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ABSTRACT

This paper presents a novel architecture to implement general-purpose fuzzy chips. It
allows fully-parallel rule processing employing a reduced number of mixed-signal com-
puting blocks and minimum-sized digital memories. The resulting fuzzy processor can in-
teract directly with continuous sensors and actuators and subsequent digital processing
system.

INTRODUCTION

A typical multiple-input single-output fuzzy system contains a set of IF-THEN rules
like the following:

rule r: IF x1 is A1
r and ... andxu is Au

r THEN y is Br

wherexi (i=1,...,u) are the inputs andy is the output. The antecedents’ fuzzy sets,Ai
r (r=1,

..., R), partition each input space into L local fuzzy regions while the consequentBr de-
scribes the behaviour within the joined region (A1

r, ..., Au
r). Hence, the total number of

possible rules is R=Lu.

A fuzzy system is inherently parallel in theu input variables, R rules, and N elements
in which the output space is discretized. Regarding hardware, this means a trade-off be-
tween high inference speed (parallel processing) and low silicon area (sequential process-
ing). Singleton fuzzy systems that employ singleton values,cr, to define the consequents,
Br, are usually chosen for hardware realization since they eliminate parallelism in N [1-3].
In the literature, fully-digital approaches have been reported reducing parallelism in R
(=Lu) by only processing theαu simultaneously active rules (whereα is the overlapping
degree of the input membership functions) [1, 4]. To allow parallel processing of the rules,
the proposal in [4] is to employαu copies of the rule memory and to use multibit comput-
ing operators, which are very area consuming. Combining analogue and digital circuitry
seems more interesting since digital circuitry eases programmability of the fuzzy proces-
sor and compatibility with subsequent digital systems while analogue circuitry offers par-
allel computing with lower hardware resources. However, digitally-programmable ana-
logue realizations previously reported implement a small number of rules and they do not
optimise digital part because the programmable parameters are stored in digital registers
and selected by extensive matrixes of switches (multi-port-like digital memories), which
occupy a large area [2-3].



The architecture presented in this letter allows optimization of both the analogue and
digital part of a fully-parallel fuzzy processor. The analogue core is optimised by using an
active-rule driven scheme implemented with current-mode computing blocks. The digital
part is also optimised by using an adequate memory organisation that makes possible to
retrieve all the required parameters in parallel without a need for replication or multi-port
costly memories.

PROPOSED DESIGN

Singleton fuzzy systems carry out the following formula:y = Σr hr•cr / Σr cr, wherehr
is the activation degree of ther-th rule [1-3]. The architecture we propose to implement
them is illustrated in Figure 1 for the case of two inputs,u=2, and a maximum overlapping
degree of two,α=2. The parameters that define the antecedents and consequents are stored
in conventional RAMs (Xi-Mem and Y-Mem sets) so that the fuzzy processor can be suit-
ably programmed for a given application.

The membership degrees, Iµ, of each input variable are obtained by the transfer func-
tions of α circuits known as MFCs. The MFCs described in [5] (Figure 2), which are
based on digitally-programmable current mirrors (D/A), have been selected. They admit
analogue input signals and provide trapezoidal functions defined by 4 digital words.
Hence, the size of the global memory, X-Mem, that stores the membership functions’ pa-
rameters of each input is 4•L words. Each X-Mem memory is divided intoα parts (con-
ventional RAMs) which store the parameters of the membership functions that are never
active simultaneously. This is illustrated in Figure 3 for the simple case of L=4 (in this
example, the 4•2 words associated with the membership functions NB and PS are stored
in the M11 part of the X1-Mem while the other 4•2 words are stored in the M12 part). For
a given inputxi, one set of parameters (4 words) of each memory part is addressed by a
code ofn bits, {b1xi, ..., bnxi}, n being the integer bigger or equal to log2(L+1-α), where
L+1-α are the possible combinations of active input fuzzy sets. Hence, calculation of the
membership degrees is performed in parallel since theα sets of required parameters per
input are retrieved with one access to the X-Mem global memory. Each code {b1xi, ...,
bnxi} is obtained by comparing the inputxi with the centres of the membership functions
that cover thei-th input space, as illustrated in Figure 3. This comparison can be done in
parallel by using L-α current comparators and a maximum of L-2 programmable current
mirrors. Another solution is to opt for a binary-tree comparison scheme. In this case,
shown in Figure 1, the operation takes more time (n clock phases governed by the signals
{R1, ..., Rn}) but no additional current comparators or programmable mirrors are required
by exploiting the input stage of the MFCs (shown within a dashed box in Figure 2).

The i-th MUX block after the MFCs implements current replications and identifies
which MFC output goes to eachΜΙΝ by using the least significant bits of the set {b1xi, ...,
bnxi}. Computation of the rules’ activation degrees is performed in parallel by theαu mul-
ti-input analogue MIN circuits whose structure is described in [5]. The MUX blocks after
the MIN circuits identify the corresponding CONS by using the least significant bits of
the whole set {b1x1, ..., bnx1, ..., b1xu, ..., bnxu}.

The CONS blocks are digitally programmable current-mirrors (Figure 2) that weight
each rule’s activation degree by its corresponding singleton value. The Lu digital words
that define all the singleton values are stored in the Y-Mem global memory. This memory
is divided intoαu parts (conventional RAMs) where each part stores the consequents’ val-
ues that are never active simultaneously. For the case illustrated in Figure 3 (αu =4), each
of the 4 parts stores 4 digital words (M1, for instance, stores c1, c3, c9, and c11). Given an



input {x1, ...,xu}, one word of each memory part is addressed by the whole code {b1x1,
..., bnx1, ..., b1xu, ..., bnxu} so that theαu required consequents are retrieved in just one ac-
cess to the Y-Mem memory. The sumsΣrhr•cr andΣrhr are simply implemented by wired
connection as we are working with current signals. Hence, the whole processing of all the
active rules is carried out in parallel.

The block DIV implements the final divisionΣrhr•cr / Σrhr with a successive-approxi-
mation technique so that the output is provided in both digital and analogue formats (Fig-
ure 2). Division can be performed in parallel by using a flash A/D converter at the cost of
silicon area. A good trade-off speed/area is achieved by a divider based on continuous-
time algorithmic data converters, like that described in [3]. In this case, the time invested
in division increases with output resolution.

From previous designs integrated in 2.4-µm CMOS process [3, 5], we can estimate the
following features for a typical two-input fuzzy processor withα=2 implemented with the
proposed architecture: Its analogue core occupies a silicon area of about 1mm2 (consid-
ering 8- and 4-bit words to program the antecedents and consequents, respectively, and 5-
bit resolution for the output) and it consumes less than about 20mW for a 5-V power sup-
ply. Its response time is less than about 2µs. These features slightly change when increas-
ing the total number of rules (for instance implementing 16, if L=4, or 81 rules, if L=9).
The area and power consumption of the digital part is also optimised since the number of
words stored is the minimum to define the system.

CONCLUSIONS

A novel architecture to implement fuzzy processors has been presented. Area and pow-
er consumption is very small because parallel computing is performed in current-mode
analogue domain using an active-rule driven scheme. An adequate organisation of the dig-
itally programmable parameters makes possible to retrieve them in parallel from conven-
tional RAM memories. Hence, processing of many rules can be achieved at high inference
speed and with very low hardware resources.
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Figure 1: Proposed architecture for the case of two input variables and a

maximum overlapping degree of two.
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Figure 2: Schematics of the computing blocks [3, 5].
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Figure 3: Rule table that illustrates the partitions of the antecedents’ and

consequents’ memories.




