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Abstract

Dynamic Topological Logic (DT L) is a modal framework for reasoning
about dynamical systems, that is, pairs 〈X, f〉 where X is a topological
space and f : X → X a continuous function.

In this paper we consider the case where X is a metric space. We first
show that any formula which can be satisfied on an arbitrary dynamic
topological system can be satisfied on one based on a metric space; in
fact, this space can be taken to be countable and have no isolated points.
Since any metric space with these properties is homeomorphic to the set of
rational numbers, it follows that any formula can be satisfied on a system
based on Q.

We then show that the situation changes when considering complete
metric spaces, by exhibiting a formula which is not valid in general but is
valid on the class of systems based on a complete metric space. While we
do not attempt to give a full characterization of the set of valid formulas
on this class we do give a relative completeness result; any formula which
is satisfiable on a dynamical system based on a complete metric space is
also satisfied on one based on the Cantor space.

1 Introduction

Whether to study real-world phenomena or for purely theoretical purposes, dy-
namical systems appear once and again in many branches of mathematics. The
precise meaning of ‘dynamical system’ may vary, but the basic intuition is that
of a structure which changes over time. This structure is usually meant to rep-
resent space; in a broad sense we might take ‘space’ to be any topological space,
in a narrow sense we may demand that it be Euclidean, and somewhere in the
middle we can simply model it as a metric space.

We also have several candidates for modeling time. Perhaps the most natural
candidates are R (‘continuous time’) and N (‘discrete time’). Here we will focus
on the latter interpretation, considering a dynamic topological system to be a
topological space under the action of a continuous function f . A thorough
treatment of the mathematics of such systems can be found in [1].
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For the logical modeling of dynamic topological systems, we may borrow
from temporal logic [8] and from spatial interpretations of modal logic [13].
The continuity of f gives rise to a non-trivial interaction between the modal-
ities, giving rise to the ‘next-interior’ logic S4C introduced in [2] and, later,
to Dynamic Topological Logic (DT L), introduced in [7], adding a ‘henceforth’
modality to the language.

Dynamic Topological Logic has blossomed into a rich and fruitful research
area. Variations in the semantics generate a complex jungle of logics; even DT L
interpreted over the real line is not yet fully understood (but see [7, 10, 11]).

Here we will consider DT L over metric spaces. This gives us more restrictive
semantics than the general topological interpretation; however, we will show the
distinction is unimportant since any formula in the language of DT L which can
be satisfied on a topological space can be satisfied on a metric space. Indeed,
the latter can be taken to be a perfect1 countable metric space, giving us a sort
of downward Löwenheim-Skolem theorem for DT L. Further, all such spaces are
homeomorphic, so we have completeness for any fixed perfect countable metric
space, such as the set of rational numbers Q, thus generalizing a result of Kremer
[6].

On the other hand, Q cannot be replaced, say, by the Cantor set in the above
statement, since we will also show that DT L is incomplete for interpretations
on the class of complete metric spaces.

In general, if X is a class of dynamic topological systems, we will write
DT LX for the set of valid formulas of the language of DT L when interpreted
on elements of X, and similarly DT LX will denote the set of valid formulas
interpreted over all systems based on the space X. If X is the class of all
dynamical systems, we will write DT L instead of DT LS.

An important part of the Dynamic Topological Logic project involves un-
derstanding DT LX for those classes X which are most relevant in the study of
dynamical systems. Some classes of interest are

• the class DTS of all dynamical systems over a topological space;

• the class A of all dynamical systems based on an Aleksandroff space;

• the class M of all systems based on a metric space;

• the class CompM of all systems based on a complete metric space;

• all systems based on the rational numbers, Q;

• all systems based on the real line, R;

• all systems based on the complex plane C (or, equivalently, R2),

• all systems based on the Cantor set, K.

In this paper we focus on some of those classes of systems involving metric
spaces, namely M, CompM, Q and K. Our main results are the following:

1I.e., containing no isolated points.
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1. DT L = DT LQ,

2. DT L 6= DT LCompM and

3. DT LCompM = DT LK.

Thus Q and K serve as ‘universal spaces’ for M and CompM, respectively.
These results advance a considerable body of knowledge by many authors:

1. On the next-interior fragment, the logic interpreted over DTS is equal to
that over A [2], Q [6], K [9] (and hence over M and CompM) and C [4].

It is not, however, equal to the logic over R [7, 10, 11].

2. Over the full language, the logics over DTS, A, R and C are all distinct
[7, 4].

We further have that DT LC ( DT LA [4]. These results can be summa-
rized in the following diagram:

DT LR DT LA

DT LC

eeJJJJJJJJJ

88qqqqqqqqqq

DT LK

OO

DT LCompM

DT LQ

OO

DT L

The arrows indicate proper inclusion.

The layout of this paper is as follows. In §2, we give an introduction
to the syntax and semantics of DT L. Then, §3-4 provide an overview
of quasimodels, introduced in [5], where proofs of the results we mention
may be found, and §7 proves our first completeness result, namely, that
DT L = DT LD for any perfect countable metric space D. Then, §8 shows
that DT L 6= DT LCompM by exhibiting a formula which is not valid in
general but is valid on the class of dynamic topological systems based on
a complete metric space. Finally, §9 shows that any formula satisfiable on
a system based on a complete metric space can be satisfied on one based
on the Cantor space.

2 Dynamic Topological Logic

We will work in a language whose formulas are built from propositional variables
in a countably infinite set PV using the Boolean connectives ∧ and ¬ (all other
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connectives are to be defined in terms of these) and the unary modal operators
� (‘interior’), (f) (‘next’) and [f ] (‘henceforth’). We write ♦ as a shorthand
for ¬�¬ and 〈f〉 for ¬[f ]¬. Semantics are given by dynamical systems over
topological spaces, or dynamic topological systems.

Definition 2.1 (dynamic topological systems/models). A dynamic topological
system is a triple

X = 〈|X|, TX, fX〉 ,

where 〈|X|, TX〉 is a topological space and

fX : |X| → |X|

is continuous.
A valuation on X is an assignment of a set pX ⊆ |X| to each p ∈ PV. A

dynamic topological model (DTM) is a dynamic topological system equipped with
a valuation ~pX.

We can use ~pX to interpret all formulas of DT L as subsets of |X|:

Definition 2.2 (Valuation; validity). Given a dynamic topological model X, we
assign a set JϕKX ⊆ |X| to each formula ϕ ∈ L as follows:

JpKX = pX;

Jα ∧ βKX = JαKX ∩ JβKX
J¬αKX = |X| \ JαKX
J�αKX = JαK◦X
J(f)αKX = f−1

X JαKX
J[f ]αKX =

∩
n≥0

f−nX JαKX .
We say a formula ϕ is valid on X if JϕK = |X|, and write X |= ϕ.
Similarly, if X is a class of dynamic topological systems, we write X |= ϕ if

X |= ϕ for every X ∈ X.

3 Quasimodels

This section along with §4 give a review of some notions from [5], although
following the notation and terminology of [3]. We refer the reader to [5] for
missing proofs.

We will define quasimodels for DT L. These will be birelational Kripke
models where each world is assigned a type, that is, a set of formulas which it
‘intends’ to satisfy.
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Denote the set of subformulas of ϕ by sub(ϕ), and define

sub±(ϕ) = sub(ϕ) ∪ ¬sub(ϕ).

We will treat sub±(ϕ) as if it were closed under negation, by implicitly identi-
fying ψ with ¬¬ψ.

Definition 3.1 (type). A set of formulas Φ ⊆ sub±(ϕ) is a ϕ-type if, for all
ψ ∈ sub±(ϕ),

ψ 6∈ Φ ⇔ ¬ψ ∈ Φ

and for all ψ1 ∧ ψ2 ∈ sub±(ϕ),

ψ1 ∧ ψ2 ∈ Φ ⇔ ψ1 ∈ Φ and ψ2 ∈ Φ.

The set of ϕ-types will be denoted by type(ϕ).

Definition 3.2 (typed preorder). Let ϕ be a formula in the language of DT L
and S a set preordered by 4.

A typing function on S is an assignment

t : S → type(ϕ)

such that, for all �ψ ∈ sub±(ϕ) and w ∈ S, �ψ ∈ t(w) if and only if ψ ∈ t(v)
whenever v 4 w.

This is equivalent to the dual condition that ♦ψ ∈ t(w) if and only if there
exists v 4 w such that ψ ∈ t(v).

The main difference between quasimodels and standard models is that the
dynamics on quasimodels are represented by a continuous relation rather than
a function; here we will use a simple definition of a continuous relation as one
for which preimages of open sets are open (note that this is not the standard
definition). In order for this interpretation to be sound, however, we must place
syntactic restrictions on these relations.

Definition 3.3 (sensible relation). Let ϕ be a formula of DT L and Φ,Ψ ∈
type(ϕ). The ordered pair 〈Φ,Ψ〉 is sensible if

1. for all (f)ψ ∈ sub(ϕ), (f)ψ ∈ Φ ⇔ ψ ∈ Ψ and

2. for all [f ]ψ ∈ sub(ϕ), [f ]ψ ∈ Φ ⇔ (ψ ∈ Φ and [f ]ψ ∈ Ψ) .

Likewise, a pair (w, v) of worlds in a typed preorder A is sensible if 〈t(w), t(v)〉
is sensible.

A continuous relation
7→⊆ |A| × |A|

is sensible if, for every w ∈ |A|,

{v : w 7→ v} 6= ∅

and every pair in 7→ is sensible.
Further, 7→ is ω-sensible if for all 〈f〉ψ ∈ sub±(ϕ),

〈f〉ψ ∈ t(w) ⇔ ∃v ∈ |A| and N ≥ 0 such that ψ ∈ t(v) and w 7→N v.
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Definition 3.4 (Quasimodel). A ϕ-quasimodel is a tuple

A = 〈|A|,4A, 7→A, tA〉 ,

where 〈|A|,4A, tA〉 is a ϕ-typed Kripke frame and 7→A is an ω-sensible relation
on |A|.

A satisfies ϕ if there exists w∗ ∈ |A| such that ϕ ∈ tA(w∗).

We omit the subindex A and write 4, 7→ instead of 4A, 7→A, except when
this may lead to confusion.

4 Generating dynamic topological models from
quasimodels

Given a ϕ-quasimodel A, we can construct a dynamic topological model limA
satisfying the same subformulas of ϕ; the points of | limA| will not be worlds in
|A|, but rather infinite 7→-paths.

4.1 Realizing sequences

A path in A is any sequence 〈wn〉n<N , with N ≤ ω, such that wn 7→ wn+1.
The continuity of 7→ has a natural generalization for finite paths. The fol-

lowing Lemma is proven in [5]:

Lemma 4.1. Let A be a ϕ-quasimodel, 〈wn〉n≤N a finite path and v0 be such
that v0 4 w0.

Then, there exists a path 〈vn〉n≤N such that, for n ≤ N , vn 4 wn.

Proof. This follows from an easy induction on N using the cotinuity of 7→.

An infinite path ~w = 〈wn〉n<ω is realizing if for all n < ω and 〈f〉ψ ∈ t(wn)
there exists K ≥ n such that ψ ∈ t(wK).

Denote the set of realizing paths by
−→
|A|. Note that

−→
|A| ⊆ |A|N;

if we view |A| as a topological space with the preorder topology, then |A|N

naturally acquires the product topology. Consequently,
−→
|A| can be seen as a

topological space under the corresponding subspace topology; this topology on−→
|A| will be denoted TA.

For ~w,~v ∈
−→
|A| and N < ω, write ~v

N
4 ~w if vn 4 wn for all n < N . Then

define

↓N (~w) =

{
~v ∈

−→
|A| : ~v

N
4 ~w

}
.

Sets of the form ↓N (~w) form a basis for TA [5].
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4.2 Limit models

We can define dynamics on
−→
|A| by the shift operator σ, given by

σ
(
〈wn〉n<ω

)
= 〈wn+1〉n<ω .

This simply removes the first element in the sequence. The function σ is con-
tinuous with respect to TA.

We can also use t to define a valuation: if p is a propositional variable, set

pA =
{
~w ∈

−→
|A| : p ∈ t (w0)

}
.

We are now ready to assign a dynamic topological model to every ϕ-quasimodel:

Definition 4.1 (limit model). Given a non-deterministic quasimodel A, define

limA =
〈−→
|A|, TA, σ, ~pA

〉
to be the limit model of A.

Limit models are useful because of the following result, proven in [5]:

Proposition 4.1. Any satisfiable formula ϕ can be satisfied on the limit model
of a locally finite ϕ-quasimodel.

5 Presimulations

A powerful tool for comparing dynamic topological models (and models of modal
logics in general) is that of a bisimulation, because bisimulations preserve the
valuation of formulas. For DT L we will use bisimulations of the following form:

Definition 5.1 (Dynamic topological bisimulation). A bisimulation between
DTM’s X,Y is a continuous, open function

β : |X| → |Y|

such that fYβ = βfX and, for every propositional variable p,

JpKX = β−1 JpKX .
We then have the following:

Proposition 5.1. If β is a bisimulation between DTM’s X and Y and ϕ is an
arbitrary formula, then JϕKX = β−1 JϕKX .
Proof. The proof follows by a fairly standard induction on the build of ϕ.

Bisimulations give us a general criterion for guaranteeing that a DTM X is
‘richer’ than a DTM Y in the sense that at least as many formulas of DT L can
be satisfied on X as on Y.
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Definition 5.2 (Richness). A presimulation between dynamic topological sys-
tems X and Y is a continuous, open, surjective function β : |X| → |Y| such
that

fYβ = βfX.

If there exists a presimulation between X and Y, we will say X is at least as
rich as Y and write X � Y.

Lemma 5.1. If X � Y, then DT LX ⊆ DT LY.

Proof. We will show that any formula ϕ satisfiable on Y is also satisfiable on
X.

Let β : |X| → |Y| be a presimulation, and let J·KY be a valuation on Y such
that JϕKY 6= ∅.

Then, setting J·KX = β−1 J·KY, we have by Proposition 5.1 that JϕKX =

β−1 JϕKY. Since β is surjective and JϕKY 6= ∅, it follows that JϕKX 6= ∅, as
desired.

6 Metrizable topological spaces

In this section we will review some of the fundamental properties of the class
of metrizable spaces. In general it is convenient to work with metrizable rather
than metric spaces since committing to a specific metric is sometimes counter-
productive.

First a fact about countable spaces that some may find a bit surprising (the
author certainly did):

Proposition 6.1 (Sierpinski, 1920). Any two perfect countable metric spaces
are isomorphic to each other.

Proof. We will not present a proof here, but it basically follows a back-and-forth
argument, passing from partial isomorphisms to a full isomorphism.

Lemma 6.1. If 〈X, T 〉 is metrizable, then it admits a bounded metric, i.e., the
topology T can be induced by a metric d satisfying d(x, y) < 1 for all x, y ∈ T .

Proof. Let d′ be a metric on X inducing T . Then, consider

d(x, y) =
d′(x, y)

1 + d′(x, y)
.

It is not hard to check that d is a new metric on X, that it is bounded by 1,
and that d also induces T , as desired.

Proposition 6.2. Suppose 〈Xi〉i<ω is a sequence of metrizable spaces. Then,

1.
∏
i<ω

Xi and
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2.
∐
i<ω

Xi

are metrizable.

Proof. We will show this by defining appropriate metrics on the two spaces. By
Lemma 6.1, we can assume that each Xi = 〈Xi, di〉, where di < 1.

Then, define

1. if ~x, ~y ∈
∏
i<ωXi, ~x = 〈xi〉i<ω and ~y = 〈yi〉i<ω, set

d(~x, ~y) =
∑
i<ω

di(xi, yi)

2i
;

2. if x, y ∈
∐
i<ωXi, set

d(x, y) =

{
di(x, y) if x, y ∈ Xi;

1 otherwise.

The reader can then check that these are metrics that induce the desired
topologies. Note that the disjoint union does not need to be countable, but we
will only need it in this form.

If 〈X, d〉 is a metric space, we will use the notation

Bε(x) = {y ∈ X : d(x, y) < ε} .

Sets of this form form a basis for the topology on 〈X, d〉, even if we only consider
rational ε. From the latter it follows that any countable metric space is also
second-countable, i.e., has a countable basis.

7 Rational completeness

In this section we will show that DT L = DT LQ. Let us begin by showing how
one can find countable models in a more general setting.

Proposition 7.1. Given any DTM X based on a second-countable space there
exists a countable set Y ⊆ |X| such that X � Y satisfies the same set of formulas
as X.

Proof. Let X be a DTM based on a second-countable space.
Let B be a countable basis for TX.
Say a pair 〈ϕ,B〉 is a occurrence on X if ϕ is a formula, B ∈ B and JϕKX∩B.
Let Λ be the set of all occurrences on X. Note that Λ is countable, since

both our language and B are countable.
Choose a function x· : Λ → |X| assigning to each λ = 〈ϕ,B〉 ∈ Λ a unique

element xλ such that xλ ∈ JϕKX.
9



Let Y0 = {xλ : λ ∈ Λ} and let Y be the orbit of Y0 under fX.
Clearly Y0, and hence Y , is countable.
It remains to show that Y = X � Y satisfies the same set of formulas as X.

For this we will first show that, given any formula ϕ,

JϕKY = JϕKX ∩ Y.

This follows by a straightforward induction on formulas of which only the
case of ϕ = �ψ is interesting.

Suppose, first, that x ∈ J�ψKX. This means that there exists a neighborhood
U of x such that U ⊆ JψKX. By induction hypothesis, we have that JψKY =JψKX ∩ Y , so U ∩ Y is a neighborhood of x in Y such that every point satisfies
ψ, that is, x ∈ J�ψKY.

Now, suppose that x 6∈ J�ψKX. This means that every neighborhood U of x
contains at least one point not satisfying ψ.

Let U ∩ Y be any neighborhood of x in Y and B be a basic set such that
x ∈ B ⊆ U . Since B contains a point not satisfying ψ, and hence satisfying
¬ψ, we have that λ = 〈¬ψ,B〉 is a occurrence on X and hence we have xλ ∈
Y ∩B∩J¬ψKX. By induction hypothesis xλ ∈ J¬ψKY, and since U was arbitrary
we conclude that x 6∈ JψKY.

Then, if a formula ϕ is satisfied on x ∈ |X|, setting λ = 〈ϕ,B〉, where B is
any neighborhood of x, we have that xλ ∈ JϕKY.

Proposition 7.2. Given any finite topological space W, Q � W.

Proof. This follows from the proof of the McKinsey-Tarski theorem of complete-
ness of S4 for any perfect second-countable metric space [13].

Corollary 7.1. Given any countable, locally finite topological space W and
w ∈ |W|, Q � W.

Proof. If |W| is finite, this is just Proposition 7.2.
Otherwise, |W| is properly infinite and we can write it as 〈wn〉n<ω. For each

n < ω, by Proposition 7.2, we have a sequence of presimulations βn : Q → ↓wn,
and this in turn gives us a map β :

∐
n<ω Q → |W| given by

∐
n<ω βn. The

latter map is clearly a presimulation, and by Proposition 6.1
∐
n<ω βn ' Q, as

desired.

Proposition 7.3. Given a locally finite ϕ-quasimodel A, there exists a dynamic
topological system S based on a second-countable metric space such that S �
limA.

Proof. By Corollary 7.1, we have a presimulation β : Q → |A|.
This induces a map ~β : QN → |A| given by

~β 〈xn〉n<ω = 〈β(xn)〉n<ω .

One can check that this map is continuous and open.
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Then consider S = ~β−1
(−→
|A|

)
and γ = ~β � S.

In general, restrictions of continuous, open maps are still continuous and
open, so γ is continuous and open.

Further, σS is a continuous function on S which clearly satisfies

γσS = σAγ.

Setting S =
〈
QN � S, σS

〉
, we have that S � limA (via γ). Since QN is

metrizable and second-countable, so is QN � S, as desired.

Proposition 7.4. Given a DTS X based on a countable metrizable space, there
exists a DTS Y based on a perfect countable metric space such that Y � X.

Proof. Let X be a DTS based on a countable metric space.
Define |Y| = |X| × Q with the product topology, fY(x, r) = 〈fX(x), r〉 and

let β be the projection onto the first component.
Then clearly Y is a DTS based on a perfect countable metric space, and

Y � X via β.

Theorem 7.1. Any formula ϕ which is satisfiable can be satisfied on a DTM
based on a perfect countable metric space.

Further, DT LM is strongly complete for such a space in the sense that any
set of formulas that can be satisfied on a single point of a metric space an be
satisfied on a point on a perfect countable metric space.

Proof. If a set of formulas Φ is satisfiable, it can be satisfied on limA for some
countable, locally finite ϕ-quasimodel A. Then, by Proposition 7.3, there exists
a DTM X based on a second-countable metric space such that X satisfies Φ. By
Proposition 7.1 there is Y ≤ X based on a countable space (thus on a countable
metric space) satisfying Φ as well, and by Proposition 7.4 there is Z � Y based
on a perfect countable metric space, so that Φ can be satisfied on Z as well, as
desired.

Corollary 7.2. DT L = DT LQ

Proof. Any two perfect countable metric spaces are isomorphic to each other by
Proposition 6.1, so this is a straightforward consequence of Theorem 7.1.

8 Incompleteness of DT L for complete metric
spaces

In [4] it was shown that DT L is not complete for R2 by exhibiting a formula
which is valid on the class of dynamical systems based on a locally connected
space but not valid in general. This shows that DT L is incomplete for inter-
pretations based on {Rn : n < ω}, on Hilbert or Banach spaces, etc. However,
it does not say anything about completeness for interpretations based on the
Cantor space, which is totally disconnected, but shares with the above spaces
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the property of being complete as a metric space. Indeed, it was shown in [11]
that DT LH 6= DT LCompMH by exhibiting a formula which was valid on the latter
but not on the former, where H is the class of all dynamical systems X where
fX is a homeomorphism and CompMH is subclass of H whose systems are based
on a complete metric space.

In this section we will show that the same holds over the class of all spaces,
that is,

DT L 6= DT LCompM

by a similar argument, showing a formula which is contained only on the right-
hand side and, in fact, for a very similar reason. However, because DT L is
weaker than DT LH, the formula we must use is a bit more complex.

Recall that the Baire Category Theorem reads as follows:

Theorem 8.1 (Baire Category Theorem). Let 〈X, d〉 be a complete metric space
and {Un}n≥0 a collection of dense, open sets. Then,∩

n≥0

Un

is dense as well.

We will construct a formula ϕ which expresses a form of this theorem.
Consider the following formulas:

ϕ0 = ♦s ∧ ♦¬s
ϕ1 = s↔ (f)s
ϕ2 = p→ �p
ϕ3 = s ∧ ¬p→ �(¬s→ p)

and define
Baire = �[f ]

∧
n≤3

ϕn → ♦[f ]p.

Proposition 8.1. Baire is not valid over the class of all DTM’s.

Proof. We will show this two different ways, one by exhibiting an actual DTM
refuting Baire, and the other using quasimodels.

1. Consider a model X over Q with fX(x) = x+ 1.

Let 〈rn〉n<ω be an enumeration of Q ∩ (−1/2, 1/2) and set

JpKX = {rn + k : k < n < ω} .

Pick any set of rationals S ⊆ (−1/2, 1/2) which is dense but contains no
open balls and then set JsKX = S+Z (for example, S can be the set of all
rationals between −1/2 and 1/2 of the form m/2n).

We claim that 0 6∈ JBaireKX.
12
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To see this, first note that (−1/2, 1/2) ∩ J[f ]pKX = ∅. The reason for this
is that, given x ∈ Q ∩ (−1/2, 1/2), we have x = rn for some value of n and
hence fnX(x) 6∈ JpKX.
This of course shows that 0 6∈ J♦[f ]pKX .
Meanwhile, let us check that

Q ∩ (−1/2, 1/2) ⊆ J�[f ]ϕiKX
for all i ≤ 3. Actually, it turns out that all of Q satisfies each ϕi, which is
what we will prove.

ϕ0: This formula says that both JsKX and J¬sKX are dense, which is true
on all Q by the way we selected JsKX, i.e., as the orbit of a set which
is dense in (−1/2, 1/2) but contains no open interval.

ϕ1: Once again this formula is true on all Q by the way we selected JsKX
simply because it is of the form S + Z (i.e., a point satisfies s if and
only if every other point on its orbit does).

ϕ2: This holds whenever JpKX is an open set. Indeed, every point x lies
on (−1/2+ k, 1/2+ k) for some value of k (except for the endpoints of
these intervals, which do not satisfy p to begin with), and the interval
(−1/2+k, 1/2+k) contains exactly k points not on JpKX. This implies
that, if x ∈ JpKX ∩ (−1/2 + k, 1/2 + k), there is a neighborhood U of
x contained in JpKX (just avoid the k missing points), which in turn
implies that JpKX is open.

ϕ3: This holds for a similar reason as above. Indeed, suppose x ∈ (−1/2+
k, 1/2+k) and x satisfies s∧¬p. Then, since there are only k−1 other
points on this interval satisfying ¬p, we can find a neighborhood U
of x such that x is the only point on this interval satyisfying ¬p.
Clearly, every point on U which satisfies ¬s then satisfies p (given
that x does not satisfy ¬s) and thus x ∈ J�(¬s→ p)KX, as desired.

It follows that
r
�[f ]

∧
i≤3 ϕi

z
X

= Q, so in particular 0 satisfies the an-

tecedent of Baire but not its consequent. We conclude that 0 does not
satisfy Baire, as desired.

2. We can also use quasimodels to see that Baire is not valid in general. In
fact, we can do this with a rather small (finite!) quasimodel.

Consider the following Baire-quasimodel:

w0
++

��

44*j -m /o 1q 4t w1
uu j*m-o/q1t4 ss

��
u0MM

EE

8x :z
=}
@�
C�
F�

u1

YY

f&d$
a!

^�
[�

X�

QQ

,
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where straight arrows represent 7→ and squiggly arrows <,

s,♦¬s, p,�p,¬[f ]p ∈ t(w0);
¬s,♦s, p,�p,¬[f ]p ∈ t(w1);
s,�(¬s→ p),¬p ∈ t(u0)

and
¬s,�(s→ p),¬p ∈ t(u1).

We let the reader check that

�[f ]
∧
n≤3

ϕn ∈ t(w0)

by inspecting each ϕn, yet note that ♦[f ]p 6∈ t(w0).

However, we claim that:

Proposition 8.2. The formula Baire is valid in all complete metric spaces.

Proof. Suppose X is a dynamic topological model based on a complete metric
space and uv�[f ]

∧
n≤3

ϕn

}~
X

6= ∅.

Since this set is open, we can pick out a closed ball B such that

B ⊆

uv[f ]
∧
n≤3

ϕn

}~
X

.

First note that ϕ0 implies that both JsKX and J¬sKX are dense in B, and ϕ1

implies that, if x ∈ B, x ∈ JsKX if and only if fn(x) ∈ JsKX for all n. Note also
that ϕ2 implies that

f−nX JpKX ∩B

is open for all n, because if x ∈ f−nX JpKX, then
x ∈ f−nX J�pKX

(since x ∈ J[f ](p→ �pKX), which is open.
To establish our conclusion, we must also show that f−nX JpKX is dense in B

for all n.
Take x ∈ B ∩ JsKX and an open ball Bε(x) around x. If x ∈ f−nX JpKX, there

is nothing to prove. Otherwise, x ∈ f−nX J¬pKX , so fnX(x) ∈ J¬pKX and hence
(by ϕ3)

fnX(x) ∈ J�(¬s→ p)KX .
14



Take a ball Bη (f
n
X(x)) such that

Bη (f
n(x)) ⊆ J¬s→ pKX

and a neighborhood Bδ(x) of x such that

fnX (Bδ(x)) ⊆ Bη (f
n
X(x))

(such a δ exists because fnX is continuous). Since J¬sK is dense in B, we can pick

y ∈ J¬sKX ∩Bδ(x).

But fnX(y) ∈ Bη (f
n
X(x)) , and f

n
X(y) ∈ J¬sKX , so that fnX(y) ∈ JpKX, as desired.

Since x and ε were arbitrary, we conclude that f−nX JpKX is dense for all n.
Thus, f−nX JpKX is open and dense for all n. We can now apply the Baire

category theorem to show that

J[f ]pKX =
∩
n≥0

f−nX JpKX
is also dense in B which, being a closed subset of X, is a complete metric space
on its own right. This means that

B ⊆ J♦[f ]pKX ,
and X |= ϕ.

Corollary 8.1. DT L ( DT LCompMH.

9 Universality of the Cantor space

In this section we will show that any formula that is satisfiable on CompM is
satisfiable on a model based on the Cantor space. We will use ‘neighborhood
trees’, a variant of a technique which has been used in [4, 12] for other relative
completeness proofs. However, the novelty here is that we do not construct
full bisimulations, but rather a rough approximation of a bisimulation called
a ϕ-simulation which does not preserve the truth of all formulas, but it does
preserve subformulas of ϕ.

First we state a very useful result which gives a general characterization of
spaces homeomorphic to the Cantor space:

Theorem 9.1 (Brouwer). A topological space is a Cantor space if and only if
it is non-empty, perfect, compact, totally disconnected, and metrizable.

A topological space is totally disconnected if it has a basis of clopen sets.
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Definition 9.1 (Neighborhood tree). Let X be a complete metric space, N ≤ ω
and M < ω. A neighborhood tree on X of depth N and delay M is a structure
T = 〈|T|,4T, ϑT, εT〉 such that 〈|T|,4T〉 is a tree,

ϑT : |T| → |X|

and
εT : |T| → [0,∞]

and such that

1. if s 4 t then BεT(s)(ϑ(s)) ⊆ BεT(t)(ϑT(t));

2. if t has depth n > M , then εT(t) < 1/2n,

3. if t has depth n < N , then it has a designated daughter t+ with ϑT(t
+) =

ϑT(t),

4. if t has depth n < N , it has at least two daughters and

5. every node is at depth at most N .

As usual, we omit the subindex T to avoid cluttering notation whenever this
does not lead to confusion. In the end we will be interested in neighborhood
trees of depth ω; trees of finite depth will serve as a sort of approximation.

Given a dynamic neighborhood tree 〈T, ϑ, ε〉 of depth ω for X ∈ CompM, we

define a space T̂ by letting |T̂| be the set of all maximal chains on T, and define
a map

ϑ̂ : |T̂| → |X|

given by
ϑ̂(~t) = lim

n→∞
ϑ(tn).

Note that ϑ̂ is defined everywhere since 〈ϑ(tn)〉n<ω is Cauchy.

The topology on T̂ is generated by basic sets of the form

DN (~t) =
{
~s ∈ |T̂| : sN = tN

}
,

for ~t ∈ |T̂|.
Given t ∈ |T|, we will write t∞ = 〈sn〉n<ω for the branch on T which passes

through t and such that sn+1 = s+n for all n greater than the depth of t.
We then have that:

Lemma 9.1. If T is a neighborhood tree of depth ω, then T̂ is homeomorphic
to the Cantor space.

Proof. We use Theorem 9.1. The topology on T̂ is second-countable since its
basic sets DN (~t) can clearly be identified with the node tN , because

DN (~t) = {~s : sN = tN} .
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But there are countably many nodes, as desired.
The sets DN (~t) are closed, since their complement is a union of basic sets,

namely ∪
{DN (~s) : sN 6= tN} .

Therefore, T̂ is totally disconnected.
To see that it is perfect, let ~t ∈ |T̂| and DN (~t) be a basic neighborhood of ~t.

Then, by condition 4, tN has at least two daughers, so at least one is distinct
from tN+1; call it s. Clearly s

∞ ∈ DN (~t) and s∞ 6= ~t, as desired.

T̂ can be assigned a metric in a fairly standard way, by letting d(~s,~t) = 1/2N ,
where N is the least integer such that tN 6= sN .

Once we have metrizability we know that compactness is equivalent to se-
quential compactness (that is, every sequence has a converging subsequence).
But this follows from a standard diagonalization argument: Let

〈
~tn
〉
n<ω

be a

sequence of elements of |T̂|; we will find a limit point ~s for it. Let s0 be the
root of T. Then, since there are only finitely many values that tn1 could take,
one of them must occur infinitely often, and we take that to be s1. From those
elements of

〈
~tn
〉
n<ω

that have tn1 = s1, infinitely many of them must take on the
same value of tn2 , and we let that be s2. Continuing in this fashion we construct
~s, which is clearly a limit point of

〈
~tn
〉
n<ω

.

Lemma 9.2. If T is a neighborhood tree of depth ω and ~t ∈ |T|, then for all
n < ω,

ϑ̂(~t) ∈ Bε(tn)(ϑ(tn)).

Proof. By definition we have that, for all i < ω,

Bε(ti+1)(ϑ(ti+1)) ⊆ Bε(ti)(ϑ(ti)).

Now, ϑ(ti) ∈ Bε(tn+1)(ϑ(tn+1)) for all i > n, which implies that

ϑ̂(~t) ∈ Bε(tn+1)(ϑ(tn+1)),

from which it follows that

ϑ̂(~t) ∈ Bε(tn)(ϑ(tn)).

Definition 9.2. Given a formula ϕ and a neighborhood tree T of depth N ≤ ω
on a DTM X, we say that T is ϕ-preopen if, whenver ψ ∈ sub(ϕ) and t ∈ |T|
are such that JψKX∩Bε(t)ϑ(t) 6= ∅, then t has a daughter tψ with ϑ(tψ) ∈ JψKX.
Definition 9.3 (ϕ-open map). Given a formula ϕ and DTM’s X and Y, we
say a function

ϑ : |X| → |Y|

is ϕ-open if, given ψ ∈ sub(ϕ) and x ∈ ϑ−1 J♦ψKY, every neighborhood U of x

contains a point y such that y ∈ ϑ−1 JψKY.
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The map ϑ is a ϕ-simulation if, in addition, it is continuous and

ϑ ◦ fX = fY ◦ ϑ.

Lemma 9.3. If ϑ is a ϕ-simulation between DTM’s X and Y, for all ψ ∈ sub(ϕ),JψKX = ϑ−1 JψKY.

Proof. Routine induction on ψ.

Definition 9.4 (Dynamic neighborhood tree). A dynamic neighborhood tree
of depth N and duration K ≤ ω on a DTM X is a sequence of neighborhood
trees 〈Tk〉k<K of depth N equipped with a partial function gT defined on all |Tk|
with k + 1 < K such that

1. gT|Tk| ⊆ |Tk+1| whenever k + 1 < K;

2. if gT(s), gT(t) are defined and s is a daughter of t then gT(s) is a daughter
of gT(t);

3. Tk has delay at most k and

4. if gT(t) is defined then

fXBε(t)(ϑ(t)) ⊆ Bε(gT(t))(ϑ(gT(t))).

Lemma 9.4. Let ϑ : |T| → |X| be a neighbornood tree of finite depth N and
duration N , t ∈ |Tk| and x ∈ Bε(t)(ϑ(t)).

Then, there exists an extension T′ of T such that t has a daughter s on T′

with ϑ(s) = x.

Proof. First, add a daughter s to t and daughters gi(s) to each respective gi(t).
Let M = N − k and set

ϑ(gi(s)) = f iX(x).

Now, let ε(gM (s)) < 1/2N be small enough so that

BδN (fMX (x)) ⊆ Bε(gM (t))(ϑ(g
M (t))).

Assume, inductively, that we have defined

ε(gM−i(s)), ..., ε(gM−i(s)).

Then pick ε = ε(gM−(i+1)(s)) < 1/2N small enough so that

• Bε(ϑ(gM−(i+1)(s))) ⊆ Bε(gM−(i+1)(t))(ϑ(g
M−(i+1)(t)))

• fXBε(ϑ(g
M−(i+1)(s))) ⊆ Bε(gM−i(s))(ϑ(g

M−i(s))).

Continuing in this way we can define

ε(s), ε(g(s)), ..., ε(gN−k(s)).

It is clear that ϑ, ε satisfy the required conditions.
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Lemma 9.5. Let T be a ϕ-preopen dynamic neighborhood tree of finite depth N
and duration N on a DTM X. Then, T can be extended to a ϕ-preopen dynamic
neighborhood tree of depth N +1 and duration N +1 without altering any nodes
of depth less than N at time less than N .

Proof. We begin by extending each Tk to a tree with depth N+1. Our strategy
will be to add one node at a time until we obtain the desired extension, by
removing all ‘problems’.

A problem is an occurrence of a node t ∈ |Tm| of depth N such that either

1. t does not have a designated successor t+ with ϑ(t+) = ϑ(t);

2. t only has one daughter or

3. there is ψ ∈ sub(ϕ) such that JψKX ∩ Bε(x)(ϑ(t)) 6= ∅ but there is no
daughter s of t with ϑ(s) ∈ JψK.

Since the trees are all finitely branching and there are finitely many of them,
we have finitely many nodes on them, and hence finitely many problems. It is
clear that if we eliminate all problems we have the desired extension; since there
are finitely many problems, we will show only how to remove one of them at at
time.

1. If t does not have a designated successor t+ with ϑ(t+) = ϑ(t), then we
can use Lemma 9.4 with x = ϑ(t) to define t+.

2. If t only has one daughter, duplicate

t+, g(t+), g2(t+), ..., gN−m(t+)

without changing ϑ or ε.

3. If there is ψ ∈ sub(ϕ) such that JψKX ∩ Bε(x)(ϑ(t)) 6= ∅ but there is no
daughter s of t with ϑ(s) ∈ JψK, pick x ∈ JψKX ∩ Bε(x)(ϑ(t)) and use

Lemma 9.4 to add a node tψ with ϑ(tψ) = x.

In this way we can remove problems one at a time and obtain an extension
T′′ of depth N + 1.

Now, to obtain T′, we will extend T′′ so that it has duration N + 1. But
indeed this is not hard to do; just define a tree T′

N by taking a copy of T′′
N−1 of

the form
{
g(t) : t ∈ |T′′

N−1|
}
and setting ϑ(g(t)) = fX(ϑ(t)), ε(g(t)) = ∞. Note

that the new nodes are at time N but have depth at most N , so we do not have
any restriction on ε.

The resulting dynamic neighborhood T′ then has depth and duration N +1,
as desired.

Lemma 9.6. If X ∈ M, ϕ is any formula and x∗ ∈ |X|, there exists a ϕ-preopen
dynamic tree T on X with x∗ ∈ im(ϑ).
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Proof. First define T0 as a dynamic neighborhood tree of depth and duration
1 (i.e., an ordinary neighborhood tree) with a single node t∗ and ϑ(t∗) = x∗,
ε(t∗) = ∞.

We can then use Lemma 9.5 countably many times to generate an increasing
chain 〈Tn〉n<ω, where Tn has depth and duration n. Then, Tω defined by taking

|Tω| =
∪
n<ω

|Tn|

is the desired dynamic tree of depth ω.

The dynamic neighborhood tree T we have constructed above will give us
our desired model based on the Cantor space by taking (an extension of) T̂.

It remains to check that T̂ truly is a DTM satisfying ϕ, as will be seen in the
following lemmas.

First let us consider the dynamics on T̂. We define ĝT by

ĝT 〈tn〉n<ω = 〈gT(tn)〉n<ω .

Lemma 9.7. If T is a neighborhood tree of depth ω, then ĝT is a continuous
function mapping T̂ into itself. In particular,

ĝT|T̂n| ⊆ |T̂n+1|.

Proof. We know that gT preserves daughters, so it maps maximal chains to

maximal chains, i.e., im|T̂| ⊆ |T̂|. Because gT|Tn| ⊆ |T̂n+1| for all n, we also

have that ĝT|T̂n| ⊆ |T̂n+1|.
It remains to check that ĝT is continuous, but this is not hard to do; we need

only check that the preimage of any basic set around ĝT(~t) contains a basic set
around ~t. So, let DN (ĝT(~t)) be such a basic set; then, clearly

DN (~t) ⊆ g−1
T DN (ĝT(~t)).

We conclude that
ĝT : |T̂| → |T̂|

is continuous, as desired.

Lemma 9.8. If T is a dynamic tree, ~t ∈ |T̂m| and N > m, then

d(ϑ(tN ), ϑ̂(~t)) < 1/2N−1.

Proof. Note that for n > N we have that d(ϑ(tn), ϑ(tn)) < 1/2−n, and since we
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have that ϑ̂(~t) = limn→∞ ϑ(tn), we can compute

d(ϑ̂(~t), ϑ(tN )) ≤ d(ϑ̂(~t), ϑ(tN ))ϑ(~t))

≤
∞∑
n=N

d(ϑ̂(tn), ϑ̂(tn+1))

≤
∞∑
n=N

1/2n

= 1/2N−1.

Lemma 9.9. If X ∈ CompM and

ϑ : |T| → |X|

is a neighborhood tree, then ϑ̂ is a ϕ-simulation.

Proof. First let us show that ϑ̂ is continuous.
In fact, the continuity of ϑ̂ is uniform in the following sense: if ~t, ~s ∈ |T̂m|,

N > m and sn = tn for all n < N , then d(ϑ̂(~s), ϑ̂(~t)) ≤ 1/2N−2.
To see this, note that

d(ϑ̂(~s), ϑ̂(~t)) ≤ d(ϑ̂(~s), ϑ(tK)) + d(ϑ(tK), ϑ̂(~t)).

But by Lemma 9.8, this is at most

1/2K−1 + 1/2K−1 = 1/2K−2.

Now it remains to show that ϑ̂ is ϕ-open. Let ~t ∈ |T| and suppose that

ϑ̂(~t) ∈ J♦ψKX for some ψ ∈ sub(ϕ).
Then, for any neighborhood U of ~t there is N > 0 such that DN (~t) ⊆ U .

Now, Bε(tN )(ϑ(tN )) is a neighborhood of ϑ̂(~t) by Lemma 9.2, and since ϑ̂(~t)
satisfies ♦ψ it follows that

Bε(tN )(ϑ(tN )) ∩ JψKX 6= ∅.

Hence tN has a daughter s with ϑ(s) ∈ JψKX, and thus

s∞ ∈ DN (~t) ∩ ϑ̂−1 JψKX ,
as desired.

Finally, we need to check that

fX ◦ ϑ̂ = ϑ ◦ ĝ;

but this is an easy consequence of the fact that fX ◦ ϑ = ϑ ◦ g.
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Lemma 9.10. Let f be a continuous function on
∐
n<ω K such that f(Kn) ⊆

Kn+1 for all n, where Kn is the nth copy of K.
Then, there is an open, continuous injection

ι :
∐
n<ω

K → K

and a continuous map f+ extending f , that is, such that

f = f+ ◦ ι.

Proof. Consider the space

Z = {∞} ∪
∐
n<ω

K,

where ∞ is a fresh point and neighborhoods of ∞ are of the form {∞} ∪∪
n>N Kn.
It is not hard to see that Z is a Cantor space containing

∐
n<ω K, and we

can extend f by setting f(∞) = ∞.

Theorem 9.2.
DT LK = DT LCompM

Proof. Clearly DT LK ⊇ DT LCompM, so we will focus on the other direction.
Let ϕ be a formula and suppose that ϕ is satisfiable on CompM. Let us show

that it can also be satisfied on K.
Let X ∈ CompM satisfy ϕ and x∗ ∈ JϕKX.
By Lemma 9.6 there is a dynamic tree T with a ϕ-open Cauchy map ϑ :

|T| → |X| such that x∗ ∈ im(ϑ̂).

By Lemma 9.9, this then gives us a ϕ-simulation ϑ̂ : |T̂| → |X|.
Now, setting J·KT̂ = ϑ̂−1 J·KX and using Lemma 9.3, we see that, for ~t ∈

ϑ̂−1(x∗), ~t ∈ JϕKT̂.
Finally, we use Lemma 9.10 to embed T̂ into a DTM Y based on K via an

inclusion ι. Setting J·KY = ι J·KT̂, it follows that Y satisfies ϕ, as desired.

References

[1] E. Akin. The General Topology of Dynamical Systems. Graduate Studies
in Mathematics. American Mathematical Society, 1993.

[2] S.N. Artemov, J.M. Davoren, and A. Nerode. Modal logics and topological
semantics for hybrid systems. Technical Report MSI 97-05, 1997.

[3] D. Fernández-Duque. Dynamic topological logic interpreted over minimal
systems. Journal of Philosophical Logic. Forthcoming.

22

https://www.researchgate.net/publication/225561827_Dynamic_Topological_Logic_Interpreted_over_Minimal_Systems?el=1_x_8&enrichId=rgreq-5f208e4e4c9ae56ea772107d6152c684-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMxNjAwOTtBUzoxNzcyNTMwOTA2MDMwMDhAMTQxOTI3MTgzODAxOQ==
https://www.researchgate.net/publication/225561827_Dynamic_Topological_Logic_Interpreted_over_Minimal_Systems?el=1_x_8&enrichId=rgreq-5f208e4e4c9ae56ea772107d6152c684-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMxNjAwOTtBUzoxNzcyNTMwOTA2MDMwMDhAMTQxOTI3MTgzODAxOQ==
https://www.researchgate.net/publication/2467723_Modal_Logics_and_Topological_Semantics_for_Hybrid_Systems?el=1_x_8&enrichId=rgreq-5f208e4e4c9ae56ea772107d6152c684-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMxNjAwOTtBUzoxNzcyNTMwOTA2MDMwMDhAMTQxOTI3MTgzODAxOQ==
https://www.researchgate.net/publication/2467723_Modal_Logics_and_Topological_Semantics_for_Hybrid_Systems?el=1_x_8&enrichId=rgreq-5f208e4e4c9ae56ea772107d6152c684-XXX&enrichSource=Y292ZXJQYWdlOzIyMDMxNjAwOTtBUzoxNzcyNTMwOTA2MDMwMDhAMTQxOTI3MTgzODAxOQ==


[4] D. Fernández-Duque. Dynamic topological completeness for R2. Logic
Journal of IGPL, 2007. doi: 10.1093/jigpal/jzl036.

[5] D. Fernández-Duque. Non-deterministic semantics for dynamic topological
logic. Annals of Pure and Applied Logic, 157(2-3):110–121, 2009. Kurt
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