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Chapter 1 

Introduction 

 

The manufacturing of composite laminates needs two basic processes: one in 

which the raw material is stacked following a certain sequence (giving the fibres an 

adequate orientation) and other in which the resin that conforms the matrix of the 

composite is polymerized. 

The polymerization reaction consists on the generation of bonds between the 

monomers of the resin (in the case of thermoset resins) to form chains and in the 

crossing of these chains to form solid structures. For this reaction to occur, in 

principle, only a heat supply is necessary. However, if only an increase in 
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temperature is provided during the curing, the plies will not be well compacted (i.e. 

no air trapped in the laminate is removed) and the final part will present defects. To 

help to achieve the desired compaction and final shape of the part during curing, 

pressure and/or vacuum are typically applied during manufacturing. 

The autoclave is the most used composite manufacturing system in the 

production of many components in aeronautical and aerospace industry, but it is 

typically the bottleneck of the process, because of its long processing times and 

elevated costs. Thus, manufacturing techniques that do not require the use of the 

autoclave while maintaining the excellent mechanical properties of the product are 

sought. 

This work is framed in the E-BEAM project, developed by AIRBUS. In this 

project, an out-of-autoclave manufacturing system is being developed. The system 

has to be able to lay-up, compact and cure a laminate automatically and layer-by-

layer, i.e., in a first step each layer is placed, compacted and partially cured and, in a 

second step, the layer is completely cured, when the next layer is placed, compacted 

and partially cured. In this way, the equipment would be able to manufacture 

composite parts at a low price, without the use of almost any auxiliary material, 

automatically and in a short time (at least, compared with the autoclave processing). 

Three main systems conform the prototype: an automatic tape lay-up head (its 

function is the placement of the pre-preg tape), an ultrasonic compaction device (its 

function is the in-line compaction of the layers), and a radiation-curing device (its 

function is the curing of the resin of the laminate). The first system is very common 

in the industry and its functioning is well known. In the case of the curing device, a 

low energy electron-beam has been tried, this technology still being very immature. 

The compaction system which is now being investigated constitutes the focus of 

this work.  

To achieve a good quality in the final parts, the compaction phase 

subsequent to the placement of the composite plies, and previous to the curing 

phase, is needed, in order to substitute the vacuum bag used in the autoclave 
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manufacturing. To solve the problem of the compaction just after the composite ply 

is placed, an ultrasonic compactor has been implemented in the prototype. The 

ultrasonic compactor consists of a metallic horn connected to a pressure cylinder 

that generates an ultrasonic vibration movement in it. When the compactor is placed 

over the composite layers, it transmits the vibration to the preimpregnated layers, 

generating heat inside the laminate. This heat contributes to the compaction and 

debulking of the layers liquefying the resin and letting the air bubbles to escape 

outside. The evolution of the temperature inside the laminate is a very important 

parameter in order to understand and optimize the compaction process. To obtain 

this evolution, the heat generated inside the resin has to be known. The main 

parameters that can be modified on the compaction device are the amplitude of the 

vibration of the sonotrode and the horizontal velocity of the table where the 

laminate is placed. 

In this chapter, in order to frame the prototype that is being developed, the 

description of the most common composite materials manufacturing processes will 

be done first. In Section 1.1, the autoclave, as the most used manufacturing system, 

will be explained in depth. Then, in Section 1.2 several out-of-autoclave 

manufacturing systems will be presented. 

In Section 1.3, the prototype that is under study in the E-BEAM project will 

be commented. The subsystems that conform the prototype will also be described. 

Then, the possible movements of the prototype, which describe the possible 

laminates it can manufacture, will be shown. Finally, the ultrasonic compaction 

device and its functioning will be detailed. 

At the end of this chapter, in Section 1.4, the scope of this Thesis and the 

chapters that form this Thesis will be explained. 
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1.1. Manufacturing of composite materials 

The following descriptions are only related with the manufacturing of 

thermoset resins. In the case of the thermoplastic resins, other procedures are used. 

As mentioned before, the manufacturing of composite materials requires 

several main phases to obtain the final solid part from the raw material. These main 

phases are: 

- The preparation of the raw material in order to later obtain certain 

properties and a certain shape. It entails the cutting of the material 

following designated patterns. 

- The placement of the material over a mould to obtain the desired shape. 

The lay-up of the plies can be done manually, automatically, injecting 

the raw material in a mould,… 

- The application of pressure to compact the material that will be 

manufactured. This pressure can be applied mechanically to the material, 

through the contraction of a material that surrounds the laminate, 

applying pressure to a fluid that surrounds the laminate,… 

- The polymerization of the resin. Depending on the resin, it can be done 

applying heat to the mold or to the air that surrounds the laminate, 

impacting the laminate with electrons,… 

Depending on the implementation of conditions of temperature, pressure, 

vacuum and/or the raw material used, several systems of manufacturing composites 

have been obtained. The pre-preg lay-up and autoclave curing of laminates is the 

most common manufacturing system of composite materials in the industry and will 

be described next. Then, in next section, several out-of-autoclave manufacturing 

systems are discussed and compared qualitatively with the autoclave (in systems 
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where comparable parts are made). The following descriptions are made in 

accordance with [1.1], [1.2], [1.3], [1.4], [1.5] and [1.6]. 

 

1.1.1 Pre-preg lay-up and autoclave curing 

 In this manufacturing system, pre-preg plies are used. These materials are 

unrolled and cut according to certain lengths. From the cut plies, patterns are 

obtained with the desired fiber orientation for each layer, which will shape the final 

form of the piece. It is necessary to keep in mind when cutting the plies that the 

edges of the piece must be discarded (because do not comply with the terms of fiber 

orientation, fiber volume fraction and thickness required of the entire piece). For 

that reason, patterns must always be oversized. Such patterns are placed over the 

appropriate mold, which previously has been protected with release agent, either 

solid (nylon sheets) or liquid (Frekote®), helping to the compaction of the pre-preg 

plies with a nylon spatula. In the case of complex geometries, the shaping of the 

plies can be helped by means of a small increase in temperature (it is important to 

avoid an overheating to prevent the starting of the polymerization reaction), either 

externally (using a heater) or by heating the mold (this technique is known as hot 

forming). In order to improve compaction, every several layers (not more than 5) an 

intermediate vacuum bag (similar to the final vacuum bag, described below) is used, 

which will act about 10 minutes. 

Once all the sheets have been compacted, the vacuum bag is formed. The 

vacuum bag is important in the manufacturing process because it helps to compact 

the laminate and protects the resin to be burned during the curing process (if the bag 

breaks during the curing process, the molecules of the resin react with oxygen of the 

surrounding air, obtaining non-desired species). During the vacuum bag forming, 

the first step is to close the perimeter of the piece with cork. Thus, the excess of 

resin is absorbed, preventing the flow of the resin out of the mould. This step is very 

important because if the cork is not well placed, bad results shall be obtained after 
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the curing due to the flow of the resin. The laminate is then covered by a Nylon 

sheet (in order to help the demoulding of the laminate) and an airweave® ply (that 

helps to distribute the vacuum inside the bag). The perimeter of the part is sealed 

with a sealant tape. Then, a bag closing plastic is placed over the part. Finally the 

vacuum intakes are placed and the vacuum is done. Two vacuum intakes are placed, 

one to extract the air and the other to measure the vacuum inside the bag. To verify 

that the laminate has the correct temperature during the curing process, at least two 

thermocouples (one connected to the laminate to be cured and another connected to 

the mould) have to be placed. A view of a vacuum bag is shown in Figure 1.1. 

 

Figure 1.1. View of a vacuum bag 

Once the vacuum has been done and it has been checked that there are no 

vacuum leakages, the vacuum bag is put into the autoclave. In the case of large 

autoclaves, "trains" which contain many pieces are introduced, so that the capacity 

of the apparatus is optimized by minimizing the timeout of the parts to be cured.  

The autoclave comprises a sealed chamber in which a gas is introduced 

under certain conditions of temperature and pressure. At the same time, the vacuum 
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and the temperature within the bag are controlled. Although it is common to use air 

as heat and pressure transmitter, it is also usual to use argon, especially for high 

temperature curing cycles. The reason is that argon is an inert gas, that no burns, as 

would happen with the air at high pressure. A complete view of an autoclave is 

shown in Figure 1.2. 

Once cured, the parts present different finishes on their faces, having a 

smooth and glossy finish on the side facing the tool and a rough matte finish on the 

side facing the mould. A smooth finish on the entire part can be obtained using 

special tools. 

 

 

Figure 1.2. View of an autoclave 

Due to the way of transmitting the pressure, the autoclave can produce parts 

of almost any geometry. Depending on the part to manufacture and the laminate 

stacking sequence, the lay-up stage and the preparation of the vacuum bag can take 

several days, the process being very expensive. 
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The processing time of the autoclave is usually around 4 hours for thin 

laminates (0 to about 10 mm) up to 8 hours for large thicknesses (from 10 mm). In 

both cases the polymerization time is between 2 and 3 hours, the difference being 

that for thick layers a step of temperature stabilization (at the point of lowest 

viscosity of the resin) is required before reaching the curing temperature.  

Due to the use of prepregs in this type of manufacture, very high volume 

fractions of fibers (> 60%) may be achieved, obtaining parts with very high 

mechanical properties. In turn, good dimensional tolerances in terms of thickness 

are obtained. To reach the desired external dimensions the edges have to be 

machined. 

The major drawbacks of this system are the processing time, the final cost of 

the parts and that is not the most suitable technique for high production volumes. 

 

1.2 Out-of-autoclave manufacturing 

The autoclave has been used to manufacture composite parts since the 

beginning of the composite materials. However, its use entails high production costs 

and large process times. Furthermore, not all the composite parts need the 

characteristics obtained with the autoclave. These are the reasons by which the 

industry has searched several alternatives to the autoclave; in one hand systems 

capable to obtain parts with the quality of the autoclave but reducing the costs and 

process times and, on the other hand, to manufacture low quality parts at low cost. 

All these systems have been included in the out-of-autoclave name. 

Several of the out-of-autoclave systems used to manufacture composite parts 

will be shown next. 
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1.2.1 Oven 

This curing system consists of a sealed chamber in which air is introduced 

by convection at a certain temperature. Due to the absence of pressure and vacuum, 

the compaction of the laminates is usually very poor. A vacuum bag can be used to 

improve the compaction, but controlling it with an external equipment. 

Due to the lack of pressure, the system is usually combined with other 

manufacturing methods in which the material is compacted sufficiently well during 

the stacking process, as the LIR or the roll wrapping methods. It is commonly used 

in the pot-curing of manufactured parts. 

In the curing of the parts, if a vacuum bag is used, the procedure is similar to 

that described in the autoclave. In case of not applying vacuum, the bag consists of 

wrapping the part in a sheet mold release film, avoiding the appearance of air 

bubbles in the folds. Once wrapped the part, the bag is closed with high temperature 

tape to seal the edges, thus preventing resin leakages. 

Figure 1.3 shows a picture of a commercial oven for the aeronautic industry. 

 

Figure 1.3. View of an oven1 

                                                 
1 Taken from http://www.dycometal.com/ 
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Compared to the autoclave:  

- The cost of the equipment is low.  

- The auxiliary materials cost is low.  

- The Compaction of the parts is very poor.  

 

1.2.2 Hot plates press 

The system comprises two opposing pistons to apply pressure to the 

laminates. Two flat plates at the end of the pistons apply the pressure. The plates are 

also heated to achieve the curing of the resin. If a better compaction of the parts is 

needed, vacuum controlled with external equipment can be applied. 

This procedure mainly uses pre-pregs. The lamination of the layers is 

performed in a similar way as in the autoclave. The type of bag used is similar to 

that described for the oven (it is only a demoulding bag), taking into account the 

need to protect both all edges and corners with high temperature tape to prevent the 

breakage of the bag due to the pressure of the plates. 

Once the bag has been prepared, it is inserted in the center of the plates, in 

order to apply the load as homogeneous as possible. 

The quality of the parts obtained by this procedure can be very close to the 

ones obtained with the autoclave. However, their small size and the method of 

introducing the load, restricts their use to laboratory test pieces and small flat panels 

for low production volumes. 

A view of a hot plate press is shown in Figure 1.4. 
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Figure 1.4. View of a hot plates press2 

 

Compared to the autoclave:  

- The cost of the equipment is low.  

- The cost of the auxiliary materials is low.  

- Only allows flat parts to be manufactured. 

The parts obtained need to be machined because the edges undergo a 

reduction in thickness due to the presence of the high temperature tape. 

 

                                                 
2 Taken from www.fontijnegrotnes.com/ 
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1.2.3 Quickstep 

The system [1.4] consists of two vessels enclosed by membranes containing 

a liquid with a very high thermal conductivity. Once the part is placed between the 

membranes, temperature and pressure is applied to the liquid contained therein. Due 

to the high thermal conductivity of the fluid it is possible to minimize the heating 

time of the parts manufactured. 

The pressurization through two flexible membranes requires a very fine 

control to avoid undesired surface undulations of the laminates. 

This method can be used both with pre-pregs or with the fibers and the resin 

separately. In the first case the parts are laminated in a similar way as with the 

autoclave. In the second case it is necessary to laminate and compact with another 

manufacturing system, such as the liquid resin infusion processes (described in 

Section 1.2.6), the Quickstep being used in the curing or post-curing stage. 

The laminate has to be wrapped in a mold release film before being placed 

in the equipment. 

Compared to the autoclave:  

- The cost of the equipment is high.  

- The auxiliary materials cost is low.  

- Only allows to manufacture flat or slightly curved parts. 

The parts obtained are very close to the desired final shape, minimizing (or 

even eliminating) the machining operations. 

A view of a Quickstep machine is shown in Figure 1.5. 
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Figure 1.5. View of a Quickstep machine3 

 

In order to compare the possible benefits of the Quickstep with the 

autoclave, several mechanical properties obtained in laminates manufactured with 

both systems are shown in Table 1.1 (taken from [1.7]). The difference between the 

three Quickstep present methods is in the heating and cooling ramps applied in the 

curing cycle. It can be noticed that the Quickstep methods are much faster than the 

autoclave (because heat transfer is carried out with liquid and not with gas), but the 

final properties of the parts are worse.  

 

 

                                                 
3 Taken from http://www.quickstep.com.au/ 
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Quickstep 

Autoclave Oven 
QSspike QSdwell QSstraight 

Bending 
strength 
(MPa) 

1755 1477 1322 1923 1505 

Interlaminar 
shear 

strength 
(MPa) 

115 84 71 111 84 

Voids 
content (%) 

1.8 8.1 12.3 0.6 8.9 

Fibre 
volume 

fraction (%) 
60.2 55 49 64.1 54.2 

Mean 
thickness of 

the panel 
(mm) 

2 2.12 2.25 1.97 2.1 

Time (min) ~180 ~170 ~160 ~270 ~270 

 

Table 1.1. Comparison between several mechanical properties obtained 

with the Quickstep methods and the autoclave 

 

1.2.4 Hand lay-up 

In this system the raw materials are fibers and resin separately. 

First, the resin is mixed with an activating agent. Then, a layer of resin is 

spread over the mold. Next, a layer of fibre is placed. This fibre layer is 

impregnated with a new layer of resin with a roller. The same process is continued 

until completing the desired number of layers. 
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Once laminated, the part is cured at room temperature or is cured in an oven, 

depending on the type of resin used. 

Compared to the autoclave:  

- The equipment cost is very low.  

- The auxiliary materials cost is low.  

- The process allows parts of virtually any shape and any size to be 

manufactured. 

A stage of the procedure can be seen in Figure 1.6. 

 

Figure 1.6. View of a stage of the hand lay-up process4 

 

 

                                                 
4 Taken from http://www.smechapter5.org/ 
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It has to be taken into account that the finishing of the final part depends 

heavily on the good work of the operator, so it is very difficult to obtain specific 

fibre orientations and thicknesses and uniform fiber volume fractions. For all this 

reasons, the dimensional tolerances in this manufacturing system must be very high. 

This system is used in aerospace manufacturing for parts with low structural 

responsibility. 

As the system uses an open mold, it has the environmental problem of 

emission of styrene. 

 

1.2.5 Filament winding 

This system uses non-impregnated fibers. First they are passed through a 

bath of resin and then they are wound around a rotating mandrel, giving thickness to 

the part. Once finished the process, the piece is cured by entering in an oven. 

The compaction pressure during winding is given by the own traction with 

which the fibers are pulled. To improve the finishing of the parts manufactured, an 

external compaction system can be used, as for example the ultrasonic compaction 

system, explained along this work. 

Compared to the autoclave:  

- The cost of the equipment is medium.  

- The auxiliary materials cost is low.  

- It permits to manufacture cylindrical parts automatically for large 

production volumes. Moreover, the parts manufactured present the desired final 

shape and practically do not require to be machined. 
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- Due to the placement and compaction system, the system can reach a 

maximum of 60% fibre volume fraction. 

This method has the drawback of the difficultness of obtaining fiber 

orientations lower than 15° with respect to the revolution axis of the part. This fact 

induces that the manufactured parts do not support well the loads in the longitudinal 

direction. Thus, their use is being restricted to the manufacture of gas tanks and 

similar structures, in which the main loads are radial and circumferential. 

A view of a filament winding machine can be seen in Figure 1.7. 

 

Figure 1.7. View of a filament winding machine5 

 

 

                                                 
5 Taken from http://www.indiamart.com/valeth-hightech-composites/ 
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1.2.6 Liquid resin infusion (LRI) 

This name refers to a large family of manufacturing systems. 

These systems are booming nowadays and let be modified in many ways, so 

many companies have developed their own methods, the differences not being very 

significant among many of them [1.8]. Some of the variations on this procedure are 

listed in what follows: 

CIRTM: co-injection RTM  

MVI: modified vacuum infusion  

RFI: resin film infusion 

RIFT: resin infusion under flexible tooling  

RIRM: resin injection recirculation moulding 

RTM: resin transfer moulding 

VAIM: vacuum-assisted injection moulding 

VAP: vacuum assisted processing  

VARI: vacuum assisted resin injection system 

VARIM: vacuum assisted resin injection moulding 

V(A)RTM: vacuum (-assisted) resin transfer moulding 

VIM: vacuum infusion moulding 

VIMP: vacuum infusion moulding process 
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The process, trying to generalize the set of methods, is as follows:  

- The fibers are placed (without resin) on the mold.  

- A vacuum bag is made or a countermould is placed over them.  

- The fibers are impregnated with resin by one of the following procedures:

  

* Application of pressure in the resin tank. 

* Application of vacuum in an area of the mould opposing to the 

resin tank.  

* Application of a combination of the abovementioned methods. 

- The part is cured by heating the mold and/or the air surrounding it. 

In systems similar to RTM, in which the mold is rigid (both mold and 

countermould are metallic) the pressure for the compaction is given only by the 

pressure at which the resin is injected, then becoming a critical parameter in the 

process. In the systems with flexible mold, the pressure can be applied from outside 

the mold. 

Compared to the autoclave:  

- The cost of the process is low.  

- Processing times are short.  

- Allows almost any geometry to be manufactured and parts obtained 

are very close to the final shape, saving costs and time in machining 

processes. 

The main drawback of these methods is that, before being put into operation 

for each part, it requires many trials or accurate models to ensure the appropriate 
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flow of the resin. Otherwise, zones in which the fiber is not impregnated with resin 

or areas with high accumulations of resin may appear. Because of this, it is difficult 

to achieve homogeneous values of the thickness in the parts. 

These methods can be combined with autoclave curing, controlling the outer 

pressure and temperature of the part, as is done in the case of the SLI (Single Line 

Injection) system. 

These methods can be also combined with the Quickstep system to make 

post-curing stages. 

Figure 1.8 shows a sketch that represents, in a general way, a summary of 

the operation of the LRI processes. 

vacuum
pump

resin
tank (heated tool, oven, autoclave,…)

 

Figure 1.8. Sketch of the LRI processes 

 

1.2.7 High energy Electron-Beam 

In this manufacturing system [1.9], the curing of composite parts is 

performed by a high power electron gun. The raw material consists of pre-pregs 

conformed by special resins. These resins do not cure with the temperature but with 

the destruction of double bonds they have in their internal structure by the impact 

with the electron beam. The stacking of the layers is performed in the same manner 
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as when the pre-pregs are manufactured in autoclave. Once stacked and compacted 

the part, the electron gun is used, thus achieving the cure of the resin. 

Compared to the autoclave:  

- This system is expensive, not only because of the inherent cost of the 

equipment, but by the need to strongly isolate the working area from 

radiation.  

- Curing time is minimal because the entire part is cured almost 

instantaneously. 

A view of the high energy electron-beam can be seen in Figure 1.9. 

 

Figure 1.9. View of a high energy electron-beam machine 

 

1.2.8 Low energy Electron-Beam 

This system [1.9] is similar to the abovementioned high energy electron-

beam but, in this case, the electron gun is a low power one, thereby achieving cost 
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savings. As low power, the electron gun cannot penetrate very deep in the material, 

so it is only able to cure few plies (no more than two plies at a time). The equipment 

incorporates an automatic lay-up system (ATL), which places the sheets on the way 

they are cured. 

The equipment operation is as follows:  

- A pre-preg ply is placed on the first pass.  

- In the next pass the radiation partially cures the placed ply and the next ply 

is placed (the ATL system is located behind the electron gun).  

- Then the upper ply is partially cured and the following ply is completely 

cured. 

- Next a new ply is placed and the process continues until laying-up and 

curing the top ply of the laminate.  

The placing of the plies with the ATL system does not ensure a good 

compaction of the laminate, so that the equipment requires a compaction system 

prior the curing of the plies. 

Compared to the high energy electron-beam:  

- This equipment is cheaper and the isolation required for the facility is 

low.  

- In the current prototypes only flat parts are manufactured. 

As an alternative to the electron beam, other possibilities to cure the resin of 

the laminates with radiation can be done, as plasma beams or microwaves. 

A scheme of the low energy electron-beam attached to an automatic tape 

lay-up equipment can be seen in Figure 1.10. 
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E-gunATP head

Heater

Prepreg
rollBacking

paper

Cutter

 

Figure 1.10. Draft of a low energy electron-beam system 

Compared to the autoclave:  

- This system is cheap.  

- The curing time is very low, because it lasts the double of the time the 

ATL needs, more or less. 

- The system needs a huge set-up to obtain parts with high mechanical 

properties. 

 

1.2.9 Pultrusion 

The conception of this system is similar to the metal extrusion process, in 

which the material is passed through a preform, pressing against it, to obtain 

profiles with sections of almost any geometry. In the case of the composites 

pultrusion, instead of pressing, the fibers are pulled.  

The raw material is a non-impregnated bundle of fibers. The bundle is 

pulled, passing it through a resin bath. The impregnated bundle is passed through a 
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heated preform, giving the part its final shape and curing it (totally or partially, in 

this latter case to post-cure the parts in an oven being necessary). Finally, the profile 

is cut to the desired length using a cutting saw. 

The main advantages of this system are that parts with constant length and 

section are automatically produced with a low cost, therefore allowing to 

manufacture large production volumes. 

The main disadvantages of this system are that the maximum fiber volume 

fractions that can be obtained are not very high and that the fibers can only be 

inserted in the direction of the pulling, then resulting in structures which can only 

support axial loads properly. In the case to need profiles with strength and stiffness 

in the direction perpendicular to the axial, woven fabric can be used, though the 

production process is greatly complicated. 

A view of the pultrusion process is shown in Figure 1.11. 

 

Figure 1.11. View of a pultrusion machine6 

 

                                                 
6 Taken from www.strongwell.com/ 
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1.2.10 Spray-up 

In this system the fiber and resin are sprayed over a mold. To be sprayed, the 

fibers must be in the form of whiskers (short fibers). The raw material is a roll of 

unidirectional fiber and the ejector cuts it into short fibers. After cutting, the fiber is 

mixed with the resin and the mixture is sprayed over a mold. The curing of the part 

is usually at room temperature, although, depending on the type of resin, it may 

need to be cured in an oven. 

The process can be carried out both manually, consisting of a spray handled 

by the operator, or automatically, consisting of a mechanical arm that can be moved 

in the plane of the part and perpendicularly to it, attached to a head (that handles the 

spray gun) which is rotated by having at least one rotation axis. The automatic 

system, besides the movement of the gun, controls the amount of material to be 

spread over the mold, obtaining values of the thickness much more homogeneous 

than in the case of performing it manually. 

A view of the spray-up system can be appreciated in Figure 1.12.  

 

Figure 1.12. View of a spray-up system7 

It is a quick and inexpensive system to produce parts of little structural 

responsibility. In addition, it allows large volume of parts to be manufactured. 

                                                 
7 Taken from http://performancepolytek.com/ 
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As the operation is carried out in an open mold, the system has the 

environmental drawback of styrene vapor emissions. 

 

1.2.11 Compression molding 

This system resembles the metal stamping. In the compression molding a 

block of composite material (in this case a mix of resin and short fibers in a fibre 

volume fraction less than 30%, in order to allow an appropriate flow of the matrix 

to be maintained) is put on a preheated mold (usually about 140 °C). Then the 

material is pressed with an upper mold reaching the filling of the entire cavity by 

the material. After this process, the molds are heated until achieving the complete 

curing of the part. The mold used is usually closed. Thus, a good estimation of the 

amount of material that must be present in the starting block is required. 

A view of the compression moulding machine is shown in Figure 1.13. 

 

Figure 1.13. View of a compression moulding machine8 

                                                 
8 Taken from http://clearcarbon.com/ 
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The equipment, and especially the molds (because they have to be 

manufactured very precisely to fit) are expensive, but the raw material is cheap. The 

processing time is short and this system is used in the production of large quantities 

of non-structural parts. 

The process can be used with pre-pregs as raw materials. 

 

1.2.12 Roll wrapping 

This procedure is used in the manufacturing of cylindrical tubes. The raw 

materials are prepregs. The material is cut according to a certain pattern and is 

wound around a cylindrical mandrel. Once the wrapping operation is finished, a 

tape that shrinks when heated is placed around the pre-preg. This tape will be 

responsible for transmitting the pressure to the laminate during the polymerization 

phase. The part is cured in an oven. Once the process is finished, the tape is 

removed and the mandrel is extracted from the tube. 

The process is inexpensive and produces large volumes of parts but it 

requires considerable expertise in the work of the operator. It has the great 

advantage that, as the raw materials are prepregs, it is possible to obtain higher fiber 

volume fraction than in the case of other manufacturing systems that can generate 

tubes as the pultrusion and filament winding, obtaining parts of better mechanical 

properties. 

It has the great disadvantage that, for orientations different of 0° and 90° 

(and also for these orientations), it is difficult to get a correct orientation of the 

fibers, causing distortions in the expected final properties of the tubes. 

In order to automate and increment the process speed, the rolling of the 

layers and of the pressure tape can be done by automatic wrapping machines. 

An image of the roll wrapping technique is shown in Figure 1.14. 
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Figure 1.14. View of a the roll wrapping technique [1.2] 

 

1.2.13 Injection molding 

The raw material is similar to the compression molding process, consisting 

of little blocks of resin and short fibers. These blocks are liquefied and pressed into 

a heated mold that gives the shape and cures the part. 

The process is expensive because of the precision required in manufacturing 

the molds. 

The great advantage of this system is that it is very fast, being then possible 

to obtain pieces in less than 1 minute and without subsequent machining processes. 

This process is used for producing small parts of no structural responsibility, 

such as head connectors for cable bundles. 

A view of an injection molding machine can be seen in Figure 1.15. 
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Figure 1.15. View of an injection molding machine9 

 

1.3 Prototype under study 

As mentioned before, on the way of searching a valid alternative (in terms of 

mechanical properties obtained in the final parts) to the autoclave manufacturing, a 

prototype is being developed by AIRBUS. The parts of the prototype will be 

described next. Then, the possible movements the prototype can do are commented. 

Finally, the ultrasonic compaction system will be described in depth. 

 

1.3.1 Parts of the prototype 

The prototype consists on three main systems [1.9]: 

Automatic tape lay-up system (ATL): 

This system is used to lay-up and cut the composite plies over the mould. It 

has a measuring system that assures that the cut of the plies is made at the correct 

length. The system consists on: 

                                                 
9 Taken from http://spanish.molding-machinery.com/ 
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- An unrolling system to lay-up the composite pre-preg.  

- A roll used to collect the pre-preg polietilene protection tape. 

- A system to control the length of the ply cuts.  

- A cutting blade. 

The width of the pre-preg composite tape that this system is capable to lay-

up is 8 cm. 

Ultrasonic compaction system (USC): 

This system is used to compact the plies on the way the ATL lays them up. 

This system consists on: 

- An ultrasonic device, which vibrates and transmits this movement to the 

composite laminate through its titanium tip. 

- Two compaction rolls that can be used to help the ultrasonic compactor 

during the compaction. The rolls are located before and after the 

ultrasonic compactor, in the compaction direction.  

Composites curing device:  

This system is used to polimerize the resin of the pre-preg layers, after they 

are placed and compacted. Several curing systems (that will work separately) have 

been implemented, depending upon the resin to cure. 

- Electron beam curing device 

- Plasma beam curing device 

The system also includes an infrared heating system, for helping the 

mentioned devices in the pre- and post-curing processes.  
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The whole system is shown in Figure 1.16. 

Compactor roll

Ultrasonic
compactor

Cutting blade

Plasma beam

Electron beam

Infrared heater

Pre-preg roll

Unrolling system

Compactor roll
 

Figure 1.16. View of the prototype under study [1.9] 

 

1.3.2 Movements of the prototype 

The movements the prototype can develop determine the type of laminates 

that can be manufactured by the prototype. These movements are: 

- Rotation around the y axis (vertical axis on picture shown in Figure 1.16). 

The equipment allows several ply orientation angles to be obtained. The 

different angles are obtained turning the table that supports the mould 

were the laminate is laid-up. The ply angle can be modified from 0º to 

90º.  

- Displacement along the x axis (horizontal axis in the picture shown in 

Figure 1.16). With this displacement, the pre-preg tape is stacked over the 

mould, along the lay-up direction.  

- Displacement along the z axis (this axis is perpendicular to the picture 

shown in Figure 1.16). This displacement allows parallel pre-preg tapes 
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to be laid-up, giving width to the panels. This movement is achieved 

moving the part where the ATL machine is placed along the z axis. 

The equipment, the table and the possible movements of the prototype are 

shown in Figure 1.17. 

x axis

z axis

Lay-up, compaction
and curing device

Rotation of the table
around the y axis

 

Figure 1.17. Possible movements of the prototype [1.9] 

With the movements described, the prototype can lay-up flat, square or 

rectangular, panels, with 0º, 90º, +45º and -45º orientation angles. The maximum 

possible dimension of the panel to manufacture is 1x1 m2. 

The panels are manufactured oversized and cut to the right dimensions after 

curing, in order to avoid the possible border defects that usually appear in these 

manufacturing processes.  

 

1.3.3 Ultrasonic compaction device 

A view of the ultrasonic compaction device [1.6, 1.9, 1.10, 1.11, 1.12, 1.13] 

is shown in Figure 1.18. 
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Figure 1.18. View of the ultrasonic compaction device [1.9] 

The material to compact is placed under the titanium tip of the sonotrode, at 

the bottom of Figure 1.18. The laminate is placed over an aluminum table, which 

makes the function of a mould, in order to obtain flat panels. Over the mould, 

several materials are placed: 

- A peel ply layer: used to avoid the sliding of the first layer when it is 

laid-up. This layer remains joined to the composite and is removed 

after the curing of the part. 

- A nylon antiadherent film: used to protect the mould and to avoid the 

adherence between the composite and the mould. 

 The system has two rolls for helping in the compaction procedure. One 

roll is located before the sonotrode and the other is located after the sonotrode. Both 

rolls can be heated and the pressure transmitted to them can be modified. The 

influence of the rolls has not been proved, not then being used at this time. 

 In principle, the angle that the ultrasonic compactor forms with the 

laminate is fixed, it being 45º from the vertical axis. 
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A scheme of the materials that can be found under the sonotrode is shown in 

Figure 1.19. 

Table

Peel ply

Laminate

Aluminum

Aluminum
Lead

Nylon film

 

Figure 1.19. Scheme of the materials located under the sonotrode 

 

1.4 Scope of the Thesis 

The main objective of this Thesis is the modelling of the heat generation and 

distribution inside the resin of a composite laminate that is submitted to ultrasonic 

vibrations. Thus, the ultrasonic compaction process can be understood properly and 

the process may be optimized. An appropriate modelling of the thermal field in the 

laminate will avoid the use of a huge number of experiments to calibrate the best 

combination of parameters (amplitude of the ultrasounds, horizontal displacement 

velocity of the sonotrode…) to define the optimal functioning of the equipment. 

Several secondary objectives have also guided the present work: 

- The understanding of the compaction process. 

- The study of how the ultrasonic vibration induces the heating of the resin. 

- The study of the possibility of curing the resin (even partially) during the 

compaction process due to the temperature raised inside the resin. 
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The Thesis has been structured in 10 Chapters, whose content is described in 

what follows: 

- In Chapter 2, some previous analyses will be commented. First, the main 

ways the prototype can operate to compact the composite layers will be 

remarked.  

Then, several experiments concerning the ultrasonic compaction and the 

materials involved will be shown. The results given by these experiments 

will be used in the following chapters to complete or validate the models 

developed. 

- In Chapter 3, the main problems that will be studied in this work will be 

posed. These problems are the static compaction, in which the sonotrode 

is not moving along the laminate, and the dynamic compaction, in which 

the sonotrode is moving along the laminate.  

For each of the problems, the geometry, the boundary conditions and the 

heats involved in the processes will be commented. 

- In Chapter 4, several analyses prior to study the heat generation will be 

presented. 

First, a thermal model used to study the temperature evolution during the 

compaction process will be presented. In this model, the heat generated 

will be an input, so is only valid when the heat generated or part of the 

temperature field is known a priori. This model will be used to validate 

the thermal properties given in the literature. 

Second, a curing model has been developed. The equations that describe 

the cure kinetics will be shown, obtained from the experimental results 

presented in Chapter 1. This curing model will be implemented in a 

thermal one, in order to obtain the evolution of the degree of cure during 

the ultrasonic compaction process. 
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Finally, a model that describes the evolution of the viscosity of the resin 

with the temperature will be presented. This model will be used in the 

next chapters in conjunction with the heat generation model. 

- In Chapter 5, the modelling of the heat generation will be studied. 

First, several considerations about the constitution of the pre-preg and its 

implications on the transmission of the ultrasonic movement will be done. 

Second, the boundary conditions of the resin layers will be posed. 

Finally, the equations that govern the heat generation inside the laminate 

under ultrasonic vibrations will be established. 

- In Chapter 6, a semi-analytical model developed to solve the heat 

generation and distribution during the static ultrasonic compaction is 

shown. This model will also be used to verify the validity of the heat 

generation model presented in Chapter 5. 

First, several considerations about the possibilities and differences of 

implementing two possible pre-preg models will be presented. 

Second, the equations and hypotheses used to model the heat distribution 

and the heat generation will be posed. 

Third, an incremental algorithm to solve the problem and its 

implementation in a commercial mathematical program will be 

commented. 

Finally, the results obtained with the model and its comparison with 

experimental results will be shown. The validity of the pre-preg models 

will be checked also. 
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- In Chapter 7, a 2D FEM model that to improves the solution obtained 

with the semi-analytical model, presented in Chapter 6, will be 

developed. 

First, the equations and hypotheses used to model the heat distribution 

and the heat generation will be posed. An algorithm to solve these 

equations will also be presented. 

Second, several considerations about the geometry and the mesh used in 

the model will be illustrated. 

Finally, the results obtained with the model will be shown and compared 

with experimental results. 

- In Chapter 8, the static compaction process will be reformulated, in order 

to solve it with the Proper Generalized Decomposition, a numerical 

technique capable to solve the problem in a reasonable time using very 

fine meshes. 

First, a way of solving the problem will be presented. 

Second, the formulation of the equations that solve the problem with the 

Proper Generalized Decomposition will be developed. 

Finally, the results obtained with this model and an experimental 

validation will be shown. 

- In Chapter 9, the dynamic ultrasonic compaction process will be solved, 

the Proper Generalized Decomposition being the numerical solving 

technique chosen to this end. 

As done in Chapter 8, a way of solving the problem and the formulation 

of the equations that solve the problem with the Proper Generalized 

Decomposition will be presented first. 
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Then, the results obtained will be shown. 

As no experimental data are available to validate the results obtained with 

this model, a parametrical study will be carried out with the variables that 

can be modified in the ultrasonic compaction prototype. 

- In Chapter 10, the conclusions of this work and several possible future 

developments will be posed. 
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Chapter 2 

Previous analyses 

 

After having described the objective of the Thesis and having framed the 

prototype that is being studied, several previous analyses, that help to understand 

the models that will be developed in the following chapters, are going to be 

presented in this chapter. 

In Section 1.1, two possible compaction procedures that can be carried out 

with the ultrasonic compactor will be shown. The models presented in next chapters 

will focus on the second of these compaction procedures. 
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In Section 2.2, several experiments carried out related with the ultrasonic 

compaction and the pre-preg materials studied in this work will be posed. The data 

obtained with these experiments will be used in the models that will be presented in 

the following chapters of this work, either to validate the models or to provide some 

input data needed in them. 

 

2.1 Compaction procedures 

Two possible compaction procedures of the prototype will be described in 

this section: compaction of one uncured ply after having cured the precedent plies 

and compaction of several uncured plies. Depending on the compaction procedure, 

different states of the resin can be found in the laminates. The election of the 

compaction procedure will condition the curing technology used, a layer-by-layer 

radiation curing technique in the first case being needed and a traditional oven or 

autoclave curing technique being required in the second case. 

 

2.1.1 Compaction of one uncured ply 

In this case, in a single pass of the prototype one layer is placed, compacted 

and partially cured. In the following pass the next layer is laid-up, compacted and 

partially cured, the previous layer being completely cured. 

As the compaction and curing is carried out ply by ply, different states of the 

resin can be found in different resin layers during the compaction process. Each 

state will have different contributions to the heating of the lay-up. A typical 

situation in this compaction procedure can be seen in Figure 2.1, with the top ply 

having two layers of uncured resin separated by a fibre layer (this supposition about 

the modelling of the pre-preg will be commented and analyzed in Chapters 5 and 6, 
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respectively), the composite ply below it being formed by well distributed fibres in 

partially cured resin and the following composite plies being completely cured.  

As will be assumed in Chapter 5, the contribution of the uncured resin layers 

to the heating process can be modelled as that corresponding to a viscous fluid. For 

the case of the semi-cured ply, considering the slight influence of this ply to the 

heating process, its contribution will not be taken into account in this study. 

However, in the case of modelling it, it is unsuitable to consider it as a viscous 

fluid, a viscoelastic model being more appropriate. Finally, the completely cured 

plies will not contribute to the heating since they can be considered as fully elastic 

and thus they do not dissipate energy. 

Uncured
resin layers

Semi-cured
composite ply

Completely cured
composite ply

Completely cured
composite ply

Does not dissipate 
energy

Does not dissipate 
energy

Sonotrode

Liquid state

Liquid state

Composite ply at
viscoelastic state

Fibre layer

 

Figure 2.1. Schematic view of the typical situation encountered when 

compaction and curing is carried out ply by ply 
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2.1.2 Compaction of multiple uncured plies 

In this case, all the plies are laid-up, then they are compacted at the same 

time and, finally, they are cured. 

When the curing process is going to be applied, once the ultrasonic 

compaction process has been carried out in the whole laminate, the situation will be 

like the one shown in Figure 2.2, in which some uncured plies are laid up to form 

the full laminate. 

Resin layer 1

Resin layer n

Resin layer 2

Resin layer n+1

Resin layer i

Resin layer i-1

Resin layer i+1

Ply 1

Ply i-1

Ply i

Ply n

Sonotrode

Liquid state

Liquid state

Liquid state

Liquid state

Liquid state

Liquid state

Liquid state

Uncured
resin

Uncured
resin

Uncured
resin

Uncured
resin

Fibre layer

Fibre layer

Fibre layer

Fibre layer

 

Figure 2.2. Schematic view of the typical situation encountered when 

compaction of the whole laminate is carried out before curing 
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Note that, as will be analyzed in Chapter 5, the pressure will be transmitted 

vertically, so the oscillatory movement will be transmitted to all resin layers (this 

movement will be muffled from the top to the bottom layer). 

The terminology and notation that will be used for the pre-preg can be seen 

in Figure 2.2: 

- Ply: refers to each one of the pre-preg cuts that come from a roll. 

- Layer: refers to either set of fibre or uncured resin that conforms a  

pre-preg ply. 

In this way, each ply has been considered to be composed by one fibre layer 

and two resin layers. This pre-preg model will be discussed in Chapter 6, along with 

an alternative model in which fibres and resin are considered well distributed during 

the whole compaction process. 

 

2.2 Experimental measurements 

Several experiments related with the ultrasonic compaction and the materials 

used in the prototype will be presented next: First, the evolution of the temperature 

of the laminate during the compaction process; second, the cure kinetics of the resin 

of the laminate and; finally, the evolution of the viscosity with the temperature. 

The results of the experiments presented in this section will be used in the 

next chapters to complete and/or validate the models developed. 
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2.2.1 Measurement of the evolution of the temperature 

during a static compaction process 

In order to validate the heat generation model and the thermomechanical 

solutions presented in next Chapters, an experiment done by AIRBUS [2.1] to 

measure the evolution of the temperature during the compaction process at a certain 

point in the laminate has been employed. 

The experiment was designed to measure the temperature at a point of the 

laminate during a “static” process, i.e., the sonotrode only vibrates over the laminate 

but it is not moved along it.  

In this case, the whole laminate is uncured and no previous compactions have 

been carried out during lamination. In this way, all resin layers will contribute to the 

heat generation. The experiment follows the compaction procedure described in 

Section 2.1.2 and the scheme shown in Figure 2.2. 

The procedure by which the experiment has been carried out is the following: 

- At first, after protecting the mould (in this case a flat metallic tool) 

with a demoulding layer, a peel-ply layer is placed over the mould to 

ensure that the laminate will be fixed to it during the lay-up forming 

process and during the ultrasonic compaction process. 

- Secondly, 8 composite pre-preg plies are placed over the mould with 

an automatic tape lay-up (ATL) machine. The plies are placed one by 

one with the same fibre orientation. 

- After the lay-up has been formed, the sonotrode is placed over the 

laminate and is turned on, inducing the ultrasonic vibration inside the 

resin of the composite plies. 

- Finally, after 10 seconds of operation, the sonotrode is lifted. 
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In order to measure the temperature of the laminate during the compaction 

phase, a thermocouple was placed below the first composite ply, a time/temperature 

curve being obtained during the process.  

The experimental curve given by the measurements of the thermocouple is 

shown in Figure 2.3. 
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Figure 2.3. Experimental temperature/time curve at the bottom of the laminate 

during the ultrasonic compaction process 

 

2.2.2 Measurement of the degree of cure to obtain the 

curing kinetics of the resin 

As the compaction process entails the heating of the resin, the possibility of 

partially curing the resin exists. This fact has to be controlled, because, in principle, 

it should be a negative effect. A model of the curing kinetic will be implemented in 

Chapter 4 in a thermal model to study the behavior of the material. In this way, the 
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evolution of the curing reaction of the resin has to be measured and will be 

presented next. 

In order to describe the evolution of the polymerization of a resin, the most 

common parameter is the degree of cure. The way of obtaining experimentally this 

parameter is to measure the disappearance of the epoxy groups present in the resin 

(that allow the crosslink of the molecules). This disappearance of groups is 

commonly measured indirectly, using either thermal (through the heat flux needed 

to reach a certain temperature in the resin, in the differential scanning calorimetry 

technique) or optical properties (through the absorbance by the resin of certain 

wavelengths of an infrared light beam, in the Fourier transform infrared 

spectroscopy technique). The results of both techniques will be used in the curing 

model presented in Chapter 4, so they will be explained next. 

 

Differential Scanning Calorimetry (DSC): 

This technique is based on the measurement of the heat flux of a resin (that 

has been previously maintained at the polymerization temperature during a certain 

time) when a temperature increment is applied on it. This temperature increment is 

increased linearly with time. In this way, a curve heat flux/temperature or heat 

flux/time is obtained for the resin. 

The process is repeated for several polymerization times of the resin and for 

a reference-uncured sample. 

The principle of this method is that, to reach the same temperature, a cured 

sample needs less heat flux than the reference sample, due to the exothermicity of 

the curing process. Thus, the higher the degree of cure of the resin, the lower the 

heat flux needed and, in this way, the residual enthalpy (the area under the heat 

flux/temperature curve). 
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Once the curves heat flux/temperature for different stabilization times of the 

resin at the polymerization temperature are obtained, the degree of cure is measured 

comparing the residual enthalpy at each level with the total enthalpy of the 

reference sample. 

A heat flux/temperature diagram is shown in Figure 2.4 [2.2, 2.3]. Three 

curves are shown, for resin samples exposed to the polymerization temperature 

during 0, 30 and 60 minutes, from top to bottom, respectively. It can be appreciated 

how the area under the curve is reduced on the way the samples have been exposed 

to the curing temperature during more time. 
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Figure 2.4. Heat flux/temperature diagram of a resin, obtained with the 

DSC 
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Fourier transform infrared spectroscopy (FTIR): 

In this system, the absorption of infrared light by the resin at a certain state 

of curing is evaluated for several wavelengths. The equipment plots an absorbance 

spectrum (a diagram wavelength/absorbance) in which the absorbance level of the 

infrared light corresponding to each wavelength are shown. These wavelengths 

correspond to the different components of the resin. In this way, studying the 

energy absorbed by each component for several cure states of the resin, it can be 

evaluated if the components are reacting and wasting or forming new components. 

An example of an absorbance spectrum of a resin for several cure cycles is shown 

in Figure 2.5, obtained from [2.4]. The x axis represents the wavelengths and the y 

axis the absorbance levels. The curves, from top to bottom, have been obtained for a 

resin that has been cured for 5 minutes, 30 minutes and 2 hours at 180 ºC, 

respectively. 

The most important band is the one located at 4525 cm-1, that corresponds to 

the epoxy group of the resin. This band presents great intensity, allowing its 

evolution to be studied even at high degrees of cure, where the curing is less 

reactive. 

In order to normalize the results, the 6005 cm-1 band is used, due to the fact 

that it remains constant during all the polymerization reaction. This band 

corresponds to the link C-H of the aromatic ring of the resin. 

In the graph depicted in Figure 2.5, it can be appreciated how the peak of the 

4525 cm-1 band is reduced when the curing time evolves (from the top curve to the 

bottom one). At the same time, the peak that corresponds to the absorbance of the    

6005 cm-1 band remains unaltered in the different curves. 

A kinetic model that allows the evolution of the degree of cure with 

temperature and time to be studied has been obtained in [2.5] for the resin analyzed 

in Figure 2.5, that will be the resin used in the present work. The variable used in 

the kinetic equations is R  (absorbance ratio), defined as the quotient between the 
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absorbance of the band at 6005 cm-1 ( 6005A ) and the absorbance of the band at 4525 

cm-1 ( 4525A ), measured with the FTIR. The equations that define this kinetic model 

are presented in Table 2.1. The variable R  and, in this way, the kinetic model, will 

be related with the degree of cure in Chapter 4, using values measured with the 

DSC. 

 

 

Figure 2.5. Absorbance spectrum of a resin, measured with the FTIR 

 

The kinetic model consists on two different equations for each temperature, 

depending on the value of the variable R . An autocatalytic model has been 

assumed for low values of R  and a controlled diffusion model is used for high 

values of R . These evolutions of the curing kinetic are similar to those used in 

other usual curing models, as the Scout model or the Lee, Chun and Lin model, as 

can be seen in [2.6]. 
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Temperature 2R  2R  

160 ºC 32 012.0063.0105.0029.0 RRR
dt

dR
  31884.0  R

dt

dR

 

170 ºC 32 019.0095.0157.0048.0 RRR
dt

dR
  49.22508.0  R

dt

dR
 

180 ºC 32 031.0151.0261.0086.0 RRR
dt

dR
  96.02809.0  R

dt

dR
 

190 ºC 32 067.0281.0411.0126.0 RRR
dt

dR
  38.04851.0  R

dt

dR

 

200 ºC 32 019.0119.0278.0093.0 RRR
dt

dR
  98.01059.5  R

dt

dR

 

Table 2.1. Equations of the curing model obtained from the experiments 

 

2.2.3 Evolution of the viscosity with the temperature 

The evolution of the viscosity with the temperature is a key parameter in 

order to model the heat generation properly. The viscosity will vary during the 

process due to the variation of the temperature inside the resin. For this reason, it is 

important to obtain the evolution of the viscosity with the temperature. 

This evolution has been obtained by AIRBUS experimentally using a 

viscosimeter. In this experiment, a bar is rotated inside the resin and the torque 

needed to achieve the rotation movement is measured. During the rotation, the 

temperature of the resin is raised with a certain heating rate (measured in ºC/min). 

In this way, the torque is related with the viscosity of the resin and a curve 

viscosity/temperature is obtained. 
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The experiment has been done for several heating rates and the resulting 

curves are presented in Figure 2.6. 
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Figure 2.6. Evolution of the viscosity with the time for several values of 

the heating rates 

It is important to note that the heating rates that can be applied in the 

viscosimeter are much lower than those the ultrasonic compactor can induce in the 

resin. Thus, an approximation will be done in Chapter 4, in the section concerning 

the modelling of the viscosity as a function of the temperature. 
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Chapter 3 

Problems under study 

 

To study the problem of the heat generation and the temperature distribution 

in the composite laminate subjected to ultrasonic vibrations two models are 

necessary: one thermomechanical and one thermal. The thermomechanical model is 

needed to estimate the heat generated due to the internal viscosity of the resin when 

an ultrasonic vibration is applied on it and will be developed in Chapter 5. The 

thermal model is needed to obtain the heat distribution within the laminate. A 

general description of the geometry and heats that are involved in the thermal model 

will be presented next, being extended and particularized in next Chapters. 
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The general parameters that define the problems studied in next Chapters 

will be posed in the following sections.  

Two main problems are studied:  

- The compaction of a composite laminate when the sonotrode is not 

moved along it. In this case, the sonotrode only vibrates over the 

laminate. 

- The compaction of a composite laminate when the sonotrode is 

moved along it. In this case, the sonotrode vibrates and is displaced 

along the laminate at a certain velocity. 

It is important to remark that, for both problems, all the composite plies are 

considered uncured. 

The following descriptions of the problems will be similar for both 

compaction procedures. Firstly, a definition of the geometry of the problems will be 

done. Secondly, the boundary conditions concerning each problem are going to be 

posed. Finally, the heats involved in the process will be described. 

The coordinate system for both problems is defined by: The mould where 

the laminate is laid-up is content in the x-z plane. The composite plies are placed 

along the x direction, y being the direction of the thickness. It is supposed in the 

models that the problem is uniform along the z direction, the plane x-y being the 

plane of study.  

 

3.1 Transient problem 

The problem of the compaction of a composite laminate when the sonotrode 

is not moved along it will be described in this section. The problem is studied since 

the sonotrode begins to actuate until reaching a certain process time. In these 
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conditions, the temperature evolves in time, so this compaction process will be 

treated as a transient problem. 

 

3.1.1 Geometry definition 

The scheme of Figure 3.1 shows the geometry of the problem under study 

[3.1]. The first, 1, and the last, n, plies and an intermediate ply, i, have been 

depicted. The central zone, Ls, is where the sonotrode actuates over the laminate 

(Note that the sketch is not at scale, 1H  mm, 20sL  mm, 60L  mm). 

Ls

H

Ply n

y axis

x axisL 

Ply 1

Ply i

 

Figure 3.1. Scheme of the problem for the thermal model 
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3.1.2 Boundary conditions 

The general boundary conditions of the problem are described next: 

- For the left boundary of the laminate ( Lx 2
1 , Hy 0 ): The 

laminate is free, in contact with the air. 

- For the right boundary of the laminate ( Lx 2
1 , Hy 0 ): The 

laminate is free, in contact with the air. 

- For the bottom boundary of the laminate ( LxL 2
1

2
1  , 0y ): A 

peel ply layer is located under the laminate [3.1, 3.2], this peel ply 

layer having a very low conduction coefficient. An adiabatic 

condition is assumed in this zone. 

- For the top center boundary of the laminate ( ss LxL 2
1

2
1  , 

Hy  ): The laminate is in contact with the sonotrode. 

- For the top right and left boundaries of the laminate 

( LxLLxL ss 2
1

2
1

2
1

2
1 ;  , Hy  ): The laminate is free, in 

contact with the air. 

The initial condition of the problem is that, at time 0t , all the points of 

the laminate and the sonotrode are at room temperature. 

 

3.1.3 Heats involved in the compaction process 

The heat flows that take place during the compaction process when the 

sonotrode is not moved along the laminate are: 

- Conduction between the layers. 
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- Conduction within each layer. 

- Conduction between the top pre-preg ply and the titanium tip of the 

sonotrode, at ( ss LxL 2
1

2
1  , Hy  ). 

- Convection between the top pre-preg ply and the air, at the zones of 

the laminate that are not placed under the sonotrode. These zones are 

described by ( sLxL 2
1

2
1  , Hy  ) and ( LxLs 2

1
2
1  , 

Hy  ). 

Outside the area where the heat is generated, far enough from the zone of the 

laminate where the sonotrode is applied, ( Lx 2
1 , Hy 0 ) and 

( Lx 2
1 , Hy 0 ), the temperature of the laminate will not be affected by the 

heat generation, so the heat fluxes are considered equal to zero (the temperature of 

the laminate in these zones is equal to the room temperature). 

The conduction between the bottom resin layer and the mould where it is 

placed ( LxL 2
1

2
1  , 0y ) has been assumed to be negligible, due to the 

adiabatic character of the peel-ply layer placed between them. 

Radiation effects are supposed null compared with the heat conduction and 

convection. Anyway, the zone of interest is the material being compacted, that is 

located under the sonotrode, and no radiation effects will happen in this zone. 

The heat generated due to the ultrasonic vibration is considered to take place 

in the zone of the laminate just under the sonotrode, at ( ss LxL 2
1

2
1  , 

Hy 0 ). 
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3.2 Stationary problem 

The real functioning of the prototype that lays-up, compact and cure the 

plies will entail the movement of the sonotrode throughout the part to be 

compacted. As all the points experience the same thermal history, this problem can 

be considered stationary in the sonotrode frame.  

 

3.2.1 Geometry definition 

The scheme of Figure 3.2 shows the geometry of the problem under study 

[3.1]. The first, 1, and the last, n, plies and an intermediate ply, i, have been 

depicted. The zone where the sonotrode actuates over the laminate has been marked 

as Ls.  

y axis

x axis

H

L 

Ls

Lc

Ply n

Ply 1

Ply i

Movement of the sonotrode

 

Figure 3.2. Scheme of the problem for the thermal model 

The parameter Lc defines the distance between the center of the sonotrode 

and the center of the laminate. 
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Note that, as happened in the previous section, the sketch is not at scale, 

1H  mm, 20sL  mm, 3000L  mm 

It has to be noticed that, in this case, the geometry is not symmetrical with 

respect to the y axis. At the right of the sonotrode the zone affected by the 

temperature increment will be small but, at the left zone, all the material has been 

heated previously, so a certain length is needed to study the cooling of this zone. 

These assertions will be checked in Chapter 9. 

 

3.2.2 Boundary conditions 

The general boundary conditions of the problem are described next: 

- For the left boundary of the laminate ( Lx 2
1 , Hy 0 ): The 

laminate is free, in contact with the air. 

- For the right boundary of the laminate ( Lx 2
1 , Hy 0 ): The 

laminate is free, in contact with the air. 

- For the bottom boundary of the laminate ( LxL 2
1

2
1  , 0y ): A 

peel ply layer is located under the laminate [3.1, 3.2], having this 

peel ply layer a very low conduction coefficient. An adiabatic 

condition is assumed in this zone. 

- For the top center boundary of the laminate 

( scsc LLxLL 2
1

2
1  , Hy  ): The laminate is in contact with 

the sonotrode. 

- For the top right and left boundaries of the laminate 

( LxLLLLxL scsc 2
1

2
1

2
1

2
1 ;  , Hy  ): The laminate is 

free, in contact with the air. 
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3.2.3 Heats involved in the compaction process 

The heat flow rates involved in the problem are: 

- Conduction between the layers. 

- Conduction within each layer. 

- Conduction between the top pre-preg ply and the titanium tip of 

the sonotrode, at ( scsc LLxLL 2
1

2
1  , Hy  ). 

- Convection between the top pre-preg ply and the air, at the zones 

of the laminate that are not placed under the sonotrode. These 

zones are described by ( sc LLx 2
1 , Hy  ) and 

( xLL sc  2
1 , Hy  ). 

Outside the area where the heat is generated, far enough from the zone of the 

laminate where the sonotrode is applied, ( Lx 2
1 , Hy 0 ) and 

( Lx 2
1 , Hy 0 ), the temperature of the laminate will not be affected by the 

heat generation, so the heat fluxes are considered equal to zero (the temperature of 

the laminate in these zones is equal to the room temperature). 

The conduction between the bottom resin layer and the mould where it is 

placed ( LxL 2
1

2
1  , 0y ) has been assumed to be negligible, due to the 

adiabatic character of the peel-ply layer placed between them. 

Radiation effects are supposed null compared with the heat conduction and 

convection. In this case, the radiation can appear in the zone that is being cooled 

down, at the left of the sonotrode but, anyway, as in the previous problem, the zone 

of interest is the material being compacted, that is located under the sonotrode, so 

no radiation effects will happen in this zone. 
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The heat generated due to the ultrasonic vibration is considered to take place 

in the zone of the laminate just under the sonotrode, at ( scsc LLxLL 2
1

2
1  , 

Hy 0 ). 

Finally, an extra convective heat will be introduced in the formulation, 

inside the composite layers, in order to take into account the effect of the horizontal 

velocity displacement of the sonotrode. This fact will be explained in Chapter 9. 

 

3.3 Conclusions 

The general parameters that define the compaction procedures that will be 

analyzed in next Chapters have been posed. 

The main difference in the procedures is the possibility of moving (or not) 

the sonotrode along the laminate. If the sonotrode is moved, the compaction process 

will be analized as a steady-state problem and, if the sonotrode is not moved, the 

problem will be analyzed as a transient one. 

In both cases, the geometry, the boundary conditions and the heats that are 

involved in the processes have been shown. 
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Chapter 4 

Initial models 

 

Prior to study the heat generation inside the laminate due to the internal 

viscosity of the resin, several analyses have been done, in order to obtain a better 

knowledge of how the material behaves during the compaction process. 

In this case, a static compaction process will be considered, in which the 

sonotrode is placed over the laminate and vibrates, although it is not moved along 

the composite. 
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The following thermal and curing models have been solved implementing 

them in the FEM commercial program MSC.Marc/Mentat® [4.1], due to its 

possibilities of implementing curing kinetics in thermomechanical analyses. 

First, an estimation of the temperature distribution inside the laminate will 

be done with a FEM thermal model, using as an input the experimental 

measurement of the temperature in the sonotrode. This estimation will allow the 

validity of the thermal properties given in the literature [4.3] to be checked. 

Second, the model presented in the previous section will be coupled with a 

curing model, in order to check if the resin achieves a representative degree of cure 

during the ultrasonic compaction process (due to the heat generated in the process). 

Third, from the results of the previous models and curves obtained from 

experiments, the evolution of the viscosity of the resin with the temperature will be 

obtained. This evolution will be necessary in the following chapters, for the 

modelling of the heat generation. 

 

4.1 Estimation of the temperature in the laminate 

As mentioned before, the quality of the compaction depends on the 

debulking of the plies. The air between plies has to be removed properly. This will 

occur if the resin is fluid enough and this fluidization will occur if the temperature 

in the laminate is raised during enough time.  

With the present model, the analysis of the heat flux and the temperatures 

reached in the composite laminate, using some data from the measurements made 

during the ultrasonic compaction process, is attempted.  

This is a previous model made to check that, with the properties available, 

the temperature in the laminate can be controlled without placing thermocouples on 
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it. It can be achieved by comparing this model with the curve obtained in the 

experiment presented in Section 2.2.1. However, it cannot be assured that the 

comparison will reveal satisfactory results because the experiment is made on 

uncured material and the properties employed in the model have been measured on 

cured material. 

The hypotheses made and the implementation of the model will be detailed 

first. Then the results obtained with the model will be presented, finishing this 

section with a comparison with experimental results. 

 

4.1.1 Description, hypotheses and implementation of the 

thermal model 

In this model, only the titanium tip and the laminate that is compacted will 

be considered, excluding the modelling of the tool where the composite material is 

placed, as can be seen in Figure 4.1. The tool will be substituted by an isolation 

condition due to the peel ply layer placed over it, as mentioned before. 

 

Figure 4.1. FEM thermal model 
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The dimensions of the model are: 

- Length of the laminate, 130L  mm. 

- Thickness of the laminate, 04.1H mm. 

- Length of the contact zone of the sonotrode, 20sL mm. 

- Heigth of the sonotrode, 45sH mm. 

The heat exchanges assumed in this model are: 

- Conduction between the sonotrode and the composite laminate 

- Convection between the sonotrode and the environment 

- Convection between the composite laminate and the environment 

As mentioned in Chapter 3, radiation effects have been neglected compared 

with the heat conduction and convection. 

The temperature at the tip of the sonotrode (at the contact zone with the 

laminate) will be fixed and assumed to be known, letting the temperature of the 

laminate to evolve freely. 

The material that will be compacted consists of 8 plies laid up following the 

stacking sequence (0)8, the 0º direction being coincident with the x axis of Figure 

4.1 and the lay-up direction coincident with the y axis of the same figure. 

The problem has been solved as a 2D problem. The validity of this 

approximation will be analyzed in Chapter 6. 

The main properties of the materials (density,  , heat capacity at constant 

pressure, pc ,and conductivity, k ) [4.3] used in the FEM model are shown in Table 

4.1. 
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Material 





3m

kg
 









kgK

J
cP

 





mK

W
k

 

Titanium 4430 580 7,1 

Composite 

material 
1570 1180 

0,6 (transversal) 

1 (longitudinal) 

Table 4.1. Thermal properties of the materials 

A detailed view of the contact zone between the sonotrode and the laminate 

is shown in Figure 4.2. The node whose temperature will be followed during the 

compaction process has been marked with a red circle. 

 

Figure 4.2. Detailed view of the contact zone between the sonotrode and the 

laminate 

As can be appreciated, Figure 4.2, a congruent mesh has been used, in order 

to obtain a smooth transition in the heat transfers. 

The problem under study is a static test, as mentioned in the experimental 

measurements of section 2.2.1 and is formulated as follows: initially, the two bodies 

remains in contact at room temperature (Figure 4.3). The temperature of the 

interface sonotrode tip/laminate is raised, transferring the heat to the laminate and to 
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the sonotrode. The free faces of the laminate and the sonotrode interchange heat 

with the air through convection.  

The raise of the temperature has been modeled using two straight lines 

(Figure 4.3), based on punctual measurements made at the sonotrode tip. The first 

line has a very high slope (the temperature is increased up to 100 ºC in less than a 

second) whereas the second line presents a lower slope (as will be checked in 

Chapter 6, reaching the maximum temperature, the heat generated decreases).  
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Figure 4.3. Temperature evolution imposed to the sonotrode tip to evaluate the 

temperature field in the thermal model 

 

4.1.2 Results 

Once the FEM model has been solved, the results obtained are analyzed 

next. 
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The evolution of the temperature with the time has been measured at the 

node marked in Figure 4.2 with a red circle (in order to compare, later, with the 

experimental results). This evolution is depicted in Figure 4.4. 

As expected, a fast initial temperature increment is obtained, in almost 2 

seconds 120 ºC are reached. After that the temperature raise is slower, until 

reaching the end of the compaction process. 
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Figure 4.4. Temperature vs time curve, obtained with the thermal model for a 

static compaction, at a node situated at (x=0, y=0) 

 

The temperature distribution inside the laminate can be appreciated in Figure 

4.5. It has been obtained at the end of the process, for a time of 10 seconds. The 

scale of the temperature shown is in Kelvin. 
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Figure 4.5. Temperature field inside the laminate during the static ultrasonic 

compaction process (in Kelvin) 

4.1.3 Experimental validation 

In order to validate the model, the results obtained in Figure 4.4 are 

compared with the experimental results presented in Section 2.2.1. This comparison 

is shown in Figure 4.6. 
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Figure 4.6. Comparison of the thermal FEM model results with experimental 

measurements 
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Figure 4.6 shows a reasonably good agreement between the thermal FEM 

model and the experimental results, validating the properties given in the 

bibliography [4.3]. 

 

4.2 Evaluation of the possible curing of the resin 

during the compaction process 

The aim of this model is to check if the heating associated to the vibration 

can advance the curing of the resin. To this end, a curing model for the resin that 

forms the matrix of the composite has been developed. This curing model has been 

coupled with the thermal FEM model described in section 4.1, obtaining as a result 

the evolution of the degree of cure of the resin during the compaction process. As 

mentioned at the beginning of this Chapter, this curing model has also been 

implemented in the commercial FEM program MSC.Marc/Mentat®. 

Due to the coupled nature of the curing process between the temperature and 

the degree of cure, an incremental algorithm to solve this process will be presented 

first. Then, the equations that represent the curing kinetics will be posed. Finally, 

the results obtained with this model will be shown.  

 

4.2.1 Algorithm to calculate the degree of cure 

The present model has been developed to obtain the evolution of the degree 

of cure of the resin with the temperature during the compaction process. The 

temperature distribution inside the laminate will be given by the thermal FEM 

model presented in section 4.1.  
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The degree of cure ( ) is defined here as the relative difference between the 

quantity of epoxy groups existing initially ( 0E ) and the quantity of epoxy groups 

existing in a certain moment ( iE ). The degree of cure can there-by be expressed as: 

 
0

1
E

Ei  (4.1) 

The value of the degree of cure varies in the range 10   . 

The evolution of the degree of cure along the compaction process will be 

obtained using an incremental algorithm. The steps of the algorithm are: 

Step 1: the degree of cure ( i ) and the temperature ( )iT  of the resin are 

assumed known at a certain time i . 

Step 2: the curing model (that will be presented next) is used to estimate the 

variation of the degree of cure with the time (
dt

d i
). 

Step 3: the degree of cure at the next time step 1i  is calculated using: 

 t
dt

d i
ii 


 1  (4.2) 

where t  is the length of the time step. 

Step 4: the heat generated due to curing ( c
iQ ) is calculated using  

 rrf
ic

i HV
dt

d
Q 


)1(   (4.3) 

where fV  is the volumetric fraction of fibers, r  is the density of the resin 

and rH  is the total heat of reaction of the resin [4.2]. 
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Step 5: the heat generated calculated in step 4 is included in the thermal 

model presented in section 4.1 to solve the thermal problem during the time step, 

obtaining the temperature field at the next time step, 1iT . 

The algorithm returns to Step 1 until reaching the end of the process time. 

A scheme of the algorithm is presented in Figure 4.7. 

c
iQ

dt

d i
i

iT

Curing model

Thermal model

i

iT
 

Figure 4.7. Scheme of the algorithm used to estimate the degree of cure during 

the compaction process 

In order to initialize the algorithm, an initial value of  , different to 0, has 

to be chosen. In this case, as indicated in the bibliography [4.1], a value of 0.0002 

has been chosen. 

 

4.2.2 Curing model 

In this section, the model that represents the curing kinetics of the resin will 

be presented. The model is obtained from the experimental results presented in 

Section 2.2.2 of Chapter 2. 

In the experimental measurements made with the FTIR [4.6], the 

expressions of the curing kinetics were given to obtain the absorbance relation R . 

Note that R  was defined as the ratio between the absorbance of the 6005 cm-1 band 

( 6005A ) and the absorbance of the 4525 cm-1 band ( 4525A ), measured with the FTIR. 
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In order to implement this curing kinetics into the FEM program, they have to be 

expressed in terms of the degree of cure  . The parameter R  can be related with 

the degree of cure from the results of the FTIR and the DSC [4.5] using the curve 

presented in Figure 4.8, extracted from [4.4]. 

A4525 FTIR

α
D

S
C

 

Figure 4.8. Curve to relate the measurements of the FTIR (horizontal axis) and 

the DSC (vertical axis) 

From the regression line used to fit the results of Figure 4.8, the expression 

(4.4) can be obtained:  

 9846.04016.2 4525  A  (4.4) 

The parameter R  can be expressed as: 

 
4525

6005

A

A
R   (4.5) 

Substituting equation (4.5) in (4.4), the expression that relates   and R  is 

obtained: 
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9846.0

4016.2
)( 6005








A

R  (4.6) 

Using equation (4.6), the expressions that define the curing kinetics 

presented in Table 2.1 of section 2.2.2 can be expressed in terms of  . These 

expressions are shown in Table 4.2, where: 

 1654.06005 A  ; 
 

6005

2

4016.2

9846.0
)(

A
J



  (4.7) 

T (ºC) 75.0  75.0  

160 


32 )(012.0)(063.0

)(105.0029.0)(





RR

RJ
dt

d




  3)(1884.0)(  

RJ
dt

d
 

170 


32 )(019.0)(095.0

)(157.0048.0)(





RR

RJ
dt

d




  49.2)(2508.0)(  

RJ
dt

d
 

180 


32 )(031.0)(151.0

)(261.0086.0)(





RR

RJ
dt

d




  96.0)(2809.0)(  

RJ
dt

d
 

190 


32 )(067.0)(281.0

)(411.0126.0)(





RR

RJ
dt

d




  38.0)(4851.0)(  

RJ
dt

d
 

200 


32 )(019.0)(119.0

)(278.0093.0)(





RR

RJ
dt

d




  98.0)(1059.5)(  

RJ
dt

d
 

Table 4.2. Equations of the curing model in terms of   

The two expressions used to describe the curing kinetics at each temperature 

are not continuous. Supposing that this fact could introduce errors when 

implementing the equations into the FEM program, a lineal transition between the 
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expressions has been chosen. The first expression has been assumed for the interval 

73.00   and the second expression for 77.0 , using a straight line to 

describe the interval 77.073.0  . 

A representation of the curves and the approximation made can be seen in 

Figure 4.9, where a graph degree of cure versus variation of the degree of cure with 

the time is presented. 
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
 

Figure 4.9. Representations of the cure kinetics as degree of cure/variation of 

the degree of cure with the time for several values of the temperature 

It can be seen that the transition made between the equations for 75.0  is 

almost inappreciable. 

In order to better appreciate the curing kinetics, a 3D representation is 

shown in Figure 4.10. 
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Figure 4.10. 3D representation of the cure kinetics 

The model proposed is representative for temperatures between 160 ºC and    

200 ºC. As seen in the experiments shown in Chapter 1, the temperature during the 

compaction process is lower than 140 ºC. As there is no information of the curing 

kinetics for temperatures below 160 ºC, the evolution between 0 ºC and 160 ºC will 

be supposed. 

Observing the evolution of the viscosity in the experimental results of 

Chapter 1, it is supposed that the resin will not begin to react until reaching 120 ºC 

and, then a smooth reaction will happen. With this data, the evolution is proposed 

as: 

- From 0 ºC to 120 ºC: the resin is supposed to not react, so the variation 

of the degree of cure will remain equal to 0. 
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- From 120 ºC to 160 ºC: a linear evolution from 0 to the value at 160 

ºC for the variation of the degree of cure is assumed. This assumption 

is supposed to provide higher values than in the real behavior, 

because, in the real case, the evolution should be smoother. 

The curing kinetic of the model with the described assumptions is shown in 

the 3D representation of Figure 4.11. 
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Figure 4.11. Model of the curing kinetics from 0º to 200 ºC 

 

4.2.3 Results of the curing model 

The results obtained with the curing model are shown next. As mentioned 

before, the curing model has been implemented in the commercial FEM program 

MSC.Marc/Mentat. The type of analysis used is a thermomechanical one, the 

thermal model presented in section 4.1 being that used also in this case. 
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The curing kinetic model used is the one presented in Figure 4.11. 

The evolution of the degree of cure with the time during the compaction 

process is shown in Figure 4.12. 
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Figure 4.12. Time vs Degree of cure curve, obtained with the curing kinetic 

model for a static compaction process during 10 seconds 

The behavior of the curve can be analyzed in two stages: 

- Stage 1: the temperature is not high enough, so the material does not 

react and the degree of cure is not modified. 

- Stage 2: after achieving 120 ºC, the resin begins to react, increasing its 

degree of cure. After this stage, the material is cooled down. Therefore 

the value of the degree of cure will remain constant, as the curing 

process in the thermoset resins is irreversible. 

As can be appreciated, the degree of cure obtained is insignificant, letting us 

to assert that the compaction process does not advance the curing of the resin.  
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Note that the evolution of the degree of cure during the first and the second 

stages is conditioned by the suppositions made for temperatures under 160 ºC. It is 

supposed that the real evolution will be under the one supposed, obtaining values of 

the degree of cure lower than the one the model predicts, i.e., the model 

overestimates the value of the degree of cure. 

Anyway, it is important to remember that these results have been obtained 

for a static compaction process. Thus, when the sonotrode is moved along the 

laminate, the temperatures reached in the resin will be lower than the ones obtained 

here, leading to an even inferior degrees of cure. 

 

4.3 Modelling the evolution of the viscosity with the 

temperature 

The objective of this section is to obtain an equation that represents the 

evolution of the viscosity of the resin with the temperature at high heating rates. It 

will be derived from the experimental results shown in Chapter 1.  

The experimental curves that represent the evolution of the viscosity with 

the temperature were presented in Figure 2.6 of section 2.2.3. Observing the curves, 

it can be seen that, at low temperatures, the viscosity tends to decrease when 

increasing the temperature (the viscosity dependence on the temperature is roughly 

linear if the viscosity is plotted in a logarithmic scale). At a certain temperature, the 

behavior changes and the viscosity grows when increasing the temperature, this 

change being due to the beginning of the curing phase. Comparing the different 

curves, it can be seen that, when increasing the heating rate, the temperature at 

which the viscosity begins to grow increases.  

It has been checked numerically (in section 4.2.3) that the resin is not cured 

during the ultrasonic compaction process. Therefore, in our case, due to the huge 



 
 
Initial models  Chapter 4 

 
 
 

103 
 

heating rate that is obtained (that will prevent the initiation of the curing reaction) 

and the low temperatures raised (up to 120-140ºC), a linear approximation between 

the logarithm of the viscosity and the temperature has been selected, as can be seen 

in Figure 4.13. 
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Figure 4.13. Approximation of the evolution of the viscosity with the 

temperature for low temperatures and high temperature rates 

 

The equation that fits this approximation is: 

  T0.0435-17.08110  (4.8) 

The validity of this approximation of the evolution of the viscosity will be 

checked comparing the resolution of the model proposed in Chapter 5 with 

experimental measurements. 
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4.4 Conclusions 

In this Chapter, several preliminary models and results have been obtained, 

in order to understand the compaction process properly. This understanding will 

conduct to a better modelling of the process. 

A thermal model has been developed first. This model has been 

implemented in a FEM commercial program (MSC.Marc/Mentat [4.1]). The 

thermal model allows the temperature field in the laminate to be obtained from the 

measurement of the temperature at the sonotrode tip. Although this model is simple 

and does not allow the temperature field to be estimated when the compaction 

conditions are modified, it has been used to validate the thermal properties of the 

materials involved in the process given in the literature [4.3]. 

The temperatures obtained with the thermal model have also been used to 

estimate the possibility of a partial curing of the resin during the compaction 

process. A curing model has been developed, from experimental measurements, to 

estimate the degree of cure during the process. 

As the experimental results were given for temperatures higher than the ones 

obtained in the compaction process, several considerations on the evolution of the 

degree of cure and its variation on the time have been done, for temperatures lower 

than 160 ºC. 

The results given by the coupled curing and thermal model have shown that 

the curing during the compaction process is negligible. It has also been noticed that 

the results are obtained for a static compaction. Thus, in a process in which the 

sonotrode is moved along the laminate, the degree of cure obtained will be even 

lower. 

As the temperature field obtained during the compaction process does not 

increase the degree of cure significantly, it will be assumed that a phase change is 

not produced in the resin. This fact will lead to assume that the resin will behave as 
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a liquid during all the process time. This assumption will be used in the heat 

generation model presented in Chapter 5. 

Finally, a model to calculate the evolution of the viscosity with the 

temperature has been presented. This model will be used next, during the modelling 

of the heat generation during the compaction. As the experimental results were 

obtained for heating rates lower than the one obtained in the ultrasonic compaction, 

several assumptions have been done, its validity being checked in the resolution of 

the models presented in the following chapters. 
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Chapter 5 

Modelling the heat 

generation 

 

The scope of this chapter is the development of a model capable to predict 

the heat generated inside the resin during the ultrasonic compaction due to the 

internal viscosity.  
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Several studies have been carried out for similar compaction processes (but 

with a configuration different than the studied in this work) coupled with the 

filament winding manufacturing technology [5.1, 5.2, 5.3]. 

In this case, the model assumes a liquid behavior of the resin along all the 

process, supposing there is no curing, due to the temperatures reached and the short 

time the resin is exposed to those temperatures. 

The movement of the sonotrode that produces the heat generation will be 

decomposed in its vertical (corresponding to the y axis) and horizontal 

(corresponding to the x axis) components, in order to study their heating effects 

separately. 

Firstly, some preliminary remarks will be done, concerning the modelling of 

the pre-preg and the velocity profiles than can be found in the resin, due to the 

different components of the movement of the sonotrode. Secondly, in section 5.2, 

the main hypotheses that concern the model will be posed. Thirdly, the boundary 

conditions that take place in the different resin volumes will be set out. Fourthly, the 

heat generation will be obtained for both the horizontal and vertical components of 

the movement of the sonotrode. Finally, in section 5.5,  the conclusions concerning 

this heat generation model will be presented. 

 

5.1 Preliminary remarks 

Prior to present the main hypotheses and the equations that describe the heat 

generation, the model assumed for the pre-preg plies, the mechanism by which the 

heating is generated and the movements induced by the ultrasonic oscillation of the 

sonotrode inside the resin will be commented. 

Note that, in this case, as only the generation of the heat is searched, the area 

of study will be the zone of the laminate located under the sonotrode. 
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During the compaction process, the resin inside the uncured preimpregnated 

plies will be assumed to behave as a liquid with high viscosity. Therefore, heat 

generation will occur only in uncured plies. Each pre-preg ply will be modeled as 

the joint of two resin layers with a layer of fibres between them (see Figure 5.1). In 

this case, the total thickness of a ply, ph  (see Figure 5.2), is the sum of the thickness 

of two resin layers (with thickness rh ) and one fibre layer (with thickness fh ). 

Other possible model for structure of the pre-preg plies will be commented in 

Chapter 6, discussing the validity of the model assumed in this Chapter. 

Resin 
layers

Fibre
layer

Ply

 

Figure 5.1. Scheme of a pre-preg ply 

 

hr

hf

hr

hpPly

 

Figure 5.2. Thicknesses in a pre-preg ply 

The heating of the plies will be generated during the compaction process by 

the internal viscosity of the resin. The cause is the movement generated inside the 

resin by the vibration of the sonotrode over the laminate. This movement, which 

can be decomposed into its horizontal and vertical components, generates several 

velocity profiles inside the resin that will be described next. 
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The vertical movement of the sonotrode, whose vertical velocity is 

designated as )(twsv , induces an oscillating pressure that is transmitted to all resin 

layers due to the compression of the lay-up, and generates a horizontal velocity 

profile in the resin, ),,( tyxu i , called Hagen-Poiseuille profile (see Figure 5.3), 

Pfitzner [5.4]. 

x
y

ih2
1

ih2
1

),,( tyxui

),( 2
1 thv ii

),( 2
1 thv ii 

 

Figure 5.3. Hagen-Poiseuille horizontal velocity profile of the resin originated 

by the vertical movement of the sonotrode in the ith-resin layer 

The variables that appear in Figure 5.3 are: the horizontal axis x , the 

vertical axis y , the thickness of the thi  resin layer ih , the horizontal velocity 

),,( tyxu i  of the resin, the vertical velocity ),,( tyxvi  of the resin and the time t  of 

the process. For the sake of simplicity, in the present chapter a local y variable will 

be employed in each resin layer ii hyh 2
1

2
1  . 

The horizontal movement of the sonotrode, whose velocity is designated as 

)(twsh , is transmitted only to the first layer of resin due to the shear movement (the 

fibre is solid and still, the movement not then being transmitted to the resin under it) 

and generates a horizontal velocity profile in the resin called Couette profile (see 

Figure 5.4), Wendl [5.5]. 
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x
y

ih2
1

ih2
1

),,( tyxui

)(twsh

 

Figure 5.4. Couette horizontal velocity profile of the resin originated by the 

horizontal movement of the sonotrode in the ith-resin layer 

 Notice that plane behavior throughout the x-y plane has been assumed. 

This is motivated by the directionality that the fibres force, prescribing the 

movement of the fluid resin in the x direction and avoiding possible movements 

perpendicular to this x-y plane. 

 

5.2 Hypotheses of the model 

The equations that govern the heat generation in the compaction of several 

uncured plies will be presented next. As mentioned in section 5.1, the main 

hypothesis that will be considered in the analysis of the heat generation, for the 

problem defined in section 1.3.2.2 (the compaction of multiple uncured plies) is 

plane behavior. 

To obtain the heat generated during the ultrasonic debulking, the inertialess 

Navier-Stokes equations, i.e. the Stokes equations [5.6], are employed. In particular, 

for the typical layer i  shown in Figure 2.2 of Chapter 2, Stokes equations write: 
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where x  is the horizontal coordinate (i.e. parallel to the fibres), y  is the vertical 

coordinate (i.e. in the thickness direction of the ply), ),,( tyxu i  is the horizontal 

component of the velocity in layer i , ),,( tyxvi  is the vertical component of the 

velocity in layer i , )(ti  is the viscosity of the resin in layer i  (assumed constant 

within the layer) and ),,( tyxpi  is the pressure in layer i . 

Note that )(ti  is dependent on temperature. Since only the heat generation 

is being calculated in this section, the influence of temperature is not important. 

However, in the study of the coupled problem, the dependence of )(ti  on 

temperature must be appropriately taken into account, see section 4.3. 

Another hypothesis considered is the hydrodynamic lubrication [5.7]. This 

entails that:  

 0
),,(

;0
),,(

2

2

2

2










y

tyxv

x

tyxv ii

 (5.2) 

and that: 

 
2

2

2

2 ),,(),,(

y

tyxu

x

tyxu ii
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





 (5.3) 

Introducing (5.2) and (5.3) in (5.1) implies that the pressure on the layer i  

depends only on the x  coordinate: 

 ),(),,( txptyxp ii   (5.4) 

The dimensions of the problem (~0.01 mm in the vertical direction and ~20 

mm, the width of the zone under the sonotrode, in the horizontal direction) justify 

the abovementioned hypothesis. 
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5.3 Boundary conditions 

Considering a set of uncured plies, ni ,...,1  (see Figure 2.2), with 1 being 

the ply in contact with the table and n  being the ply in contact with the sonotrode, 

boundary conditions are those described in the following paragraphs. 

For the sake of clarity, boundary conditions employed in the solution 

associated to the horizontal and vertical movements of the sonotrode are separated 

into distinct sections. 

As shown in Figure 5.1, each ply has two resin layers separated by a fibre 

layer. The top resin layer of an intermediate ply is adjacent to the bottom resin layer 

of the ply situated on top of it. Therefore, these two resin layers can be treated as a 

single resin layer with double thickness. Consequently, for n plies, n+1 resin layers 

are obtained, their height being defined as: 

 
nihh

hhh

r
i

r
n

,...,22

11



 

 (5.5) 

where rh  is the thickness of one of the resin layers of a ply. 

 

5.3.1 Vertical movement of the sonotrode 

For all resin layers, the horizontal velocity of the points in contact with the 

fibres, with the sonotrode or with the table is equal to zero: 

   1,...,10,, 2
1  nithxu ii  (5.6) 

   1,...,10,, 2
1  nithxu ii  (5.7) 
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The vertical velocity of the resin in contact with the sonotrode (in the upper 

boundary of the top layer) is equal to the vertical velocity of the sonotrode )(twsv : 

   )cos()(,, 1
2
11 ttwthxv vsv

nn   (5.8) 

where v  is the amplitude of the oscillations in the vertical movement and   is the 

frequency of the ultrasounds. 

The vertical velocities of the layers are coupled through the fibre interphase. 

     nithxvthxv iiii ,...,1,,,, 1
2
11

2
1    (5.9) 

 For the sake of clarity, the vertical velocities in contact with the fibre will be 

equaled with the vertical velocity of the fibre layer, reducing the notation to: 

     nithxvthxvtv iiiii
f ,...,1,,,,)( 1

2
11

2
1    (5.10) 

The vertical velocity of the resin in contact with the table (bottom layer) is 

equal to zero: 

   0,,)( 1
2
110  thxvtv f  (5.11) 

 

5.3.2 Horizontal movement of the sonotrode 

The conditions given by equation (5.6) and (5.7) remains equal in this 

situation, except for the case of the horizontal velocity of the points in contact with 

the sonotrode. In this case, the horizontal velocity of the resin in contact with the 

sonotrode (in the upper boundary of the top layer) is equal to the horizontal velocity 

of the sonotrode, )(twsh , that is, as described in [5.8], a sinusoidal function: 

   )cos()(,, 1
2
11 ttwthxu hsh

nn   (5.12) 
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where h  is the amplitude of the oscillations in the horizontal movement of the 

sonotrode and   is the frequency of the ultrasounds.  

In this movement, vertical velocities are assumed to be negligible 

everywhere. 

 

5.4 Evaluation of the heat generated 

The heat generated in a resin layer i will be denoted by ),,( tyxQi
gen
 . Its 

general form can be written as: 

 ),,(:),,(),,( tyxtyxtyxQ iii
gen Dσ  (5.13) 

where : denotes the product component by component of the tensors iσ  and iD . 

iD  is the strain velocities tensor of the resin for layer i , which for this 

particular case adopts the form: 
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 iσ  is the stress tensor of the resin in layer i : 

 ),,()(2),,( tyxttyx iii Dσ   (5.15) 

The solutions for the vertical and the horizontal components of the 

movement of the sonotrode are presented separately again. The equations for the 

velocity ),,( tyxu i  and for the heat generated ),,( tyxQi
gen
  will be obtained for each 

component. 
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5.4.1 Heat generated by the vertical movement of the 

sonotrode 

To obtain the horizontal velocity field associated to the vertical movement 

of the sonotrode, the pressure distribution in each layer needs to be determined. 

Therefore, the vertical velocities of the fibres will be determined first. 

Taking into account the assumptions made in (5.4), the following condition 

can be obtained for the pressure distribution in each layer: 

 ),(),,(0
),,(

txptyxp
y

tyxp ii
i





 (5.16) 

Thus, the first equation of (5.1) can easily be integrated to obtain: 
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 (5.17) 

A  being a function that can be determined applying to the horizontal velocity the 

condition that the flow rate has to be symmetric: 
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 (5.18) 

Integrating (5.17), the equation that defines the horizontal velocity as a 

function of the variation of the pressure is obtained: 
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B  being a function that can be determined applying the boundary conditions at the 

top or, because of the symmetry, at the bottom of the layer (5.7):  
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Thus, the horizontal velocity distribution is: 
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The pressure gradient can be obtained by applying the mass balance. The 

flow rate in layer i  in horizontal direction, ),( txF i , will be: 
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 (5.22) 

The expression that relates the flow rate and the vertical velocities of the 

surrounding fibres is obtained by applying the balance of flow rate in the 

differential element shown in Figure 5.5. 

),( txF i ),( tdxxF i 

)(1 tvi
f


)(tvi
f

x dxx 

Layer i ih

 

Figure 5.5. Balance of flow rate in a control volume 

The mass balance, the fluid being incompressible, reads: 

 dxdttvdxdttvdttdxxFdttxF i
f

i
f

ii )()(),(),( 1  (5.23) 
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Assuming a linear expansion of Fi:  

 dx
x

txF
txFtdxxF

i
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


),(

),(),(  (5.24) 

and substituting (5.24) in (5.23), it yields: 
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Substituting (5.22) in (5.25) yields: 
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Now, equation (5.26) is going to be particularized for resin layer 1, resin 

layer 2 and a general resin layer i. Notice that the lowest layer (layer 1) is in contact 

with the table and the vertical velocity in its lower side is null. 

Particularization of (5.26) for layer 1 leads to: 

 

 

 31

1
1

2

12

01
2

12

1

31

)(12
)(

),(

)()(
),(

)(12

h

t
tv

x

txp

tvtv
x

txp

t

h

f

ff















 (5.27) 

where it has been taken into account that 0)(0 tv f . 

Particularization of (5.26) for layer 2 leads to: 
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Particularization of (5.26) for layer i  leads to: 
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The balance of forces in the vertical direction in the fibre layer between 

resin layers 1 and 2 implies that: 

 ),(),( 21 txptxp   (5.30) 

The relation between the vertical velocities is obtained by substituting (5.27) 

into (5.28): 
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 (5.31) 

The balance of forces in the fibre layer between resin layers 1i  and i  

implies that: 

 ),(),(1 txptxp ii   (5.32) 

which enables obtaining the relation between the vertical velocities of two 

consecutive fibre layers. 
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The relation for all the vertical velocities can be obtained following the 

methodology described by (5.31) and (5.33) for all resin layers. The vertical 

velocity at the top of the upper layer,  thxvtv nnn
f ,,)( 1

2
111   , is known (since it is 

equal to the vertical velocity of the sonotrode). Thus, all the vertical velocities can 

be obtained starting from the top and calculating each velocity downwards from the 

previous one until 1
fv  is determined. 
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Once the vertical velocities of the fibres have been determined, the 

horizontal velocity profile in the resin can be obtained for this component of the 

movement of the sonotrode. 

With reference to the horizontal velocity of the resin, as mentioned in 

section 1.3.2 for the Hagen-Poiseuille velocity profile [5.4], it is assumed to be 

parabolic: 

 2),(),(),(),,( ytxEytxDtxCtyxu i   (5.34) 

where ),( txC , ),( txD  and ),( txE  are functions that have to be determined by the 

application of the following conditions. 

D  can be obtained applying the flow symmetry: 
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C  can be obtained applying (5.6): 
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The horizontal velocity field, at this point, is: 

    












4
),(,,

2

2
i

i h
ytxEtyxu  (5.37) 

),( txE  can be obtained by applying the mass balance at the control volume 

shown in Figure 5.6: 
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Figure 5.6. Balance at the ith layer 

Substituting (5.38) in the balance of flow rate: 
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Therefore, the horizontal component of the velocity field obtained in this 

problem, generalized for any layer, iu , is: 
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The vertical components of the velocity field obtained at the interphases are: 

 0)(0 tv f  (5.41) 

 )()(1 twtv sv
n
f   (5.42) 
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Once the velocity profile is determined, the heat generated in any layer, 

i
vgenQ _

 , can be obtained from (5.13-5.15) yielding: 

  
  2221

6_ )()(
)(144

),,( xytvtv
h

t
tyxQ i

f
i
fi

i
i

vgen    (5.45) 

In this case, ),,( tyxu i  depends linearly on x  and quadratically on y . Thus, 

the heat generated is different at each point of the layer. 

 

5.4.2 Heat generated by the horizontal movement of the 

sonotrode 

As mentioned above, the horizontal component of the movement will only 

affect to the resin layer in contact with the sonotrode. 

In this case, the vertical velocity field is null, since there is no movement 

transmitted vertically. 

The horizontal velocity of the sonotrode is defined by: 

 )cos()( ttw hsh    (5.46) 
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The horizontal velocity profile in the resin in this case, as mentioned in 

section 1.3.2 for the Couette velocity profile [5.5], is assumed to depend linearly on 

y . Therefore, it will be of the form: 

 ytxGtxFtyxu n ),(),(),,(1   (5.47) 

where F  and G  are functions to be determined. 

Applying (5.6), the value of the function ),( txF  can be obtained:  
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Applying (5.12), the value of the function ),( txG  can be obtained: 
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The horizontal component of the velocity field associated to the horizontal 

movement of the sonotrode is: 
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 (5.50) 

The vertical component of the velocity is equal to zero for all the layers. 

The solution of the problem for the heat generated in the horizontal 

movement of the sonotrode, n
hgenQ _

 , is: 
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In the rest of the layers the heat generated is equal to zero due to the absence 

of velocity. 

Note that only the derivatives of ),,( tyxu i  with respect to the vertical 

coordinate y  appear in (5.14) and (5.15). Since ),,( tyxu i  has been assumed to 

depend linearly on y , equations (5.47) and (5.50), the heat generated at a point 

does not depend on the position of the point. 

As can be seen in equations (5.40)-(5.43) and (5.51), the heat generated at 

each point by the vibration of the sonotrode is presented as a function of the 

amplitude, h , v , and the frequency of the sonotrode oscillations,  , defined in 

equations (5.8) and (5.12), the location of the point and the time of the process. 

 

5.5 Conclusions 

A model that determines the viscous heat generation of the resin in a 

laminate during the ultrasonic compaction has been developed. 

The heat generated has been decomposed in two componentes, given by the 

vertical and horizontal components of the movement of the sonotrode. These 

movements lead to different velocity profiles. In this case, the Couette and Hagen-

Poiseuille velocity profiles have been assumed for both the horizontal and the 

vertical movements, respectively. The velocity profiles assumed has conditioned the 

transmission of the movement along the resin layers, the Hagen-Poiseuille velocity 

profile being transmitted to all the resin layers and the Couette velocity profile 

being transmitted only to the first resin layer. 
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The main hypotheses used in the development of this heat generation model 

have been the plane behavior, given by the directionality that the fibres impose to 

the liquid resin and the hydrodynamic lubrication, assumed due to the dimensions 

of the problem. This last hypothesis helps to simplify the Stokes equations that 

define the pressure field in the different resin layers.  

The heat generated has been obtained as a function of the viscosity and the 

vertical velocities at the extremes of the resin layers.  

The vertical velocities of the resin layers have been related with the vertical 

velocities of the fibre layers, which can be obtained from the vertical velocity of the 

sonotrode. 

This heat generation model will be implemented, in next Chapters, in several 

heat distribution resolutions. In this way the thermal field in the laminate during the 

compaction process will be solved. 
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Chapter 6 

Semi-analytical model 

 

In order to check the validity of the heat generation model developed in 

Chapter 5, a semi-analytical model that couples this heat generation with the heat 

distribution inside the laminate is presented. This model is based on 1D heat 

transfer equations, taking into account the heats involved in two directions, on a 

way of enriching the 1D solution. 

First, several considerations about the modelling of the pre-preg plies are 

presented. Two possibilities will be distinguished: considering each pre-preg ply as 
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the sum of two resin layers and a fibre layer, and considering each pre-preg ply 

formed by the same number of resin layers as the number of fibres in the thickness. 

Second, the heat generation model that has been assumed will be presented. 

In the third section, the equations used to define the heat distribution in the laminate 

will be posed. Due to the coupled nature of the problem (the heat generated in each 

resin layer depends on the temperatures of the other resin layers), an incremental 

algorithm will be developed in the fourth section. 

In section 6.5, the way of implementing the geometry and the algorithm to 

solve the problem in a commercial mathematical programming software (Matlab 

[6.1]) will be shown. The results obtained with the model are presented in section 

6.6, in which a comparison of the results with experimental data will also be carried 

out. 

Finally, the conclusions related to the semi-analytical model and the results 

presented in this Chapter will be discussed. 

 

6.1 Alternatives in the pre-preg modelling 

Prior to implement the heat generation model presented in Chapter 5 into a 

heat distribution model, several considerations concerning the modelling of the pre-

preg plies are going to be done. 

During the development of the formulation presented in Chapter 5, each         

pre-preg ply was considered formed by several resin and fibre layers. As can be 

supposed, the number of resin layers considered to be contained in a ply can affect 

the solution. Two hypotheses concerning the number of layers that conforms a ply 

have been done: 

- First hypothesis: Each pre-preg ply is formed by two resin layers 

and, in the middle of them, a fibre layer, the thickness of the fibre 
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layer being the half of the total ply thickness. In this case, the 

formulation of each ply can be expressed as [RL/FL/RL]. 

- Second hypothesis: The pre-preg is formed by q resin layers and q-1 

fibre layers, uniformly distributed along the ply thickness, following 

the sequence [(RL/FL)q-1/RL]. In this case, the number of fibres 

layers coincide with the number of fibres contained in the ply 

thickness. The thickness of all layers is considered the same, and 

equal to the thickness of a single fibre. 

Both models considered in the hypotheses can be appreciated in the drafts 

shown in Figure 6.1 and Figure 6.2, respectively. 

Fibre layer Resin layers

Z

Pre-preg
ply

 

Figure 6.1. First hypothesis considered for the pre-preg modelling 

 

Resin layersPre-preg
ply Fibre layers

 

Figure 6.2. Second hypothesis considered for the pre-preg modelling 
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 The first hypothesis is supposed to be closed to the reality just at the 

beginning of the compaction process, due to the method of manufacturing the pre-

preg [6.2]. 

 The second hypothesis is supposed to be closed to the reality along and at 

the end of the process, due to the mixing procedure carried out during the 

compaction of the laminate. This consideration is not completely true in several pre-

preg formulations (a minority), in which few mixing of the components is 

appreciated. Thus, the first hypothesis is more realistic during all the compaction 

process. 

It is important to remark that, when observing the pre-preg ply drafted in the 

second hypothesis, the plane behaviour of the problem assumed in Chapter 5 can be 

better appreciated. In this case, the fluid resin is contained in “fibre channels”, only 

having the possibility to flow along the x axis direction. 

 The results obtained when using both hypotheses and a comparison of them 

will be presented in section 6.6. 

Note that the equations and algorithms presented in the following sections 

are valid for both hypotheses which only differ in the number and size of the fibre 

layers and resin layers. 

 

6.2 Heat generation modelling 

In order to model the heat generated, the equations developed in Chapter 5 

will be used. In those equations, the heat generated is obtained for both the vertical, 

i
vgenQ _

 , and horizontal, i
hgenQ _

 , components of the movement of the sonotrode. The 

heats are expressed as a function of the temperatures, the vertical velocities and the 

viscosities of each resin layer. 
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As the heat inside the resin is supposed to be homogenized very fast, the 

heats generated are integrated in the resin volumes, i
mgenQ _

 , leading to the following 

expression: 

   
 


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___ ),,(),,()(
s

s
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i
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h

h

j
i

vgenj
i

hgenj
i

mgen dydxtyxQtyxQtQ   (6.1) 

where i is the number of layer and tj the time at the time step j. 

Note that, in this case, the x and y axis are contained in each resin layer and 

concern only the resin volumes. 

The value of the heat generated due to the vertical, ),,(_ j
i

vgen tyxQ , and the 

horizontal, ),,(_ j
i

hgen tyxQ , components of the movement of the sonotrode are 

calculated with Equations (5.45), (5.51) and related. 

This integrated expression will be used, as will be shown in section 6.4, in 

the calculation of the total heat in the resin layers. 

 

6.3 Heat distribution modelling 

In this section, the equations used to solve the heat transfers in the thermal 

distribution model will be explained. 

In this case, only the material located under the sonotrode will be modelled 

and, therefore, only heat conduction will be taken into account as heat transfer (as 

the sonotrode is located over the laminate, no convection phenomena will take 

place). To model the conduction, the 1D Fourier heat transfer equations have been 

considered, resulting in each case in the following equations: 
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- Equation used to model the conduction between the top layer and the 

sonotrode: 

 ab
l

tTT
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s
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n
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where n
cuQ  is the heat conduction with the sonotrode, sk  is the conductivity of the 

sonotrode, a  is the depth of the sonotrode, b  is the width of the sonotrode, sl  is the 

length of the sonotrode and 0T  is the room temperature. 

- Equation used to model the conduction that takes place along the fibres, 

between the resin layers: 
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where )1(  i
cd

i
cu QQ   are the vertical heat conductions through the fibres, fk  is the 

conductivity of the fibre and fh  is the thickness of the fibre layer. 

- Equation used to model the conduction inside the resin, along the x axis 

direction (this conduction will be named later, in Figure 6.3, as lateral 

conduction): 

 niah
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ktQ r
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where i
clQ  is the lateral heat conduction through the resin, rk  is the conductivity of 

the resin, cd  is the distance from the border of the resin control volume to the zone 

in which the laminate remains at room temperature (estimated in two times the 

thickness of the laminate) and fh  is the thickness of the resin layer. 
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6.4 Algorithm for solving the heat generation-

distribution problem 

As mentioned above, due to the strong coupling that exists between the 

layers, an incremental algorithm is needed to solve the problem. The algorithm is 

described next step by step: 

Step 1: Initially, the temperature of all layers is known. KTtT 0
i 298)( 1   

with ni ,...,1 , the time at the beginning of the first time step being 01 t . 

Step 2: From the temperature of the layers, )( j
i tT , the viscosity of each 

layer, )( j
i t , is calculated using (4.8), the time at the j time step being jt . 

Step 3: From the viscosities, )( j
i t , and the thicknesses of the layers, ih , 

the damping functions )( j
i tS  are calculated using (5.44). 

Step 4: With the viscosities, )( j
i t , the damping functions, )( j

i tS , and the 

velocity of the sonotrode, )cos()( jvjsv ωtωtw  , the velocities of the 

layers, )( j
i tv , are calculated using (5.41)-(5.43). 

Step 5: The heats generated at each layer during the step, ),,(_ j
i

hgen tyxQ  

and ),,(_ j
i

vgen tyxQ , are calculated with the velocities and viscosities of the 

layers using Equations (5.51) and (5.45), respectively.  

Step 6: The heat generated is integrated in the resin volumes, )(_ j
i

mgen tQ , 

using Equation (6.1). 

Step 7: The heat transfers of the laminate, )( j
i
cu tQ , )( j

i
cd tQ  and )( j

i
cl tQ , are 

calculated at this step using Equations (6.2), (6.3) and (6.4). 
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Step 8: Since heating of the layers may be very fast, the length of the time 

step is calculated fixing the maximum temperature variation allowed in a 

layer during one load step as KT 1max  , as: 

 
)(max

)( max

j
i

i
Prr

j
tQ

VCT
tt




  (6.5) 

where iV  is the volume of each resin layer under the sonotrode, r  is the 

density of the resin, PrC  is the specific heat capacity at constant pressure of 

the resin and )( j
i tQ  is the total heat in each layer: 
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i
cdj

i
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i
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Another limit has also been employed for the maximum length of the time 

step: 

 
10

1
)(  jtt  (6.7) 

in order to properly follow the oscillations of the sonotrode. 

The minor of the two limits is that employed for each time step. At the 

beginning of the compaction process, the heating is very fast and (6.5) is the 

most restrictive time increment condition. Once the process has evolved and 

the temperatures begins to stabilize, (6.7) turns more restrictive and it is the 

expression that rules the time increment until the process ends. 

Step 9: Using the time step and the total heat, presented in equation (6.6), 

the temperature increment in each layer is calculated using the equation that 

defines the heat absorbed:  
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Step 10: Having obtained the temperature increment, the temperature for the 

next step is calculated using: 

 )()()( 1 j
i

j
i

j
i tTtTtT   (6.9) 

where jjj ttt 1 . 

Then, the algorithm returns to Step 2 to continue the solution process. The 

algorithm stops when the final time is reached. 

 

6.5 Implementation of the algorithm in Matlab 

In this case, the problem will be solved semi-analytically, assuming that all 

unknowns only vary across the thickness direction of the laminate. The algorithm 

presented in section 6.4 has been implemented in the commercial mathematical 

programming software Matlab. 

The resin layers under the sonotrode have been considered as separated 

volumes, related between them through the heat transfer equations, as shown in 

Figure 6.3.  

Note that the heat transfers along the length of the laminate direction 

(marked as lateral conduction in Figure 6.3) will also be taken into account, 

introducing in this way 2D effects in the one direction solution. 

As mentioned in Chapter 5, the horizontal component of the velocity of the 

sonotrode only affects the top layer, so the heat generation due to the horizontal 

movement (5.51) will only be applied to the volume that represents the top resin 

layer. On the contrary, the heat generation due to the vertical movement (5.45) is 

transmitted to all layers and thus it will be applied to all volumes. 
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Figure 6.3. Scheme of the resin layers for the 1D model  

 

6.6 Results 

The results obtained with the model presented in this Chapter will be 

presented next. The evolution of the temperature with time during the compaction 

process will be shown. Then, a comparison between the results obtained with the 

pre-preg hypotheses presented in section 6.1 will be posed. Finally, the model will 

be compared with the experimental result presented in Chapter 2, Section 2.2. 
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6.6.1 Results of the model 

The compaction process has been simulated for 8 composite plies, subjected 

to ultrasonic vibrations during 10 seconds. The following results have been 

obtained using the first hypothesis described in section 6.1, the laminate consisting 

on 9 resin layers separated by 8 fibre layers. The comparison between the results 

obtained with both hypotheses will be carried out at the end of this section. 

The main dimensions of the model are: mm20sl  and the total thickness 

mm04.1H , which determine the size of the resin volumes. In this way, the area 

is 0325.020  mm2 for the upper and lower resin volumes and 065.020  mm2 for 

the intermediate resin volumes. 

The evolution of the temperature with the time at the bottom layer is shown 

in Figure 6.4. 
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Figure 6.4. Evolution of the temperature with the time at the bottom layer in 

the 1D semi-analytical model 
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It can be appreciated that there is a very fast increment of the temperature of 

the resin at the beginning of the compaction process. After a transition phase in 

which the increment of the temperature decreases, a stabilization phase is reached, 

resulting in a very low temperature growth rate.  

The evolution of the temperature can be explained studying the heat 

generated along the process. To this end, the evolution of the heat generated inside 

the bottom resin layer during the simulation is shown in Figure 6.5, presented 

dimensionless with reference to its maximum value,  max
viscQ . 

The heat generated decreases very fast from its maximum, since the 

temperature of the resin is increased and, so, the viscosity of the resin decreases. At 

a certain value, the rate of the heat generated is stabilized, its evolution (and, 

because of that, the evolution of the temperature) being almost planar, but never 

reaching a plateau. This fact can be appreciated better in the enlarged view of 

Figure 6.6. 
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Figure 6.5. Evolution of the heat generated during the compaction process in 

one layer, presented dimensionless 
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Figure 6.6. Enlarged view of the evolution of the heat generated during the 

compaction process in one layer, presented dimensionless, from 7 to 10 seconds 

of the process 

 

6.6.2 Comparison of the pre-preg models 

The problem presented in section 6.6.1, in which the first hypothesis for the 

pre-preg modeling (shown in Figure 6.1) was used, will be solved, in this section, 

using the second hypothesis, presented in Figure 6.2. 

In this case, the 8-ply laminate is considered to be formed by 100 resin 

layers and 99 fibre layers. 

The algorithm used to solve the problem is the one presented in section 6.3, 

as done with the previous hypothesis. 
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The main dimensions of the model are, again: mm20sl  and the total 

thickness mm04.1H , which determine the size of the resin volumes. In this 

case, the area of all resin volumes is the same, and equal to -310720   mm2. 

The evolution of the temperature with the time at the bottom layer is shown 

in Figure 6.7. 
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Figure 6.7. Evolution of the temperature with the time at the bottom layer in 

the 1D semi-analytical model 

In order to compare the pre-preg models, the results obtained with both 

hypotheses of the evolution of the temperature during the compaction process are 

shown in Figure 6.8. 
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Figure 6.8. Evolution of the temperature with the time at the bottom layer in 

the 1D semi-analytical model 

It can be appreciated that both models obtain almost the same results. The 

reason can be that, although the resin volumes are different and so the heat 

generated in each of them, the total heat is equivalent, leading to obtain the same 

thermal field. This result validates the use, from now on, of the first hypothesis, that 

requires less resources, from the computational point of view. 

 

6.6.3 Experimental comparison 

In order to check the validity of the thermomechanical model, developed in 

Chapter 5, and the resolution developed in this Chapter, a comparison with the 

experiment presented in Chapter 2, Section 2.2, has been carried out. The pre-preg 

model used, as mentioned in previous section, is the corresponding with the first 

hypothesis. 
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The evolution of the temperature with the time given by the experimental 

and semi-analytical curves is shown in Figure 6.9. 
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Figure 6.9. Comparison between the time/temperature experimental and         

semi-analytical curves 

It can be appreciated that the model estimates, qualitatively speaking, the 

behavior of the evolution of the temperature. The differences appreciated can be 

due to the following reason: in the case of the 1D semi-analytical solution, the 

Fourier 1D equations used to calculate the heat transfers in two directions 

underestimate the heat transferred throughout the material (because the interactions 

that appear along the other direction are not taken into account). This fact leads to 

obtain a temperature inside the laminate higher than the real one. 

 

6.7 Conclusions 

A semi-analytical model capable to estimate the heat generation and 

distribution during the compaction process has been developed. After discussing 

two possible ways of modelling the pre-preg composite plies, the equations that 



 
 
Chapter 6  Semi-analytical model 

 
 
 

143 
 

govern, in this case, the heat generation and the heat transfers (heat conductions and 

heat convections) have been presented. 

Due to the non linear nature of the problem, an incremental algorithm that 

couples the generation and distribution of heat has been posed. The considerations 

made for the implementation of this algorithm in a 1D semi-analytical model has 

been presented. 

The evolution of the temperature inside the laminate has been obtained 

during the whole compaction process. The behavior of the temperature has been 

explained with the representation of the evolution of the heat generated, that 

becomes almost null when the temperature has grown over a determined value. 

A comparison between the temperature evolutions obtained with the two 

pre-preg models has shown that they provide similar results. This comparison 

validates the use of the first pre-preg hypothesis, that is faster to solve and less 

costly to implement, since the geometry discretization point of view. In this way, 

the models presented in next chapters will consider only the first hypothesis. 

The comparison between the experiments and the model proposed in this 

Chapter has not permitted to check that the heat generation model estimates the 

value of the heat generated properly. The semi-analytical method is very fast to 

compute, but, although it estimates the behavior of the temperature with 

qualitatively good accuracy, it does not model the heat distribution properly, the 

predictions being significantly higher than those experimentally obtained. 

The validity of the heat generation model will be checked with the models 

presented in next Chapters. 
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Chapter 7 

2D FEM model 

 

The effectiveness of the heat generation model presented in Chapter 5 could 

not be checked with the semi-analytical model presented in Chapter 6, due to the 

simplicity of the approximations made in the calculations of the heat distribution. In 

order to prove the validity of the equations presented in Chapter 5, a 2D FEM 

model that implements the heat generation has been developed. This model has 

been programmed into the commercial FEM program ANSYS® [7.1], that will be 

used to solve the heat distribution equations during the compaction process. The 

model and the results obtained with it will be explained in this Chapter. 
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First, several considerations about the heat generation and distributions 

models assumed will be commented. 

In the second section, an incremental algorithm will be presented. The 

algorithm has been developed to solve the coupling between the heat generation and 

distribution mechanisms.  

In section 7.3, the geometry and the mesh used to model the problem in the 

FEM program are shown. Several remarks about the possibilities to use a fine mesh 

and a fine discretization in time will be done. 

The results obtained with the model are presented in section 7.4, in which a 

comparison of the results with experimental results will also be carried out. The 

considerations concerning the mesh and the time step chosen previously presented 

will be discussed. 

Finally, the conclusions related to the 2D FEM model and the results 

presented in this Chapter will be shown. 

 

7.1 Heat generation and distribution modelling 

In the model presented in this Chapter, a commercial FEM program will 

solve the heat distribution. The FEM solver takes into account the possible 

interactions of the heat flows along the x and y axis. Thus, this approach is supposed 

to give more accurate results than the one done in Chapter 6. 

In the case of the heat generation, as done in Chapter 6, see Equation (6.1), 

the heat generation equations obtained in Chapter 5 will be integrated in the resin 

volumes, as the heat inside the resin is supposed to be homogenized very fast: 

   
 
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The heats generated due to the horizontal, ),,(_ j
i

hgen tyxQ , and vertical, 

),,(_ j
i

vgen tyxQ , components of the displacement of the sonotrode are calculated 

using Equations (5.41), (5.51) and related, shown in Chapter 5.  

As remarked in Chapter 6, the calculation of the heats generated in each 

resin layer involve the use of the temperatures of the other resin layers so the heat 

generation-distribution problem is coupled. 

 

7.2 Algorithm for solving the heat generation-

distribution problem 

As mentioned above, due to the strong coupling that exists between the 

layers when solving the heat generation-distribution, an incremental algorithm is 

needed to solve the problem. The algorithm is described next step by step. Note 

that the first steps remains equal than in the algorithm shown in Chapter 6. 

Step 1: Initially, the temperature of all layers is known. KTtT 0
i 298)( 1  , 

ni ,...,1 , the time at the beginning of the first time step being 01 t . 

Step 2: From the temperature of the layers, )( j
i tT , the viscosity of each 

layer, )( j
i t , is calculated using (4.8), the time at the j time step being jt . 

Step 3: From the viscosities, )( j
i t , and the thicknesses of the layers, ih , 

the damping functions )( j
i tS  are calculated using (5.44). 

Step 4: With the viscosities, )( j
i t , the damping functions, )( j

i tS , and the 

velocity of the sonotrode, )cos()( jvjsv ωtωtw  , the velocities of the 

layers, )( j
i tv , are calculated using (5.41)-(5.43). 
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Step 5: The heats generated at each layer during the step, ),,(_ j
i

hgen tyxQ  

and ),,(_ j
i

vgen tyxQ , are calculated with the velocities and viscosities of the 

layers using (5.41) and (5.51). 

Step 6: The heats generated are integrated to obtain the heat generated in the 

resin volume, using (7.1). 

Step 7: A FEM model is created to calculate the heat transfers that take 

place in the laminate. The initial temperature is defined in the nodes and the 

heat generated is introduced as a heat source in the elements of the resin 

layers located under the sonotrode. 

Step 8: In order to calculate the time step, as done in Chapter 6, two 

possible time steps are used, one time step related with the oscillations of 

the sonotrode and one time step related with the maximum temperature 

increment allowed. The time step related with the oscillations of the 

sonotrode (where f is the ultrasonic frequency) is calculated using: 

 
f

tt jf 10

1
)(   (7.2) 

However, in the case of the time step related with the temperature increment, 

its calculation cannot be done directly, due to the fact that, in this case, not 

all the heats involved in the process are calculated analytically (note that the 

heat transfers are calculated by the FEM program). As only the heat 

generated in each resin layer is well known, to set the maximum temperature 

increment (1K) in a load step, steps 9 and 10 are used. 

Step 9: The heat balance equation is solved by the FEM program, using the 

length of the time step given by (7.2). It leads to obtain the temperatures at 

the end of the time step due to the oscillations of the sonotrode, 

))(( jfj
i tttT  . 
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Step 10: If the maximum temperature increment, maxT , is higher than 1K, 

assuming the linearity of the solution, the temperatures at the end of the time 

step are recalculated using: 

 
max

1

)())((
)()(

T

tTtttT
tTtT j

i
jfj

i

j
i

j
i




  (7.3) 

where )(1 jjj tttt   with 
max

)(
)(

T

tt
tt jf

j 


 . 

Then, the algorithm returns to Step 2 to continue the solution process. The 

algorithm stops when the final time is reached. 

 

7.3 Geometry and mesh 

The geometry and the mesh of the FEM model developed are shown in 

Figure 7.1 and represents the sonotrode over 8 uncured pre-preg plies of a total 

length of 25 mm.  

x axis

y axis

 

Figure 7.1. View of the mesh used for the laminate and the sonotrode in the 2D 

FEM resolution of the compaction problem 
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In this case, the laminate has not been considered longer because the zone 

influenced by the heating is very small, reducing in this way the number of 

elements along the x axis that are not located under the sonotrode. 

In order to show the mesh of the plies in a better way , a detailed view of 

Figure 7.1 is shown in Figure 7.2. 

 

Figure 7.2. Detail of the mesh used for the laminate and the sonotrode in the 

2D FEM resolution of the compaction problem 

As can be appreciated, there are huge differences between the dimensions of 

the problem throughout the x axis and the y axis, since the thickness of the resin 

layers is less than 10-3 times the width of the sonotrode. This fact makes it difficult 

to obtain a reasonable mesh, in terms of number of elements with good aspect ratio 

versus computation time (in Figure 7.2 is shown a mesh with 1 element in the 

thickness of each resin or fibre layer and 10 elements in the length direction below 

the sonotrode; the distortion of the elements being easily appreciated).  

The resolution of the problem has been carried out using several meshes in 

order to check the convergence of the solution, modifying the number of elements 

along the x axis under the sonotrode. 

The mesh that models the sonotrode has been made using the same number 

of elements along the x axis as for the laminate, obtaining in this way a congruent 
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mesh along the x axis. The number of elements along the y axis has been selected in 

order to obtain elements with a little distortion. 

In the case of the zones of the laminate that are not placed under the 

sonotrode (and, for this reason, do not generate heat), the mesh is formed by one 

element per layer along the y axis and just a few elements along the x axis. This 

election has been made in order to obtain a coherent mesh but not incrementing the 

computation cost in a zone that will not contribute significantly to the solution. 

Another difficulty that has been found during the solution of the problem is 

the difference in the time scales, one concerning the process time (of the order of 10 

seconds) and another concerning the ultrasonic vibration (of the order of 10-6 

seconds). The number of time steps needed to solve the whole problem with a fine 

discretization of the ultrasonic wave is higher than 500000 steps, impeding to obtain 

the solution in a reasonable computing time. Due to this fact, in order to obtain the 

solution along the whole process and to compare with the semi-analytical model 

and the experiments, several less restrictive limits for the time increment have been 

implemented, and will be detailed in next section. 

 

7.4 Results 

The evolutions of the temperature at a node located at the mid-point 

( 0,0  yx ) of the bottom layer of the laminate, under the sonotrode (in order to 

compare later this solution with that obtained in the previous section), are shown in 

Figure 7.3. The problem has been solved for a mesh with 10, 20, 40, 80 and 160 

elements under the sonotrode in the x direction, in order to check the influence of 

the mesh size in the solution. Supposing that the time increment given by Equation 

(7.2) would not allow to obtain the solution along the whole process time (it would 

imply large computing times), the time increment has been fixed in 0.01 seconds. 

The influence of the time increment will be studied next. 
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Figure 7.3. Evolution of the temperature with the time at the middle of the 

bottom layer in the 2D FEM model for several number of elements along the x 

direction under the sonotrode 

It can be observed that the solution tends to converge when increasing the 

number of elements under the sonotrode in the longitudinal direction, obtaining in 

this way a smoother mesh. 

In order to check the influence of the time increment limit, several values of 

it, which substitute the limit presented in Equation (7.2), are shown in Figure 7.4. In 

this case, the mesh for the laminate under the sonotrode consists on 1 element per 

thickness layer and 80 elements under the sonotrode along the x axis (note that the 

solution converged using this mesh, as could be seen in Figure 7.3). The time 

increment limits chosen are 0.1, 0.01, 0.001 and 1/(10f) seconds. Note that the 

solution that uses the time increment defined by the sonotrode oscillation has been 

included, although only 0.4 seconds have been computed, due to the extreme time 

of computation (2 months running in a computer cluster of 16 nodes). 

It can be appreciated that the evolution obtained is qualitatively quite similar 

to that obtained with the 1D semi-analytical model presented in Chapter 6, i. e., a 



 
 
Chapter 7  2D FEM model 

 
 
 

153 
 

very fast increment of the temperature at the beginning and a stabilization of the 

temperature increment when the temperature reaches a certain value. 
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Figure 7.4. Evolution of the temperature with the time at the middle of the 

bottom layer in the 2D FEM model for several values of the time increment 

limit 

In order to better appreciate the solution obtained with the time increment 

given by Equation (7.2), an enlarged view of the first second (in the x axis) of 

Figure 7.4 is shown in Figure 7.5. 

When a high time increment is used, the excitation that is really being 

applied is a low frequency excitation (due to the aliasing phenomena), the heating 

obtained not being representative of the process. It can be seen that the solution 

obtained with Equation (7.2) follows the ultrasonic wave properly, as shown in the 

enlarged view of Figure 7.6. 

The importance of an adequate selection of the time increment limit can be 

clearly observed from Figure 7.4. It can be seen that the solution converges when 

the time increment limit is decreased, tending to raise the temperature at which the 

thermal gradient begins to decrease.  
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Figure 7.5. Enlarged view of the evolution of the temperature with the time at 

the middle of the bottom layer in the 2D FEM model for several values of the 

time increment limit 
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Figure 7.6. Enlarged view of the evolution of the temperature with the time 

when using the time increment limit presented in (7.2) 



 
 
Chapter 7  2D FEM model 

 
 
 

155 
 

In order to check the validity of the thermomechanical model (developed in 

Chapter 5) and the resolution developed in this Chapter, a comparison with the 

experiment presented in Chapter 2, Section 2.2, has been carried out. The 

experimental and the finest 2D FEM solution curves are shown in Figure 7.7. In the 

case of the 2D FEM solution, it has been obtained using 80 elements under the 

sonotrode and the time increment limit described in Equation (7.2). 
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Figure 7.7. Comparison of experimental and numerical 2D FEM 

temperature/time curve at the bottom of the laminate for a long process time 

In order to better appreciate the approximation of the finest FEM solution to 

the experimental results, an enlarged view of the first second (in the x axis) of 

Figure 7.7 is shown in Figure 7.8. 

It can be appreciated that the finest FEM solution approximates properly the 

experimental measurements, at the range it has been computed. 

Note that when a sufficiently fine mesh and an appropriate time increment 

are employed (finest 2D FEM solution) the FEM solution agrees much better with 

the experimental results. However, the computational costs associated make it very 

expensive to obtain the solution for a long process time. 
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Figure 7.8. Comparison of experimental and numerical 2D FEM 

temperature/time curve at the bottom of the laminate for a short process time 

 

7.5 Conclusions 

As the semi-analytical model presented in Chapter 5 did not allow to obtain 

an accurate solution, a 2D FEM model capable to estimate the heat generation and 

distribution during the compaction process has been developed.  

Initially, the equations that rule, in this case, the heat generation and the way 

of modelling the heat transfers have been presented. A FEM model has been 

employed to study the heat transfers and the temperature evolution in the laminate, 

in which the heat generation described in Chapter 5 has been included as an external 

heat source. 

Due to the nonlinear nature of the problem, an incremental algorithm that 

couples the generation and distributions of heat has been posed.  
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The evolution of the temperature during the process has been obtained for 

various meshes (in order to check the convergence of the results) and for various 

time increment limits (due to the difficulty to solve the problem during the whole 

process with the time increment ruled by the sonotrode oscillations, less restrictive 

time limits having been tried). 

The results obtained with this model and the difficulties to achieve an 

appropriate solution have been shown. In this case, comparing with the model 

shown in Chapter 6, the heat distribution can be modelled more correctly, if the 

mesh is fine enough. However, it has been checked that to obtain an appropriate 

solution with this FEM model, a very large computation time is required (as 

mentioned before, in our case, to compute 0.4 seconds, it was needed 2 months 

running in a computer cluster of 16 nodes), due to the fine mesh and the short time 

steps needed to properly follow the ultrasonic wave. 
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Chapter 8 

PGD transient model  

 

The mechanism of generation of heat associated to the ultrasonic movement 

of the resin induced by the sonotrode oscillations has been studied and modeled in 

Chapter 5. The implementation of this heat generation model coupled with a 

thermal model to obtain the heat distribution was carried out in two ways of 

resolution in Chapter 6 and Chapter 7, respectively. Those models, (a 1D 

semianalytical model and a 2D FEM model) achieved to predict the shape of the 

real behavior of the temperature during the compaction process but presented 

several limitations. The main problems found were the large computing times that 

did not allow to obtain a complete solution (in the case of the 2D FEM model) and 
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the poorness of the equations to approximate the heat transfers in the thermal 

distribution (in the case of the 1D semi-analytical model). 

To circumvent these problems, another resolution technique is presented. 

The alternative chosen is the Proper Generalized Decomposition (PGD) [8.1, 8.2, 

8.3, 8.4, 8.5, 8.6, 8.7].  

PGD is based on a separated representation of the unknown fields involved 

in the considered models. Thus, a solution depending on the space coordinates x  

and y  and the time t , i.e. ),,( tyxu , that traditionally defines a 2D transient 

problem (that can be easily extended to the general 3D case), can be written as a 

finite sum of functional products, each one involving a function of the x -

coordinate, a function of the y -coordinate and finally a time function. The space 

separation results particularly natural when the domain   in which the problem is 

defined can be expressed as yx  , as is the case when addressing plates or 

laminates. As can be inferred from the approximation 





M

l
lll tTyYxXtyxu

1

)()()(),,(  the 2D transient solution only requires the solution 

of around M3  one-dimensional problems for calculating functions )(xX l , )(yYl  

and )(tTl . The number of problems to be solved is not exactly M3  because the 

resulting problem is nonlinear (unknown functions )(xX l , )(yYl  and )(tTl  appear 

multiplied in the solution approximation) and then an iterative procedure must be 

carried out for solving it. 

In any case, if we imagine that these three functions are described from their 

values at certain points ( N nodes in space for describing functions )(xX l  and )(yYl  

and P  time instants), the computational complexity scales as  NPM 2 . Now, 

we can compare such complexity with the usual transient solution, that would have 

require the solution of P  (time instants) 2D problems of size 2N , which finally 
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results in a complexity scaling with 2NP . As in general NM  , the computing 

time savings can reach several orders of magnitude. 

It is important to emphasize that within the space-time PGD the whole 

transient solution is being computed simultaneously, in the whole time interval. In 

the numerical solutions addressed in the present work, the number of time steps is 

around a half million and the meshes involves thousands of nodes. In this case the 

use of the PGD offers significant advantages. 

First, in section 8.1, the equations that govern the heat generation and the 

heat distribution will be posed. 

Second, in section 8.2, an algorithm to solve the coupled problem of heat 

generation due to the internal viscosity of the resin under ultrasonic loads (using the 

analytical equations presented in Chapter 5) and heat distribution inside the 

laminate (that will be solved using the PGD) will be explained. 

Next, the formulation of the equations that solve the problem of the heat 

distribution with the PGD will be presented. 

The results of the transient problem that describes the initial heating phase 

when the sonotrode is not moving along the laminate will be shown in section 8.4. 

The temperature inside the laminate during all the time of this process will be 

obtained. 

Finally, the results of the transient model will be compared with 

experimental results, showing that it can predict the temperature reached in the 

laminate properly. 
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8.1 Heat generation and distribution modelling 

The equations that will be used to solve the heat distribution and the heat 

generation will be presented next. Several considerations about the modelling of the 

pre-preg and its properties will also be done. 

The thermal problem is defined by the heat equation:  

   visc
P T

t

T
C QK 


  (8.1) 

where T  is the temperature field, t  is the time of the process, viscQ  is the heat 

generated in the resin due to its internal viscosity when is submitted to ultrasonic 

vibrations,   is the density of the material, PC  the specific heat capacity of the 

material and K  is the conductivity tensor. 

The transient model will be defined in a plate domain, given by 

 yx , with ],[ 2
1

2
1 LLx  , ],0[ Hy   and ],0[ maxt , the maximum 

time of the process being maxt . 

The laminate is considered to be composed of P  different orthotropic 

layers, each one characterized by a well defined conductivity tensor jK , assumed 

constant in the layer thickness. In this way, a characteristic function representing the 

position of each layer can be defined: 

   Pj

otherwise

yyy
y

jj

j ,...,1

0

1 1






 




  (8.2) 

where jy  and 1jy  are the bottom and top values of y coordinate in the jth layer, 

respectively.  
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The laminate conductivity can be written in the following separated form 

using (2):  

   



P

j
jj yxyx

1

)()(, KK  (8.3) 

In this work, K  has been assumed constant in each layer, so it does not 
depend on the x coordinate. 

In the case of the other properties of the material,   and PC , a similar 

separated form is applied. 

   



P

j
jj yxyx

1

)()(,   (8.4) 

   



P

j
jjPP yxCyxC

1

)()(,   (8.5) 

The same idea can be applied to the heat generation, but using a function 

)(yj  equal to 1 in the resin layers and null in the fibre layers (in order to represent 

that the heat is only generated at the resin layers). The separated representation of 

the heat generated can be expressed as: 

   )()()(,,
1

tQyxtyx j

P

j
jj

visc 


 Q  (8.6) 

Note that )(xj  is a function that takes a value of 1 when x is located under 

the sonotrode and 0 when x is not located under the sonotrode. 

The problem of the heat generation has been solved in Chapter 5. The 

equations that govern this generation are presented next. Note that the 'y  coordinate 

that appear in these equations is associated to each resin layer, jj hyh 2
1

2
1 ' , with 

jh  being the thickness of layer j. 
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where: 
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where ),',( tyxQh
P  is the heat generated due to the horizontal movement of the 

sonotrode, only generated inside the top layer P , ),',( tyxQv
j  is the heat generated 

due to the vertical movement of the sonotrode, )(tj  is the viscosity of the jth-layer, 

jv  is the vertical velocity of the resin layer at the extremes of the jth-layer, jh  is the 

thickness of the jth-layer and )(twsh  is the horizontal component of the velocity of the 

sonotrode. 

Note that the heat generation presents a strong coupling between the layers, 

through their vertical velocities. 
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8.2 Algorithm for solving the heat generation-

distribution problem 

As mentioned before, as the heat generation presents a strong coupling 

between the layers and with the heat distribution, this problem is going to be solved 

in two parts, iteratively, until reaching convergence. 

The first part of the heat equation, corresponding to the heat distribution,     

i. e., left member of equation (8.1), will be solved with the PGD, assuming the 

values of the viscous heating to be known. The problem is solved for every spatial 

node in the laminate and for every time node. The equations used to solve this part 

of the problem will be described in Section 8.3. 

The second part of the equation, corresponding to the heat generation, i. e., 

the right member of equation (8.1), will be solved using the equations (8.7), (8.8), 

(8.9) and derived, presented in Chapter 5, using the temperatures calculated with the 

PGD. As mentioned before, the heat generation phase only takes place in the resin 

layers in the zone located under the sonotrode. 

In order to obtain the solution to this problem, using the procedures 

described before, an algorithm is presented next: 

Step 1: Initially, the temperature at each spatial node and at each time node 

is supposed known and equal to the room temperature.  

Step 2: With the temperature field assumed in step 1, the viscous heating 

induced by the ultrasonic vibration is calculated at every resin layer and at 

every time node using the procedure described in Chapter 5.  

Step 3: The viscous heating matrix calculated in the previous step is used in 

the resolution of the heat distribution problem by solving equation (8.1) with 

the PGD. In this way, the value of the temperature at each spatial node and 

at each time node is obtained in this step. 
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Step 4: The heat generation in each resin layer is calculated again using the 

generation equations of Chapter 5. The temperatures used in this step are a 

mean of the temperatures of the nodes under the sonotrode of each resin 

layer, obtained in step 3.  

Step 5: In the first iteration, the updated heat generation matrix is compared 

with the one obtained in step 2 and, if the difference is smaller than a certain 

tolerance, the algorithm stops. If not, the updated heat generation matrix is 

used to solve the thermal problem again with the PGD (step 3), and the 

algorithm continues until reaching convergence (i.e. until the difference 

between the heat generation matrix obtained in Step 4 in two consecutive 

iterations is smaller than the abovementioned tolerance), iterating between 

steps 3, 4 and 5. 

Once finished, the algorithm returns the temperature field inside the 

laminate, at every node, during the compaction process. 

 

8.3 PGD formulation of the heat distribution in 

laminates for a transient problem 

 The construction of the Proper Generalized Decomposition of the transient 

heat transfer model is illustrated in what follows. 

 The thermal equation that defines the problem was presented in Equation 

(1). 

Assuming that the coordinate system is oriented with the principal directions 

of K , this tensor becomes diagonal. 
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where xk  and yk  are its principal thermal conductivities.  

 

In this coordinate system, Equation (1) writes: 
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As mentioned in the previous section, viscQ  is assumed to be known. 

The initial temperature will be assumed to be known and equal to the room 

temperature, ambT , 

 ambTtyxT  )0,,(  (8.12) 

and the heat flux will be prescribed on the whole boundary  yx  , 

4321  , the boundaries being  yyLx  ,2
1

1 , 

 0,2  yx x ,  yyLx  ,2
1

3 ,  Hyx x  ,4 . The 

boundary conditions of the problem are: isolation at 1 , 2  and 3  and 

conduction with the sonotrode/convection with the air (depending on the value of 

the x coordinate) at 4 . These conditions can be expressed as: 
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where s
4  is the area of 4  located under the sonotrode, h is the convection 

coefficient and sh  is a coefficient that determines the heat loss through the 



 
 
PGD transient model  Chapter 8 

 
 
 

168 
 

sonotrode (this coefficient depends on the conductivity and the geometry of the 

sonotrode and has been calibrated experimentally). 

The weighted residual form of equation (8.11) writes: 
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with the test function *T  being defined in an appropriate functional space.  

To introduce the boundary conditions into the formulation, the equation will 

be solved integrating by parts the term that involves second order derivatives. Note 

that in all boundaries the integral is equal to zero, except in the upper boundary. In 

this zone conduction exists with the sonotrode, in s
4 , and convection exists with 

the air in the zones that are not located under the sonotrode, in s
44  . 
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The solution ),,( tyxT  is searched under the separated form: 

 





Ml

l
lll tyYxXtyxT

1

)()()(),,(  (8.16) 

where )(xXl , )(yYl  and )(tl  are the approximation functions to be determined 

iteratively during the solution of the problem. 
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In what follows the construction of one of such enrichment functions is 

illustrated. For this purpose, we assume that, at iteration Mm  , the solution is 

already known: 

 





ml

l
lll

m tyYxXtyxT
1

)()()(),,(  (8.17) 

Thus, at the present iteration we look for the solution enrichment:  

 )()()(),,(),,(1 tSyWxRtzxTtyxT mm   (8.18) 

The test function involved in the weak form of the thermal equation, (8.15), 

is searched under the form: 

 )()()()()()()()()(),,( **** tSyWxRtSyWxRtSyWxRtyxT   (8.19) 

As the enrichment process is non-linear, the functions )( xR , )( yW  and 

)(tS  are proposed to be searched by applying an alternating direction fixed point 

algorithm.  

- First, assuming )(tS  and )( yW  to be known, )( xR  is computed. 

- Second, )( yW  is updated from previous )(tS  and the just 

updated )( xR . 

- Third, )(tS  is calculated with the previously calculated )( xR          

and )( yW .  

- The process continues until reaching convergence.  

The converged solutions allow the next term in the finite sums 

decomposition to be defined: )()(1 xRxXm  , )()(1 yWyYm   and )()(1 tStm   . 
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In the following subsections the operations implied on each one of the just 

referred steps are illustrated. 

 

8.3.1 Computing )( xR  from )( yW  and )(tS  

When )( yW  and )(tS  are known, the test function (8.19) reduces to: 

 )()()(),,( ** tSyWxRtyxT   (8.20) 

and the weak form (8.15) reduces to:  
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where m , m  and m are the residuals at enrichment step m: 
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As all the functions involving coordinates y and t are known, they can be integrated 

in  Hy ,0  and  max,0 t . These integrations are presented next. Note that, 

in order to simplify the number of equations, (8.23) includes integrals in R that 

cannot be integrated at this moment, but will be used in subsequent computations 

(sections 3.1.2 and 3.1.3). 
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Then we can define: 
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and 
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Then, eq. (8.21) reduces to: 
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 (8.26) 

Equation (8.26) defines an elliptic steady-state boundary value problem 

(BVP) for the unknown function R, which can be solved by using a FE model with 

a 1D smooth mesh. 

 Once )( xR  is obtained, the next step in the fixed point algorithm is the 

calculation of )( yW . 
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8.3.2 Computing )( yW  from )( xR  and )(tS  

When )( xR  and )(tS  are known, the test function (8.19) reduces to: 

 )()()(),,( ** tSyWxRtyxT   (8.27) 

and the weak form (8.15) reduces to: 
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 As all the functions involving the in-plane coordinate x and the time 

coordinate t  are known, they can be integrated in  LLx 2
1

2
1 ,  and 

 max,0 t . Thus, using the previous notation, we can define: 
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Then, eq. (8.28) reduces to: 
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where 
sx

r
1  denotes that the integral 1r  is evaluated in sx  . 

Equation (8.31) defines a one-dimensional BVP that can be solved with 

FEM using a 1D smooth mesh. 

Once )( yW  is obtained, the next step in the fixed point algorithm is the 

calculation of )(tS . 

 



 
 
Chapter 8  PGD transient model 

 
 
 

175 
 

8.3.3 Computing )(tS  from )( xR  and )( yW  

When )( xR  and )( yW  are known, those obtained in Sections 8.3.1 and 

8.3.2, the test function (8.19) writes: 

 )()()(),,( ** tSyWxRtyxT   (8.32) 

and the weak form (8.15) reduces to: 
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As all the functions involving the in-plane coordinate x and the thickness 

coordinate y  are known, they can be integrated in  LLx 2
1

2
1 ,  and 

 Hy ,0 . Thus, using the previous notation, we can define: 
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and 
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Then, eq. (8.33) reduces to 
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Equation (8.36) represents the weak form of the ordinary differential 

equation (ODE) defining the time evolution of the field S, which can be solved by 

using any stabilized discretization technique. 

As all the functions of (8.36) does not involve derivatives of *S , it is 

possible to come back to its strong form: 
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Equation (8.37) defines an initial value problem (IVP) for the unknown function S 

that can be solved by using standard backward finite differences or higher order           

Runge-Kutta schemes. 

 

8.4 Results 

The problem that will be studied in this section is the compaction of 8 

uncured plies with the sonotrode placed over a certain zone of the laminate during a 

certain time. In this procedure, the sonotrode is only vibrating, without any 

displacement along the laminate. 

In this case, the problem is going to be studied from the initial conditions, 

when the sonotrode begins to actuate, until reaching a certain process time, when 

the sonotrode is lifted. In these conditions, the compaction process has been studied 

as a transient problem.  

The problem has been solved with the PGD using the formulation presented 

in Section 8.3, where the applied boundary conditions were also specificed.  

The mesh used consists on 100 nodes for the length of the laminate, along 

the x axis (being mm60L ), 321 nodes for the thickness of the laminate, along 
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the y axis (being mm04.1H ) and 500000 nodes on the time axis (being 

10max t  seconds). The length of the sonotrode on the x axis is mm20sL . 

The convergence of the PGD resolution was reached after adding 24 sums of 

products of functions )()()( tyYxX lll  . The evolution of the functions )(xXl , )(yYl  

and )(tl  with their respective coordinates can be seen in Appendix I. 

In order to check how the solution is approximated when adding several 

products of functions )()()( tyYxX lll  , the evolutions of the temperature along the 

x axis, along the y axis and along the time axis are shown next, respectively. 

The curve shown in Figure 8.1, which represents the evolution of the 

temperature along the x axis, has been obtained for a value of the time 

5.1t seconds and at the line of nodes located at the bottom of the laminate 

( 0y ). The curves represent the solution given by Equation (8.16) from 1M  to 

24M .  
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Figure 8.1. Evolution of the temperature along the x axis for t=1.5 seconds and 

y=0, from M=1 to M=24 
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Note that, for 1M  and 2M , the solution obtained is very far from the 

final one but, from 3M  the evolution of the curve remains very close to the final 

solution. 

As most of the approximations are very close one to each other, in order to 

show the improvement of the solution more precisely, an enlarged view of the curve 

of Figure 8.1, extracted from the zone where the maximum temperature is reached, 

is shown in Figure 8.2. Note that the solutions given by 1M  and 2M  are not 

included in this picture because they remain close to 23 ºC. 

After 16M , the solution is only slightly modified in each iteration, 

obtaining a very similar shape of the curve than for the complete solution, with 

24M . 
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Figure 8.2. Enlarged view of the evolution of the temperature along the x axis 

for t=1.5 seconds and y=0, from M=3 to M=24 

The curve shown in Figure 8.3, which represents the evolution of the 

temperature along the y axis, has been obtained for a value of the time 
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5.1t seconds and at the line of nodes located at the central section of the 

laminate ( 0x ). 

As most of the approximations are very close one to each other, in order to 

show the improvement of the solution more precisely, an enlarged view of the curve 

of Figure 8.3, extracted from the zone where the maximum temperature is reached, 

is shown in Figure 8.4. The different resin and fibre layers can be appreciated in the 

solution, the resin layers reaching a higher temperature due to the heat generated 

inside them. 
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Figure 8.3. Evolution of the temperature along the y axis for t=1.5 seconds and 

x=0, from M=1 to M=24 

The curve shown in Figure 8.5, which represents the evolution of the 

temperature along the time axis, has been obtained at the line of nodes located at the 

central section and at the bottom of the laminate ( 0,0  yx ). 
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Figure 8.4. Enlarged view of the evolution of the temperature along the y axis 

for t=1.5 seconds and x=0, from M=3 to M=24 
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Figure 8.5. Evolution of the temperature along the time axis for x=0 and y=0, 

from M=1 to M=24 
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As most of the approximations are very close one to each other, in order to 

show the improvement of the solution more precisely, an enlarged view of the curve 

of Figure 8.5, extracted from the zone where the maximum temperature is reached, 

is shown in Figure 8.6. 
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Figure 8.6. Enlarged view of the evolution of the temperature along the time 

axis for x=0 and y=0, from M=1 to M=24 

 

In order to check the evolution of the temperature accross the thickness of 

the laminate, a 3D representation is shown in Figure 8.7.  
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Figure 8.7. 3D View of the temperature distribution inside the laminate during 

compaction process (t=1.5 seconds) 

As can be appreciated, there is almost no variation in the y direction. Due to 

the high heat generated, the boundary condition that concerns the sonotrode has 

almost no influence in the results. 

As could be expected, the maximum temperature is obtained at the centre of 

the sonotrode and it decreases when reaching the ends of the sonotrode, due to the 

heat conduction inside the laminate along the direction of the fibre. Far enough 

from the sonotrode, the temperature of the laminate is the same than at the 

beginning of the compaction process (note that, at this time, the information of the 

heating has not reached these zones of the laminate). 

In order to study the evolution of the temperature along the process, a curve 

time/temperature is presented in Figure 8.8. The curve has been obtained from a 

node situated at the bottom layer, in the middle of the length of the sonotrode, i. e., 

at 0x  and 0y . The process time computed is from 0t  seconds to 10maxt  

seconds. 
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Figure 8.8. Evolution of the temperature with time during the compaction 

process at (x=0, y=0) 

As can be appreciated, there is a fast heating in an initial stage (at a time of 

the order of 0.5 seconds) and then a stabilization phase follows. This stabilization is 

due to the evolution of the viscosity with the temperature (it decreases very fast 

when temperature increases), making the value of the heat generated due to internal 

viscosity almost negligible when the temperature is close to 150 ºC. 

 

8.5 Model validation 

The evolution of the temperature during the compaction process obtained 

with the transient solution will be compared with an experimental result. The 

experiment and the result obtained were presented in Chapter 2. In that case, the 

sonotrode was actuated over a 8-ply laminate during 10 seconds. The temperature 

was measured with a thermocouple, placed at the bottom of the laminate and just at 

the middle of the length of the sonotrode, i.e., at 0x  and 0y  in the model. 
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The comparison of PGD predictions with the experimental results is shown 

in Figure 8.9. 
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Figure 8.9. Comparison of experimental and numerical temperature/time 

curve at the bottom of the laminate 

The validation of the thermal properties of the materials carried out in 

Chapter 4 and the experience achieved with the previous models presented in 

Chapters 6 and 7 has led to obtain an appropriate solution with the PGD. In this 

way, the agreement between the experimental and the numerical curves is very 

satisfactory. This agreement allows us to validate the thermomechanical model 

presented in Chapter 5. 

The only discrepancies that can be found between the numerical and 

experimental results are at the zone between 80 and 100 ºC, in which the tendency 

of the curves change. It can be motivated by the election of the evolution of the 

viscosity, a linear tendency having been chosen. In the real case, when the 

temperature is high enough, the curve change its tendency, presenting differences 

with the linear trend. In any case, as only one curve has been obtained 

experimentally, the light differences between the experimental and numerical 
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results should not be considered, as, surely, with more measurements the dispersion 

of the experimental results would absorb these discrepancies. 

 

8.6 Conclusions 

A new approach to study the heat generation and distribution during 

ultrasonic compaction process has been carried out. As remarked, this study is a 

very important task in order to optimize the process. 

After remarking the complexity and the strong coupling between the 

variables of the problem and the difficulties of the previous approaches, a new 

solution strategy has been considered. The Proper Generalized Decomposition has 

been considered capable to avoid the numerical and computational problems 

presented. 

The equations to solve the problem with the PGD have been presented. This 

equations solve the heat distribution but not the heat generation. To this end, an 

algorithm that couples the resolution of the heat generation and the heat distribution 

has been generated. 

The compaction process has been studied from one way of operation: the 

compaction process when the sonotrode is still (treated as a transient problem), i.e., 

the sonotrode vibrates over the laminate but it is not moved along it. As a result, the 

temperature field of the composite plies has been obtained. 

In this transient case, the evolution of the temperature inside the laminate 

from the initial conditions to a certain time of the compaction process has been 

depicted.  
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The model has been compared with experimental values, showing a good 

agreement with the predictions. This comparison validates the heat generation 

model developed in Chapter 5. 

The numerical technique shown has presented an enormous reduction in the 

computing times, compared with the FEM, allowing also obtaining a very fine 

solution. 

It has to be noticed that, in order to obtain the finest solution possible, the 

heat generation has been calculated taking into account all the oscillations of the 

sonotrode. This model has led to validate the heat generation model. Another 

possible approach could have been to study the heat generation during a cycle of the 

vibration (obtaining in this way the heat per time unit) and then, extending this heat 

along the process time (or splitting the process time in several sections in which this 

procedure were carried out). In this way, the cost in time would have been smaller 

than the resolution presented in this Chapter, but the accuracy of the solution would 

have also been smaller A similar simplification to obtain the heat per time unit to 

estimate the heat generation will be used in Chapter 9, in the steady-state model. 
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Chapter 9 

PGD steady-state model 

 

The validity of the heat generation model developed in Chapter 5 has been 

proved with the PGD resolution of Chapter 8. Furthermore, the PGD has 

demonstrated to be a valid resolution technique to solve the coupled problem of the 

heat generation and distribution. The PGD compared with the FEM solution allows 

also a better solution (in terms of geometry discretization) to be obtained in very 

few computation times. 

In this Chapter, the PGD and the heat generation model will be used to solve 

the problem of the compaction of several composite plies when the sonotrode is 
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moving along the laminate. In this case, the problem will be considered steady-

state, as will be shown in Section 9.1. The content of the sections is explained next. 

First, several considerations about the heat generation and distributions 

models assumed will be presented. 

In the second section, as done in Chapter 8, an incremental algorithm will be 

presented, posed to solve the coupling between the heat generation and distribution 

mechanisms. In this case, as a steady-state problem is considered, the algorithm is 

not time-dependent. 

In section 9.3, the equations that govern the resolution of the thermal field 

with the PGD in this problem will be developed. The results obtained with the 

model, for a fixed value of the horizontal displacement velocity of the sonotrode are 

presented in section 9.4. Then, a parametric analysis of the variables concerning the 

ultrasonic compaction will be done in section 9.5.  

Finally, the conclusions related to this model and the results presented in this 

Chapter will be discussed. 

 

9.1 Heat generation and distribution modelling 

The equations that define the thermal problem will be presented in this 

section. As done in previous Chapters, the equations that solve the heat distribution 

and the heat generation will be presented separately. 

The problem that will be studied in this case is the compaction of several 

uncured plies when the sonotrode is moved over the laminate, along the fibre 

direction, with a certain horizontal displacement velocity. During the displacement, 

the sonotrode also vibrates over the laminate at an ultrasonic frequency. 
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The objective in this case is to obtain the steady state temperature inside the 

laminate in a coordinate system attached to the sonotrode tip, which is assumed to 

move with a constant velocity. In this condition, each material point experiences the 

same thermal history during the process: it is progressively heated when 

approaching the ultrasonic compactor, it reaches its maximum when the sonotrode 

applies directly on it and it cools down when getting far from the heat source. 

Therefore, as done in [9.1] for the tape placement process, instead of 

considering a problem where the domain is fixed and the boundary conditions are 

time dependent, we can explicitly introduce the sonotrode horizontal displacement 

velocity,  0,vv , in the heat transfer equation by adding a convection term.  

In this case, the heat equation writes: 

   viscTT QKv   (9.1) 

where T  is the temperature field, viscQ  is the heat generated in the resin due to its 

internal viscosity when is submitted to ultrasonic vibrations and K  is the 

conductivity tensor. 

The steady-state model will be defined in a plate domain, given by 

yx  , with ],[ 2
1

2
1 LLx   and ],0[ Hy  . 

The laminate is considered to be composed of P  different orthotropic 

layers, each one characterized by a well defined conductivity tensor iK, assumed 

constant in the layer thickness. In this way, a characteristic function representing the 

position of each layer can be defined: 

   Pj

otherwise

yyy

y
jj

j ,...,1

0

1 1






 




  (9.2) 

where jy  and 1jy  are the bottom and top values of y of the jth layer, respectively. 
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The laminate conductivity can be written in the following in a separated 

form using (2):  

   



P

j
jj yxyx

1

)()(, χKK  (9.3) 

In this work, K  has been assumed constant in each layer, so it does not 

depend on the x coordinate. In the case of the other properties of the material,   

and PC , as done in Section 8.1, a similar separated form is applied. 

The same idea can be applied to the heat generation, but using a function 

)(yj  equal to 1 in the resin layers and null in the fibre layers (in order to represent 

that the heat is only generated at the resin layers). The separated representation of 

the heat generated can be expressed as: 

   )()()(,,
1

tQyxtyx j

P

j
jj

visc 


 Q  (9.4) 

In this case, )(xj  is a function that takes a value of 1 when x is located 

under the sonotrode and 0 when x is not located under the sonotrode. 

Note that, in this case, in order to consider the problem as steady-state, the 

heat generation has to be made independent of the time. It has been done calculating 

the heat generated during a cycle of the ultrasonic vibration ( ct  being the time 

needed to complete a cycle). This heat generated, considered as heat per time unit, 

has been extended to all the process, making the variable time to disappear from the 

formulation. In this situation  tyxvisc ,,Q  reduces to  yxvisc ,Q . 

The problem of the heat generation has been solved in Chapter 5. The 

equations that govern this generation are presented next, integrated in time. Note 

that the 'y  coordinate that appears in these equations is associated to each resin 

layer, jj hyh 2
1

2
1 ' , with jh  being the thickness of layer j. 
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where:  
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),',( tyxQh
P  being the heat generated due to the horizontal movement of the 

sonotrode, only generated inside the top layer P , ),',( tyxQv
j  the heat generated due 

to the vertical movement of the sonotrode, j  the viscosity of the jth-layer, jv  the 

vertical velocity of the resin layer at the extremes of the jth -layer, jh  the thickness 

of the jth -layer and shw  the horizontal component of the velocity of the sonotrode. 

 

9.2 Algorithm for solving the heat generation-

distribution problem 

This problem is going to be solved in two parts, iteratively, searching the 

convergence of the value of the heat generated. 

The first part of the heat equation, corresponding to the heat distribution, i. 

e., left term of equation (9.1), will be solved with the PGD, assuming the values of 
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the viscous heating to be known. The problem is solved for every spatial node in the 

laminate. The equations used to solve this part of the problem will be described in 

section 8.3 of this Chapter. 

The second part of the equation, corresponding to the heat generation, i. e., 

the right member of equation (9.1), will be solved using the equations (9.5), (9.6), 

(9.7) and related, presented in Chapter 5, using the temperatures calculated with the 

PGD. As mentioned before, the heat generation phase only takes place in the resin 

layers in the zone located under the sonotrode. 

In order to obtain the solution to this problem, using the procedures 

described before, an algorithm is presented next: 

Step 1: At the beginning of the algorithm, the horizontal displacement 

velocity of the sonotrode is fixed.  

Step 2: The initial temperature at each spatial node is supposed known and 

equal to the room temperature.  

Step 3: With the temperature field assumed in step 2, the viscous heating 

induced by the ultrasonic vibration is calculated at every resin layer using 

the procedure described in Chapter 5.  

Step 4: The viscous heating matrix calculated in the previous step is used in 

the resolution of the heat distribution problem by solving equation (9.1) with 

the PGD. In this way, the value of the temperature at each spatial node is 

obtained in this step. 

Step 5: The heat generation in each resin layer is calculated again using the 

generation equations of Chapter 5. The temperatures used in this step are a 

mean value of the temperatures of the nodes under the sonotrode of each 

resin layer, obtained in step 4.  
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Step 6: The updated heat generation matrix is compared with the one 

obtained in the previous iteration and, if the difference is smaller than a 

certain tolerance, the algorithm stops. If not, the updated heat generation 

matrix is used to solve the thermal problem again with the PGD (step 4). 

The algorithm continues until reaching convergence, iterating between steps 

4, 5 and 6. 

Once finished, the algorithm returns the temperature field inside the 

laminate, at every node, during the compaction process. 

 

9.3 PGD formulation of the heat distribution in 

laminates for a transient problem 

 The construction of the Proper Generalized Decomposition of the steady-

state heat transfer model is illustrated in what follows. The thermal equation that 

defines the problem was presented in Equation (9.1). 

Assuming that the coordinate system is oriented with the principal directions 

of K , this tensor becomes diagonal: 

 









y

x

k

k

0

0
K  (9.8) 

where xk  and yk  are its principal thermal conductivities.  

In this coordinate system, Equation (9.1) writes: 
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and the heat flux will be prescribed on the whole boundary  yx  , 

4321  , the boundaries being  yyLx  ,2
1

1 , 

 0,2  yx x ,  yyLx  ,2
1

3 ,  Hyx x  ,4 . The 

boundary conditions of the problem are: isolation at 1 , 2  and 3  and 

conduction with the sonotrode/convection with the air (depending on the value of 

the x coordinate) at 4 . These conditions can be expressed as: 
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where s
4  is the area of 4  located under the sonotrode, h is the convection 

coefficient and sh  is a coefficient that determines the heat transfer with the 

sonotrode (this coefficient depends on the conductivity and the geometry of the 

sonotrode and has been calibrated experimentally). 

The weighted residual form of equation (9.9) writes: 
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2
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with the test function *T  being defined in an appropriate functional space.  
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To introduce the boundary conditions into the formulation, the equation will 

be solved integrating by parts the term that involves second order derivatives. Note 

that in all boundaries the integral is equal to zero, except in the upper boundary. In 

this zone conduction exists with the sonotrode, in s
4 , and convection exists with 

the air in the zones that are not located under the sonotrode, in s
44  . 
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The solution ),( yxT  is searched under the separated form: 

 





Ml

l
ll yYxXyxT

1

)()(),(  (9.13) 

where )(xXl  and )(yYl  are enrichment functions to be determined iteratively during 

the solution of the problem. 

 In what follows, the construction of one of such enrichment functions is 

illustrated. For this purpose, we assume that, at iteration Mm  , the solution is 

already known:  

 





ml

l
ll

m yYxXyxT
1

)()(),(  (9.14) 

and that at the present iteration we look for the solution enrichment:  

 )()(),(),(1 yWxRyxTyxT mm   (9.15) 
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The test function involved in the weak form of the thermal equation, (9.12), 

is searched under the form: 

 )()()()(),( *** yWxRyWxRyxT   (9.16) 

As the enrichment process is non-linear, the functions )(xR  and )( yW  are 

proposed to be searched by applying an alternating direction fixed point algorithm: 

Step 1: assuming )( yW  to be known, )(xR  is computed.  

Step 2: )( yW  is calculated with the obtained )(xR .  

The process continues until reaching convergence.  

The converged solutions allow the next term in the finite sums 

decomposition to be defined: )()( 1 xXxR n  and )()( 1 yYyW i . 

In the following subsections, the operations implied on each one of the just 

referred steps are illustrated. 

 

9.3.1 Computing )( xR  from )( yW  

When )( yW  is known, the test function (9.16) reduces to:  

 )()(),( ** yWxRyxT   (9.17) 

and the weak form (9.12) reduces to:  
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where m  and m  are the residuals at enrichment step m : 
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As all the functions involving coordinate y are known, they could be 

integrated in  Hy ,0 . These integrations are presented next. Note that, in order 

to simplify the number of equations, (9.20) includes integrals in R that cannot be 

integrated at this moment, but will be used in subsequent computations (section 

3.1.2). 
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Then, we can define:  
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and 
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Then, Eq. (9.18) reduces to: 
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that defines an elliptic steady-state boundary value problem (BVP) for the unknown 

function R that can be solved by using a FEM model with a 1D smooth mesh. 

 

9.3.2 Computing )( yW  from )( xR  

When )(xR  is known, the test function (9.16) reduces to: 

 )()(),( ** yWxRyxT   (9.24) 

and the weak form (9.12) reduces to: 
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Now, as all the functions involving the coordinate x  are known, they could be 

integrated in ],[ 2
1

2
1 LLx  . Thus, using the previous notation, we can define: 
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Then, Eq. (9.25) reduces to: 
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that defines a one-dimensional BVP that can be solved with FEM using a 1D 

smooth mesh. 

 

9.4 Results 

The problem has been solved for a laminate consisting on 8 uncured plies 

and for a value of the horizontal velocity of the sonotrode of 0075.0  m/s. 

The problem has been solved with the PGD using the formulation presented 

in Section 9.3, where the applied boundary conditions were also specified.  

The mesh used consists on 10000 nodes for the length of the laminate, along 

the x axis (where mm3000L ) and 321 nodes for the thickness of the laminate, 

along the y axis (where mm04.1H ). The length of the sonotrode is, again, 

mm20sL . Finally, the distance between the centre of the laminate and the centre 

of the sonotrode is mm1480cL  (at 20 mm of the right boundary). The value of L 

has been selected to leave the laminate to cool down completely. In order to show 
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the solution properly, it has been depicted from a reference distance, at 

1180refx mm, leaving a study zone of 320 mm. 

The convergence of the solution of the problem has been achieved with 11 

sums of products )()( yYxX ll . The evolution of the functions )(xXl  and )(yYl  with 

their respective coordinates can be seen in Appendix II. In order to check how the 

solution is approximated when adding several products of functions )()( yYxX ll , 

the evolutions of the temperature along the x axis and along the y axis are shown 

next, respectively. 

The curve shown in Figure 9.1 represents the evolution of the temperature 

along the x axis. The line of nodes for which the curve is obtained is located at the 

bottom of the laminate. The curves represent the solution given by (9.13) from 

1M  to 11M . In this case, the sonotrode is located at the position marked as 

sonotrode in the picture (it is supposed to be moving along the positive direction of 

the x axis, that implies an opposite velocity of the laminate). The space between the 

vertical dotted lines indicates the width of the sonotrode. 
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Figure 9.1. Evolution of the temperature along the x axis for y=0, from M=1 to 

M=11 
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As all the approximations are very close, in order to show the evolution of 

the solution more properly, an enlarged view of the curve of Figure 9.1, extracted 

from the zone where the maximum temperature is obtained, is shown in Figure 9.2. 
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Figure 9.2. Extended view of the evolution of the temperature along the x axis 

for y=0, from M=1 to M=11 

Four zones can be appreciated in the evolution shown in Figure 9.1, 

studying the curves from refxx   to Lx 2
1 : a first zone, where the sonotrode has 

passed and the laminate has been heated and is cooling down due to the convection 

with the air and the conduction inside itself. A second zone, just below the 

sonotrode, where the laminate is heating up due to the heat generation produced by 

the ultrasonic vibration. After that, a third zone, where the laminate is not located 

under the sonotrode but is already affected by the temperature increment of the 

adjacent zone. Finally, at the top right of the picture a fourth zone can be observed, 

where the laminate is at room temperature and has not noticed the arrival of the 

sonotrode yet. 

The curve shown in Figure 9.3 represents the evolution of the temperature 

along the y axis. The line of nodes for which the curve is obtained is located at the 
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left of the sonotrode ( sc LLx 2
1 ). The curves represent the solution given by 

(37) from 1M  to 11M .  
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Figure 9.3. Evolution of the temperature along the y axis at s2
1

c LLx   from 

M=1 to M=11 

As all the approximations are very close, in order to show the evolution of 

the solution more properly, an enlarged view of the curve of Figure 9.3 is shown in 

Figure 9.4. 

The evolution of the temperature along the thickness direction can be 

appreciated in Figure 9.5, where a graphic ),( yxT  has been depicted. Note that it 

is not at a real scale (L>>H), in order to obtain a better view of the result. 

As can be seen, there is almost no variation of the temperature with the y 

direction at the zone located under the sonotrode. At the cooling zone, the 

temperature is decreased faster at the top zone of the laminate, due to the 

convection with the air that takes place in this area. 
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Figure 9.4. Enlarged view of the evolution of the temperature along the y axis 

at s2
1

c LLx   from M=1 to M=11 
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Figure 9.5. Temperature field inside the laminate during a pass of the 

sonotrode 
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9.5 Parametric study of the influence of the 

compaction parameters 

The effect of several parameters that can influence the compaction 

procedure will be studied next. The parameters chosen are the horizontal 

displacement velocity of the sonotrode, the amplitude of the ultrasounds and the 

frequency of the ultrasounds. Another parameter that has been studied is the angle 

of the sonotrode. Note that, in this case, the variation of the parameter should imply 

the modification of the geometry of the sonotrode tip. 

In order to see the influence of each parameter in the solution of the process 

clearly, during the study of a parameter, the others will remain constant. 

 

9.5.1 Horizontal displacement velocity of the sonotrode 

In order to study the influence of the horizontal velocity of the sonotrode, 

equation (36) has been solved for the following values: 0025.0v m/s, 

005.0v m/s, 0075.0v m/s and 01.0v m/s. 

Once the problem has been solved for each velocity, the evolution of the 

temperature inside the laminate has been determined in each case. Figure 9.6 shows 

the evolution of the temperature inside the laminate (at the bottom resin layer) 

during a pass of the sonotrode for the abovementioned horizontal speeds. 

As could be expected, the faster the velocity of the sonotrode, the lower the 

maximum temperature reached inside the laminate and also the lower the slope of 

the heating and cooling curves. It can be seen that an increment of the 33.33% in the 

horizontal velocity produces a decrement of the maximum temperature of 4.6%. On 

the contrary, a decrement of 33.33% of the horizontal speed produces an increment 

of the maximum temperature of 3.9%. When increasing the difference, a decrement 
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in the horizontal velocity of 66.66% produces an increment of the maximum 

temperature of 18.4%. The non-linear variation of the maximum temperature with 

the horizontal velocity is explained in the non-linear behavior of the temperature 

along the time, as can be seen, for example, in Figure 8.5 in Chapter 8. 
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Figure 9.6. Evolution of the temperature inside the laminate along the x axis at 

y=0 during a pass of the sonotrode for several velocities 

 

9.5.2 Amplitude of the ultrasonic vibration 

 In order to study the influence of the amplitude of the ultrasonic vibration 

applied to the laminate, the problem has been solved for the original amplitude 

(0.024 mm) and incrementing the amplitude in a 30% (0.0312 mm) and decreasing 

the amplitude in a 30% (0.0168 mm). 

 The evolution of the temperature at the bottom of the laminate for each 

value of the amplitude is shown in Figure 9.7. 
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It can be seen that, when increasing the amplitude of the ultrasonic vibration, 

the temperature raised in the laminate is increased. Anyway, an increment of the 

30% in the frequency only increments the temperature (the maximum difference) in 

a 3.31%. The same difference is obtained when decreasing the amplitude a 30%. 
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Figure 9.7. Evolution of the temperature inside the laminate along the x axis at 

y=0 during a pass of the sonotrode for several amplitudes of the vibration 

  

9.5.3 Frequency of the ultrasonic vibration 

 As done in Section 9.5.2, in order to study the influence of the frequency of 

the ultrasonic vibration applied to the laminate, the problem has been solved for the 

original frequency (20 KHz) and incrementing the frequency in a 30% (26 KHz) 

and decreasing the frequency in a 30% (14 KHz). 

 The evolution of the temperature at the bottom of the laminate for each 

value of the frequency is shown in Figure 9.8. 
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 It can be seen that, when increasing the frequency of the ultrasonic vibration, 

the temperature raised in the laminate is increased. In this case, an increment of the 

30% in the frequency increments the temperature (the maximum difference) in a 

3.4% and, when decreasing the frequency in a 30%, the maximum difference 

obtained is a 4.6%. 

 

0

20

40

60

80

100

120

140

0,2 0,52

Te
m

pe
ra

tu
re

 (
ºC

)

x axis

f + 30% f = 26000 Hz

f = 20000 Hz

f - 30% f = 14000 Hz

L2
1

f

f

f

f

f

refx

 

Figure 9.8. Evolution of the temperature inside the laminate along the x axis at 

y=0 during a pass of the sonotrode for several frequencies of the vibration 

 

9.5.4 Angle of the sonotrode 

The way of measuring the angle of the sonotrode with respect to the 

laminate is shown in Figure 9.9. The previous studies have been carried out for an 

angle of the sonotrode of value º45 . 

In order to study the influence of the angle of the sonotrode, the problem has 

been solved for three angles: 45º (the one used in this work), 30º and 60º.  
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 The evolution of the temperature at the bottom of the laminate for each 

value of the angle of the sonotrode is shown in Figure 9.10. 
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Figure 9.9. Angle of the sonotrode 

0

20

40

60

80

100

120

140

0,2 0,52

Te
m

pe
ra

tu
re

 (
ºC

)

x axis

f = 30º
f = 45º
f = 60º

L2
1

φ
φ

φ

refx

 

Figure 9.10. Evolution of the temperature inside the laminate along the x axis 

at y=0 for several angles of the sonotrode 

It can be seen that, when decreasing the angle of the sonotrode, the 

temperature raised in the laminate is increased. In this case, from 45º to 30º, the 

maximum difference in the temperature is 2.67%. On the contrary, when the angle 
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of the sonotrode is increased, the temperature raised is decreased, obtaining a 4.5% 

of decrement in the maximum temperature when modifying the angle from 45º to 

60º. 

 

9.6 Conclusions 

The study of the heat generation and distribution during ultrasonic 

compaction process when the sonotrode is moving along the laminate has been 

studied. 

Several considerations have been done concerning the approach of the 

problem, letting to treat the study as steady-state. 

The development of the equations that allow the problem to be solved with 

the PGD has been presented. As shown in Chapter 8, these PGD equations solve the 

heat distribution but not the heat generation. An algorithm that solves the coupled 

resolution of the heat generation and the heat distribution has been developed. 

The result obtained by the model is the temperature field of the composite 

plies when the sonotrode is moving at a certain horizontal displacement velocity. 

Then, a parametric study of several variables of the problem has been done. 

First, the evolution of the temperature with the horizontal displacement 

velocity of the sonotrode has been obtained. It shows that, when the velocity is 

lower, the temperature obtained is higher, modifying the behavior of the curves due 

to the different cooling times. 

Second, the amplitude of the ultrasonic vibration has been modified, 

obtaining little variations in the result for a variation of 30%. 

Third, the frequency of the ultrasounds have been modified, obtaining values 

similar to those obtained when the amplitude is modified. 
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Finally, the angle of the sonotrode has been modified also, obtaining the 

higher temperature at an angle of 30º (just an increment of 2.67% from 45º). Angles 

lower than 30º have not been tried due to the impossibility to compact the laminate 

with these angles (with angles lower than 30º, the sonotrode tip damages the 

laminate). 

The variations of all the parameters have shown that little effect can be 

appreciated on the temperature field of the laminate. 

The next step with this model should be to develop a test campaign in order 

to validate the steady-state results. 
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Chapter 10 

Conclusions and future 

developments 

 

The main conclusions of the Thesis and some possible future developments 

related with the work developed are presented next. 
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10.1 Conclusions 

Usual composite manufacturing systems, especially those employed in the 

aeronautic industry, entail a large number of processes, most of them not being 

automated. For this reason, along with the long curing times usually required, the 

total time of the process becomes too long and the parts manufactured very 

expensive. As an example, an autoclave manufacturing process (which is the most 

employed when high mechanical properties are needed) requires cutting the plies, 

lying up the plies (including intermediate compaction phases with removable 

vacuum bags), making a definitive vacuum bag over the mould and curing of the 

laminate. The industry is always looking for new processes able to circumvent these 

problems. Several out-of-autoclave systems are also widely employed, for example 

hand lay-up or liquid resin infusion, but they do not achieve the mechanical 

properties obtained with the autoclave and are not completely automated. 

The best way to reduce the costs and the process times would be to 

implement and automate all the steps in a single process, reducing also the curing 

time by using resins, e.g. acrylate resins, which can be cured almost 

instantaneously. This is what some new out-of-autoclave systems are seeking for, 

like the prototype studied in this work, developed by AIRBUS in the E-BEAM 

project, that implements automatic placement and curing of the layers. This 

prototype intends to integrate an automatic tape placement machine with a new 

technology curing device, which can be either the use of microwaves or an electron 

beam. In this way, after the process ends, the part is completely laminated and 

cured. To achieve a good quality in the final parts, a compaction phase subsequent 

to the placement of the composite plies, and previous to the curing phase, is needed, 

in order to substitute the vacuum bag used in the autoclave manufacturing.  

An ultrasonic compactor makes the compaction phase, in this prototype. 

This compaction system vibrates over the laminate, transmitting the oscillatory 

movement to the composite plies and making them to heat up. The heating helps to 
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eliminate the air trapped between the plies, achieving the compaction of the 

laminate. 

After describing the most common composite manufacturing techniques that 

can be found in the industry, the prototype object of this study has been described 

deeply. 

Prior to describe the models developed, the possible compaction procedures 

(related to the number of uncured plies that conforms the laminate) and some 

experiments that have been carried out in AIRBUS related to the ultrasonic 

compaction are described. 

The different compaction situations (related to the movements of the 

sonotrode) and the parameters that define these problems were posed. The main 

differences in these cases were the possibility of moving (dynamic compaction) or 

not (static compaction) the sonotrode along the laminate, in the direction were the 

tape is laid-up. Both compaction situations have been solved in the subsequent 

chapters. 

In order to understand the compaction problem better, three preliminary 

models have been developed. The models are: a thermal model capable to obtain the 

thermal field when the temperature evolution is known at any part of the laminate, a 

curing model capable to predict the evolution of the degree of cure during the 

ultrasonic compaction procedure and a model to study the evolution of the viscosity 

with the temperature. The models have have shown that the thermal properties 

given in the literature are good enough to solve the thermal distribution problem 

and that the laminate is not cured during the ultrasonic compaction. This last fact 

allows the heat generation problem considering the resin as a viscous fluid and 

neglecting possible viscoelastic behaviors to be studied. 

After the compaction problem has been posed, a model capable to determine 

the viscous heat generation of the resin in a laminate during the ultrasonic 

compaction has been developed. The main hypotheses used in the development of 
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this heat generation model have been the plane behavior and the hydrodynamic 

lubrication. The first hypothesis has been assumed due to the directionality the 

fibres impose to the flow of the liquid resin and the second hypothesis due to the 

difference between the thickness of the resin layers and its length. The heat 

generated has been obtained as a function of the viscosity and the vertical velocities 

at the extremes of the resin layers (i. e., the vertical velocities of the resin layers).  

In order to validate the heat generation model and to obtain the thermal field 

inside the laminate during the static ultrasonic compaction process, a semi-

analytical model capable to estimate the heat generation and distribution during the 

compaction process has been developed. Prior to pose the model and to solve it, two 

possible assumptions of the composition of the pre-preg (difference in the number 

of resin and fibre layers) have been discussed. The results have shown that there is 

almost no difference in the election of the pre-preg model, letting to assume in next 

models the simplest one, i. e., the pre-preg model defined by one fibre layer and two 

resin layers. The evolution of the temperature given by the model has been 

compared with experimental results, showing that the approximation is very poor, 

due to the simplicity of this model. 

As the semi-analytical model did not allow to validate the heat generation 

model, a 2D FEM model capable to solve the problem more accurately was 

developed. In this case, the FEM program solves the calculation of the heat 

distribution and the total heat. Due to the incremental nature of the solution 

proposed and the small time steps required to follow the ultrasonic oscillations, the 

resolution of the problem has been very expensive in time and computational 

resources, making it impossible to obtain the solution of the problem with the finest 

mesh and time step for a sufficiently long time of the ultrasonic excitation.  

A new approach to study the heat generation and distribution during 

ultrasonic compaction process has been proposed. The Proper Generalized 

Decomposition has been chosen in order to avoid the computational difficulties. 

The formulation to solve the static ultrasonic compaction problem, treated as a 
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transient problem, with the PGD has been presented. The solution of the model has 

been compared with experimental values, showing a good agreement in the 

predictions. This comparison has also lead to validate the heat generation model. 

After having validated the static ultrasonic compaction model with the PGD 

resolution, the solution of the dynamic ultrasonic compaction procedure has been 

posed. In this case, a steady-state solution has been assumed. The problem has been 

solved initially for one horizontal displacement velocity of the sonotrode. Then, a 

parametric analysis to study the influence of the compaction parameters has been 

carried out. The variables of the compaction that have been modified are: the 

horizontal displacement velocity, the amplitude of the ultrasonic wave, the 

frequency of the ultrasonic wave and the angle of the sonotrode with respect to the 

laminate. In all cases, except in the velocity, the solution has shown a low 

sensitivity to the parameters (it has to be noticed that, in the case of the velocity, the 

increment in the parameters are higher than in the other cases). In this way, the 

thermal field for the dynamic ultrasonic compaction has been obtained. 

 

10.2 Future developments 

Several possible future developments that can be done from the models and 

results obtained in this work are presented next. 

First, a test campaign that obtains the temperature in the laminate during the 

dynamic ultrasonic compaction ought to be done, in order to validate this resolution. 

Second, in order to achieve a solution with the FEM model, a different 

approach in the estimation of the heat generated could be done. It could be to study 

the heat generation during a cycle of the vibration (obtaining in this way the heat 

per time unit) and then, extending this heat along the process time (or splitting the 

process time in several sections in which this procedure were carried out). In this 
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way, the cost in time would be smaller. The result could be verified with the PGD 

resolution. 

Finally, an interesting line of study could be to relate the models presented 

in this Thesis with the possibility of eliminating the air bubbles. The mechanism by 

which the air bubbles tend to move outside the laminate in this case is supposed to 

be the thermocapilarity. In this mechanism, the air bubbles immersed in a fluid with 

a temperature gradient tend to move to the hottest zone. An appropriate modelling 

of the movement the bubbles could be related with the thermal resolutions presented 

in this work, allowing the best configuration of the ultrasonic compaction 

parameters that achieves the faster air bubbles elimination to be obtained. 
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Annex I 

PGD transient model 

functions 

 

 The evolution of the functions )(xXl , )(yYl  and )(tl  with their respective 

coordinates obtained with the transient PGD model are shown in Figures AI.1, AI.2 

and AI.3, respectively. 
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Figure AI.1. Evolution of the )(xXl  functions along the x axis 
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Figure AI.2. Evolution of the )(yYl  functions along the y axis 
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Figure AI.3. Evolution of the )(tl  functions along the t axis 
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Annex II 

PGD steady-state model 

functions 

 

 The evolution of the functions )(xXl , and )(yYl  with their respective 

coordinates obtained with the transient PGD model are shown in Figures AII.1, and 

AII.2, respectively. 
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Figure AII.1. Evolution of the )(xXl  functions along the x axis 
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Figure AII.2. Evolution of the )(yYl  functions along the y axis 
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