ∫
1

−1
P (x)W (ν)(x) (Q(x))∗ dx, ν > 0.
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In particular, the case n = 0 in (5.19) can be evaluated explicitly using the orthogonality

relations for the Gegenbauer polynomials (5.2) and (5.5), to see that H
(ν)
0 is a diagonal

matrix with entries
(5.21)

(H(ν)
0 )

k,k
= α(ν)

k (k, k)∫
1

−1
(1 − x2)ν−1/2 dx = (2` + ν)

√
π

Γ(ν + 1
2)

Γ(ν + 1)
k! (2` − k)! (ν + 1)2`

(2`)! (ν + 1)k(ν + 1)2`−k
.

Before we study the polynomials closely, and in order to be able to establish a result
concerning the decomposition of the weight matrix, we determine the commutant of the
weight, that is the algebra of matrices that commute with the weight.

Proposition 5.1.1. Let ν > 0, N = 2` + 1. The commutant algebra, A(ν) = {T ∈ CN×N ∣
[T,W (ν)(x)] = 0, ∀x ∈ (−1,1)}, is generated by J, where J ∈ CN×N is the involution defined
by ej ↦ e2`−j.

Proof. We first show that J ∈ A(ν). Notice that W (ν) commutes with J if and only if

(W (ν)(x))
j,2`−i

= (W (ν)(x))
2`−j,i

.

From the expression of W (ν) in Theorem 5.1.4 and comparing the coefficients of the
Gegenbauer polynomials we need to prove

α
(ν)
t (min(2` −m,n),max(2` −m,n)) = α(ν)

t+m−n(min(2` − n,m),max(2` − n,m)).

This is straightforwardly verified from the expression of α
(ν)
t (5.9). Notice that the sum-

mation ranges in (5.8) also match.
We now prove that if S is in the commutant then it is a linear combination of J and I.

Write W (ν)(x) = (1 − x2)ν−1/2W
(ν)
pol (x), and W

(ν)
pol (x) = ∑

2`
k=0Wkx

k where Wk ∈ CN×N

are Hermitian matrices. Then S ∈ A(ν) if and only if [S,Wk] = 0 for all k = 0,⋯,2`.
Take k = 2`. From (5.8) and (5.9) we observe that (W2`)ij ≠ 0 only for j = 2` − i,

then (SW2`)ij = (W2`S)ij if and only if (S)i,2`−j (W2`)2`−j,j = (W2`)i,2`−i (S)2`−i,j , then for
i, j = 0,⋯,2`

(S)i,2`−j =
(W2`)i,2`−i
(W2`)2`−j,j

(S)2`−i,j =
(W2`)i,2`−i (W2`)2`−i,i

(W2`)2`−j,j (W2`)j,2`−j
(S)i,2`−j(5.22)

From the expression in (5.8) and since ν > 0, we have that (W2`)j,2`−j = (W2`)i,2`−i if and

only if j = i or j = 2`− i. Therefore, from (5.22) we get that if S ∈ A(ν) then Si,j = 0 unless
j = i or j = 2` − i. Moreover

(5.23) Si,2`−i = S2`−i,i, Si,i = S2`−i,2`−i.

Now take k = 2`−1. From (5.8) and taking into account that the Gegenbauer polynomials
of even order are even and of odd order are odd we get that (W2`−1)i,j vanishes except for

∣i + j − 2`∣ = 1. Then, we have that S ∈ A(ν) if and only if

Si,2`−j+1 (W2`−1)2`−j+1,j + Si,2`−j−1 (W2`−1)2`−j−1,j =(5.24)

S2`−i+1,j (W2`−1)i,2`−i+1 + S2`−i−1,j (W2`−1)i,2`−i−1 .
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Taking into account that Si,j = 0 unless j = i or j = 2` − i, we have that (5.24) is trivial
except for i = 2` − j + 1, j + 1, 2` − j − 1, j − 1. By plugging in each of the values for which
(5.24) is non-trivial and taking into account the symmetries of W2`−1 we get that

Sj,j = S2`−j+1,2`−j+1, Sj,2`−j = Sj−1,2`−j+1, for j = 1,⋯,2`, j ≠ `,

and, in the case j = `, we also get S`,` = S`+1,`+1+S`+1,`−1. This, together with (5.23), gives
that S is a linear combination of J and I. So, we can conclude that A(ν) is spanned by I
and J for all ν > −1/2.

Observation 5.1.6. It follows that A(ν) is a two-dimensional algebra, and that the in-
variant subspaces of C2`+1 for W (ν)(x) are the ±1-eigenspaces of J. Then, the restrictions
of W (ν)(x) to the ±1-eigenspaces are irreducible. Explicitly,

W (ν)(x) = Y t
`

⎛
⎝
W

(ν)
+ (x) 0

0 W
(ν)
− (x)

⎞
⎠
Y`, Y` ∈ SO(2` + 1),

Yp+ 1
2
= 1

2

√
2( Ip+1 Jp+1

−Jp+1 Ip+1
) , Yp =

1

2

√
2
⎛
⎜
⎝

Ip 0 Jp
0

√
2 0

−Jp 0 Ip

⎞
⎟
⎠
, p ∈ N,

(5.25)

where Ip denotes the identity as p × p-matrix and Jp the antidiagonal matrix in Cp×p,

Jp =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 1
0 0 ⋯ 1 0

⋰
0 1 ⋯ 0 0
1 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

That means that the weight matrix W (ν) can be reduced to lower size, (5.25) and it admits
no more reduction.

Note that W
(ν)
+ (x) ∈ Cr1×r1 and W

(ν)
− (x) ∈ Cr2×r2 with r1 = ⌈` + 1

2⌉ and r2 = ⌊` + 1
2⌋,

where ⌈ ⌉ and ⌊ ⌋ are the ceiling and floor functions,

⌈x⌉ = min{m ∈ Z ∣ m ≥ x} , ⌊x⌋max{m ∈ Z ∣ m ≤ x} .

The corresponding monic orthogonal polynomials are denoted P
(ν)
±,n .

Since C
(ν)
n (−x) = (−1)nC(ν)

n (x), the involution F ∈ C2`+1×2`+1, ej ↦ (−1)jej satisfies
W (ν)(x)F = FW (ν)(−x). Since FJ = (−1)2`JF, we find, in the case when the dimension

2` + 1 is even that the weights W
(ν)
+ (−x) = FJW

(ν)
− (x)JF (where F and J are now the

corresponding diagonal and antidiagonal operators in C
2`+1
2

× 2`+1
2 .) For odd 2` + 1 there is

no link between the weights W
(ν)
± .

5.2 Polynomial eigenfunctions of matrix differential opera-
tors

In this section we present, for each ν > 0 a first order and a second order matrix differential
operators which are symmetric with respect to the weight function W (ν), and such that
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they do not raise the degree of polynomials. In particular (see Lemma 1.3.3) this implies
that the corresponding monic matrix orthogonal polynomials are eigenfunctions for these
differential operators. These differential operators can be combined to obtain matrix
functions that connect to the results by Cantero, Moral and Velázquez in [12]. This
leads to forward shift and backward shift operators which can be used to give an explicit
evaluation of the squared norm and to establish a Rodrigues formula.

Theorem 5.2.1. For ν > 0, let D(ν) and E(ν) be the matrix differential operators

D(ν)(⋅) = (1 − x2) d
2

dx2
(⋅) + d

dx
(⋅)(C(ν) − xU (ν)) − V (ν),(5.26)

E(ν)(⋅) = d

dx
(⋅)(xB(ν)

1 +B(ν)
0 ) +A(ν)

0 ,(5.27)

where the matrices C(ν), U (ν), V (ν), B
(ν)
0 , B

(ν)
1 and A

(ν)
0 are given by

C(ν) =
2`

∑
i=0

(2` − i)Ei,i+1 +
2`

∑
i=0

iEi,i−1, U (ν) = (2` + 2ν + 1)I,

V (ν) = −
2`

∑
i=0

i(2` − i)Ei,i + (ν − 1)(2` + ν + 1)I,

B
(ν)
0 =

2`

∑
i=0

(2` − i)
2`

Ei,i+1 −
2`

∑
i=0

i

2`
Ei,i−1, B

(ν)
1 = −

2`

∑
i=0

(` − i)
`
Ei,i,

A
(ν)
0 =

2`

∑
i=0

((2` + 2)(i − 2`)
2`

− (ν − 1)(` − i)
`

)Ei,i.

Then, D(ν) and E(ν) are symmetric with respect to the weight W (ν), and D(ν) and E(ν)

commute. Moreover, for every integer n ≥ 0, the monic orthogonal polynomials with respect

to W (ν), (P (ν)
n )n satisfy:

D(ν)(P (ν)
n ) = Λn(D(ν))P (ν)

n , Λn(D(ν)) =
2`

∑
i=0

(i(2` − i) − (n + ν − 1)(2` + ν + n + 1))Ei,i,

(5.28)

E(ν)(P (ν)
n ) = Λn(E(ν))P (ν)

n , Λn(E(ν)) =
2`

∑
i=0

(` + 1)(i − 2`) − n(` − i) − (ν − 1)(` − i)
`

Ei,i.

(5.29)

Proof. We make use of Theorem 1.3.7 to see that the differential operators E(ν) and D(ν)

are symmetric with respect to W (ν).
The symmetry of E(ν) with respect to W (ν). By Theorem 1.3.7 and writing

W (ν)(x) = ρ(x)W (ν)
pol (x) with ρ(x) = (1 − x2)ν−1/2, we have that the symmetry equations

for E(ν) and W (ν) are given by

0 =W (ν)
pol (x)(xB

(ν)
1 +B(ν)

0 )∗ + (xB(ν)
1 +B(ν)

0 )W (ν)
pol (x),(5.30)

0 = −A′
1(x)W

(ν)
pol (x) −

ρ′(x)
ρ(x)

(xB(ν)
1 +B(ν)

0 )W (ν)
pol (x)(5.31)

− (xB(ν)
1 +B(ν)

0 )W (ν)
pol (x)

′ +A0W
(ν)
pol (x) −W

(ν)
pol (x)A

(ν)
0 .
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And the boundary condition is

lim
x→±1

(xB1 +B0)W (ν)(x) = 0.(5.32)

We start by proving the boundary condition (5.32). Because of Observation 5.6 we have
that for all i, j = 0,⋯2`

(lim
x→1

(xB1 +B0)W (ν)(x))
i,j

= (lim
x→1

(1 − x2)(ν−1/2) (xB1 +B0)Wpol(1))
i,j

= lim
x→1

(1 − x2)(ν−1/2) (x(B1)i,i + (B0)i,i+1 + (B0)i,i−1)

= lim
x→1

(1 − x2)(ν−1/2)(1 − x)(2` + ν)` − i
i

= 0,

since ν > 0. Similarly, we can see that

( lim
x→−1

(xB1 +B0)W (ν)(x))
i,j

= 0, for i, j = 0,⋯,2`.

For the symmetry equations, we check entry per entry the matrix equations (5.30) and
(5.31). We do it for i ≤ j − 1, the other cases can be done similarly. We start with the
proof of (5.30). By preforming the matrix product we get that the (i, j)-component of
(5.30) is given by

(W (ν)
pol (x)(xB

(ν)
1 +B(ν)

0 )∗ + (xB(ν)
1 +B(ν)

0 )W (ν)
pol (x))i,j =(5.33)

− i

2`

i−1

∑
t=0

α
(ν)
t (i − 1, j)C(ν)

i+j−2t−1(x) −
` − i
`

i

∑
t=0

xα
(ν)
t (i, j)C(ν)

i+j−2t(x)

+ 2` − i
2`

i+1

∑
t=0

α
(ν)
t (i + 1, j)C(ν)

i+j−2t+1(x) −
j

2`

i

∑
t=0

α
(ν)
t (i, j − 1)C(ν)

i+j−2t−1(x)

− ` − j
`

i

∑
t=0

xα
(ν)
t (i, j)C(ν)

i+j−2t(x) +
2` − j

2`

i

∑
t=0

α
(ν)
t (i, j + 1)C(ν)

i+j−2t+1(x).

where we have used the explicit expressions of W (ν) from Theorem 5.1.4 and that xB
(ν)
1 +

B
(ν)
0 is tridiagonal. Next, we use the three-recurrence relation for Gegenbauer polynomials,

see e.g. [76], [77],

xC(ν)
r (x) = (r + 1)

2(r + ν)
C

(ν)
r+1(x) +

(r + 2ν − 1)
2(r + ν)

C
(ν)
r−1,

to get rid of the multiplication by x. Notice that the coefficient of C
(ν)
m+n+1 is equal to

α
(ν)
0 (i, j) i + j + 1

2(i + j + ν)
j − `
`

+ α(ν)
0 (i, j + 1)2` − j

2`

+ α(ν)
0 (i, j) i + j + 1

2(i + j + ν)
i − `
`

+ α(ν)
0 (i + 1, j)2` − i

2`
= 0,



76 CHAPTER 5. CONTINUOUS MATRIX POLYNOMIALS

what follows from the expression of α
(ν)
t (i, j) (5.9). Regrouping and using the explicit

expressions for α
(ν)
t (m,n) we get that the right hand side of (5.33) equals

i

∑
t=0

α
(ν)
t (i, j)(i + j − 2t + 2ν − 1)

2`(i + j − 2t + ν)
C

(ν)
i+j−2t−1(x)

× [(i + j − 2t + ν − 1)(i + j + ν − t)(2` − i + 1)(i − t)
(2` − i − j + t + 1)(i + j − 2t)(i + ν − t − 1)

+ (i + j − 2t + ν − 1)(i + j + ν − t)(2` − j + 1)(j − t)
2`(2` − i − j + t + 1)(i + j − 2t)(j + ν − t − 1)

− (2` − i − j) + (i + j − 1 − 2t + ν)(2` + ν − t)(i + 1)(j − t)
(i + j − 2t)(t + 1)(j + ν − t − 1)

+ (i + j − 2t + ν − 1)(2` + ν − t)(j + 1)(i − t)
(i + j − 2t)(t + 1)(i + ν − t − 1)

−(2` − i − j)(i + j − 2t + 2ν − 2)(i − t)(i + j + ν − t)(j − t)(2` + ν − t)
(j + ν − t − 1)(i + j − 2t)(ν + i − t − 1)(2` − i − j + t + 1)(t + 1)

] ,

and it is a straightforward check that the coefficient in square brackets is equal to 0.

For the proof of the second symmetry equation we proceed in the same way. For the
(i, j)-entry of (5.31)

(2ν − 1)x((xB(ν)
1 +B(ν)

0 )W (ν)
pol (x))i,j − (1 − x2)((xB(ν)

1 +B(ν)
0 )W (ν)

pol (x)
′)i,j

+(1 − x2)[(A(ν)
0 )i,i − (A(ν)

0 )j,j − (B(ν)
1 )i,i](W (ν)

pol (x))i,j ,

we use the three term recurrence for the Gegenbauer polynomials to get rid of the multi-
plication by x and by x2. We also have to use

(5.34) (1 − x2)dC
(ν)
r

dx
(x) = (r + 2ν − 1)(r + 2ν)

2(r + ν)
C

(ν)
r−1(x) −

r(r + 1)
2(r + ν)

C
(ν)
r+1(x)

,

see e.g. [76, (4.5.7)] with the convention C
(ν)
−1 (x) = 0. So this gives again a sum only involv-

ing Gegenbauer polynomials as in the check of the (5.30). Insert the explicit expression

of the coefficients α
(ν)
t (i, j) (5.9) to complete the proof by a straightforward but cuber-

some computation to see that each coefficient in the expansion of Gegenbauer polynomials
vanishes.

This completes the proof of the symmetry of E(ν) with respect to W (ν).

The symmetry of D(ν) with respect to W (ν). The symmetry equations for D(ν)

and W (ν) are

2
d

dx
((1 − x2)W (ν)(x)) − (C(ν) − xU (ν))W (ν)(x) =W (ν)(x)(C(ν) − xU (ν))∗,

(5.35)

d2

dx2
((1 − x2)W (ν)(x)) − d

dx
((C(ν) − xU (ν))W (ν)(x)) + V (ν)W (ν)(x) =W (ν)(x)(V (ν))∗,

(5.36)
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and the boundary condition are

(5.37) lim
x→±1

(1−x2)W (ν)(x) = 0, lim
x→±1

((1−x2)W (ν)(x))′−(C(ν)−xU (ν))W (ν)(x) = 0.

We start by proving the symmetry equations.
We skip the proof of (5.35) because it is completely similar to that of (5.30).
For the symmetry equation (5.36) by making use of (5.35) we see that it suffices to

prove
(5.38)

(W (ν)(x)(C(ν) − xU (ν))∗ − (C(ν) − xU (ν))W (ν)(x))′ = 2(W (ν)(x)V (ν) − V (ν)W (ν)(x)).

We prove instead that

W (ν)(x)(C(ν) − xU (ν))∗ − (C(ν) − xU (ν))W (ν)(x)

− 2(∫ W (ν)(x)dx)V (ν) + 2V (ν) (∫ W (ν)(x)dx) = 0,
(5.39)

which is obtained by integrating (5.38) with respect to x. Then, (5.38) follows by taking
the derivative with respect to x.

We prove that the (i, j) component for i < j is zero. The other cases can be proved
similarly. By performing the matrix product we see that the (i, j) component of
(W (x)(C(ν) − xU (ν))∗ − (C(ν) − xU (ν))W (x)) is given by

ρ(x)
i

∑
t=0

C
(ν)
i+j−2t−1 [jα

(ν)
t (i, j − 1) + (2` − j)α(ν)

t+1(i, j + 1) − iα(ν)
t+1(i − 1, j) − (2` − i)α(ν)

t+1(i + 1, j)]

(5.40)

= −
i

∑
t=0

ρ(x)C(ν)
i+j−2t−1[(ν − 1)(i + j − 2t` − 2t − 2` − 1 + i) + 2(i − t)(j − t)(` + 1)]

× (2` − i − j)(i − j)(i + j − 1 − 2t + ν)(i + j + 2ν − 1 − 2t)
(i + j − 2t + ν)(i + j − 2t)(i + ν − t − 1)(2` − i − j + t + 1)(j + ν − t − 1)

.

In order to compute the part of (5.39) involving the integrals, we use the following
formula for the Gegenbauer polynomials:

(5.41) ∫ ρ(x)C(ν)
r (x)dx = ρ(x)

⎛
⎝

(r + 1)C(ν)
r+1(x)

2(ν + r)(2ν + r)
−

(2ν + r − 1)C(ν)
r−1(x)

2r(ν + r)
⎞
⎠
,

which follows from the Rodrigues formulas for the Gegenbauer polynomials [76, (4.5.11)],
[76, (4.5.5)] and (5.34). Using (5.41) for the integrals in (5.39) we obtain

2((∫ W (ν)(x)dx)V (ν) − V (ν) (∫ W (ν)(x)dx))
i,j

= (i − j)(2` − i − j)ρ(x)
i

∑
t=0

α
(ν)
t (i, j) [− (2ν + i + j − 2t − 1)

(i + j − 2t)(ν + i + j − 2t)

×
α
(ν)
t (i, j)
α
(ν)
t+1(i, j)

(i + j − 2t − 1

(ν + i + j − 2t − 2)(2ν + i + j − 2t − 2)

⎤⎥⎥⎥⎥⎦
C

(ν)
i+j−2t−1(x),
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which is (5.40).
We now prove the boundary condition (5.37). The first one is direct since W (ν)(x) =

(1−x2)ν−1/2W
(ν)
pol (x), ν > 0 and W

(ν)
pol (x) is a matrix polynomial. For the second boundary

condition we use the first symmetry equation (5.35) to see that it is equivalent to prove
that

lim
x→±1

((W (ν)(x)(xU (ν) −C(ν))∗ − (xU (ν) −C(ν))W (ν)(x)))
i,j

= 0, for all i, j = 0,⋯,2`.

Since U (ν) is a multiple of the identity matrix we get that the second boundary condition
for D(ν) holds if and only if
limx→±1 (W (ν)(x)(C(ν))∗ −C(ν)W (ν)(x))

i,j
= 0 for all i, j = 0,⋯,2`. By performing the

matrix product we get

lim
x→±1

(W (ν)(x)(C(ν))∗ −C(ν)W (ν)(x))
i,j
= lim
x→±1

((W (ν))i,j−1(x)C(ν)
j,j−1 + (W (ν))i,j+1(x)C(ν)

j,j+1

(5.42)

− (C(ν))i,i−1(W (ν)(x))i−1,j −(C(ν))i,i+1(W (ν)(x))i+1,j) .

From the expression of W (ν) in Definition 5.1.1 it follows that

lim
x→±1

(W (ν)(x))i,j = t(ν)0 lim
x→±1

(1 − x2)ν−1/2L
(ν)
i,0 (x)L(ν)

j,0 (x).

Therefore (5.42) becomes

lim
x→±1

(1 − x2)ν−1/2 (j L(ν)
i,0 (x)L(ν)

j−1,0(x) + (2` − j)L(ν)
i,0 (x)L(ν)

j+1,0(x)

−iL(ν)
j,0 (x)L(ν)

i−1,0(x) − (2` − i)L(ν)
j,0 (x)L(ν)

i+1,0(x)) .

By introducing the explicit values from the definition of the matrix functions L(ν)(x) and
taking into account the expression of the Gegenbauer polynomials (5.1) and the symmetry
relation

C(ν)
n (x) = (−1)nC(ν)

n (−x) = (−1)n (2ν)n
n!

2F1 (
−n,n + 2ν

ν + 1
2

;
1 + x

2
) ,

we get that

(j L(ν)
i,0 (x)L(ν)

j−1,0(x) + (2` − j)L(ν)
i,0 (x)L(ν)

j+1,0(x)

−iL(ν)
j,0 (x)L(ν)

i−1,0(x) − (2` − i)L(ν)
j,0 (x)L(ν)

i+1,0(x))

=(1 − x)K1(x) = (1 + x)K2(x),

where K1(x) and K2(x) are matrix polynomials. Therefore, since ν > 0 we have

lim
x→±1

(W (ν)(x)(C(ν))∗ −C(ν)W (ν)(x))
i,j

= 0, for all i, j = 0,⋯,2`.

That is, the second boundary condition in (5.37) holds. So, by Theorem 1.3.7, D(ν) is
symmetric with respect to W (ν).
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It just remains to see that the monic orthogonal polynomials satisfy (5.28) and (5.29).
To do so we first notice that E(ν) and D(ν) do not raise the degree of polynomials, so
Lemma 1.3.3 applies and we get that the monic orthogonal polynomials are eigenfunctions
of D(ν) and E(ν). The expression of the eigenvalues in (5.28) and (5.29) follows directly
by equating the corresponding coefficients.

For matrix orthogonal polynomials, Cantero, Moral and Velázquez [12] established
criteria for the derivatives of matrix orthogonal polynomials to be again matrix orthogonal
polynomials. A result that is recovered in Theorem 1.3.9.

In order to establish the connection with Theorem 1.3.9, we consider the following
second order differential operator for ν > 01,

(5.43) D
(ν)
(Φ,Ψ) = (E(ν))2 + (2`+ 2)E(ν) +((` + ν)2

`2
)D(ν) + ν (ν − 1) (2 ` + ν + 1) (ν + 2 `)

`2
I.

By Theorem 5.2.1, D
(ν)
(Φ,Ψ) is symmetric with respect to the weight W (ν). Moreover, it

commutes with J.

Proposition 5.2.1. The matrix differential operator D
(ν)
(Φ,Ψ) commutes with J.

Proof. A straightforward calculation shows that D(ν) commutes with J, and that the
differential operator E(ν) satisfies

JE(ν)J = − (E(ν) + (` + 1)I) .

Then, by the definition of D
(ν)
(Φ,Ψ), it is clear that

JD
(ν)
(Φ,Ψ)J = J((E(ν))2 + (2` + 2)E(ν) + ((̀ + ν)2

`2
)D(ν) + ν (ν − 1) (2 ` + ν + 1) (ν + 2 `)

`2
I)J

= (E(ν))2 + (2` + 2)E(ν) + ((` + ν)2

`2
)D(ν) + ν (ν − 1) (2 ` + ν + 1) (ν + 2 `)

`2
I.

A straightforward calculation shows that D
(ν)
(Φ,Ψ) can be written as

(5.44) D
(ν)
(Φ,Ψ) =

d2

dx2
Φ(ν)(x)∗ + d

dx
Ψ(ν)(x)∗,

1The notation of this operator is motivated by equation (5.44)
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where Φ(ν) and Ψ(ν) are the explicit matrix polynomials of degree 2 and 1,

Φ(ν)(x) =x2
2`

∑
i=0

(` − i)2 − (` + ν)2

`2
Ei,i + x

2`

∑
i=1

(i − 1 − 2`)(2` − 2i + 1)
2`2

Ei,i−1(5.45)

+ x
2`−1

∑
i=0

(i + 1)(2` − 2i − 1)
2`2

Ei,i+1 +
2`

∑
i=2

(2` − i + 2)(2` − i + 1)
4`2

Ei,i−2

+
2`

∑
i=0

−i(2` − i + 1) − (2` − i)(i + 1) + 4(` + ν)2

4`2
Ei,i

+
2`−2

∑
i=0

(i + 2)(i + 1)
4`2

Ei,i+2,

Ψ(ν)(x) = −x
2`

∑
i=0

(2` + 2ν + 1) (ν + i) (ν + 2 ` − i)
`2

Ei,i(5.46)

− (` + ν + 1

2
)(

2`

∑
i=1

(i − 1 − 2 `) (ν + i − 1)
`2

Ei,i−1 +
2`−1

∑
i=0

(i + 1) (ν + 2 ` − i − 1)
`2

Ei,i+1) .

Proposition 5.2.2. Let ν > 0. The weight matrix W (ν)(x) and the matrix polynomials

Φ(ν)(x) and Ψ(ν)(x) satisfy (W (ν)(x)Φ(ν)(x))′ =W (ν)(x)Ψ(ν)(x).

Proof. Since D
(ν)
(Φ,Ψ) is a combination of symmetric differential operators it is symmetric,

so it satisfies the symmetry equations

(5.47) (Φ(ν)(x)∗W (ν)(x))′′ − (Ψ(ν)(x)∗W (ν)(x))′ = 0,

and the boundary condition

(5.48) lim
x→−1

(Φ(ν)(x)∗W (ν)(x))
′
−Ψ(ν)(x)∗W (ν)(x) = 0

holds. Integrating (5.47) in (−1, x) and taking into account (5.48) we get

(Φ(ν)(x)∗W (ν)(x))′ = Ψ(ν)(x)∗W (ν)(x).

The result follows by taking adjoints.

Theorem 5.2.3. Let ν > 0, x ∈ (−1,1) then, W (ν+1)(x) = c(ν)W (ν)(x)Φ(ν)(x), where

c(ν) = (2ν+1)(2`+ν+1)`2
ν(2ν+2`+1)(2`+ν)(`+ν) .

Proof. From Proposition 5.2.2 and taking into account that the boundary condition

lim
x→−1

Φ(ν)(x)∗W (ν)(x) = 0

holds, it is equivalent to prove

(5.49) c(ν)W (ν)(x)Ψ(ν)(x) = (W (ν+1)(x))
′
.
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The proof of this theorem uses the same ingredients as the proof of Theorem 5.2.1. Let
us calculate the (i, j) entry of both sides in (5.49). We assume i < j, the other situations
can be treated in an analogue way. Now (W (ν)(x)Ψ(ν)(x))

i,j
can be written explicitly

using Theorem 5.1.4 and (5.46). This gives explicit terms involving Gegenbauer polyno-
mials multiplied by x. Then, using the three term recurrence relation for Gegenbauer
polynomials and regrouping we can write (W (ν)(x)Ψ(ν)(x))

i,j
as the following expansion

in terms of Gegenbauer polynomials:

(5.50)
(2ν + 1)(2` + ν + 1)
ν(2` + ν)(` + ν)

m

∑
t=0

η
(ν)
t (i, j)C(ν)

i+j−2t+1(x),

where

η
(ν)
t (i, j) =−(ν + j)(ν + 2` − j)(i + j − 2t + 1)

i + j − 2t + ν
α
(ν)
t (i, j) − (j − 2`)(ν + j)α(ν)

t (i, j + 1)

+ j(ν + 2` − j)α(ν)
t (i, j − 1) − (ν + j)(ν + 2` − j)(2ν + i + j − 2t + 1)

i + j − 2t + ν + 2
α
(ν)
t−1(i, j),

η
(ν)
0 (i, j) =−(ν + j)(ν + 2` − j)(i + j + 1)

(i + j + ν)
α
(ν)
0 (i, j) − (j − 2`)(ν + j)α(ν)

0 (i, j + 1),

η
(ν)
i+1(i, j) =j(ν + 2` − j)α(ν)

i (i, j − 1) − (ν + j)(ν + 2` − j)
(j − i + ν)

α
(ν)
i (i, j),

for t ∈ {1,⋯, i}. On the other hand, by (5.34) we can expand (W (ν+1)(x))′
i,j

in the same

basis leading to

(5.51) (1 − x2)ν−1/2
i

∑
t=0

−(i + j − 2t + 1)(2ν + i + j − 2t + 1)
2ν

α
(ν+1)
t (i, j)C(ν)

i+j−2t+1(x).

To obtain (5.51) we calculate

∫
1

−1
C

(ν)
k (x) (W (ν+1)

i,j (x))
′
dx = −∫

1

−1

dC
(ν)
k

dx
(x)(1 − x2)ν+

1
2

i

∑
t=0

α
(ν+1)
t (i, j)C(ν+1)

i+j−2t(x)dx.

Since
dC
(ν)
k

dx (x) = 2νC
(ν+1)
k−1 by [76, (4.5.5)], the integral on the right hand side of the

previous equation can be calculated using the orthogonality relations for the Gegenbauer
polynomials (5.2), leading to (5.51).

By a straightforward computation we check that (5.50) and (5.51) are the same, up to
the constant, as given in Theorem 5.2.3.

By the previous theorems and Theorem 1.3.9 we have the following corollary.

Corollary 5.2.4. For ν > 0, the sequence (dP
(ν)
n

dx )n is a sequence of matrix orthogonal

polynomials with respect to weight function W (ν+1) on [−1,1]. In particular,
dP νn
dx (x) =

nP
(ν+1)
n−1 (x), n ≥ 1.
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Then, we get that d
dx connects the sequence (P (ν)

n )n with (P (ν+1)
n )n and we say that

d
dx is a forward shift operator. We now show how to go form (P (ν+1)

n )n to (P (ν)
n )n via a

differential operator.

Lemma 5.2.5. Let ν > 0. Define the first order matrix differential operator, T (ν) by

(5.52) (T (ν)Q)(x) = dQ

dx
(x)(Φ(ν)(x))∗ +Q(x)(Ψ(ν)(x))∗,

then, ⟨dP
dx ,Q⟩(ν+1) = −c(ν)⟨P,T (ν)Q⟩(ν), for matrix polynomials P and Q.

Proof. For ν > 0 and P, Q ∈ CN×N we have

⟨dP
dx

,Q⟩(ν+1) = ∫
1

−1

d

dx
P (x)W (ν+1)Q(x)

= −∫
1

−1
P (x) ( d

dx
(W (ν+1))Q(x) +W (ν+1) d

dx
Q(x))dx,

where we have used the boundary condition for W (ν+1). Now by applying Lemma 5.2.3
and Proposition 5.2.2 we obtain

⟨dP
dx

,Q⟩(ν+1) = −c(ν)∫
1

−1
P (x) (W (ν)Ψ(ν)(x)Q(x) +W (ν)Φ(ν)(x) d

dx
Q(x))dx

= −c(ν)⟨P,T (ν)Q⟩(ν).

We can now exploit Lemma 5.2.5 in order to obtain information about the monic

matrix orthogonal polynomials (P (ν)
n )n.

Theorem 5.2.6. Let (P (ν)
n )n be the sequence of monic orthogonal polynomials with respect

to W (ν). Then

(i) the squared norm of P
(ν)
n , H

(ν)
n is a diagonal matrix whose entries are given by

(H(ν)
n )

k,k
=
√
π

Γ(ν + 1
2)

Γ(ν + 1)
ν(2` + ν + n)

ν + n
n! (` + 1

2 + ν)n(2` + ν)n(` + ν)n
(2` + ν + 1)n(ν + k)n(2` + 2ν + n)n(2` + ν − k)n

(5.53)

× k! (2` − k)! (n + ν + 1)2`

(2`)! (n + ν + 1)k(n + ν + 1)2`−k
.

(ii) The following Rodrigues formula holds:

P (ν)
n (x) =G(ν)

n

dn

dxn
(W (ν+n)(x))W (ν)(x)−1(5.54)

(G(ν)
n )

j,k
=δj,k

(−1)n(ν)n(` + ν + 1
2)n(` + ν)n(2` + ν)n

(ν + 1
2)n(ν + k)n(2` + ν + 1)n(2` + 2ν + n)n(2` + ν − k)n

.
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Proof. To see that (i) holds we first notice that D
(ν)
Φ,Ψ = T (ν) ○ d

dx then,

T (ν)(P (ν+1)
n−1 (x)) = 1

n
T (ν) d

dx
P (ν)
n (x) = 1

n
D

(ν)
Φ,ΨP

(ν)
n (x) = 1

n
K(ν)
n P (ν)

n (x),

where K
(ν)
n can be determined from the leading coefficients of Φ(ν) and Ψ(ν). In particular,

T (ν) is a backward shift operator. Explicitly, K
(ν)
n is a diagonal invertible matrix for all

ν > 0,

(K(ν)
n )

k,k
= −(ν + k)(2` + 2ν + n)

`2
(2` + ν − k).

Then, we can write

H(ν)
n = ⟨P (ν)

n , P (ν)
n ⟩(ν) = (K(ν)

n )
−1

⟨DΦ,ΨP
(ν)
n , P (ν)

n ⟩(ν)

= (K(ν)
n c(ν)n )

−1
⟨ d
dx
P (ν)
n ,

d

dx
P (ν)
n ⟩(ν+1) = (K(ν)

n )
−1 n2

c
(ν)
n

⟨P (ν+1)
n−1 , P

(ν+1)
n−1 ⟩(ν+1)

.

Iterating, we get

H(ν)
n =

n−1

∏
i=0

(n − i)2 (c(ν+i)K(ν+i)
n−i )

−1
H

(ν+n)
0 ,

where the order in the product does not matter since all the K
(ν+i)
n−i are diagonal. By

performing the product using the expression (5.21) of H
(ν+n)
0 , we get the result.

For (ii), use Theorem 5.2.3 and (5.49) to see that T (ν) can be written as

(5.55) T (ν)Q(x) = (c(ν))−1 d

dx
(Q(x)W (ν+1)) (W (ν))

−1
, x ∈ (−1,1),

where Q ∈ CN×N [x] and dgr(T (ν)Q) = dgr(Q) + 1. Iterating leads to

(
n−1

∏
i=0

c(ν+i)) (((QT (ν+n−1))⋯T (ν+1))T (ν))(x) = dn

dxn
(Q(x)W (ν+n)(x))W (ν)(x)−1.

Now take Q(x) = P (ν+n)
0 (x) = 1, so the previous equality becomes

n−1

∏
i=0

c(ν+i)P (ν)
n (x) = (

n−1

∏
i=0

K
(ν+i)
n−i )

−1
dn

dxn
(W (ν+n)(x))W (ν)(x)−1.

A direct check shows that

Gn = (
n−1

∏
i=0

c(ν+i)K
(ν+i)
n−i )

−1

,

and this proves the result.
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5.3 Expression in terms of matrix hypergeometric functions

In this section we link the matrix orthogonal polynomials with respect to W (ν) to Tirao’s
matrix hypergeometric series 2H1 (see defintion 1.40). In order to show this link we switch
from the interval [−1,1] to [0,1] using x = 1 − 2u. Set

(5.56) R(ν)
n (u) = (−1)n2−nP (ν)

n (1 − 2u), Z(ν)(u) = W (ν)
pol (1 − 2u).

Hence, the rescaled monic matrix orthogonal polynomials R
(ν)
n satisfy

(5.57) ∫
1

0
R(ν)
n (u)Z(ν)(u)R(ν)

m (u)∗ (u(1 − u))ν−1/2du = δn,m2−2n−2νH(ν)
n .

In this setting Theorem 5.2.1 gives the following corollary.

Corollary 5.3.1. Let D̃(ν) and Ẽ(ν) be the matrix differential operators

D̃(ν) = u(1 − u) d
2

du2
+ d

dx
(C̃(ν) − uŨ (ν)) − Ṽ (ν), Ẽ(ν) = d

dx
(uB̃(ν)

1 + B̃(ν)
0 ) + Ã(ν)

0 ,

where C̃(ν), Ũ (ν), Ṽ (ν), B̃
(ν)
0 , B̃

(ν)
1 and Ã

(ν)
0 are given by

C̃(ν) = −
2`

∑
i=0

(2` − i)
2
Ei,i+1 +

2`

∑
i=0

(2` + 2ν + 1)
2

Ei,i −
2`

∑
i=0

i

2
Ei,i−1, Ũ (ν) = (2` + 2ν + 1)I,

Ṽ (ν) = −
2`

∑
i=0

i(2` − i)Ei,i + (ν − 1)(2` + ν + 1)I,

B̃
(ν)
0 = −

2`

∑
i=0

(2` − i)
4`

Ei,i+1 +
2`

∑
i=0

(` − i)
2`
Ei,i +

2`

∑
i=0

i

4`
Ei,i−1, B̃

(ν)
1 = −

2`

∑
i=0

(` − i)
`
Ei,i,

Ã
(ν)
0 =

2`

∑
i=0

((` + 1)(i − 2`)
`

− (ν − 1)(` − i)
`

)Ei,i.

Then, D̃(ν) and Ẽ(ν) are symmetric with respect to the weight (u(1−u))ν−1/2
Z(ν)(u), and

D̃(ν) and Ẽ(ν) commute. Moreover, for every integer n ≥ 0, R
(ν)
n D̃(ν) = Λn(D̃(ν))R(ν)

n ,

and R
(ν)
n Ẽ(ν) = Λn(Ẽ(ν))R(ν)

n with

Λn(D̃(ν)) = ((ν − 1)(2` + ν + 1) − n(2` + 2ν + n))I −
2`

∑
i=0

i(2` − i)Ei,i,

Λn(Ẽ(ν)) = −(n + ν + 2` + 1)I − (n + ν + `)
2`

∑
i=0

i

`
Ei,i.

We can describe the rows of R
(ν)
n in terms of matrix hypergeometric functions (see

[98]). We first need to study the C2`+1-valued polynomial solutions of PD̃(ν) = λP , λ ∈ C.
In order to avoid technical problems we consider

(5.58) D(ν)
α = D̃(ν) + αẼ(ν) = u(1 − u) d

2

du2
+ d

du
(C(ν)

α − uU (ν)
α ) − V (ν)

α , α ∈ R,
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where C
(ν)
α = C̃(ν) + αB̃(ν)

0 , U
(ν)
α = Ũ (ν) − αB̃(ν)

1 and V
(ν)
α = Ṽ (ν) − αÃ(ν)

0 . It follows from
Corollary 5.3.1 that

(5.59) R(ν)
n D(ν)

α = Λn(D(ν)
α )R(ν)

n , Λn(D(ν)
α ) = −n2 −n(Ũ (ν)

α − 1)− Ṽ (ν)
α , for all n ∈ N0.

We denote by λαn(j) the j-th diagonal entry of Λn(D(ν)
α ), i.e.

λαn(j) = − n2 − n (2`(` + ν) + α(` − j) − `)
`

− (2` − j)(α(` + 1) − `j)
`

+ (ν − 1)`(2` + ν + 1) − α(` − j)
`

.

It follows from (5.59) that the i-th row of R
(ν)
n is a solution of

(5.60) u(1 − u)F ′′(u) + F ′(u)(C(ν)
α − uU (ν)

α ) − F (u)(V (ν)
α + λ) = 0, λ = (Λn(D(ν)

α ))i,i,

which is an instance of the matrix hypergeometric equation [98]. In order to be able to

apply Tirao’s approach [98], and to have the rows of R
(ν)
n defined by this solution, we need

the following lemma, whose proof is skipped since it is completely analogue to that in [79,
Lem. 4.3].

Lemma 5.3.2. (i) The eigenvalues of C
(ν)
α are (2j+2ν+1)/2, j ∈ {0, . . . ,2`}. In particular,

σ(C(ν)
α ) ∩ {−N} = ∅.

(ii) Let α ∈ R ∖Q. Then, (j, n) = (i,m) ∈ {0,1⋯,2`} ×N if and only if λαn(j) = λαm(i).

Since the eigenvalues of C
(ν)
α are not in −N, for any F0 ∈ C2`+1, a (row-)vector-valued

solution to (5.60) is given by

(5.61) F (u) =
⎛
⎝ 2H1

⎛
⎝
(U (ν)

α )t, (V (ν)
α )t + λ

(C(ν)
α )t

;u
⎞
⎠
F0

⎞
⎠

t

,

where the matrix hypergeometric function 2H1, defined as the power series

2H1 (
U,V

C
; z) =

∞
∑
i=0

zi

i!
[C,U,V ]i,

[C,U,V ]0 = I, [C,U,V ]i+1 = (C + i)−1(i2 + i(U − 1) + V )[C,U,V ]i,
(5.62)

converges for ∣z∣ < 1 in C2`+1×2`+1.
So (5.61) is valid and this gives a series representation for the rows of the monic

polynomial R
(ν)
n . Since each row is a polynomial, the series has to terminate and there

exists n ∈ N so that [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]n+1 is singular and

0 /= P0 ∈ Ker ([(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]n+1) .

Suppose that n is the least integer for which [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t+λ]n+1 is singular,

i.e. [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]i is regular for all i ≤ n. Since

(5.63) [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]n+1

= ((C(ν)
α )t + n)−1 (n2 + n((U (ν)

α )t − 1) + (V (ν)
α )t + λ) [(C(ν)

α )t, (U (ν)
α )t, (V (ν)

α )t + λ]n
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and since the matrix (C(ν)
α + n) is invertible by Lemma 5.3.2(i), [C(ν)

α , U
(ν)
α , V

(ν)
α + λ]n+1

is a singular matrix if and only if the diagonal matrix

Mα
n (λ) = (n2 + n((U (ν)

α )t − 1) + V t
α + λ)(5.64)

= (n2 + n(U (ν)
α − 1) + V (ν)

α + λ) = λ −Λn(D(ν)
α )

is singular. Note that the diagonal entries of Mα
n (λ) are of the form λ − λαn(j), so that

Mα
n (λ) is singular if and only if λ = λαn(j) for some j ∈ {0,1,⋯,2`}. Because of Lemma

5.3.2 (ii) the value of λ and the corresponding n (and j) is uniquely determined for α
irrational.

Assume α irrational, so that Mα
n (λαm(i)) is singular if and only if n =m. Then, in the

series (5.61) the matrix [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]n+1 is singular and

[(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λ]i is non-singular for 0 ≤ i ≤ n. Furthermore, the kernel of

[(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t+λ]n+1 is one-dimensional if and only if λ = λαn(i), i ∈ {0,1,⋯,2`}.

In case λ = λαn(i) we see that (5.61) is a (row-)vector-valued polynomial for

P0 = [(C(ν)
α )t, (U (ν)

α )t, (V (ν)
α )t + λαn(i)]−1

n ei

determined uniquely up to a scalar, where ei, i ∈ {0,1⋯,2`}, is the standard orthonormal
basis vector in C2`+1.

This leads to the main result of this section, expressing the monic polynomials R
(ν)
n

as a matrix hypergeometric function.

Theorem 5.3.3. The entries of the monic matrix orthogonal polynomials R
(ν)
n are given

by

(R(ν)
n (u))

i,j
=

⎛
⎝ 2H1

⎛
⎝
(U (ν)

α )t, (V (ν)
α )t + λαn(i)

(C(ν)
α )t

;u
⎞
⎠
n! [(C(ν)

α )t, (U (ν)
α )t, (V (ν)

α )t + λαn(i)]−1
n ei

⎞
⎠

t

j

,

for all α ∈ R.

In particular, the right hand side is independent of α.

Remark 5.3.4. Let F (u) = 2H1 (U,VC ;u)F (0). Since [C,U,V ]n+1 = [C + 1, U + 2, V +
U]n[C,U,V ]1 and [C,U,V ]1 = C−1V , and F ′(0) = C−1V F (0) then,

F ′(u) = 2H1 (U+2,V +U
C+1 ;u)F ′(0). So we can use this in Theorem 5.3.3 to calculate (dR

(ν)
n

du (u))
ij

in terms of matrix hypergeometric functions. On the other hand, using Corollary 5.2.4

and (5.56) we see that (dR
(ν)
n

du (u))
i,j

= n(R(ν+1)
n−1 (u))

i,j
.

5.4 Three-term recurrence relation

Since the monic matrix polynomials R
(ν)
n given by (5.56), are orthogonal, they satisfy a

three term recurrence relation of the form

uR(ν)
n (u) = R(ν)

n+1(u) + X
(ν)
n R(ν)

n (u) + Y (ν)
n R

(ν)
n−1(u), n ≥ 0,
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where R
(ν)
−1 = 0 and X

(ν)
n , Y

(ν)
n ∈ C2`+1×2`+1 are matrices depending on n but not on u.

In order to obtain the coefficients X
(ν)
n , Y

(ν)
n explicitly, we exploit the explicit expres-

sion of R
(ν)
n in terms of Tirao’s matrix hypergeometric function (see Theorem 5.3.3), the

expression of the norms of R
(ν)
n , 22n−2νH

(ν)
n , and the explicit expression of H

(ν)
n , (5.53).

Before we state the main result of this section we need the following Lemma.

Lemma 5.4.1. Let R
(ν)
n be the matrix orthogonal polynomial appearing in Theorem 5.3.3

then,

(5.65) R
(ν)
n,n−1 =

2`

∑
j=0

jn

4(j + n + ν − 1)
Ej,j−1 −

2`

∑
j=0

n

2
Ej,j +

2`

∑
j=0

n(2` − j)
4(2` + n + ν − j − 1)

Ej,j+1.

Proof. We compute R
(ν)
n,n−1 by considering the coefficient of un−1 in Theorem 5.3.3. Using

the recursive definition of [C(ν)
α , U

(ν)
α , V

(ν)
α + λαn(i)]n we obtain that the matrix entries of

R
(ν)
n,n−1 are given by

(R(ν)
n,n−1)i,j = (eti(C(ν)

α + (n − 1)I)Mα
n−1(λαn(i))−1)j .

Observe that this is well defined since the matrix Mα
n−1(λαn(i)), (5.64), is invertible for any

irrational α. Now the lemma follows by a straightforward computation from the expression

of C
(ν)
α (see 5.58) and Mα

n−1(λαn(i))−1)j , (5.64).

We can now give the explicit three term recurrence relation for R
(ν)
n .

Theorem 5.4.2. For any ` ∈ 1
2N and ν > 0, the monic orthogonal polynomials R

(ν)
n satisfy

the following three term recurrence relation

(5.66) uR(ν)
n (u) = R(ν)

n+1(u) +X
(ν)
n R(ν)

n (u) + Y (ν)
n R

(ν)
n−1(u),

where the matrices X
(ν)
n , Y

(ν)
n are given by

X(ν)
n =

2`

∑
j=0

[ −j(j + ν − 1)
4(j + n + ν − 1)(j + n + ν)

Ej,j−1 +
Ej,j
2

(5.67)

− (2` − j)(2` − j + ν − 1)
4(2` − j + n + ν − 1)(2` + n − j + ν)

Ej,j+1] ,

Y (ν)
n =

2`

∑
j=0

n(n + ν − 1)(2` + n + ν)(2` + n + 2ν − 1)
16(2` + n + ν − j − 1)(2` + n + ν − j)(j + n + ν − 1)(j + n + ν)

Ej,j .(5.68)

Proof. Since the matrix polynomials R
(ν)
n are monic, by equating coefficients in (5.66) we

get that X
(ν)
n = R(ν)

n,n−1 −R
(ν)
n+1,n. Then, (5.67) follows by plugging (5.65) in the previous

equality.
To see that (5.68) holds, notice that from (5.66) we have

2−2n−2νH(ν)
n = ⟨uRn,Rn−1⟩ = Y (ν)

n ⟨Rn−1,Rn−1⟩ = 2−2n+2−2νH
(ν)
n−1.

Therefore Y
(ν)
n = 1

4H
(ν)
n (H(ν)

n−1)
−1

and (5.68) follows from the expression of H
(ν)
n , (5.53).
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Corollary 5.4.1. The monic matrix polynomials P
(ν)
n defined in (5.19) satisfy

(5.69) xP (ν)
n (x) = P (ν)

n+1(x) + (1 − 2X(ν)
n )P (ν)

n (x) + 4Y (ν)
n P

(ν)
n−1(x),

where X
(ν)
n and Y

(ν)
n are given by (5.67) and (5.68), respectively.

Note that in the limit n→∞ the coefficients become constant; limn→∞(1−2X
(ν)
n ) = 0,

and limn→∞ 4Y
(ν)
n = 1

4I.

Taking derivatives and using Corollary 5.2.4 gives the following identity
(5.70)

P (ν)
n (x)+nxP (ν+1)

n−1 (x) = (n+1)P (ν+1)
n (x)+n(1−2X(ν)

n )P (ν+1)
n−1 (x)+4(n−1)Y (ν)

n P
(ν+1)
n−2 (x),

for n ≥ 1 and with the convention P
(ν+1)
−1 (x) = 0.

Combining (5.70) with the three term recurrence for xP
(ν+1)
n−1 (x), (5.69), gives the

following corollary.

Corollary 5.4.2. The monic orthogonal polynomials P
(ν)
n satisfy the following connection

formula,
(5.71)

P (ν)
n (x) = P (ν+1)

n (x) + 2(X(ν+1)
n−1 −X(ν)

n )P (ν+1)
n−1 (x) + 4((n − 1)Y (ν)

n − nY (ν+1)
n−1 )P (ν+1)

n−2 (x).

5.5 The matrix orthogonal polynomials related to Gegen-
bauer and Racah polynomials

The matrix entries of P
(ν)
n can be expressed in terms of Gegenbauer and Racah polyno-

mials.

For doing that we first switch to D
(ν)
0 = D̃(ν) − 2`Ẽ(ν), since this will lead to a diago-

nalisable operator after conjugation by an appropriate matrix function. In particular D
(ν)
0

has the following form

D
(ν)
0 = u(1 − u) d

2

du2
+ ( d

du
) (K1

0 − uK1
1) + K0,

K1
1 =

2`

∑
i=0

(2i + 2ν + 1)Ei,i, K1
0 = −

2`

∑
i=0

iEi,i−1 +
2`

∑
i=0

(2i + 2ν + 1)
2

Ei,i,

K0 =
2`

∑
i=0

((2` − i)(2` + i + 2) − (ν − 1)(ν + 2i + 1))Ei,i.

(5.72)

Notice that D
(ν)
0 is a matrix hypergeometric differential operator in the sense of Tirao

[98].

We conjugate this differential operator by M (ν)(u) = L(ν)(1 − 2u), where L(ν) is the
matrix function (5.1). Going through to the calculations as in Section 6 in [79], we obtain
Proposition 5.5.1. Recall that for a matrix G, GL and GR denote the left and right
multiplication operators given by (1.23).
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Proposition 5.5.1. The differential operator D(ν) =M (ν)
R ○D(ν)

0 ○(M (ν))−1

R
is the diagonal

differential operator

D(ν) = u(1 − u) d
2

du2
+ ( d

du
) T1(u) + T0,

where T1(u) = 1
2T

1
1 − uT 1

1 ,

T 1
1 =

2`

∑
k=0

(2k + 2ν + 1)Ek,k, T0 =
2`

∑
k=0

(2` − k − ν + 1)(2` + k + ν + 1)Ek,k.

Moreover, R(ν)
n (u) = R(ν)

n (u)M (ν)(u) satisfies

R(ν)
n D(ν) = Λn(D(ν))R(ν)

n , Λn(D(ν)) = Λn(D̃(ν)) − 2`Λn(Ẽ(ν)).

Since R
(ν)
n and M (ν) are matrix polynomials, Proposition 5.5.1 implies that for

j, k = 0⋯2`, (R(ν)
n (u))

k,j
is a polynomial solution to the hypergeometric differential oper-

ator

(5.73) u(1−u)f ′′(u)+((j+ν+ 1

2
)−u(2j+2ν+1))f ′(u)−(j−k−n)(j+n+k+2ν)f(u) = 0.

Since the polynomial solutions of (5.73) are unique up to a constant factor we find

(5.74) (R(ν)
n (u))

k,j
= c(ν)k,j (n) 2F1 (

j − k − n,n + k + j + 2ν

j + 1
2 + ν

;u) .

Note that the 2F1-series gives a Gegenbauer polynomial C
(ν+j+1)
n+k−j (1 − 2u) scaled to [0,1].

We are now going to calculate the explicit values of the constants c
(ν)
k,j (n). To do so,

let us consider the following differential operator, E(ν) =M (ν)
R ○ Ẽ(ν) ○ ((M (ν))−1)

R
. It is

clear that the operator E(ν) satifies

(5.75) E(ν)R(ν)
n = Λn(E(ν))R(ν)

n , Λn(E(ν)) = Λn(Ẽ(ν)).

Moreover, by Corollary 5.3.1, the matrix differential operators D̃(ν) and Ẽ(ν) commute
then, E(ν) and D(ν) also commute, i.e. E(ν) ○D(ν) = D(ν) ○ E(ν).

An explicit calculation gives

E(ν) = d

du
S1(u) + S0(u),(5.76)

S1(u) = u(1 − u)
2`

∑
i=0

i(i + 2ν − 2)(2ν + i + 2` − 1)
`(2ν + 2i − 1)(2ν + 2i − 3)

Ei,i−1 +
2`

∑
i=0

(2` − i)
4`

Ei,i+1,

S0(u) = (1 − 2u)
2`

∑
i=0

i(2ν + i − 2)(2ν + i + 2` − 1)
2`(2ν + 2i − 3)

Ei,i−1

+
2`

∑
i=0

i(2ν + i − 1) − 4`(` + 1) − 2`(ν − 1)
2`

Ei,i.
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Let F (λ) ⊆ C2`+1 be the eigenspace of D(ν) for an eigenvalue λ,
F (λ) = {f ∈ C2`+1 ∣D(ν)f = λf}. By Tirao, [98], the evaluation at zero ev(0)

ev(0) ∶ F (λ)→ C2`+1

Qλ ↦ Qλ(0),

is an isomorphism between F (λ) and C2`+1×2`+1. Since E(ν) commutes with D(ν), E(ν)
preserves the eigenspaces then, there exists a linear map N(λ) such that the following
diagram commutes

(5.77) F (λ) E
(ν)
//

ev(0)
��

F (λ)

ev(0)
��

C2`+1
N(λ)

// C2`+1

Let us show how the function N(λ) looks like. Let Qλ ∈ CN×N be a polynomial
eigenfunction of D(ν) for an eigenvalue λ. Then, by (5.61) (or see [98]), the rows of Qλ,
Qλj can be written as

Qλj (u) = ( 2H1 (
T 1

1 , λ − T0
1
2T

1
1

;u) Qλ(0)t)
t

j

,

so that
dQλj
du (0) = Qλj (0)(λ − T0)(1

2T
1
1 )−1 (see Observation 5.3.4). Now (5.76) and (5.77)

shows that

N(λ)(Qλj (0)) = (E(ν)Qλ)j(0) = Qλj (0)(λ − T0) (
1

2
T 1

1 )
−1

S1(0) +Qλj (0)S0(0).

Therefore

N(λ) = (λ − T0) (
1

2
T 1

1 )
−1

S1(0) + S0(0)

acting from the right on row-vectors from C2`+1.
With the explicit expression of the function N(λ), we can now calculate the value of

the constants c
(ν)
k,j (n) in (5.74).

The k-th row ((R(ν)
n )k,j)

2`

j=0
is an eigenfunction of D(ν) for the eigenvalue λn(k) =

Λn(D(ν))k,k (see Proposition 5.5.1). On the other hand, by (5.75) the k-th row of R(ν)
n is

an eigenfunction of E(ν) for the eigenvalue µn(k) = Λn(E(ν))k,k. Since ((R(ν)
n (0))k,j)

2`

j=0
=

(c(ν)k,j (n))
2`
j=0, the row-vector c

(ν)
k = (c(ν)k,j (n))

2`
j=0 satisfies c

(ν)
k N(λn(k)) = µn(k) c(ν)k . Ex-

plicitly,

(5.78) − (j + k + n + 2ν − 1)(j − k − n − 1)(2` − j + 1)
(2j + 2ν − 1)

c
(ν)
k,j−1(n)

+ (j(j + 2ν − 1) − 4`(` + 1) − 2`(ν − 1))c(ν)k,j (n) +
(j + 1)(j + 2ν − 1)(2` + j + 2ν)

(2j + 2ν − 1)
c
(ν)
k,j+1(n)

= (−2n(` − k) + (2` + 2)(k − 2`) − 2(ν − 1)(` − k))c(ν)k,j (n).
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This is a finite three term recurrence relation for the coefficient c
(ν)
k,j (n) in the subindex j,

which can be solved explicitly in terms of Racah polynomials, (see [102], [77])

c
(ν)
k,j = c

(ν)
k,0 (−1)j

(−2`)j (−n − k)j
j! (2ν + 2`)j

Rk(λ(j);−2` − 1,−n − k − ν, ν − 1, ν − 1)

= c(ν)k,0 (−1)j
(−2`)j (−n − k)j
j! (2ν + 2`)j

4F3 (
−j, j + 2ν − 1,−k,−n − ν − 2`

ν,−n − k,−2`
; 1) .

(5.79)

Switching to the variable x, we find

(P(ν)
n )k,j = (P (ν)

n (x)L(ν)(x))k,j = (−2)nc(ν)k,j (n)
(n + k − j)!

(2j + 2ν)n+k−j
C

(ν+j)
n+k−j(x).

Then, the orthogonality relations (5.19) and the orthogonality relations for the (scalar-
valued) Gegenbauer polynomials, see (5.2), imply

δn,m(Hn)k,i = δn+k,m+i(−2)n+m
2`∧(n+k)
∑
j=0

c
(ν)
k,j (n)c

(ν)
i,j (m) t(ν)j

(n + k − j)!
(2ν + 2j)n+k−j

√
πΓ(ν + j + 1/2)

(n + k + ν)Γ(ν + j)
.

It follows from (5.79) that

(5.80) δn,m(Hn)k,k(−2)−n−m (n + k + ν)Γ(ν)Γ(n + k + 2ν)
(2` + ν)(n + k)!Γ(ν + 1/2)

√
πΓ(2ν)

= ∣ck0(n)∣2
2`∧(n+k)
∑
j=0

(−2`)j(−n − k)j(2ν − 1)j(ν + 1/2)j
j!(2` + 2ν)j(n + k + 2ν)j(ν − 1/2)j

×Rk(λ(j);−2` − 1,−k − n − ν, ν − 1, ν − 1)Rk+n−m(λ(j);−2` − 1,−k − n − ν, ν − 1, ν − 1),

which corresponds to the orthogonality relations for the corresponding Racah polynomials
(see [102], [77]). From this we find that the sum in (5.80) equals

δn,mM
(−2` − n − ν)k(−2` − n − k − 2ν + 1)k(−2` − ν + 1)k(−n − k − ν + 1)kk!

(−2` − n − k − ν + 1)2k(−2`)k(−n − k)k(ν)k
,

where

M = (n + k + ν)2`(2ν)2`

(n + k + 2ν)2`(ν)2`
= (2` + ν)n+k(2ν)n+k

(2` + 2ν)n+k(ν)n+k
.

Hence,

∣c(ν)k,0 (n)∣
2 = 4−2n(ν)2

n(2` + 2ν)2
n

(k + ν)2
n(2` + ν − k)2

n

.

It just remains to see the sign of c
(ν)
k,0 (n). If we take the (k,0)-entry of the three term

recurrence relation for R(ν)
n (u) we obtain a polynomial identity in u. If we take the leading

coefficient it gives

c
(ν)
k,0 (n + 1) = −c(ν)k,0 (n)

(n + k + 2ν)
4(n + k + ν)

+ c
(ν)
k+1,0(n)

(2` − k)(2` − k + ν − 1)(n + k + ν)
4(2` − k + n + ν − 1)(2` + n − k + ν)

.
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If we plug c
(ν)
k,0 (n) = sign(c(ν)k,0 (n)) ∣c

(ν)
k,0 (n)∣ in the equation above, we obtain

(ν + n)(2` + 2ν + n) sign(c(ν)k,0 (n + 1))

= −(n + k + 2ν)(2` + n + ν − k) sign(c(ν)k,0 (n)) + (k + ν)(2` − k) sign(c(ν)k+1,0(n)).

It then follows that sign(c(ν)k,0 (n)) = sign(c(ν)k+1,0(n)) = − sign(c(ν)k,0 (n+ 1)). This implies that

sign(c(ν)k,0 (n)) = (−1)n.
The previous discussion is summarized in the following theorem.

Theorem 5.5.2. The polynomials R(ν)
n are given by

(R(ν)
n (u))

k,j
= c(ν)k,0 (n) (−1)j

(−2`)j (−n − k)j
j! (2ν + 2`)j

× 4F3 (
−j, j + 2ν − 1,−k,−n − ν − 2`

ν,−n − k,−2`
; 1) 2F1 (

j − k − n,n + k + j + 2ν

j + 1
2 + ν

;u) .

where the constant c
(ν)
k,0 (n) is given by

c
(ν)
k,0 (n) =

(−1)n4−n(ν)n(2` + 2ν)n
(k + ν)n(2` + ν − k)n

.

Note that Theorem 5.5.2 extends [79, Thm. 6.2]. Switching back to P
(ν)
n and using

the inverse of L(ν)(x) in (5.7) due Cagliero and Koornwinder [11], we get the following
corollary.

Corollary 5.5.3. Using the notation of Theorem 5.5.2 the monic matrix polynomials have
the explicit expansion

(P (ν)
n (x))k,i =

(−2)n

i!
c
(ν)
k,0 (n)

2`

∑
j=i

(n + k − j)!(−2`)j(−1)j(−n − k)j
(2ν + 2j)n+k−j(2ν + j + i − 1)j−i(2ν + 2`)j

(5.81)

×Rk(λ(j);−2` − 1,−n − k − ν, ν − 1, ν − 1)C(ν+j)
n+k−j(x)C

(1−ν−j)
j−i (x).

Observation 5.5.1. It isn’t obvious that the right hand side of (5.81) is a polynomial of
degree at most n in case k > i. In particular, the coefficients of xp with p > n are zero.
Notice that for k > i the leading coefficient of the right hand side is zero, and this gives
the following non-trivial identity regarding the Racah polynomials.

2`

∑
j=i

(ν + j)n+k−j(−2`)j(−1)j(−n − k)j
(2ν + 2j)n+k−j(2ν + j + i − 1)j−i(2ν + 2`)j

×
(1 − ν − j)j−i

(j − i)!
Rk(λ(j);−2` − 1,−n − k − ν, ν − 1, ν − 1) = 0.



Bibliography

[1] N. Aldenhoven, E. Koelink, A. M. de los Ŕıos. Matrix-Valued Little q-Jacobi
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