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Resumen

Como consecuencia de que los reguladores necesitan gestionar el riesgo en los distintos

sectores, se está extendiendo de forma rápida una metodología basada en el riesgo. En

las últimas décadas, este problema ha sido tratado en su mayoría en una versión univari-

ante. Sin embargo, los riesgos envuelven normalmente varias variables aleatorias que

son a menudo dependientes. Por tanto, es crucial trabajar en un marco multivariante.

Por otro lado, los fenómenos están caracterizados frecuentemente por eventos extremos.

Esta tesis trata fundamentalmente dos problemas: la de�nición de medidas de riesgo

en un marco multivariante y la estimatión de medidas de riesgo multivariantes teniendo

en cuenta eventos extremos.

El Capítulo 1 es un capítulo introductorio. Presentamos el estado del arte para

la noción de medidas de riesgo multivariantes. También, recordamos los principales

resultados en Teoría de Cópulas, Teoría de Valores Extremos y Órdenes Estocásticos

que son útiles en este trabajo .

Se introducen dos nuevas medidas de riesgo multivariantes en el Capítulo 2. Varias

propiedades interesantes y, caracterizaciones bajo condiciones de cópulas Arquimedi-

anas, se estudian para las medidas de riesgo propuestas. Además, se obtienen esti-

madores semiparamétricos para las nuevas medidas, y son ejempli�cados considerando

datos simulados y un conjunto de datos real de seguros.

El Capítulo 3 se centra en la estimación extrema no paramétrica de las medidas

multivariantes propuestas en el Capítulo 2. Para este propósito, primero analizamos

el comportamiento en la cola de las distribuciones condicionadas que de�nen dichas

medidas. El principal resultado está constituido por el Teorema Central del Límite

de los estimadores extremos. El rendimiento de los estimadores extremos se evalúa en

datos simulados y para un conjunto de datos real de precipitaciones.

El estudio de la medida de riesgo multivariante asociada con the Component-wise

Excess(C.-E.) design realization dada por Salvadori et al. (2011) se enmarca en el Capí-

tulo 4. Se obtiene la expresión explícita de la medida para cópulas Arquimedianas.

Asimismo, se proporciona un procedimiento de estimación extrema para la C.- E. de-

sign realization. Se estudia el comportamiento asintótico de los estimadores propuestos.

Finalmente, los estimadores para la C.- E. design realization se aplican en datos simu-

lados y para un conjunto de datos real de una presa.
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Abstract

As a consequence of the need for regulators to manage risk in various sectors, a risk-

based methodology is undergoing a fast expansion. Over recent decades, this problem

has been mostly addressed via a univariate approach. However, risks usually involve

several random variables that are often non-independent. Therefore, it is crucial to work

in a multivariate setting. On the other hand, phenomena are frequently characterized

by extreme events.

This thesis is fundamentally concerned with two problems: the de�nition of risk

measures in a multivariate setting, and the estimation of multivariate risk measures by

taking extreme events into account.

Chapter 1 is an introductory chapter. We present the state-of-art of the notion of

multivariate risk measures. The main results in Copula Theory, Extreme Value Theory,

and Stochastic Orders, which are useful in this work, are also provided.

Two new multivariate risk measures are introduced in Chapter 2. Several interes-

ting properties and, characterizations under Archimedean copulas, are studied for the

proposed risk measures. Furthermore, semi-parametric estimators for the new measures

are obtained and are then exempli�ed considering simulated data and a real insurance

data-set.

Chapter 3 deals with the non-parametric extreme estimation procedure of the mul-

tivariate measures proposed in Chapter 2. For this purpose, we �rst analyse the tail

behaviour of the conditional distributions that de�ne the aforementioned measures. The

main result is given by the Central limit Theorem of the extreme estimators. The per-

formance of the extreme estimators is evaluated in simulated data and for a real rainfall

data-set.

The multivariate risk measure associated with the Component-wise Excess (C.-E.)

design realization given by Salvadori et al. (2011) is outlined in Chapter 4. The explicit

expression of the measure for Archimedean copulas is obtained. In addition, an extreme

estimation procedure for the C.-E. design realization is provided and the asymptotic

behaviour of the proposed estimators is studied. Finally, the estimators for the C.-E.

design realization are applied to simulated data and a real dam data-set.
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Chapter 1

Introduction

1.1 Risk measures

Risk is a complex notion and can take on a variety of forms with diverse applications.

Risk could be de�ned as the e�ect that lack of certainty produces on objectives (ISO

(2009)). A risk-based approach for the supervision and regulation of di�erent sectors is

gaining ground in both emerging and industrialized countries. As part of this approach,

regulators need to measure, monitor, and manage the risk. One of the most important

areas in which this practice has been adopted is the insurance sector where the main

challenge is to sell risk coverage. For instance, people rely on their savings to �nance

their old age. The study of the risk involved in the assessment of the pro�table areas of

business in �nance is crucial. Furthermore, in order to prevent and to manage damages

and losses due to a natural disaster, it is of prime importance to examine the risk in

the environmental sector (The European Parliament and The Council (2007)).

As the recent �nancial crisis has shown, risks are generally di�cult to measure

and to manage. By concentrating on a framework to determine provisions and capital

requirements in order to prevent insolvency, Denuit et al. (2005) introduce the following

de�nition of risk measure.

De�nition 1.1.1 (De�nition 2.2.1 in Denuit et al. (2005)). A risk measure is a func-

tional % mapping a risk X to a non-negative real number %(X), possibly in�nite, repre-

senting the extra cash which has to be added to X to make it acceptable.

Let Ω be the set of states of nature and assume that is �nite. Let G be the set of

all real-valued functions on Ω. Artzner et al. (1999) de�ne a risk measure as a mapping

from G into R. According to Artzner et al. (1999), every risk measure should verify the

following set of desirable properties, that is, the risk measure should be a coherent risk

measure.

3



4 Chapter 1. Introduction

De�nition 1.1.2 (Coherent Risk Measure). Let X and Y be two random variables such

that X,Y ∈ G. A risk measure % is coherent if it satis�es:

• Monotonicity: P[X ≤ Y ] = 1⇒ %[X] ≤ %[Y ].

• Subadditivity: %[X + Y ] ≤ %[X] + %[Y ].

• Positive Homogeneity: %[cX] = c%[X], c > 0.

• Translativity: %[X + c] = %[X] + c, c > 0.

Over recent decades, the risk quanti�cation problem has been mostly addressed via

a univariate version. The classic univariate measure in �nancial sciences is that of the

Value-at-Risk (VaR ). This quantity represents the magnitude of a event that occurs

at a given time and at a given site. More precisely, VaRα, α ∈ (0, 1), is a quantile

which expresses the magnitude of the event that is exceeded with a probability 1 − α.
That is, for a random variable X with distribution function FX , VaRα(X) = inf{x ∈
R : FX(x) ≥ α}, α ∈ (0, 1). If annual maxima observations are investigated, in the

environmental sector, VaR is called return level, and 1/(1 − α) is called return period

(RP). In general, the RP is traditionally de�ned as �the average time elapsing between

two successive realizations of a prescribed event� (Salvadori et al. (2011)). The RP is

given by µ/(1− α) where µ is the average inter-arrival time of the realizations of X.

VaR is the most popular risk measure. For instance, Ahmed et al. (2016) use uni-

variate return periods to construct seasonal drought maps for di�erent climatic seasons

in the Balochistan province (Pakistan). However, as we explain below, there are certain

reasons for the rejection of VaR as an adequate measure of risk.

Firstly, the VaR measure fails to give any information about the thickness of the tail

of the distribution function. That is, a regulator can know only the frequency of default

but not the severity of default (Denuit et al. (2005)). In order to prevent the above

shortcoming, Tail Value-at-Risk (TVaR) and Conditional Tail Expectation (CTE) risk

measures are introduced. Let X be a random variable, Tail Value-at-Risk is de�ned as

TV aRα(X) =
1

1− α

∫ 1

α
VaRu(X)du.

Furthermore, Conditional Tail Expectation is given by

CTEα(X) = E[X|X > V aRα(X)].

Secondly, VaR is not a coherent measure since it does not verify the subadditivity pro-

perty in general. This result might imply that diversi�ed portfolios are riskier than less

diversi�ed portfolios (Daníelsson et al. (2013), Elliott and Miao (2009), Peng (2013)).

TVaR is a subadditive measure and CTE veri�es the aforementioned property for con-

tinuous risks.
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The risk allocation problem involves only internal risks associated with businesses in

the subsidiaries. However, the solvability of �nancial institutions could also be a�ected

by external risks whose sources cannot be controlled. These risks may also be heteroge-

neous in nature, di�cult to diversify away, and frequently correlated. One can consider,

for instance, contagion e�ects in a strongly interconnected system of �nancial companies

or how a �ood can be described by the volume, the peak and the duration (see Chebana

and Ouarda (2011a,b)). For this reason, it is crucial to identify risks in a multivariate

setting. The following consistent notion of multivariate RP is introduced in Salvadori

et al. (2011).

De�nition 1.1.3. Let X = {X1,X2, . . .} be a sequence of independent and identically

distributed d-dimensional random vectors, with d > 1: thus, each Xi has the same

multivariate distribution of X. Let D be a non-empty Borel set in Rd collecting all the

values judged to be �dangerous� according to some suitable criterion. Let X be the vector

that describes the phenomenon under investigation. The RP associated with the event

{X ∈ D} is given by µ/P(X ∈ D), where µ is the average inter-arrival time of the

realizations in X .

In hydrology, the �value of the variable(s) characterizing the event associated with

a given return period� is called design quantile or multivariate return level (Salvadori

et al. (2013)). The design quantile coincides with return level in the univariate case.

The generalization of return level is not univalent (see e.g., Ser�ing (2002), Van-

denberghe et al. (2012)) and several de�nitions can be found in the recent literature.

Since di�erent combinations of probabilities may produce the same return period, a

multivariate return level is inherently ambiguous. Events that have equal probability

of exceedance de�ne iso-hyper-surfaces, otherwise known as critical layers. Salvadori

et al. (2011) provide the following de�nition.

De�nition 1.1.4. Let X = (X1, . . . , Xd) be a random risk vector with joint distribution

function F . For α ∈ (0, 1) and d ≥ 2, the critical layer ∂L(α) at level α is de�ned as

∂L(α) = {x ∈ Rd : F (x) = α}.

De�nition 1.1.4 provides a partition composed of three probability regions: ∂L<(α) =

{x ∈ Rd : F (x) < α} (the sub-critical region); ∂L(α) (the critical region where all the

events have a constant F ); and ∂L>(α) = {x ∈ Rd : F (x) > α} (the super-critical

region).

In practice, at any occurrence of the phenomenon, only these three mutually exclusive

events may occur (see Belzunce et al. (2007)). The multivariate return level can be

de�ned with respect to one of the above three areas. For instance, in hydrology, the

sub-critical region may be of interest if droughts are to be investigated, while the study

of �oods may require the use of super-critical regions (Salvadori et al. (2013)).

Furthermore, De�nition 1.1.4 can be presented in terms of the joint survival distri-

bution function of X, F . We denote ∂L(α) = {x ∈ Rd : F (x) = 1− α}.



6 Chapter 1. Introduction

By taking into account the notion of critical layers (see De�nition 1.1.4), Salvadori

et al. (2011) provide the following de�nition of design realization.

De�nition 1.1.5 (Design realization). Let ω : ∂L(α) → [0,∞) be a weight function.

The design realization δω ∈ ∂L(α) is de�ned as

δω(α) = arg max
x∈ ∂L(α)

ω(x) (1.1)

where ∂L(α) = {x ∈ Rd : F (x) = α} is the critical layer at level α with α ∈ (0, 1) and

d ≥ 2.

De�nition 1.1.5 is based on the idea of introducing a suitable function that �weights�

the realizations lying in the critical layer of interest. Salvadori et al. (2011) and Sal-

vadori et al. (2014) provide practical guidelines for both terrestrial and coastal/o�shore

engineering, illustrating how to calculate suitable design realization by using several

di�erent weight functions.

In the last decade, much research has been devoted to risk measures and many

multidimensional extensions have been investigated. On theoretical grounds, Jouini

et al. (2004) propose a class of set-value coherent risk measures. Unsurprisingly, the

main di�culty regarding multivariate generalizations of risk measures is the fact that

vector preorders are, in general, partial preorders. In order to generalize the Value-

at-Risk measure, Embrechts and Puccetti (2006), Nappo and Spizzichino (2009), and

Prékopa (2012) use the notion of a quantile curve which is de�ned as the boundary

of the upper-level set of a distribution function or the lower-level set of a survival

function. Cousin and Di Bernardino (2013) introduce two alternative extensions of the

classic univariate Value-at-Risk in a multivariate setting. The proposed measures are

real-valued vectors with the same dimension as that of the considered portfolio of risks.

This feature can be considered relevant from an operational point of view. Cousin and

Di Bernardino (2014) propose two extensions of the classic univariate Conditional-Tail-

Expectation (CTE) in a multivariate setting. The multivariate extensions in Cousin

and Di Bernardino (2013) and Cousin and Di Bernardino (2014) are constructed from

level sets of multivariate distribution functions and multivariate survival distribution

functions, respectively. Such as level sets approach is also used in this thesis. Discussions

concerning the meaning and use of return periods under non-stationary and multivariate

conditions can be found in Serinaldi (2015b) and Serinaldi and Kilsby (2015). Serinaldi

(2015a) points out several critical aspects that are often overlooked and should be

carefully taken into account for a correct interpretation of return periods. Torres et al.

(2015) provide a de�nition of design quantile based on rotated directional distribution

functions.

On the other hand, Chebana and Ouarda (2011b) provide a parametric estimator for

critical layers and use it to study a real rainfall data-set. An estimation for the bivariate
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critical layers ∂L(αn) by assuming αn → 1, as n → ∞, is presented in de Haan and

Huang (1995). Fawcett and Walshaw (2016) brie�y highlight the shortcomings of stan-

dard methods in the estimation of design quantiles and provide an estimation framework

which substantially increases the precision of design quantile estimates. Multivariate

frequency analysis is also used in spatial statistics in order to model the spatial variabi-

lity of hydrological random variables (see e.g., De Paola and Ranucci (2012), De Paola

et al. (2013)).

Another interesting recent risk measure is that of the CoVaR, which stands for

Conditional Value-at-Risk. CoVaR is a systemic risk measure proposed by Adrian and

Brunnermeier (2011) that measures a �nancial institution's contribution to systemic

risk and its contribution to the risk of other �nancial institutions. In the original uni-

dimensional model, the CoVaR (of a particular bank, portfolio of asset, etc.) indicates

the Value-at-Risk for a �nancial institution which is conditional on a certain (stress)

scenario. On assuming that Xj represents asset returns of the �nancial system (or bank

j) and Xi represents the asset returns of bank i, the CoVaR
j|i
α can then be de�ned by:

P [Xj ≤ CoVaRj|i
α |Xi = VaRα(Xi)] = α, for α ∈ (0, 1). (1.2)

Equation (1.2) implicitly de�nes the CoVaR of the bank j which is conditional on bank

i being at its α%-VaR level (see Adrian and Brunnermeier (2011)).

In the literature, several alternative de�nitions of CoVaR can be found (see Goodhart

and Segoviano (2009), Girardi and Ergün (2013) and Bernardi et al. (2017)). Starting

from (1.2), we can also consider the CoVaR given by

CoVaRj
α(X) = VaRα(L|Xj ≥ VaRα(Xj)),

where the �nancial system is represented via the total risk L = X1 + . . . + Xd, that

is, the aggregated total risk of the �rm network and the component j of the vector

X = (X1, . . . , Xd) represents the risk exposure of the company j. Moreover, Adrian and

Brunnermeier (2011) de�ned a systemic risk measure, called ∆CoVaR, as the di�erence

between the VaR of the institution j (or �nancial system) conditional on the distress of

a particular �nancial institution i (see (1.2)) and the VaR of the institution j. That is,

∆CoVaRα,ω(Xj|Xi) = VaRω(Xj|Xi = VaRα(Xi))−VaRω(Xj), (1.3)

for α and ω in (0, 1). It can be observed that, when j is the complete system, ∆CoVaR

captures the marginal contribution of a particular institution to the overall systemic

risk. An institution with low VaR but high ∆CoVaR is far riskier to the �nancial

system than an institution with high VaR but low ∆CoVaR. The ∆CoVaR measure

and other systemic risk measures are described in Mainik and Schaanning (2014).
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1.2 Extreme Value Theory

When dealing with a data-set, it may be possible that a few observations overpower the

remainder of the sample due to their large (or low) magnitude. That is, most of the

data are concentrated in the �body� of the distribution, and rare observations found

outside this range are called extreme events (or outliers). Since extreme events can

exert very negative impacts, the quanti�cation of the occurrence of extreme risks is

gaining attention in several �elds, such as insurance, �nance, environmental sciences

and Internet tra�c (Longin (2016)). Salvadori et al. (2016) discuss the various interna-

tional guidelines concerning risk assessment and state that these guidelines require the

implementation of extreme event scenarios in order to manage the environmental risk.

One of the most important fundamental questions from a statistical point of view is

how to model extreme events (McNeil et al. (2005)). An extreme event can be de�ned

as a catastrophe that has not yet happened, for instance, an earthquake. In order to

protect ourselves against this calamity, the quantile of this risk has to be considered

at a su�ciently small level in order to measure the risk of occurrence (Einmahl et al.

(2013)). However, standard statistical estimation may lead to severely biased results if

it is used for the estimation of the behaviour of the tails (Hochrainer-Stigler and P�ug

(2012)). Furthermore, by using classic theory, a speci�c probabilistic model would be

�tted to the whole sample and that model would be used for the estimation of the

tail probability (Longin (2016)). Extreme Value Theory (EVT) is concerned with the

study of the asymptotic distribution of extreme events by considering sample extreme

maximum (or minimum). The limit distribution in EVT is mainly characterized by the

tail index. The tail index measures the �fatness� in the tail of the distribution.

In order to identify the extreme events in a data-set, the EVT provides two di�erent

approaches (Gilli and Këllezi (2006)):

• Block-Maxima Method: The maximum the variable takes in successive periods (for

instance, months or years) is considered. These selected observations constitute

the extreme events, also called block-maxima.

• Peak Over Threshold (POT) Method: This focuses on the realizations exceeding

a given (high) threshold.

The most important results in EVT for the above two methods can now be presented.

The limit laws for the maximum of n independent and identically distributed (iid)

random variables were derived by Fisher and Tippett (1928) and Gnedenko (1943).

Theorem 1.2.1 (Theorem 1.1.3 in de Haan and Ferreira (2006)). Let X1, . . . , Xn be a

sequence of iid random variables with distribution F . If there exist a positive sequence

(an)n>0, a real sequence (bn)n>0, and some non-degenerate distribution function Hγ
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such that

lim
n→+∞

P
[

max{X1, . . . , Xn} − bn
an

≤ x
]

= Hγ(x), x ∈ R, (1.4)

then Hγ is an element of the Generalized Extreme Value (GEV) class:

Hγ(x) =

{
e(−(1+γx)−1/γ), γ 6= 0;

e−e
−x
, γ = 0,

with 1 + γx > 0.

De�nition 1.2.1 (Maximum Domain of Attraction (MDA)). The random variable X

with distribution F belongs to the maximum domain of attraction of Hγ, denoted by

X ∈ MDA(γ) or F ∈ MDA(γ), if there exist positive (an)n>0 and real (bn)n>0 such

that (1.4) holds.

If γ > 0, F belongs to the Fréchet distribution MDA and F is heavy-tailed . When

γ < 0, F belongs to the Weibull distribution MDA and F is short-tailed. If γ = 0, F

belongs to the Gumbel distribution MDA and F is light-tailed (see page 9 in de Haan

and Ferreira (2006)).

The von Mises condition states a su�cient condition for a function to belong to a

domain of attraction.

De�nition 1.2.2 (von Mises condition). Let F be a distribution function and xF its

right endpoint. Let F ′ and F ′′ be the �rst and the second derivatives of F , respectively.

Suppose F ′′(x) exists and F ′(x) is positive for all x in some left neighborhood of xF .

The von Mises condition for F holds if, for some γ ∈ R,

lim
t↑xF

(1− F (t))F ′′(t)

(F ′(t))2
= −γ − 1.

Theorem 1.2.2 (Theorem 1.1.8 in de Haan and Ferreira (2006)). Let F be a distribution

function and xF its right endpoint. Let F ′ and F ′′ be the �rst and the second derivatives

of F , respectively. Suppose F ′′(x) exists and F ′(x) is positive for all x in some left

neighborhood of xF . If F veri�es the von Mises condition in De�nition 1.2.2, then F is

in the domain of attraction of Hγ.

Let X be a random variable with distribution function F . Henceforth, we denote

UX(t) := F−1(1− 1/t), t > 1, (1.5)

where F−1 is the left-continuous inverse of F .

From Theorem 1.2.1 and Corollary 1.2.10 in de Haan and Ferreira (2006), it is shown

that U ∈ RVγ (see Appendix A for RV de�nition) i� F is in the Fréchet MDA with

index γ > 0. Similarly, xF −U ∈ RVγ i� F is in the Weibull MDA with index γ < 0 (see
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Section 3.3.2 in Embrechts et al. (1997)). For further details, the interested reader is

directed to Mao and Hu (2012). Although there is no direct link between Gumbel MDA

and regular variation functions, certain extensions of regularly varying notion provide

the characterization for the Gumbel MDA in Section 3.3.3 in Embrechts et al. (1997).

The POT method emerges from the next theorem (Balkema and de Haan (1974),

Pickands III (1975)). This theorem proves that the conditional excess distribution

function Fu(x) = P[X − u ≤ x|X > u] = F (x+u)−F (u)
1−F (u) follows a Generalised Pareto

Distribution (GPD).

Theorem 1.2.3 (Theorem 3.4.5 in Embrechts et al. (1997)). Let xF be the right end-

point of F . For a large class of underlying distribution functions F the conditional

excess distribution function Fu(x), for u large, is well approximated by

Fu(x) ≈ Vγ,σ(x), u→∞,

where

Vγ,σ(x) :=

{
1− (1 + γ

σx)−1/γ , γ 6= 0, σ > 0;

1− e−
x
σ , γ = 0, σ > 0

(1.6)

is a GPD with x ∈ [0, (xF − u)] if γ ≥ 0, and x ∈ [0,−σ/γ] if γ < 0.

The link between block-maxima and POTmethods is established in Theorem 3.4.13(b)

in Embrechts et al. (1997).

For a in-depth mathematical analysis of EVT, the interested reader is directed to

de Haan and Ferreira (2006) and Embrechts et al. (1997).

1.3 Stochastic Orders

In risk theory, when it is assumed that an individual prefers the option whit the greatest

expected utility, or when we would like to measure which risk is the most dangerous,

we use stochastic orders to �nd a formal way to establish these ideas. Stochastic orders

enable comparison between the risks to be made. Denuit et al. (2005) (Chapter 3)

explain the desirable properties for stochastic orderings.

Several useful de�nitions of stochastic orders are now recalled. Further details,

equivalent de�nitions and applications may be found in Shaked and Shanthikumar

(2007), Müller (1997), Joe (1997), and Kaas et al. (2001).

De�nition 1.3.1 (Usual Stochastic Order). Let X and Y be two random variables with

distribution functions FX and FY , respectively. X is said to be smaller than Y in the

usual stochastic order, denoted by X ≤st Y , if

FX(x) ≥ FY (x), for all x ∈ R.
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De�nition 1.3.2 (Supermodular function). A function f : Rd → R is said to be

supermodular if, for any x, y ∈ Rd, it satis�es

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where the operators ∧ and ∨ denote coordinate-wise minimum and maximum, respecti-

vely.

De�nition 1.3.3 (Supermodular Order). Let X and Y be two d−dimensional random

vectors. X is said to be smaller than Y with respect to the supermodular order (denoted

by X ≤sm Y) i�

E(f(X)) ≤ E(f(Y)),

for all supermodular functions f : Rd → R, provided the expectations exist.

While the usual stochastic order compares risks according to their �magnitude�,

the supermodular order constitutes a condition su�cient to obtain positive dependence

between the risks.

Lehmann (1966) introduces the following dependence notion based on the increasing

stochastic condition.

De�nition 1.3.4 (Positive Regression Dependence). A bivariate random vector (X,Y )

is said to admit positive regression dependence with respect to X, PRD(Y |X), if [Y |X =

x1] ≤st [Y |X = x2], ∀x1 ≤ x2.

We now recall the notion of majorization ordering from Marshall et al. (2011).

De�nition 1.3.5 (Majorization Ordering). Let a = (a1, . . . ad) and b = (b1, . . . bd) be

two points in Rd and denote by a[1], . . . , a[d] and b[1], . . . , b[d] the components of a and

b rearranged in decreasing order. The point a is said to be majorized by the point b

(written a ≺m b) if
∑d

j=1 a[j] =
∑d

j=1 b[j] and
∑k

j=1 a[j] ≤
∑k

j=1 b[j] for k = 1, . . . , d−1.

1.4 Copula Theory

A copula is (the restriction of) a d-dimensional distribution in [0, 1]d whose marginal

distributions are uniformly distributed. The copula establishes the link between the

marginal distribution functions to generate the joint distribution function. Although

the functions themselves appear in previous work (Fréchet (1951), Dall'Aglio (1972)),

the word �copula� was �rst used in a mathematical sense by Sklar (1959). From Sklar's

theorem (Sklar (1959), Theorem 2.10.9 in Nelsen (2006)), for every joint distribution

function F with marginal FXi , i = 1, . . . , d, there exists a copula C such that for all

x = (x1, . . . , xd) ∈ [−∞,+∞]d,

F (x1, . . . , xd) = C(FX1(x1), . . . , FXd(xd)).
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If FXi , i = 1, . . . , d, are all continuous, then C is unique. Conversely, if C is a copula and,

FXi , i = 1, . . . , d, are distribution functions, then the function F is a joint distribution

function with margins FXi , i = 1, . . . , d.

The notion of copulas rose in popularity at the end of nineties. The main reason

for this was the explosive development of quantitative risk management methodology

within �nance and insurance (Durante and Sempi (2015)).

For every copula C and u = (u1, . . . , ud) ∈ [0, 1]d, it holds that

max{u1 + . . .+ ud − d+ 1, 0} ≤ C(u) ≤ min{u1, . . . , ud}.

W d(u) := max{u1 + . . .+ud− d+ 1, 0} and Md(u) := min{u1, . . . , ud} are the Fréchet-
Hoe�ding lower and upper bound respectively. When a vector follows a W d copula

(d ≤ 2), the random variables are countermonotonic. If a vector follows a Md copula,

then the random variables are comonotonic. Furthermore, from Theorem 2.10.14 in

Nelsen (2006), d continuous random variables X1, . . . Xd are independent if and only if

the copula associated with X1, . . . Xd is Πd(u) = u1 · · ·ud.

On the other hand, let (U1, . . . , Ud) be a random vector associated with C, the joint

distribution function of (1 − U1, . . . , 1 − Ud) is a copula Ĉ which is called the survival

copula associated with C. Nelsen (2006) notices that Ĉ couples the joint survival

function to its univariate survival margins in a manner completely analogous to the

way in which a copula connects the joint distribution function to its margins. It should

be borne in mind that one has be careful not to confuse the survival copula Ĉ with the

joint survival function C for uniform distributions whose joint distribution function is

the copula C. As presented in Joe (2015), the joint survival function C is given by

C(u1, . . . , ud) = P[U1 > u1, . . . , Ud > ud] = 1−
d∑
j=1

uj+
∑

S⊂{1,...,d},|S|≥2

(−1)|S|CS(ui, i ∈ S)

where CS is the copula of all the components in S and |S| is the cardinality of S. It

is veri�ed that Ĉ(u1, . . . , ud) = C(1− u1, . . . , 1− ud) (see Theorem 2 in Georges et al.

(2001)).

The Archimedean copula class constitutes an important family of copulas, and

has frequently been used in environmental sciences (see e.g., Salvadori et al. (2007)

and Pappadà et al. (2016b)). For instance, Saad et al. (2015) propose a multivariate

�ood-risk model based on nested Archimedean Frank and Clayton copulas in a hydro-

meteorological context in order to determine the 2011 Richelieu River �ood-causing

meteorological factors. Using the Gumbel copula, Zhang et al. (2016) obtain useful

information about of reservoir regulation on drought evolution under precipitation vari-

ations in two cascade reservoirs located in China.

Note that a d-dimensional Archimedean copula with generator φ and its inverse φ−1
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is de�ned by

C(u) = φ−1(φ(u1) + . . .+ φ(ud)), for all u = (u1, . . . , ud) ∈ [0, 1]d.

The generator φ is a continuous, convex and strictly decreasing function from [0, 1]

to [0,∞] such that φ(1) = 0. If φ(0) = +∞, then φ is called a strict generator.

Furthermore, the generator of an Archimedean copula also satis�es several additional

d−monotony properties (for further details, see Theorem 2.2 in McNeil and Ne²lehová

(2009)). In Table 1.1, we recall the generators of the Archimedean copulas that we are

going to use in this thesis.

Copula Parameter θ Generator φ Inverse Generator φ−1

Ali-Mikhail-Haq [−1, 1) log
[

1−θ(1−t)
t

]
1−θ

exp (t)−θ

Clayton [−1,∞)\{0} 1
θ (t−θ − 1) (1 + θt)−1/θ

Frank R\{0} − log
(

exp (−θt)−1
exp (−θ)−1

)
−1
θ log (1 + exp (−t)(exp (−θ)− 1))

Gumbel [1,∞) (− log (t))θ exp (−t1/θ)

Joe [1,∞) − log (1− (1− t)θ) 1− (1− exp (−t))1/θ

Table 1.1: The Archimedean copulas used in this thesis, the domain of the dependence
parameter, the generators and the inverse generators.

McNeil and Ne²lehová (2009) obtained an important stochastic representation of

Archimedean copulas, recalled in Proposition 1.4.1 below.

Proposition 1.4.1 (McNeil and Ne²lehová (2009)). Let U = (U1, . . . , Ud) be distributed

according to a d-dimensional Archimedean copula with generator φ, hence

(φ(U1), . . . , φ(Ud))
d
= RS,

where S = (S1, . . . , Sd) is uniformly distributed on the unit simplex
{
x ≥ 0|

∑d
k=1 xk = 1

}
and R is an independent non-negative scalar random variable which can be interpreted

as the radial part of (φ(U1), . . . , φ(Ud)) since
∑d

k=1 Sk = 1. The random vector S fo-

llows a symmetric Dirichlet distribution, whereas the distribution of R
d
=
∑d

k=1 φ(Uk)

is directly related to the generator φ through the inverse Williamson transform of φ−1.

As a result, any random vector U = (U1, . . . , Ud) which follows an Archimedean

copula with generator φ can be represented as a deterministic function of C(U) and an

independent random vector S = (S1, . . . , Sd) uniformly distributed on the unit simplex,

that is,

(U1, . . . , Ud)
d
= (φ−1(S1φ(C(U))), . . . , φ−1(Sdφ(C(U)))). (1.7)
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We now consider that X = (X1, . . . , Xd) is distributed as (F−1
X1

(V1), . . . , F−1
Xd

(Vd))

where FXi denotes the i-th survival margin distribution of X, i = 1, . . . , d, and V =

(V1, . . . , Vd) follows a survival Archimedean copula Ĉ with generator ϕ. Relation (1.7)

therefore also holds for V and Ĉ, that is,

(V1, . . . , Vd)
d
= (ϕ−1(S1ϕ(Ĉ(V))), . . . , ϕ−1(Sdϕ(Ĉ(V)))). (1.8)

The copula sections could be employed in the construction of copulas and could

provide interpretations of certain dependence properties. The diagonal section of a

d-dimensional copula C is given by δ1(u) = C(u, . . . , u), u ∈ [0, 1], and δ−1 is the

inverse function of δ1, such that δ1 ◦ δ−1 is the identity function. From Lemma 3.4 in

Di Bernardino and Rullière (2013), one can write the family of self-nested diagonals of

an Archimedean copula C of order r ∈ R as:

δr(u) = φ−1(d rφ(u)), for u ∈ (0, 1), r ∈ R. (1.9)

The dependence tail properties for a copula are crucial to study the extreme esti-

mators in Chapters 3 and 4.

Let X = (X1, . . . , Xd) be a random vector with margin distributions FXi , i =

1, . . . , d. For the subsets I, J ∈ {1, . . . , d}, I ∩ J = ∅, if the following limit exists

everywhere on Rd+ = [0,∞]d \ (∞, . . . ,∞)

ΛI,JU (x) := lim
t→∞

P
[
Xi > F−1

Xi
(1− xi/t), ∀i ∈ I |Xj > F−1

Xj
(1− xj/t), ∀j ∈ J

]
,

then the function ΛI,JU : Rd+ → R is called an upper tail copula associated with F with

respect to I, J (see Schmidt and Stadtmüller (2006)).

Let (Xi, Xj), i 6= j, be a bivariate random vector with marginal distribution func-

tions FXi and FXj . It is said to be upper tail dependent if ΛU (1, 1) exists and

λU := ΛU (1, 1) = lim
v→1−

P [Xi > F−1
Xi

(v) |Xj > F−1
Xj

(v)] > 0. (1.10)

Conversely, if λU = 0, then (Xi, Xj) is called upper tail independent. Furthermore,

λU is referred to as the upper tail dependence coe�cient. In Schmidt and Stadtmüller

(2006), the following non-parametric rank-based estimator of λU is introduced. We now

assume that (Xi, Xj), (X
(1)
i , X

(1)
j ), . . ., (X

(n)
i , X

(n)
j ), i 6= j, are iid bivariate random

vectors with distribution function F of marginal distribution functions FXi and FXj .

The estimator of λU in Schmidt and Stadtmüller (2006) is given by

λ̂U = Λ̂U,n(1, 1), (1.11)
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where

Λ̂U,n(x, y) :=
1

k2

n∑
w=1

1{R(w)
i >n−k2 x and R

(w)
j >n−k2 y}

,

with k2 = k2(n)→∞, k2/n→ 0, as n→∞, and where R(w)
i =

∑n
h=1 1{X(h)

i ≤X
(w)
i } (res-

pectively R(w)
j =

∑n
h=1 1{X(h)

j ≤X
(w)
j }) is the rank of X(w)

i in X(1)
i , . . . , X

(n)
i (is the rank

of X(w)
j in X(1)

j , . . . , X
(n)
j , respectively), for w = 1, . . . , n. The upper tail coe�cients

λU for the main Archimedean copulas can be found on page 215 in Nelsen (2006).

The Schur-concavity property for copulas constitutes a useful notion in Chapter 3

of this thesis. Firstly, we recall the de�nition of Schur-concave function from Marshall

et al. (2011) (De�nition A.1., page 80).

De�nition 1.4.1 (Schur-concave function). Let a = (a1, . . . ad) and b = (b1, . . . bd) be

two points. A real valued function g : A ⊆ Rn → R, is Schur-concave (Schur-convex,

respectively) on A if, for all a, b ∈ A, a ≺m b implies g(a) ≥ g(b) (g(a) ≤ g(b),

respectively), where ≺m is de�ned in De�nition 1.3.5.

In the bivariate case, Durante (2006) provides the following result on Schur-concave

copulas.

Proposition 1.4.2 (Proposition 10.1.7 in Durante (2006)). A copula C(u, v) is Schur-

concave if, and only if, Ĉ(u, v) associated with C(u, v) is Schur-concave.

The next characterization shows the Schur-concavity property for the Archimedean

copulas class.

Proposition 1.4.3 (Proposition 4.11 in Dolati and Dehgan Nezhad (2014)). Every d−
dimensional Archimedean copula is Schur-concave.

For a thorough theoretical review of copulas, see Nelsen (2006), McNeil and Ne²le-

hová (2009), Jaworski (2013) and Durante and Sempi (2015).

1.5 Main Goals and Contributions

The general goal of this work is to de�ne, study and estimate new multivariate risk

measures as well as to characterize and to estimate others existing multivariate mea-

sures.

In the context of trading �rms, managing risk has been traditionally achieved by

the introduction of Value-at-Risk (VaR) thresholds on the portfolio risk accumulated

by traders. Over recent decades, this problem has been handled mostly in a univari-

ate setting. However, the solvability of �nancial institutions could also be a�ected by

external risks whose sources cannot be controlled. These risks may also be strongly

heterogeneous in nature and di�cult to diversify away. One can think, for instance, of
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systemic risk or contagion e�ects in a strongly interconnected system of �nancial com-

panies. Therefore, the necessity of considering a multivariate framework to measure the

risk emerges (for further details see Section 1.1). Unsurprisingly, the main di�culty

regarding multivariate generalizations of risk measures is the fact that vector preorders

are, in general, partial preorders.

Adrian and Brunnermeier (2011) introduce the systemic risk measure CoVaR given

in Equation (1.2). CoVaR measures a �nancial institution's contribution to systemic

risk and its contribution to the risk of other �nancial institutions. Today, CoVaR re-

presents one of the major topics in the current regulatory and scienti�c discussion of

systemic risks. In Chapter 2 (De�nitions 2.2.1 and 2.2.2), we propose two new multivari-

ate generalizations of CoVaR based on the multivariate quantile settings of Embrechts

and Puccetti (2006), Cousin and Di Bernardino (2013), and Cousin and Di Bernardino

(2014). The two generalizations are based on quantile functions of the conditional ran-

dom variables Ti := [Xi |X ∈ ∂L(α)] and T ′i := [Xi |X ∈ ∂L(α)] (see Equation (2.6)).

These proposed CoVaR measures can be useful in the analysis of multiple �nancial

institutions taken all together in the systemic context. In addition, these new mea-

sures verify the elicitability property, which provides a natural methodology to perform

backtesting (see Section 2.3.5). Since the two proposed measures are based on quantile

functions, then they are more robust to extreme values than any other central tendency

measures.

Artzner et al. (1999) justify that every risk measure should verify the set of desirable

properties in De�nition 1.1.2. Several properties have been obtained for our proposed

risk measures. In particular, the positive homogeneity and translation property in

De�nition 1.1.2 are shown in Proposition 2.3.2.

In order to see how conservative are our proposed measures, we analyse in Sec-

tion 2.3.2 how they behave with respect to the univariate VaR of margins and to the

multivariate VaR in Cousin and Di Bernardino (2013). We also study how these new

measures are in�uenced by considering comonotonic dependence in the respective vector

(Propositions 2.3.5 and 2.3.6), by a change in risk level (Proposition 2.3.7 and Corollary

2.5.3) and by a change in dependence structure (Corollary 2.5.4).

Denuit et al. (2005) explain the importance of establishing a certain level of ordering

between risks. In Section 2.4, the behaviour of multivariate CoVaR risk measures is

provided under di�erent stochastic ordering conditions. A future research could be the

straight characterization of our proposed CoVaR with a stochastic ordering.

Obviously, an univariate risk approach does not let us consider several risks and,

therefore, we misrepresent the relationship between them, i.e., the dependence structure

between them. Archimedean copulas play a central role in the understanding of depen-

dencies of multivariate random vector (see Nelsen (2006), McNeil and Ne²lehová (2009),

Durante and Salvadori (2010)). As Nelsen (2006) remarks, Archimedean copulas �nd

a wide range of applications for a number of reasons: the ease with which they can be
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constructed, the great variety of families of copulas which belong to this class and the

many desirable properties possessed by the members of this class.

In Section 2.5, we characterize the new multivariate CoVaR in the Archimedean

copula class. In this framework, we tried to obtain the conditions under which the

subadditivity is veri�ed for our proposed multivariate CoVaR. Theorem 2.5.1 presents

a weak subadditivity inequality for one of our generalization of CoVaR under regular

variation conditions. Adrian and Brunnermeier (2011) also de�ne a systemic risk mea-

sure ∆CoVaR as the di�erence between univariate CoVaR and VaR. In Section 2.5.3,

we propose a general ∆CoVaR de�nition by using the multivariate CoVaRs . In a fu-

ture perspective, a deep study of the subadditivity property for the two multivariate

CoVaRs and of our proposed ∆CoVaR measure could be done. For instance, it is of

great interest to develop an estimation procedure for ∆CoVaR.

A semi-parametric estimation procedure for the new multivariate CoVaR is provided

in Section 2.6. However, as we point out in that same section, consistency and normal

asymptotic properties of these estimators need a supplementary study that constitutes

a future line to develop.

In order to study the accuracy of the proposed estimators in this thesis, we asses

the performance of our estimators by using simulated data and we compare them with

others competitor estimators (see Sections 2.7, 3.5 and 4.6).

As we mention in Section 1.2, events are usually described by distributions that con-

tain extreme values. Although semi-parametric estimators achieve a good performance

in terms of the bias and the variance, the aforementioned semi-parametric estimation

(see De�nitions 2.6.1 and 2.6.2) perform well only if the threshold is su�ciently low.

This method cannot handle extreme events, that is, when we consider the risk level su�-

ciently smaller than 1/n where n is the sample size. It should be borne in mind that ex-

treme events are speci�cally required for hydrological and environmental risk measures.

Additionally, the random variable Ti (T ′i , respectively) relies on Z := F (X1, . . . , Xd)

(Z ′ := F (X1, . . . , Xd), respectively), which is not observed. Therefore, in order to ap-

ply a quantile estimation procedure for our CoVaRs , Z (Z ′, respectively) has to be

previously estimated. This type of plug-in procedure increases the variance of the �nal

estimation and introduces statistical di�culties. In order to obtain an estimation pro-

cedure for multivariate CoVaR without the above two mentioned problems, we propose

a non-parametric extreme estimation procedure for multivariate CoVaR by considering

extreme events (see (3.10)) in Chapter 3.

By employing Archimedean copulas, tail index and the distribution of Ti (T ′i , respec-

tively) can be easily obtained, and we can avoid to estimate the latent random variables

Z (Z ′, respectively) as we show in Chapter 3. The tail behaviour of conditional random

variable Ti (T ′i , respectively) are given in Proposition 3.2.1 (Remark 3.2.2, respectively).

In Section 3.3, an extrapolation method is developed under the Archimedean copula as-

sumption for the dependence structure of X and the von Mises condition for marginal
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Xi. The main result in Chapter 3 is the Central Limit Theorem for our estimator

which is provided in Theorem 3.4.3. Since our extreme estimator in (3.10) included an

intermediate sequence that is unknown, an adaptive version of Theorem 3.4.3 is given

in Section 3.6.

Salvadori et al. (2011) de�ne their new design realization as the vector that maxi-

mizes a weight function given that the risk vector belongs to a given critical layer of

its joint multivariate distribution function (De�nition 1.1.5). Furthermore, Salvadori

et al. (2011) propose to consider the survival joint distribution as the weight function

(De�nition 4.1). The aforementioned risk measure is called Component-wise Excess (C.-

E.) design realization. Salvadori et al. (2011) present the design realization as a general

de�nition based on a maximization problem without specifying directly the closed form.

In Chapter 4 (Proposition 4.2.1), we provide the closed-form expression of the C.-E.

design realization under an Archimedean copula framework. At the same time, this

measure is non-parametrically estimated by using Extreme Value Theory techniques

and the asymptotic normality of its proposed estimator is obtained in Theorem 4.5.1.

To this end, we �rstly analyse in Section 4.3 the tail behaviour of the random variable

Y := max{V1, . . . , Vd} with Vi the i-th margin distribution with i ∈ {1, . . . , d}.
The proposed estimators for C.-E. design realization are contrasted with that of

Salvadori et al. (2011) in the same data-set. It can be concluded that there is no

signi�cant statistical di�erence between our extreme estimator and that of Salvadori

et al. (2011). Moreover, conversely to the estimator of Salvadori et al. (2011) based

on a Gumbel model, we propose a non-parametric estimation procedure for the risk

measure in this work. In our setting, only a general Archimedean copula framework and

the heavy tailed behaviour of the margins are assumed in order to apply the proposed

estimator.

Notice that, since Y can not be observed in real applications, in our extreme estima-

tion procedure in Chapter 4, we disregard the uncertainty induced by the margins. That

is, Theorem 4.5.1 is only valid under full knowledge of the margins (for more details

see Remark 4.4.1). The improvement of Theorem 4.5.1 by using uncertainty induced

by the margins could be developed in a future study.

It is of great importance to show to practitioners how they can apply the di�erent

risk measures in their data-sets. For this reason, it should be borne in mind that

the proposed estimators in this thesis are also illustrated in real data-sets. The semi-

parametric and non-parametric extreme estimators for multivariate CoVaRs are applied

in an insurance and a rainfall data-set respectively (see Sections 2.8 and 3.7). The non-

parametric extreme estimator for C.-E design realization is exempli�ed using a dam

data-set (see Section 4.7).







Chapter 2

Multivariate Extensions of

Conditional Value-at-Risk

2.1 Introduction

Let L1(Ω,A, P ) be the set of all random variables with �nite expectations. Assuming

that X is a random variable of L1 with distribution function FX , the Weighted Loss

(WL) function is de�ned by

LX(x;ω) = ω E[(X − x)+] + (1− ω)E[(X − x)−] for all x ∈ R and ω ∈ [0, 1], (2.1)

where x+ = max{x, 0} and x− = max{−x, 0}. Note that if X is a non-negative random

variable, then LX(x;ω) = ωE[X] for all x < 0. This function plays a key role in an

actuarial context. Indeed, it represents the expected cost for the reinsurance company,

called net premium, where X denotes the risk for the insurance company. If the in-

surance company prefers not to bear all the risk, it passes on parts of the risk to a

reinsurance company. The part retained by the original insurance company is usually

called the retention. A stop-loss contract establishes a �xed retention x (see Section

8.3 in Müller and Stoyan (2002)). This means that the maximum risk for the insurance

company is x. Thus, if X > x then the reinsurance company will take over X − x.
This class of contracts is useful to protect companies from insolvency due to excessive

claims. In an actuarial context, the threshold x is often called the deductible or priority

(see Section 1.7.1 in Denuit et al. (2005)).

Certain interesting properties of the WL function in (2.1) are now recalled. The

properties (P1)-(P6) are trivially obtained by the same arguments as those used by

Muñoz-Pérez and Sánchez-Gómez (1990) to prove the properties of the dispersion func-

tion.

21
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(P1) It holds that

LX(x;ω) = ω

∫ +∞

x
FX(t) dt + (1− ω)

∫ x

−∞
FX(t) dt.

(P2) Let CF denote the set of continuity points of FX and X ∈ L1. Therefore

FX(x) = L
′
X(x;ω) + ω, ∀x ∈ CF and x ≥ 0

where L′X is the derivative of LX with respect to x.

(P3) The WL function is di�erentiable and its derivative has, at most, a countable

number of discontinuity points.

(P4) LX(x;ω) is a convex function on R+.

(P5) limx→+∞ L
′
X(x;ω) = 1− ω; and limx→−∞ L

′
X(x;ω) = 0.

(P6) limx→+∞[LX(x;ω)− (1− ω)x] = −(1− ω)E[X].

(P7) Finally, we can de�ne the Value-at-Risk as

VaRω(X) = arg min
x∈R+

LX(x;ω), for ω ∈ [0, 1],

with VaR0(X) = xF− and VaR1(X) = xF+ , where xF+ and xF− are, respectively,

the right and left endpoints of FX , such that xF+ = sup{x ∈ R : FX(x) < 1} and
xF− = inf{x ∈ R : FX(x) > 0}.

It is easy to see that Properties (P1)-(P7) uniquely characterize a WL function, that

is, if LX(x;ω) is a function that satis�es Properties (P1)-(P7) above, then there exits

a unique distribution function which has LX(x;ω) as its WL function. Therefore, it

uniquely determines a probability measure PF on B (the σ-�eld of Borel set on R).
An interesting interpretation of the WL function is that 2LX(x; 1/2) is the L1-

distance between FX and the distribution function of the degenerate random variable at

the point x ∈ R (Muñoz-Pérez and Sánchez-Gómez (1990)). It is also worth mentioning

that LX(x; 1) is the well-known stop-loss function of X, and that LX(x; 0) could be

interpreted as the stop-gain function ofX. Consequently, the WL function is a weighting

of both functions in terms of x. Now, let X = (X1, . . . , Xd) be a non-negative d-

dimensional random vector1. Cousin and Di Bernardino (2013) de�ned, under certain

regularity conditions, the multivariate Lower-Orthant Value-at-Risk at probability level

α as the d-dimensional vector

VaRα(X) = E[X |F (X) = α], for α ∈ (0, 1),

1We restrict ourselves to Rd+ since, in our applications, components of d−dimensional vectors co-
rrespond to random losses and are then valued in R+.
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where F is the distribution function of X. In particular, the i-th component of this

vector trivially veri�es

VaRi
α(X) = LXi|F (X)=α(0; 1).

Using Property (P7), our purpose is now to outline a new multivariate approach to

the classic Conditional Value-at-Risk model (see CoVaR in (1.2) which, as introduced

previously, is de�ned as the VaR of a �nancial institution, conditional on a certain

scenario (see Adrian and Brunnermeier (2011))). In this case, the approach is based on

the conditional scenario as a restriction for both �nancial institutions. Thus, in general,

no relationship exists between the two CoVaRs.

From now on, assume thatX = (X1, . . . , Xd) is a non-negative absolutely-continuous

random vector (with respect to Lebesgue measure λ on Rd) with distribution function

F and survival function F . Furthermore, the multivariate distribution function F is

assumed to be partially strictly-increasing2 such that E(Xi) <∞ for i = 1, . . . , d. Such

F is said to verify the regularity conditions. Note that if F is the survival function

of X, and F veri�es the regularity conditions, then F is a partially strictly-decreasing

function.

The chapter is organized as follows. In Section 2.2, we introduce new multivariate

extensions of CoVaR. In Section 2.3, interesting properties for the proposed multivariate

CoVaR are shown. Furthermore, we analyse how these multivariate measures behave

when the marginal risks or the copula structures increase with respect to stochastic

orders (see Section 2.4). Illustrations and properties for the Archimedean copula class

are presented in Section 2.5. In Section 2.6, an estimation procedure for the multivari-

ate CoVaRs proposed is provided. In Sections 2.7 and 2.8, our proposed estimators

are illustrated in simulated studies and for a real insurance data-set. The conclusion

discusses possible directions for future work (see Section 2.9).

2.2 De�nitions of the multivariate CoVaR

Two multivariate generalizations of the univariate CoVaR measure in (1.2) are now

introduced in De�nitions 2.2.1 and 2.2.2. Whereas De�nition 2.2.1 is based on the

level-sets of the joint distribution function, De�nition 2.2.2 is constructed according to

the level-sets of the joint survival distribution function.

De�nition 2.2.1 (Multivariate Lower-Orthant CoVaR). Consider a random vector X

which satis�es the regularity conditions. For α ∈ (0, 1), we de�ne the multivariate

lower-orthant CoVaR at probability level α by

2A function F (x1, . . . , xn) is partially strictly-increasing on Rd+\0 if, for all j ∈ {1, . . . , d}, the
function of one variable gj(·) = F (x1, . . . , xj−1, ·, xj+1, . . . , xd) is strictly-increasing.



24 Chapter 2. Multivariate Extensions of Conditional Value-at-Risk

CoVaRα,ω(X) = VaRω(X|X ∈ ∂L≥(α)) =


VaRω1(X1|X ∈ ∂L≥(α))

...

VaRωd
(Xd|X ∈ ∂L≥(α))

 , (2.2)

where ω = (ω1, . . . , ωd) is a marginal risk vector with ωi ∈ [0, 1], for i = 1, . . . , d,

and ∂L≥(α) is the boundary of the set L≥(α) := {x ∈ Rd+ : F (x) ≥ α}. Since the

regularity conditions are satis�ed, ∂L≥(α) is the α-level set of F denoted by ∂L(α),

therefore,

CoVaRα,ω(X) =


VaRω1(X1|F(X) = α)

...

VaRωd
(Xd|F(X) = α)

 . (2.3)

In a similar way, the multivariate upper-orthant CoVaR can be de�ned.

De�nition 2.2.2 (Multivariate Upper-Orthant CoVaR). Consider a random vector

X which satis�es the regularity conditions. For α ∈ (0, 1), we de�ne the multivariate

upper-orthant CoVaR at probability level α by

CoVaRα,ω(X) = VaRω(X|X ∈ ∂L
≤

(α)) =


VaRω1(X1|X ∈ ∂L

≤
(α))

...

VaRωd
(Xd|X ∈ ∂L

≤
(α))

 , (2.4)

where ω = (ω1, . . . , ωd) is a marginal risk vector with ωi ∈ [0, 1], for i = 1, . . . , d,

and ∂L
≤

(α) is the boundary of the set L
≤

(α) := {x ∈ Rd+ : F (x) ≤ 1 − α}. Since

the regularity conditions are satis�ed, ∂L
≤

(α) is the (1 − α)-level set of F denoted by

∂L(α), therefore,

CoVaRα,ω(X) =


VaRω1(X1|F(X) = 1− α)

...

VaRωd
(Xd|F(X) = 1− α)

 . (2.5)

Remark 2.2.1. Using the same notation and framework of De�nitions 2.2.1 and 2.2.2,

we can also consider a modi�ed version of the multivariate upper-orthant and lower-

orthant CoVaR proposed in Equations (2.2) and (2.4). Indeed, consider a �nancial

institution Xi and the �rm network without Xi, i.e., (X1, . . . , Xi−1, Xi+1, . . . , Xd) :=

Xd−1. The following modi�ed version of the lower-orthant CoVaR in De�nition 2.2.1

can therefore be proposed:

CoVaRi
α,ω(X) = VaRωi(Xi|F(Xd−1) = α),
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where Fd−1 is the (d − 1)-dimensional distribution function associated with the vector

Xd−1. Analogously, a modi�ed version of the upper-orthant CoVaR in De�nition 2.2.2

can be:

CoVaR
i
α,ω(X) = VaRωi(Xi|F(Xd−1) = 1− α),

where F d−1 is the survival (d− 1)-dimensional distribution function associated with the

vector Xd−1. It should be borne in mind that, using these modi�ed versions, when d = 2

and ωi = α, then CoVaRα,ω(X) and CoVaRα,ω(X) become the classic CoVaR in (1.2).

The following interpretation of our measures can be considered. The i-th compo-

nent of multivariate lower-orthant CoVaR of X (multivariate upper-orthant CoVaR of

X, respectively) corresponds to the point x∗ that minimizes the WL function of the

associated i-th marginal, given that X lies on the α-level curve of its multivariate dis-

tribution function (multivariate survival distribution function, respectively).

As we mention before, under regularity conditions, ∂L≥(α)(∂L
≤

(α), respectively)

is the α-level curve ((1 − α)-level curve, respectively) of F (F , respectively) (see for

instance Di Bernardino et al. (2011), Cuevas et al. (2006)). This means that there

is no plateau in the graph of F for each level α. Therefore, the regularity conditions

guarantee that the minimizer x∗ is unique for each component i = 1, . . . , d.

The solvency of an insurance company depends on the frequency of large claims.

One of the advantages of working with the quantile function is that this function is

more robust to extreme values than other central tendency measures.

In order to clarify the expressions in the proofs, the following notation is henceforth

considered. We denote the conditional random variable Xi on the critical layer ∂L(α)

and ∂L(α) for i = 1, . . . , d, as

Ti := [Xi |X ∈ ∂L(α)], and T ′i := [Xi |X ∈ ∂L(α)] for α ∈ (0, 1). (2.6)

One can interpret the random variable Ti (T ′i , respectively) as the contribution (or

the responsibility) of the marginal risk Xi in the case where the whole risk vector

X belongs to the multivariate stress scenario represented by the critical layer ∂L(α)

(∂L(α), respectively), for some suitable level α ∈ (0, 1).

Lemma 2.2.1, introduced below, shows the expression of the distribution function

for Ti. In particular, when the vector X follows an Archimedean copula, Lemma 2.2.1

can be also obtained by adapting Lemma 3.4 in Brechmann (2014) in the case of j = 1.

Lemma 2.2.1. Let (X1, . . . , Xd) be a random vector that follows an Archimedean copula

C with generator φ. Let FTi(x|α) = P[Ti ≤ x]. Therefore, for i = 1, . . . , d,

FTi(x|α) =


(

1− φ(FXi (x))

φ(α)

)d−1
, if x > Qi(α);

0, if x ≤ Qi(α),
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where FXi is the marginal distribution of Xi and Qi(α) is the associated quantile function

at level α ∈ (0, 1).

2.3 Characteristics of the multivariate CoVaR

In this section, the aim is to analyse the lower-orthant and upper-orthant CoVaR in-

troduced in De�nitions 2.2.1 and 2.2.2 in terms of classic suitable properties of risk

measures (Artzner et al. (1999), Denuit et al. (2005)).

We focus on invariance properties (see Section 2.3.1). Furthermore, in Section 2.3.2,

the relationships between our CoVaR, the univariate VaR, and the multivariate VaR

introduced in Cousin and Di Bernardino (2013) are analysed. In Section 2.3.3, several

comonotonic dependence properties for our measures are investigated. The behaviours

of multivariate CoVaRs with respect to the risk levels are studied in Section 2.3.4. The

advantages that our proposed CoVaRs present for backtesting are explained in Section

2.3.5.

2.3.1 Invariance properties

The results in Proposition 2.3.1 and Corollary 2.3.1 will be central in proving invariance

properties of our risk measures.

Proposition 2.3.1. Let the function h be such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)).

Let ω be a vector in [0, 1]d and α ∈ (0, 1).

(1) If h1, . . . , hd are non-decreasing functions, then, for i = 1, . . . , d,

CoVaRi
α,ω(h(X)) = VaRωi(hi(Xi)|F(X) = α).

(2) If h1, . . . , hd are non-increasing functions, then, for i = 1, . . . , d,

CoVaRi
α,ω(h(X)) = VaRωi(hi(Xi)|F(X) = α).

Proof. By De�nition 2.2.1,

CoVaRi
α,ω(h(X))

= VaRωi(hi(Ti))

= arg min
x∈[hi(VaRα(Xi)),+∞)

{
ωi E[(hi(Ti)− x)+] + (1− ωi)E[(hi(Ti)− x)−]

}
,

where hi(Ti) = [hi(Xi)|Fh(X)(h(X)) = α], for i = 1, . . . , d.
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Since

Fh(X)(y1, . . . , yd)

=

{
F (h−1

1 (y1), . . . , h−1
d (yd)) if h1, . . . , hd are non-decreasing functions,

F (h−1
1 (y1), . . . , h−1

d (yd)) if h1, . . . , hd are non-increasing functions,

then

CoVaRi
α,ω(h(X))

=

{
VaRωi(hi(Xi)|F(X) = α) if h1, . . . ,hd are non-decreasing functions,

VaRωi(hi(Xi)|F(X) = α) if h1, . . . ,hd are non-increasing functions.

As in Proposition 2.3.1, a similar result can also be obtained for the multivariate

upper-orthant CoVaR, by interchanging F with F . From Proposition 2.3.1, one can tri-

vially obtain the following property which links the multivariate upper-orthant CoVaR

and lower-orthant CoVaR.

Corollary 2.3.1. Let h be a function such that h(x1, . . . , xd) = (h1(x1), . . . , hd(xd))

and hi is a linear function, for i = 1, . . . , d. Let ω be a vector in [0, 1]d and α ∈ (0, 1).

(1) If h1, . . . , hd are non-decreasing functions, then

CoVaRα,ω(h(X)) = h(CoVaRα,ω(X))

and

CoVaRα,ω(h(X)) = h(CoVaRα,ω(X)).

(2) If h1, . . . , hd are non-increasing functions, then

CoVaRα,ω(h(X)) = h(CoVaR1−α,1−ω(X))

and

CoVaRα,ω(h(X)) = h(CoVaR1−α,1−ω(X)).

The following result proves the positive homogeneity and invariance translation

properties for risk measures in De�nitions 2.2.1 and 2.2.2.

Proposition 2.3.2. Consider a random vector X with a distribution function F , which

satis�es the regularity conditions. Let ω be a vector in [0, 1]d and α ∈ (0, 1). The

multivariate lower-orthant and upper-orthant CoVaR satisfy the following properties:

Positive Homogeneity: ∀ c = (c1, . . . , cd) ∈ Rd+,

CoVaRα,ω(cX) = cCoVaRα,ω(X) and CoVaRα,ω(cX) = cCoVaRα,ω(X),
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where cX = (c1X1, . . . , cdXd).

Translation Invariance: ∀c ∈ Rd+,

CoVaRα,ω(c+X) = c+ CoVaRα,ω(X) and CoVaRα,ω(c+X) = c+ CoVaRα,ω(X).

The proof is trivially obtained from Corollary 2.3.1.

2.3.2 Multivariate CoVaR and other risk measures

The relationships between the marginal components of multivariate lower-orthant Co-

VaR (multivariate upper-orthant CoVaR , respectively) and the univariate VaR are

given in Proposition 2.3.3. Furthermore, Proposition 2.3.4 provides a comparison bet-

ween the multivariate VaR in Cousin and Di Bernardino (2013) and our corresponding

multivariate CoVaR.

Proposition 2.3.3. Consider a random vector X with distribution function F , which

satis�es the regularity conditions. Let ω be a vector in [0, 1]d and α ∈ (0, 1). Therefore,

CoVaR
i
α,ω(X) ≤ VaRα(Xi) ≤ CoVaRi

α,ω(X), for i = 1, . . . ,d.

Proof. From De�nitions 2.2.1 and 2.2.2,

CoVaRi
α,ω(X) = VaRωi(Ti)

= arg min
x∈[VaRα(Xi),+∞)

{
ωi E[(Ti − x)+] + (1− ωi)E[(Ti − x)−]

}
,

and

CoVaR
i
α,ω(X) = VaRωi(T

′
i)

= arg min
x∈(−∞,VaRα(Xi)]

{
ωi E[(T ′i − x)+] + (1− ωi)E[(T ′i − x)−]

}
,

for i = 1, . . . , d. Hence, the result is trivially veri�ed since VaRα(Xi) is the lower and

upper bound of the domain for the corresponding WL function, respectively.

Proposition 2.3.4. Let α be a �xed risk level in (0, 1). Let us denote by VaRi
α(X) and

VaR
i
α(X) the multivariate lower and upper VaR de�ned in Cousin and Di Bernardino

(2013). Given a level ω∗ ∈ [0, 1]d such that CoVaRi
α,ω∗(X) = VaRi

α(X), for any i ∈
{1, . . . , d}, then

CoVaRi
α,ω(X) ≥ VaRi

α(X), for all ω ≥ ω∗.

Given a level ω∗ ∈ [0, 1]d such that CoVaR
i
α,ω∗(X) = VaRi

α(X) for any i ∈ {1, . . . , d},
then

CoVaR
i
α,ω(X) ≥ VaR

i
α(X), for all ω ≥ ω∗.
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The proof is based on the increasing property of the quantile function. An illustra-

tion of Proposition 2.3.4 in the Clayton copula case is given in Example 2.5.4. Propo-

sition 2.3.4 shows that our multivariate lower-orthant CoVaR (upper-orthant CoVaR,

respectively) provides a quanti�cation of the risk greater than the mean value given by

the multivariate lower-orthant VaR (upper-orthant VaR, respectively).

2.3.3 Comonotonic dependence properties

Recall that a non-negative random vector X is said to be a comonotonic random vector

if there exists a random variable Z and d increasing functions g1, . . . , gd such that X
d
=

(g1(Z), . . . , gd(Z)) (Proposition 5.16 in McNeil et al. (2005)). The following property

of the multivariate CoVaR of a comonotonic random vector can be shown.

Proposition 2.3.5. Consider a comonotonic random vector X with distribution func-

tion F , which satis�es the regularity conditions. Let ω be a vector in [0, 1]d and

α ∈ (0, 1). Therefore,

CoVaRi
α,ω(X) = VaRα(Xi) = CoVaR

i
α,ω(X), for i = 1, . . . ,d.

Proof. Let α ∈ (0, 1). Therefore

E[(Xi − x)+|F (X) = α] = E[(Xi − x)+|min{g−1
1 (x1), . . . , g−1

d (xd)} = VaRα(Z)]

= E[(Xi − x)+|g−1
i (xi) = VaRα(Z)]

= E[(VaRα(Xi)− x)+], for all x in the support of Xi.

In the same way, E[(Xi−x)−|F (X) = α] = E[(VaRα(Xi)−x)−], for all x in the support

of Xi.

In addition,

VaRωi(Xi|F(X) = α) = arg min
x∈[VaRα(Xi),+∞)

{
ωi E[(VaRα(Xi)− x)+]

+(1− ωi)E[(VaRα(Xi)− x)−]
}

= arg min
x∈[VaRα(Xi),+∞)

(1− ωi) {x−VaRα(Xi)}

= VaRα(Xi), for i = 1, . . . ,d.

By using similar arguments to the lower CoVaR and taking into account that

FZ(u1, . . . , ud) = FZ(maxi=1,...,d ui), then the result for the upper CoVaR is obtained.

The additivity of the multivariate CoVaR for a π-comonotonic pair of random vectors

is now proposed. From Puccetti and Scarsini (2010), a pair (X,Y) of d-dimensional

random vectors is a π-comonotonic random vector if there exists a d-dimensional random

vector Z = (Z1, . . . , Zd) and non-decreasing functions f1, . . . , fd, g1, . . . , gd such that
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(X,Y)
d
= ((f1(Z1), . . . , fd(Zd)), (g1(Z1), . . . , gd(Zd))).

Proposition 2.3.6. Let (X,Y) be a π-comonotonic pair of random vectors. Therefore,

for ω ∈ [0, 1]d and α ∈ (0, 1),

CoVaRα,ω(X+Y) = CoVaRα,ω(X) + CoVaRα,ω(Y),

CoVaRα,ω(X+Y) = CoVaRα,ω(X) + CoVaRα,ω(Y).

Proof. Let X and Y be two π-comonotonic random vectors. There exists a random

vector Z such that, for any i = 1, . . . , d, Xi = fi(Zi) and Yi = gi(Zi), where fi and

gi are non-decreasing functions. Let f be the function de�ned by f(x1, . . . , xd) =

(f1(x1), . . . , fd(xd)), g be the function de�ned by g(x1, . . . , xd) = (g1(x1), . . . , gd(xd)),

and h be the function de�ned by h(x1, . . . , xd) = (h1(x1), . . . , hd(xd)), where hi :=

fi + gi, i = 1, . . . , d. Since the function hi, i = 1, . . . , d is a sum of non-decreasing

functions, hi is a non-decreasing function for i = 1, . . . , d. Furthermore, X+Y = h(Z).

From Proposition 2.3.1, it follows that

CoVaRi
α,ω(X+Y) = VaRωi(hi(Zi)|FZ(Z) = α)

= VaRωi(fi(Zi)|FZ(Z) = α) + VaRωi(gi(Zi)|FZ(Z) = α),

where FZ denotes the distribution function of Z. Consequently,

VaRωi(fi(Zi)|FZ(Z) = α) = VaRωi(fi(Zi)|Ff(Z)(f(Z)) = α) = CoVaRi
α,ω(X),

and

VaRωi(gi(Zi)|FZ(Z) = α) = VaRωi(gi(Zi)|Fg(Z)(g(Z)) = α) = CoVaRi
α,ω(Y),

which concludes the proof for the lower-orthant CoVaR. Similar arguments can be used

for the upper-orthant CoVaR.

2.3.4 Multivariate CoVaR in terms of risk levels

Trivially, due to the increasing property of the quantile function, the components of the

multivariate risk measures CoVaR and CoVaR are increasing functions of the risk levels

ωi ∈ [0, 1].

A property of the monotony of the CoVaR for the risk level α is now given. The

increasing behaviour of CoVaR in terms of level α means that the measures increase

with the level of danger of the stress scenarios considered. This monotony is based on

the concept of positive regression dependence, PRD,(see De�nition 1.3.4).

We denote Ui = FXi(Xi), U = (U1, . . . , Ud), Vi = FXi(Xi), and V = (V1, . . . , Vd).

Proposition 2.3.7. Consider a d-dimensional random vector X, which satis�es the

regularity conditions, with marginal distributions FXi , for i = 1, . . . , d, copula C and

survival copula Ĉ.



2.4. CoVaR relations by stochastic orders 31

(1) If (Ui, C(U)) is PRD(Ui|C(U)) then, for ω ∈ [0, 1]d, CoVaRi
α,ω(X) is a non-

decreasing function of α.

(2) If (Vi, Ĉ(V)) is PRD(Vi|Ĉ(V)) then, for ω ∈ [0, 1]d, CoVaR
i
α,ω(X) is a non-

decreasing function of α.

Proof. If α1 ≤ α2, then [Ui|C(U) = α1] ≤st [Ui|C(U) = α2] and [Vi|Ĉ(V) = 1−α2] ≤st
[Vi|Ĉ(V) = 1 − α1] hold. By using Theorem 1.A.3.a from Shaked and Shanthikumar

(2007), it is veri�ed that

[F−1
Xi

(Ui)|C(U) = α1] ≤st [F−1
Xi

(Ui)|C(U) = α2],

and

[F
−1
Xi (Vi)|Ĉ(V) = 1− α2] ≥st [F

−1
Xi (Vi)|Ĉ(V) = 1− α1].

Thus, CoVaRi
α1,ω(X) ≤ CoVaRi

α2,ω(X) and CoVaR
i
α1,ω(X) ≤ CoVaR

i
α2,ω(X), for any

α1 ≤ α2 which proves that CoVaRi
α,ω(X) and CoVaR

i
α,ω(X) are non-decreasing func-

tions of α.

Assumptions of Proposition 2.3.7 are automatically satis�ed by the large class of

Archimedean copulas. This result will be proved in Corollary 2.5.3.

2.3.5 Elicitability property

Functionals that are de�ned as the minimizers of a suitable expected loss are called eli-

citable functions in statistical decision theory (Gneiting (2011)). As shown in property

(P7), CoVaRs verify the elicitability property. This property was studied by Gneiting

(2011), while Bellini and Bignozzi (2013) suggested a slightly more restrictive de�nition.

More recently, Embrechts and Hofert (2013) stated that elicitability is a very important

property of a risk measure since it provides a natural methodology to perform backtes-

ting. Ziegel (2014) has also studied the connections between elicitability and coherence

properties of risk measures.

2.4 CoVaR relations by stochastic orders

The comparison of risks constitutes an important topic of actuarial sciences, especially in

insurance business. The behaviour of multivariate CoVaR risk measures is studied under

di�erent stochastic ordering conditions. The results below compare the multivariate

CoVaR risk measures for random vectors with the same copula by assuming that margins

change according to some particular stochastic order.
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Proposition 2.4.1. Let X and Y be two d-dimensional random vectors, that satisfy

the regularity conditions and with the same copula C. If Xi ≤st Yi, then

CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(Y),

and

CoVaR
i
α,ω(X) ≤ CoVaR

i
α,ω(Y),

for α ∈ (0, 1) and ω ∈ [0, 1]d.

Proof. Let us denote the i-margins of X and Y by FXi and FYi respectively. Since

Xi ≤st Yi, then F−1
Xi

(u) ≤ F−1
Yi

(u), ∀u ∈ [0, 1]. Using Sklar's Theorem (see Section 1.4),

the random variables Ui
d
= FXi(Xi), for i = 1, . . . , d, are uniformly distributed and their

joint distribution is equal to that of C. Similarly, the random variables U ′i
d
= FYi(Yi),

for i = 1, . . . , d. Therefore,

[Xi |C(U) = α]
d
= [F−1

Xi
(Ui) |C(U) = α], and

[Yi |C(U′) = α]
d
= [F−1

Yi
(U ′i)|C(U′) = α],

for i = 1, . . . , d. Observe that [Ui |C(U) = α]
d
= [U ′i |C(U′) = α]. From Theorem

1.A.2 in Shaked and Shanthikumar (2007), [Xi |C(U) = α] ≤st [Yi |C(U′) = α] holds.

Hence, the statement for the lower-orthant CoVaR is veri�ed. The proof of the second

statement is also veri�ed using the same arguments.

The result in Proposition 2.4.1 will be illustrated in the Archimedean case in Exam-

ple 2.5.5.

Corollary 2.4.1. Let X and Y be two d-dimensional random vectors satisfying the

regularity conditions and with the same copula C. If Xi
d
= Yi, then, for α ∈ (0, 1) and

ω ∈ [0, 1]d,

CoVaRi
α,ω(X) = CoVaRi

α,ω(Y), and CoVaR
i
α,ω(X) = CoVaR

i
α,ω(Y).

Finally, some results are provided for the behaviour of our CoVaR measures with

respect to a variation of the copula structure, with unchanged marginal distributions.

Proposition 2.4.2. Let X and X∗ be two d-dimensional continuous random vectors,

which satisfy the regularity conditions with joint distribution functions F and G, and

with the same margins FXi and FX∗i , for i = 1, . . . , d. Let C (C∗, respectively) be the

copula function associated with X (X∗, respectively) and Ĉ (Ĉ∗, respectively) be the

survival copula function associated with X (X∗, respectively).

(1) Let Ui = FXi(Xi), U
∗
i = FXi∗(X

∗
i ), U = (U1, . . . , Ud) and U∗ = (U∗1 , . . . , U

∗
d ).

If [Ui |C(U) = α] ≤st [U∗i |C∗(U∗) = α], then

CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(X∗) for α ∈ (0, 1), ωi ∈ [0, 1], i = 1, . . . , d.
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(2) Let Vi = FXi(Xi), V
∗
i = FXi∗(X

∗
i ), V = (V1, . . . , Vd) and V∗ = (V ∗1 , . . . , V

∗
d ).

If [Vi | Ĉ(V) = 1− α] ≤st [V ∗i | Ĉ∗(V∗) = 1− α], then

CoVaR
i
α,ω(X) ≥ CoVaR

i
α,ω(X∗) for α ∈ (0, 1), ωi ∈ [0, 1], i = 1, . . . , d.

Proof. By using (P2) and (P7), for i = 1, . . . , d, trivially it holds that

ωi = FX∗i |FX∗ (X∗)=α(CoVaRi
α,ω(X∗)) = FXi|FX(X)=α(CoVaRi

α,ω(X)). (2.7)

On the other hand, since F−1
Xi

(u) for u ∈ [0, 1] is a non-decreasing function, and since

Xi and X∗i have the same distribution, then from Theorem 1.A.3.a in Shaked and

Shanthikumar (2007), it is veri�ed that

FF−1
Xi

(U∗i ) |C∗(U∗)=α(u) ≤ FF−1
Xi

(Ui) |C(U)=α(u), ∀u ∈ [0, 1]. (2.8)

Therefore, from (2.7) and (2.8), CoVaRi
α,ω(X) ≤ CoVaRi

α,ω(X∗).

Following the above development for Xi |FX(X) = 1−α and X∗i |FX∗(X∗) = 1−α,
and by using the survival quantile function F

−1
Xi (u) for u ∈ [0, 1], the result for upper-

orthant CoVaR holds.

An application of Proposition 2.4.2 in the case of Archimedean copulas is given in

Corollary 2.5.4.

2.5 Multivariate CoVaR for the class of Archimedean co-

pulas

Interestingly enough, one can readily show that when the random vector X follows

an Archimedean copula then the analytical expression for the CoVaR can be easily

computed, in a similar way to that used in Cousin and Di Bernardino (2013) to compute

their multivariate Value-at-Risk. Indeed, Archimedean copulas have useful relationships

between their generator and the probability associated with their level curves L
≤

(α)

and L≥(α) (see the notion of multivariate probability integral transformation in Genest

and Rivest (2001), Barbe et al. (1996) and references therein). Furthermore, the results

and properties, which were previously proved in this chapter, can easily be applied in

the large class of Archimedean copulas.

Corollary 2.5.1. Let X be a d-dimensional random vector with an Archimedean copula

with generator φ and α ∈ (0, 1). Therefore,

CoVaRi
α,ω(X) = VaRωi

[
F−1

Xi
(φ−1(Siφ(α)))

]
, for i = 1, . . . ,d, (2.9)

where ω ∈ [0, 1]d and Si is a random variable with Beta(1, d− 1) distribution.
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Proof. Note that X is distributed as (F−1
X1

(U1), . . . , F−1
Xd

(Ud)), where U = (U1, . . . , Ud)

follows an Archimedean copula C with generator φ. Consequently, each component

i = 1, . . . , d of the multivariate risk measure introduced in De�nition 2.2.1 can be

expressed as

CoVaRi
α,ω(X) = arg min

x∈[VaRα(Xi),+∞)

{
ωi E[(Ti − x)+] + (1− ωi)E[(Ti − x)−]

}
,

where Ti = [F−1
Xi

(Ui)|C(U) = α]. Moreover, from representation (1.7), the following

relation is veri�ed

[U|C(U) = α]
d
= (φ−1(S1φ(α)), . . . , φ−1(Sdφ(α))), (2.10)

since S and C(U) are stochastically independent. The result comes from the fact that

the random vector S follows a symmetric Dirichlet distribution.

Corollary 2.5.2. Let X be a d-dimensional random vector with an Archimedean sur-

vival copula with generator ϕ and α ∈ (0, 1). Therefore,

CoVaR
i
α,ω(X) = VaRωi

[
F
−1
Xi

(ϕ−1(Siϕ(1− α)))
]
, for i = 1, . . . ,d, (2.11)

where ω ∈ [0, 1]d and Si is a random variable with Beta(1, d− 1) distribution.

The proof is similar to Corollary 2.5.1 and is therefore omitted here.

From (2.9) and (2.11), analytical expressions of the lower-orthant and the upper-

orthant CoVaR for a vectorX = (X1, . . . , Xd) with a particular Archimedean copula are

now derived. Assume that Xi is uniformly-distributed on [0, 1], for i = 1, . . . , d. Since

Archimedean copulas are exchangeable, the components of CoVaRα,ω(X) ( CoVaRα,ω(X),

respectively) are equal in the case where ω1 = . . . = ωd. Furthermore, it is also possible

to obtain expressions for the upper-orthant CoVaRα,ω for X̃ = (1 − X1, . . . , 1 − Xd)

since, by using Corollary 2.3.1:

CoVaR
i
α,ω(X̃) = 1− CoVaRi

1−α,1−ω(X).

In the following, Corollary 2.5.1 is illustrated for some commonly used Archimedean

copula families (see Examples 2.5.1 - 2.5.3).

Example 2.5.1 (Bivariate Clayton family). In Table 2.1 (left), the bivariate random

vector (X,Y ) is considered with uniform marginal distributions and a Clayton copula

with parameter θ ≥ −1 is considered. One can readily show that

∂CoVaR1
α,ω

∂θ ≤ 0 and
∂CoVaR

1
α,ω

∂θ ≥ 0, for θ ≥ −1, α ∈ (0, 1) and ω ∈ [0, 1].

Hence, the components of the multivariate CoVaR (CoVaR, respectively) are decreasing

(increasing, respectively) functions of the dependence parameter θ. Interestingly enough,
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in the comonotonic case, both multivariate risk measures CoVaR and CoVaR correspond

to the vector composed of the univariate VaR at level α associated with each component.

These properties are illustrated in Figure 2.1 where upper and lower CoVaR are plotted

as functions of the risk level ω for di�erent values of the dependence parameter θ and

for a �xed level α. Note that, when the parameter θ increases, the lower CoVaR tends to

decrease. Conversely, the upper bound for the upper CoVaR is represented by the perfect

positive dependence case. The latter empirical behaviours will be formally con�rmed in

the following (see Corollary 2.5.4).

θ CoVaR1
α,ω,θ(X,Y )

(−1,∞)
(
1 +

(
1
αθ
− 1
)

(1− ω1)
)−1/θ

−1 1− (1− ω1)(1− α)

0 α1−ω1

1 α
(1−α)(1−ω1)+α

∞ α

θ CoVaR1
α,ω,θ(X,Y )

[−1, 1) 1−θ(
1−θ(1−α)

α

)(1−ω1)−θ
0 α1−ω1

Table 2.1: CoVaR1
α,ω(X,Y ), for a bivariate Clayton copula (left) and for a bivariate

Ali-Mikhail-Haq copula (right).
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Figure 2.1: Behaviour of CoVaR1
α,ω(X,Y ) (left panel) and CoVaR

1
α,ω(1−X, 1−Y ) (right

panel) with respect to the risk level ω for di�erent values of dependence parameter θ
and for α = 0.7. Here, (X,Y ) is a bivariate random vector with uniform marginal
distributions and a Clayton copula with parameter θ ≥ −1.

Example 2.5.2 (Bivariate Ali-Mikhail-Haq family). Table 2.1 (right) illustrates the

analytical expressions of CoVaR for the �rst component of a bivariate random vector

with uniform marginal distributions and an Ali-Mikhail-Haq copula, for θ ∈ [−1, 1).
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Recall that bivariate Archimedean copulas can be extended to d−dimensional co-

pulas, with d > 2, on the condition that the generator φ is a d−monotone function

in [0,∞) (see McNeil and Ne²lehová (2009)). The bivariate Gumbel family can be

generalized in dimension d, for θ ≥ 1 (see Example 4.25 in Nelsen (2006)).

Example 2.5.3 (3-dimensional Gumbel family). In this case, analytical expressions

of the �rst component of the lower-orthant CoVaR of a 3-dimensional random vector

(X1, X2, X3) with uniform marginal distributions and a Gumbel copula, for θ ≥ 1, are

provided in Table 2.2.

θ CoVaR1
α,ω,θ(X1, X2, X3)

[1,∞) α(1−√ω1)1/θ

1 α(1−√ω1)

∞ α

Table 2.2: CoVaR1
α,ω(X1, X2, X3) for a 3-dimensional Gumbel copula.

2.5.1 Properties of multivariate CoVaR for Archimedean copulas

In the following, some theoretical properties presented in Sections 2.3 and 2.4 are illus-

trated in the large class of d-dimensional Archimedean copula. Firstly, using Corollary

2.5.1, an illustration of Proposition 2.3.4 in the Clayton copula case is provided.

Example 2.5.4. Assume that X is a bivariate random vector with uniform marginal

distributions and a Clayton copula. The distribution function of X is therefore given

by:

F (x1, x2) =
[
max{x−θ1 + x−θ2 − 1, 0}

]−1/θ
,

for θ ∈ [−1,∞)\{0} and (x1, x2) ∈ [0, 1]2. Therefore, by straightforward computation,

one can obtain, for α ∈ (0, 1) and ω1 ∈ [0, 1],

VaR1
α(X) = θ

θ−1
αθ−α
αθ−1

, and CoVaR1
α,ω(X) =

[
1 +

(
1
αθ
− 1
)

(1− ω1)
]−1/θ

,

where VaR1
α(X) is the �rst-component lower-orthant VaR proposed by Cousin and Di Ber-

nardino (2013). Consequently, both measures coincide in

ω∗ =

(
α−θ −

(
θ
θ−1

αθ−α
αθ−1

)−θ)
[α−θ − 1]−1.

For a �xed α = 0.6 we obtain the results gathered in Figure 2.2. In Figure 2.2 (left

panel), we gather VaR1
α(X) and CoVaR1

α,ω(X) in terms of ω. In Figure 2.2 (right panel),

we gather the ratio between CoVaR1
α,ω(X) and VaR1

α(X) in terms of ω. VaRα(X)
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represents the case that the complete risk of the insurance company is reinsured by

another company (x = 0) (see Cousin and Di Bernardino (2013)). The insurance

company gives the total weight to the expected cost of the reinsurance company, that is,

establishes ω = 1. By contrast, CoVaR de�nes the minimum retention of the insurance

company given a weight ω ∈ [0, 1] for the expected cost of the reinsurance company. For

instance, for θ = 2, it can be observed in Figure 2.2 that VaR1
0.6(X) = 0.75 and the cut-

o� point is ω∗ = 0.56. Furthermore, we can easily observe in Figure 2.2 (right panel)

that lower-orthant CoVaR is larger (smaller, respectively) than lower-orthant VaR for

every ω < (>, respectively)ω∗ and, that both measures coincide in the respective ω∗.

Similarly, analytical expressions can be obtained for multivariate upper-orthant CoVaR

and comparisons with the associated VaRα(X) (see Cousin and Di Bernardino (2013)).
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Figure 2.2: (X,Y ) is a bivariate random vector with uniform marginal distributions and
a Clayton copula with parameter θ ≥ −1, and α = 0.6. VaR1

α(X) and CoVaR1
α,ω(X)

(left panel). CoVaR1
α,ω(X)/VaR1

α(X) (right panel).

Corollary 2.5.3 proves that assumptions of Proposition 2.3.7 are automatically sa-

tis�ed in the large class of d-dimensional Archimedean copulas.

Corollary 2.5.3. Consider a d-dimensional random vector X, which satis�es the regu-

larity conditions, with marginal distributions FXi , for i = 1, . . . , d, copula C and survival

copula Ĉ.

(1) If C is a d-dimensional Archimedean copula, then CoVaRi
α,ω(X) is a non-decreasing

function of α with ω ∈ [0, 1]d.

(2) If Ĉ is a d-dimensional Archimedean copula, then CoVaR
i
α,ω(X) is a non-decreasing

function of α with ω ∈ [0, 1]d.
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Proof. Let Ui = FXi(Xi), U = (U1, . . . , Un), Vi = FXi(Xi) and V = (V1, . . . , Vn). Since

C is the copula of X, then U is distributed as C. If C is an Archimedean copula, then

from Lemma 2.2.1, P (Ui > u|C(U) = α) is a non-decreasing function of α. Similarly,

P (Vi > u|Ĉ(V) = 1 − α) is a non-decreasing function of α. The results are therefore

trivially derived from Proposition 2.3.7.

In the following, an illustration of Proposition 2.4.1 is provided in the Archimedean

case.

Example 2.5.5. Three di�erent random vectors (X,Yi), for i = 1, . . . , 3 are considered

with the same bivariate Clayton copula with dependence parameter 2, such that

X ∼ Exp(1), Y1 ∼ Exp(2), Y2 ∼ Burr(5, 1), Y3 ∼ Fréchet(4).

If X ∼ Burr(c, k), then the distribution function of X is given by F (x) = 1−(1+xc)−k,

with c > 0 and k > 0. Furthermore, recall that if X ∼ Fréchet(β), then the distribution

function of X is given by F (x) = exp{−x−β}, β > 0 (see Section 1.2). It should

be borne in mind that the above three distributions are usually applied in studies of

household income, insurance risk and reliability analysis. Since Y1 ≤st Y2 ≤st Y3, from

Proposition 2.4.1, then

CoVaR2
α,ω(X,Y1) ≤ CoVaR2

α,ω(X,Y2) ≤ CoVaR2
α,ω(X,Y3),

for any ω ∈ [0, 1]2 and α ∈ (0, 1). The results are collected in Figure 2.3. It should

also be emphasized that, by Corollary 2.4.1, the �rst components of the multivariate

lower-orthant CoVaR and upper-orthant CoVaR for the four vectors coincide.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution Functions

x

F
(x

)

Exp(2)
Fréchet(4)
Burr(5, 1)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Lower−Orthant CoVaR

ω

 

Exp(2)
Fréchet(4)
Burr(5, 1)

Figure 2.3: Distribution functions of random variables Yi, for i = 1, . . . , 3, with Y1 ∼
Exp(2), Y2 ∼ Burr(5, 1) and Y3 ∼ Fréchet(4) (left panel). CoVaR2

α,ω(X,Yi) for i =
1, . . . , 3, with the same Clayton copula with parameter 2, X ∼ Exp(1), Y1 ∼ Exp(2),
Y2 ∼ Burr(5, 1), Y3 ∼ Fréchet(4) and α = 0.8 (right panel).
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The following remark will be useful in Corollary 2.5.4.

Remark 2.5.1. Let U and U∗ be two random vectors with copula C and C∗, respec-

tively, and with uniform marginal distributions. It is easy to prove that U ≤sm U∗

implies C(u) ≤ C∗(u), for u ∈ [0, 1]d (Section 6.3.3 in Denuit et al. (2005)). In ad-

dition, for Gumbel, Frank, Clayton, and Ali-Mikhail-Haq families, it can be shown that

an increase of θ yields an increase of dependence in the sense of the supermodular order

(see examples in Wei and Hu (2002), Joe (1997)). As a consequence, in these cases,

θ ≤ θ∗ ⇒ C(u) ≤ C∗(u), for u ∈ [0, 1]d. (2.12)

Corollary 2.5.4. Let X be a d-dimensional random vector satisfying the regularity

conditions with copula C and survival copula Ĉ.

If C is a d-dimensional Archimedean copula that satis�es Property (2.12) in Remark

(2.5.1), then each component of CoVaRα,ω(X) is a decreasing function of θ, with α ∈
(0, 1) and ω ∈ [0, 1]d.

If Ĉ is a d-dimensional Archimedean copula that satis�es Property (2.12) in Remark

(2.5.1), each component of CoVaRα,ω(X) is a increasing function of θ, with α ∈ (0, 1)

and ω ∈ [0, 1]d.

Proof. We consider two Archimedean copulas of the same family, Cθ (associated with

vector U) and Cθ∗ (associated with vector U∗) with generator φθ and φθ∗ such that

θ ≤ θ∗. By Proposition 2.4.2, we have to prove that [U∗i |Cθ∗(U∗) = α] ≤st [Ui|Cθ(U) =

α] holds for i = 1, . . . , d. On the other hand, from Lemma 2.2.1, it is readily obtained

that

[U∗i |Cθ∗(U∗) = α] ≤st [Ui|Cθ(U) = α] for any α ∈ (0, 1)⇔ φθ∗

φθ
is a decreasing function.

Finally, by taking Remark 2.5.1 into account, if C veri�es Property (2.12), then the

function φθ∗
φθ

is decreasing when θ ≤ θ∗. Therefore, from Proposition 2.4.2, an increase

of the parameter θ yields a decrease in each component of CoVaRα,ω(X). The second

statement is obtained trivially using the same arguments.

It should be noted that if C (Ĉ, respectively) belongs to the Gumbel, Frank, Clayton

or Ali-Mikhail-Haq families, assumptions of Corollary 2.5.4 are satis�ed. The reader is

referred, for instance, to the behaviour of the lower-orthant and upper-orthant CoVaR

with respect to the copula parameter θ presented in Figure 2.1.

2.5.2 A weak subadditivity tail property in the Archimedean case

The additivity of our CoVaR is provided in Section 2.3.3 in a comonotonic dependence

vectorial case (see Proposition 2.3.6 for π-comonotonic vectors). In the following, the
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aim is to study the condition for a copula to obtain subadditivity inequalities for our

lower-orthant CoVaR.

To this end, as in the univariate case (see Daníelsson et al. (2013)), we focus on the

tails of the considered multivariate distribution. The notions of regularly varying func-

tion (RV) and of multivarite regularly varying vector (MRV) are recalled in Appendix

A.

Theorem 2.5.1. Let X be a bivariate random vector with distribution function F ,

Archimedean copula C with generator φ and marginals FXi , i = 1, 2. Assume that

the marginals of X are identically distributed, that φ is twice di�erentiable, and that

(φ ◦ FX1) ∈ RV−β, β > 0. Therefore T := (T1, T2) ∈MRV .

Proof. Firstly, the copula of random vector T is computed. Note that

F (x1, x2) = φ−1(φ(FX1(x1)) + φ(FX2(x2))).

For simplicity, the univariate random variable F (X1, X2) is denoted by V . Similarly to

Theorem 1 in Wang and Oakes (2008), we obtain

P[V ≤ α,X1 ≤ x1, X2 ≤ x2] =

α−
φ(α)
φ′(α) + φ(F (x1,x2))

φ′(α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2).
(2.13)

By straightforward calculation, it can be shown that the distribution function of T is

de�ned as

FT(x1, x2) =


P[V=α,X1≤x1,X2≤x2]

P (V=α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2),

=

1− φ(F (x1,x2))
φ(α) , if 0 < α ≤ F (x1, x2);

0, if α > F (x1, x2),
(2.14)

where P (V = α) is the density in α of random variable V .

On the other hand, for i = 1, 2, by using Lemma 2.2.1, we obtain that

F−1
Ti

(wi) =

(φ ◦ FXi)−1(φ(α)(1− wi)), if 0 < wi ≤ 1;

0, if wi = 0.

Therefore, the copula of the random vector T is

CT(u1, u2) = FT(F−1
T1

(u1), F−1
T2

(u2)) =

u1 + u2 − 1, if u1 + u2 ≥ 1;

0, otherwise.
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It is now shown that T ∈ MRV by Theorem 3.2 in Weng and Zhang (2012).

Therefore, conditions (C1) and (C2) of Theorem 3.2 in Weng and Zhang (2012) are

proved. As a result of (φ ◦FX1) ∈ RV−β , β > 0, we trivially obtain F T1 ∈ RV−β , β > 0

(C1).

In addition, since X has the same margins, then

lim
t→∞

F T2(t)

F T1(t)
= 1,

that is, F T1 and F T2 have equivalent tails. (C2)

Finally, the lower tail dependence function of the survival copula of T,

λ2(u1, u2) = lim
t→0+

ĈT(tu1, tu2)

t
,

is equal to 0. Hence, considering (C1) and (C2), by Theorem 3.2 in Weng and Zhang

(2012), T ∈MRV .

Remark 2.5.2. Note that, if (φ ◦ FX1) ∈ RV−β, β > 1, by applying Theorem 2.5.1

and Proposition 1 in Daníelsson et al. (2013) for T, then the VaR of T is su�ciently

deeply subadditive3 in the tail regions. In this case, a weak subadditivity of the proposed

multivariate lower-orthant CoVaR is obtained, that is, since VaRω(Ti) = CoVaRi
α,ω(X),

then

VaRω(T1 + T2) < CoVaR1
α,ω(X) + CoVaR2

α,ω(X) (2.15)

su�ciently deep in the tail regions.

An illustration of Remark 2.5.2 is now presented (see Figure 2.4 and Example 2.5.6

below).

Example 2.5.6. In this example, a bivariate random vector, X, with X1 ∼ X2 ∼
Pareto(2) and a Gumbel copula with parameter θ = 2, is considered. Analytical ex-

pressions of CoVaRi
α,ω(X), i = 1, 2 are obtained. In addition, VaRω(T1 + T2) is cal-

culated by numeric approximation. The obtained results are shown in Figure 2.4: for

ω = α ∈ (0, 1) (see Figure 2.4, left panel) and for α = 0.75, ω ∈ (0, 1) (see Figure 2.4,

right panel). It can be easily observed that (2.15) is veri�ed for a large ω.

One line of future research could entail the study of the condition for a survival

copula to obtain subadditivity inequalities for our upper-orthant CoVaR.

3That is, VaRω of T is subadditive for a su�ciently small level ω.
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Figure 2.4: CoVaR1
α,ω(X) + CoVaR2

α,ω(X) and VaRω(T1 + T2) for X with X1 ∼ X2 ∼
Pareto(2) and a Gumbel copula with θ = 2, as in Example 2.5.6, for α = ω (left panel)
and for α = 0.75 (right panel).

2.5.3 Measuring Systemic Risk

Systemic risk can be de�ned as the risk of collapse of an entire �nancial system, as

opposed to risk associated with any one individual system component, that can be

contained therein without harming the entire system. During �nancial crises, losses

spread across �nancial institutions threatening the �nancial system as a whole and, as

a consequence, systemic risk is brought about. A company that is highly interconnected

with others is also a source of systemic risk.

VaR is the most common measure of risk used by �nancial institutions. However,

VaR is focused on the risk of an individual institution in isolation and does not necessa-

rily re�ect the systemic risk. Adrian and Brunnermeier (2011) de�ned the systemic risk

measure ∆CoVaR as the di�erence between the VaR of the institution j (or �nancial

system) conditional on the distress of a particular �nancial institution i and the VaR

of the institution j (see Equation (1.3)).

In the same way as in Adrian and Brunnermeier (2011), a new systemic risk measure

can be considered using the proposed multivariate risk CoVaR in De�nition 2.2.1. The

contribution of institution j to the system is de�ned as

∆CoVaRj
α,ω(Xj |X) = CoVaRj

α,ω(X)−VaRωj(Xj) (2.16)

where ω = (ω1, . . . , ωd) is a marginal risk vector with ωj ∈ [0, 1], for j = 1, . . . , d,

and α ∈ (0, 1). Analogously, using De�nition 2.2.2, we can also propose the associated

∆CoVaR
j
α,ω(Xj |X).
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Remark 2.5.3. From Proposition 2.3.5, if X is a comonotonic random vector and

α = ωj, then ∆CoVaRj
α,ω(Xj |X) = ∆CoVaR

j
α,ω(Xj |X) = 0. Therefore, in this case,

each institution j of the �nancial system protects itself using its associated univariate

VaR.

In Figure 2.5 (left panel), the lower ∆CoVaR is represented for a bivariate random

vector (X1, X2) with X1 ∼ X2 ∼ Pareto(2, 1) and Clayton copula, with parameter

θ > 0. Similarly, the lower ∆CoVaR of bivariate random vector (X1, X2) with X1 ∼
X2 ∼ Exp(2) and Gumbel copula, with parameter θ ≥ 1, is illustrated in Figure 2.5

(right panel).

Firstly, it can be observed that ∆CoVaR is lower when the risk level α = ω decreases

(see Corollary 2.5.3). Secondly, ∆CoVaR is also lower when the dependence parame-

ter θ increases, since the multivariate lower CoVaR is decreasing with respect to θ, as

proved in Corollary 2.5.4. In addition, when θ increases, that is, the vector exhibits

more positive dependency, then the ∆CoVaR measure goes to 0. This behaviour is con-

sistent with Proposition 2.3.5 and Corollary 2.5.4. Finally, in Figure 2.5, the evaluated

∆CoVaR are always larger than 0, i.e., the components of the �nancial system take part

in the systemic risk.
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Figure 2.5: ∆CoVaR1(X1|X) for a bivariate Clayton copula, θ > 0, with X1 ∼ X2 ∼
Pareto(2, 1) (left panel). ∆CoVaR1(X1|X) for a bivariate Gumbel copula, θ ≥ 1, with
X1 ∼ X2 ∼ Exp(2) (right panel).

In Mainik and Schaanning (2014) (see for instance their Figure 4), the systemic

risk measure de�ned in (1.3) is studied in the bivariate elliptical distribution case.

Here we analyse, the systemic risk measure ∆CoVaR de�ned in (2.16) in the bivariate

Archimedean case (see Figure 2.5). We remark that the observed behaviours of both

these measures are very similar. Indeed, in both cases, the measures are close to zero
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for the comonotonic dependence parameter (i.e., θ = +∞ for Archimedean copulas and

ρ = 1 for elliptical copulas). Furthermore, the two measures are always larger than 0,

when the dependence structure is positive. Finally, they are non-decreasing functions

with respect to the risk level α = ω.

2.6 Semi-parametric estimation for Multivariate CoVaR

Semi-parametric estimators are given in this section by assuming Archimedean copula

for the proposed multivariate CoVaR measures. Moreover, illustrations are provided for

simulated data.

Firstly, let us assume that X has an Archimedean copula structure. The generator

of an Archimedean copula depends on the dependence parameter θ of the copula (see,

e.g., Table 4.1. in Nelsen (2006)). Consequently, a semi-parametric estimator of the

generator is obtained by considering a maximum pseudo-likelihood estimator of the

dependence parameter θ associated with this generator. Following these considerations

and using Equation (2.9), we introduce a semi-parametric estimator for the multivariate

lower-orthant CoVaR (see De�nition 2.6.1) by using a semi-parametric estimation for θ

and the empirical quantile estimation.

De�nition 2.6.1. Let X be a d−dimensional random vector with Archimedean copula

with generator φθ and α ∈ (0, 1). A semi-parametric estimator of the i-th component of

the multivariate lower-orthant CoVaR is de�ned as

ĈoVaR
i

α,ω(X) = V̂aRωi

[
F̂−1
Xi

(φ−1

θ̂n
(Siφθ̂n(α)))

]
, for i = 1, . . . , d, (2.17)

where ω ∈ [0, 1]d, Si is a random variable with Beta(1, d − 1) distribution, V̂aRω(X)

is the empirical estimator of VaRω(X), φθ̂n is the semi-parametric estimator of φθ, and

F̂−1
Xi

is the empirical estimator of F−1
Xi

for i = 1, . . . , d.

Secondly, let us assume that X has an Archimedean survival copula structure.

From Equation (2.11), we introduce a semi-parametric estimation of multivariate upper-

orthant CoVaR (see De�nition 2.6.2) using the semi-parametric estimation of the gene-

rator of the Archimedean survival copula and the empirical estimation of the quantile

functions.

De�nition 2.6.2. Let X be a d−dimensional random vector with Archimedean sur-

vival copula with generator ϕθ and α ∈ (0, 1). A semi-parametric estimator of the i-th

component of the multivariate upper-orthant CoVaR is de�ned as

ĈoVaR
i

α,ω(X) = V̂aRωi

[
F̂
−1

Xi (ϕ
−1

θ̂n
(Siϕθ̂n(1− α)))

]
, for i = 1, . . . , d, (2.18)

where ω ∈ [0, 1]d, Si is a random variable with Beta(1, d − 1) distribution, V̂aRω(X)
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is the empirical estimator of VaRω(X), ϕθ̂n is the semi-parametric estimator of ϕθ, and

F̂
−1

Xi is the empirical estimator of F
−1
Xi for i = 1, . . . , d.

The estimator of the dependence parameter θ considered in De�nitions 2.6.1 and

2.6.2 is obtained by a pseudo-likelihood estimation procedure. Genest et al. (1995) in-

vestigate the properties of the semi-parametric estimator for θ and study the e�ciency,

consistency, and asymptotic normality of θ̂n. Proposition 2.1 in Genest et al. (1995)

shows that, under regularity conditions, θ̂n is consistent and n1/2(θ̂n − θ) converges in
distribution to a normal distribution with known variance. The regularity conditions

of Proposition 2.1 in Genest et al. (1995) are satis�ed, among others, by Archimedean

copulas. Therefore, since φθ (ϕθ, respectively) is a continuous function, φθ̂n (ϕθ̂n , res-

pectively) is consistent from Proposition 2.1 in Genest et al. (1995). On the other hand,

empirical quantile estimator F̂−1
Xi

(p) is consistent if quantile F−1
Xi

(p) is unique (see Ser-

�ing (1980), page 75). The empirical quantile estimator F̂−1
Xi

(p) is also asymptotically

normal if FXi possesses a left- or right-hand derivative at the point F−1
Xi

(p) (see Ser�ing

(1980), page 77). However, due to De�nitions 2.6.1 and 2.6.2, CoVaR estimators are the

quantiles of non-independent observations as we explain in the following. We obtain the

generator estimator and the margin quantile estimator by the same data-set and, then,

we apply a plug-in procedure where we cannot know how to control the error. In this

case, we need a Central Limit Theorem for dependent random variables. Consequently,

consistency and asymptotic normal properties of these estimators need a supplementary

study, by using the above results in Genest et al. (1995) and in Ser�ing (1980), which

lies beyond the scope of this chapter.

2.7 Simulation study

The aim of this section is to evaluate the performance of the estimators introduced in

De�nitions 2.6.1 and 2.6.2. In particular, we focus on De�nition 2.6.1 (the multivariate

upper-orthant CoVaR estimator could similarly be studied). For this purpose, several

simulated cases of the bivariate lower-orthant CoVaR estimator are studied. Although

we restrict ourselves to the bivariate case, these illustrations could be adaptable in any

dimension.

In the following, the ratio ĈoVaR
1

α,ω(X,Y )/CoVaR1
α,ω(X,Y ) is considered for di-

�erent values of α and ω and two di�erent sizes of the sample: n = 600 (Figures 2.6

and 2.8) and n = 1000 (Figures 2.7 and 2.9). We generate our simulated data from

the following two models: Ali-Mikhail-Haq copula with θ = 0.5 and uniform marginals

(Figures 2.6 and 2.7); and Gumbel copula with θ = 2 and Pareto marginals with lo-

cation parameter 1 and shape parameter 2 (Figures 2.8 and 2.9, Tables 2.3, 2.4 and

2.5).

We analyse misspeci�cation model errors, in order to study the bias and the variance
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of the estimation when the parametric form of the copula is inappropriate to the data.

To this end we use Clayton, Gumbel and Frank copulas in Figures 2.6 and 2.7; Joe,

Clayton and Frank copulas in Figures 2.8 and 2.9. Obviously, the true model is included

in the boxplot analysis, that is, Ali-Mikhail-Haq copula in Figures 2.6 and 2.7 and

Gumbel copula in Figures 2.8 and 2.9.

In Figures 2.6 and 2.7, boxplots associated with Ali-Mikhail-Haq, Clayton and Frank

copulas are similar in terms of bias and variance. Conversely, the Gumbel boxplot is

obviously the worst boxplot. This is clearly related to the domain of attraction (in the

upper tails) of these copula structures (asymptotically dependent structure for Gumbel

copula, asymptotically independent structure for Ali-Mikhail-Haq, Clayton, and Frank

copulas, see Remark 2.7.1).

In Figures 2.8 and 2.9, the Gumbel copula is the true (best) model. The Joe copula

behaves asymptotically similar to the Gumbel copula. Conversely, the Frank and Clay-

ton copulas are clearly di�erent.

Remark 2.7.1. Recall that a copula has upper tail dependence if the upper tail depen-

dence parameter λU for this copula is in (0, 1]. If λU = 0, the copula has no upper tail

dependence, that is, it is independent in the tail. The Clayton, Frank and Ali-Mikhail-

Haq copulas are independent in the tail (i.e., λClaytonU = λFrankU = λAMH
U = 0). The

Gumbel and Joe copulas have upper tail dependence (i.e., λGumbelU = λJoeU = 2 − 21/θ).

For more details see Section 1.4 and Nelsen (2006).

Finally, for both the Ali-Mikhail-Haq copula with uniform marginals, and the Gum-

bel copula with Pareto marginals, the larger the sample size n, the better the estimation

is.

In the following, we denote ĈoVaRα,ω(X,Y ) =
(

ĈoVaR
1

α,ω(X,Y ), ĈoVaR
2

α,ω(X,Y )
)

as the mean (coordinate by coordinate) of ĈoVaRα,ω(X,Y ) on M Monte Carlo simula-

tions.

Henceforth, the empirical standard deviation (coordinate by coordinate) is de�ned

as σ̂ = (σ̂1, σ̂2) with

σ̂1 =

√√√√ 1

M − 1

M∑
j=1

(
ĈoVaR

1

α,ω(X,Y )j − ĈoVaR
1

α,ω(X,Y )

)2

.

RMSE = (RMSE1, RMSE2) corresponds to the relative mean square error (coor-

dinate by coordinate) with

RMSE1 =

√√√√√ 1

M

M∑
j=1

 ĈoVaR
1

α,ω(X,Y )j − CoVaR1
α,ω(X,Y )

CoVaR1
α,ω(X,Y )

2

,

where M is the number of Monte Carlo simulations (M = 500 in this section).

Similarly, RMSE2 and σ̂2 are de�ned.
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Figure 2.6: (X,Y ) follows a bivariate Ali-Mikhail-Haq copula with parameter θ = 0.5

and uniform marginals. Boxplot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 600 with

α = 0.75 and ω = 0.9 (left panel); α = 0.9, and ω = 0.95 (right panel). Theoretical
values are CoVaR1

0.75,0.9 = 0.9698 and CoVaR1
0.9,0.95 = 0.9946. We take M = 500

Monte Carlo simulations.
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Figure 2.7: (X,Y ) follows a bivariate Ali-Mikhail-Haq copula with parameter θ = 0.5

and uniform marginals. Boxplot for the ratio ĈoVaR
1

α,ω/CoVaR1
α,ω, for n = 1000 with

α = 0.75 and ω = 0.9 (left panel); α = 0.9 and ω = 0.95 (right panel). Theoretical
values are CoVaR1

0.75,0.9 = 0.9698 and CoVaR1
0.9,0.95 = 0.9946. We take M = 500

Monte Carlo simulations.

RMES1 and σ̂1 are shown in Table 2.3 (Table 2.4, respectively) in terms of ω (α,

respectively) with α = 0.7 �xed (ω = 0.75 �xed, respectively) for the Gumbel copula

with parameter θ = 2 and Pareto marginals with location parameter 1 and shape
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Figure 2.8: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto
marginals with location parameter 1 and shape parameter 2. Boxplot for the ratio

ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 600 with α = 0.75 and ω = 0.9 (left panel); α = 0.9

and ω = 0.95 (right panel). Theoretical values are CoVaR1
0.75,0.9 = 3.3911 and

CoVaR1
0.9,0.95 = 6.5535. We take M = 500 Monte Carlo simulations.
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Figure 2.9: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto
marginals with location parameter 1 and shape parameter 2. Boxplot for the ratio

ĈoVaR
1

α,ω/CoVaR1
α,ω for n = 1000 with α = 0.75 and ω = 0.9 (left panel); α =

0.9 and ω = 0.95 (right panel). Theoretical values are CoVaR1
0.75,0.9 = 3.3911 and

CoVaR1
0.9,0.95 = 6.5535. We take M = 500 Monte Carlo simulations.

parameter 2. It can be observed that, the more α and ω increase, the more RMES1

and σ̂1 increase. Similarly, for the Gumbel copula with parameter θ = 2 and Pareto

marginals with location parameter 1 and shape parameter 2, RMES1 and σ̂1 in terms
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of the sample size n for α = 0.9 and ω = 0.98 �xed are given in Table 2.5. As expected,

RMES1 and σ̂1 decrease when the sample size increases.

ω Gumbel Joe Clayton Frank
0.70 0.034 (0.081) 0.039 (0.078) 0.253 (0.145) 0.095 (0.098)
0.75 0.037 (0.091) 0.044 (0.084) 0.304 (0.175) 0.116 (0.122)
0.80 0.037 (0.096) 0.049 (0.088) 0.369 (0.210) 0.144 (0.134)
0.86 0.043 (0.122) 0.060 (0.111) 0.491 (0.333) 0.211 (0.207)
0.90 0.046 (0.140) 0.069 (0.122) 0.618 (0.437) 0.280 (0.264)
0.95 0.059 (0.212) 0.097 (0.173) 0.914 (0.864) 0.464 (0.503)
0.98 0.080 (0.360) 0.135 (0.281) 1.394 (2.040) 0.812 (1.248)
0.99 0.106 (0.559) 0.169 (0.415) 1.911 (3.900) 1.188 (2.831)

Table 2.3: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto
marginals with location parameter 1 and shape parameter 2. Evolution of RMSE1

and σ̂1 (in parentheses) in terms of ω for α = 0.7 �xed. We take 500 Monte Carlo
simulations.

α Gumbel Joe Clayton Frank
0.75 0.038 (0.105) 0.049 (0.094) 0.324 (0.219) 0.153 (0.154)
0.80 0.045 (0.138) 0.059 (0.126) 0.338 (0.286) 0.190 (0.212)
0.85 0.051 (0.183) 0.065 (0.161) 0.372 (0.376) 0.251 (0.320)
0.90 0.068 (0.298) 0.079 (0.259) 0.403 (0.591) 0.315 (0.510)
0.95 0.086 (0.538) 0.099 (0.471) 0.428 (1.172) 0.380 (1.094)
0.98 0.149 (1.477) 0.152 (1.315) 0.458 (2.893) 0.442 (2.839)
0.99 0.211 (2.985) 0.197 (2.625) 0.575 (6.076) 0.582 (6.234)

Table 2.4: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto
marginals with location parameter 1 and shape parameter 2. Evolution of RMSE1

and σ̂1 (in parentheses) in terms of α for ω = 0.75 �xed. We take 500 Monte Carlo
simulations.

n Gumbel Joe Clayton Frank
500 0.196 (1.590) 0.215 (1.097) 1.862 (9.903) 1.636 (9.030)
1000 0.137 (1.124) 0.187 (0.754) 1.732 (7.838) 1.447 (6.210)
1500 0.108 (0.885) 0.173 (0.576) 1.643 (5.754) 1.402 (4.827)
2000 0.103 (0.843) 0.171 (0.560) 1.651 (5.177) 1.388 (4.203)
2500 0.084 (0.684) 0.170 (0.472) 1.622 (4.610) 1.369 (3.918)
3000 0.074 (0.611) 0.163 (0.412) 1.564 (3.932) 1.363 (3.479)
5000 0.059 (0.482) 0.162 (0.360) 1.599 (3.392) 1.356 (2.741)

Table 2.5: (X,Y ) follows a bivariate Gumbel copula with parameter θ = 2 and Pareto
marginals with location parameter 1 and shape parameter 2. Evolution of RMSE1 and
σ̂1 (in parenthesis) in terms of the size of the sample n for α = 0.9, ω = 0.98 �xed. We
take 500 Monte Carlo simulations.
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2.8 Application in Loss-ALAE data-set

The estimators of the multivariate CoVaR measures proposed in De�nitions 2.2.1 and

2.2.2 are now calculated in a real insurance case: Loss-ALAE data (in the log scale).

The considered data-set contains n = 1500 observations. Each claim is composed of an

indemnity payment (the loss, X) and an allocated loss-adjustment expense (ALAE, Y ).

These ALAEs are insurance company expenses similar to the fees paid to lawyers and

other experts to defend claims. This data-set is studied in-depth in Frees and Valdez

(1998).

In Table 2.6 and 2.7, the ĈoVaRα,ω(X,Y ) and ĈoVaRα,ω(X,Y ) for Loss ALAE

data are presented by considering di�erent risk levels α, ω and di�erent Archimedean

copula models C. Frees and Valdez (1998), using the AIC criterion, proposed a Gum-

bel copula for Loss-ALAE data a Gumbel copula with parameter θ̂ = 1.453. In Table

2.6, we provide the ĈoVaRα,ω(X,Y ) estimators for Loss-ALAE data using the Gum-

bel model by Frees and Valdez (1998) (bold column). Furthermore, ĈoVaRα,ω(X,Y )

from other Archimedean models are displayed in Table 2.6. Estimated parameters θ

are obtained using the R function fitCopula. Analogously, for the survival structure

of Loss-ALAE data, the Ali-Mikhail-Haq copula with parameter θ̂ = 0.96 is chosen.

Hence, the ĈoVaRα,ω(X,Y ) using Ali-Mikhail-Haq copula (bold column) and some

other Archimedean models are collected in Table 2.7.

(α, ω) Clayton (0.51) Frank (3.07) Ali-Mikhail-Haq (0.79) Gumbel (1.453) Joe (1.64)

(0.75, 0.90) (12.42, 10.96) (12.43, 10.95) (12.48, 11.01) (11.92, 10.61) (11.84, 10.53)

(0.90, 0.95) (13.12, 11.94) (13.13, 11.99) (13.13, 11.98) (12.95, 11.50) (12.82, 11.27)

(0.95, 0.98) (13.81, 12.82) (13.82, 12.78) (13.81, 12.94) (13.56, 12.17) (13.12, 12.07)

Table 2.6: Coordinates of risk measure ĈoVaRα,ω for Loss ALAE data, using di�erent

copula structures and risk levels (α, ω). The θ̂ for each copula is in parentheses.

(α, ω) Clayton (0.78) Frank (3.07) Ali-Mikhail-Haq (0.96) Gumbel (1.37) Joe (1.39)

(0.75, 0.90) (10.31, 9.37) (10.31, 9.38) (10.31, 9.36) (10.31, 9.34) (10.31, 9.33)

(0.90, 0.95) (11.48, 10.14) (11.44, 10.13) (11.46, 10.14) (11.43, 10.13) (11.41, 10.13)

(0.95, 0.98) (12.03, 10.72) (11.99, 10.69) (12.03, 10.72) (12.00, 10.69) (12.00, 10.70)

Table 2.7: Coordinates of risk measure ĈoVaRα,ω for Loss ALAE data, using di�erent
survival copula structures and risk levels (α, ω). The θ̂ for each copula is in parentheses.

We remark that Loss-ALAE data-set contains repeated values. This fact might

adversely a�ect the proper identi�cation of the model of this data-set (see Pappadà

et al. (2016a)). The deeply study of the model of this data-set would be a future work

that lies beyond the scope of the present chapter.
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2.9 Conclusions

In this chapter, two multivariate extensions of the classic CoVaR are provided for con-

tinuous random vectors. These two risk measures are constructed by using the level

set approach used in Embrechts and Puccetti (2006), Cousin and Di Bernardino (2013)

and Cousin and Di Bernardino (2014). Since the de�ned CoVaR are the minimizers of

suitable expected losses (see (P7)), then they verify the elicitability property, which pro-

vides a natural methodology to perform backtesting. Moreover, since the two proposed

measures are based on the corresponding quantile functions, they are more robust to

extreme values than any other central tendency measures.

The positive homogeneity and translation invariance properties are shown for the

two proposed multivariate CoVaRs. The relations between the univariate VaR and our

CoVaR are also analysed as well as the relations between the multivariate VaR proposed

by Cousin and Di Bernardino (2013) and our multivariate CoVaR. Interestingly enough,

both multivariate CoVaRs coincide with the univariate VaR when a comonotonic ran-

dom vector is considered, and they verify the additivity property under π-comonotonic

conditions. The behaviour of the multivariate CoVaR with respect to the risk level,

the usual stochastic order of marginal distributions, and the dependence structure are

studied. Unsurprisingly, the e�ect in the multivariate lower-orthant CoVaR (upper-

orthant CoVaR, respectively) with respect to a change in the risk level, a change in the

dependence structure, or the usual stochastic order of marginal distributions, tends to

be the same as for the multivariate lower-orthant VaR (upper-orthant VaR, respecti-

vely) proposed in Cousin and Di Bernardino (2013). Important results and analytical

expressions for our multivariate risk measures are obtained for random vectors with

Archimedean copulas. In particular, certain subadditivity inequality is presented in the

Archimedean case under regular variation conditions. A systemic risk measure based

on the multivariate ∆CoVaR is illustrated. Moreover, under Archimedean copula con-

ditions, estimators of the two proposed multivariate CoVaRs are provided for simulated

data and real insurance data. As we point out in Section 2.6, consistency and asymp-

totic normal properties of these estimators need a supplementary study that constitutes

a future line to develop.

As a future perspective, the evaluation of the proposed measures in certain multi-

dimensional portfolios and the comparison between the results for these measures and

the results for multivariate existent measures could be studied (see Cousin and Di Ber-

nardino (2013), Cousin and Di Bernardino (2014), and Cai and Li (2005)). Moreover,

a deep study of the subadditivity property for the two multivariate CoVaRs and of our

proposed ∆CoVaR measure could be done. It would also be interesting to develop an

estimation procedure for ∆CoVaR.





Chapter 3

Non-parametric extreme estimation

of Multivariate CoVaR

3.1 Introduction

In this chapter, we consider the multivariate return level based on the critical layers as

proposed in De�nition 2.2.1 in Chapter 1. This risk measure is de�ned by the (1− p)-
quantile of the random variable Ti := [Xi|X ∈ ∂L(α)] in (2.6), that is,

CoVaRi
α,1−ω(X) := UTi

(
1

p

)
, for p ∈ (0, 1), (3.1)

where ω = (ω1, . . . , ωi−1, p, ωi+1, . . . , ωd) is a marginal risk vector with ωi, p ∈ [0, 1],

UTi(t) := F−1
Ti

(1− 1
t |α), for t > 1 (see (1.5)), and F−1

Ti
(· |α) denotes the left-continuous

inverse of FTi(· |α) de�ned in Lemma 2.2.1. From now on, CoVaRi
α,1−ω(X) in Equation

(3.1) is denoted by xip. The goal of this chapter is to estimate the multivariate extreme

return levels xipn . To this end, two problematic points can be identi�ed:

i) In Chapter 2, we analyse this measure and introduce a semi-parametric estimation

procedure. However, the aforementioned semi-parametric estimation (see De�ni-

tion 2.6.1) and empirical quantile estimators perform well only if the threshold is

not too high. These methods cannot handle extreme events, that is, pn � 1/n,

which are speci�cally required for hydrological and environmental risk measures.

ii) The considered conditional random variable Ti relies on the latent Multivari-

ate Probability Integral Transformation (MPIT) Z := F (X1, . . . , Xd) (see (2.6)),

which is not observed. Therefore, in order to apply a quantile estimation proce-

dure, Z has to be previously estimated. This type of plug-in procedure increases

the variance of the �nal estimation and introduces statistical di�culties (see, e.g.,

Di Bernardino et al. (2011)).

53
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In order to overcome the drawback outlined in item i), in the present chapter we provide

an estimator of xipn , for a �xed α and when pn → 0, as n → +∞, by using Extreme

Value Theory (EVT). For the dependence structure of the multivariate risk vectorX, we

consider Archimedean copulas. The rationale for employing Archimedean copulas is mo-

tivated by the fact that, under this assumption, the distribution of Ti and its tail index

can be easily obtained (see Proposition 3.2.1). Frequently, hydrological phenomena are

characterized by upper tail dependence as described by Gumbel-Logistic models (e.g.,

see Fawcett and Walshaw (2012), Chebana and Ouarda (2011a), de Waal et al. (2007)).

Furthermore, in this framework, one can avoid having to previously estimate the latent

variable Z (see item ii)). Indeed, the proposed estimator procedure is only based on

quantities that can be directly estimated by using the observed d-dimensional indepen-

dent and identically distributed (iid) sample of (Xj), for j = 1, . . . , n (see Equation

(3.10)).

Following these considerations, under a regular variation condition for the generator

φ and the von Mises condition for the marginal Xi, we develop an extreme extrapolation

technique in order to estimate xipn (see, e.g., Cai et al. (2015)).

This chapter is organized as follows. In Section 3.2, we derive the tail index of Ti.

Under suitable assumptions, a non-parametric estimation procedure for xipn is obtained

when pn → 0 as n→ +∞ for a �xed α (Section 3.3). The main result is the asymptotic

convergence of our estimator with pn → 0, as n → +∞ (Section 3.4). In Section

3.5, the performance of the proposed extreme estimator is illustrated on simulated

data. An adaptive version of the proposed extreme estimator is provided in Section 3.6.

Finally, Section 3.7 concludes with an application to a 3−dimensional rainfall data-set

in order to illustrate how the proposed estimation procedure can help in the evaluation

of multivariate extreme return levels. The conclusions are provided in Section 3.8.

3.2 Study of Ti tail index

In this section, we aim to study the tail behaviour of Ti, for i = 1, . . . , d. We assume

the existence of the limit in [1,∞] of

ρ = − lim
s↑1

(1− s)φ′(s)
φ(s)

. (3.2)

Equation (3.2) is equivalent to a regular variation of φ at 1 with index ρ, that is,

φ ∈ RVρ(1) (see Charpentier and Segers (2009) for details). Furthermore, ρ ≥ 1 due

to the convexity of φ. When ρ > 1, the upper tail of the copula exhibits asymptotic

dependence, while if ρ = 1, then the upper tail exhibits asymptotic independence. Under

condition (3.2) for the generator φ, we now study the maximum domain of attraction

(see Section 1.2) of Ti, for i = 1, . . . , d.
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Proposition 3.2.1 (The von Mises condition for Ti). Let (X1, . . . , Xd) be a random

vector with Archimedean copula with twice di�erentiable generator φ. Assume that

φ ∈ RVρ(1), with ρ ∈ [1,+∞]. Let i ∈ {1, . . . , d} and FXi be the twice di�erentia-

ble distribution function of Xi. Assume that FXi veri�es the von Mises condition with

index γi ∈ R. Denote Ti := [Xi|X ∈ ∂L(α)] with distribution function FTi(·|α) given by

Lemma 2.2.1.

i) If ρ ∈ [1,+∞), then FTi(·|α) veri�es the von Mises condition with tail index

γTi = γi
ρ . Speci�cally, Ti ∈MDA

(
γTi
)
.

ii) If ρ = +∞, then FTi(·|α) veri�es the von Mises condition with tail index γTi = 0.

In particular, Ti ∈MDA (0).

Proof. We �rst prove item i). Let xFTi (α) be the right endpoint of FTi . Since, by

assumptions, φ ∈ RVρ(1), φ′ ∈ RVρ−1(1) and FXi veri�es the von Mises condition with

index γi (see De�nition 1.2.2), therefore

lim
x↑xFTi (α)

(1− FTi(x|α))F ′′Ti(x|α)

(F ′Ti)
2(x|α)

= lim
z↑1

d− 2

d− 1

[(
1− φ(z)

φ(α)

)−(d−1)

− 1

]

+
φ(α) [(−ρ+ 1)− (γi + 1)]

(d− 1)φ′(z)(1− z)

[
−
(

1− φ(z)

φ(α)

)2−d
+ 1

]

−
(
−1

ρ

)
1

d− 1
[(−ρ+ 1)− (γi + 1)] .

Since φ(1) = 0, the �rst summand approaches 0 when z approaches 1. We denote

C =
(
−1
ρ

)
[(−ρ+1)−(γi+1)]

d−1 . For the second summand it is veri�ed that:

lim
z↑1

φ(α)C

φ(z)

[
−
(

1− φ(z)

φ(α)

)2−d
+ 1

]
=

2ρ+ 2γi − dρ− dγi
ρ(d− 1)

.

Hence,

lim
x↑xFTi (α)

(1− FTi(x|α))F ′′Ti(x|α)

(F ′Ti)
2(x|α)

= −
(
γi
ρ

+ 1

)
.

The random variable Ti therefore veri�es the von Mises condition with γTi = γi
ρ .

Similar to the proof of item i), the von Mises condition for Ti when ρ = +∞ is satis�ed

with γTi = 0. Therefore item ii) is also proved. From Theorem 1.2.2, other assertions

of Proposition 3.2.1 are shown directly.

Remark 3.2.1. Note that γTi does not depend on the risk level α nor on the dimension

d. However, γTi depends on the domain of attraction of the respective margin Xi and

on the regularly varying index ρ of the generator of the Archimedean copula considered.

It should be borne in mind that assumptions of Proposition 3.2.1 can be easily satis�ed
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(see example 3.2.1). In Table 1 in Charpentier and Segers (2009), various copula models

with associated ρ index can be found. Furthermore, the classic von Mises condition is

veri�ed for a large class of unidimensional marginal distributions FXi .

Illustrations of Proposition 3.2.1 are given in Example 3.2.1.

Example 3.2.1. Certain tail indexes for Ti are now derived. The ρ indexes for the

classic bivariate Archimedean copulas are collected in Table 1 in Charpentier and Segers

(2009). From this table and from Proposition 3.2.1, Table 3.1 below is constructed. Table

3.1 contains the tail index γTi of Ti when Xi is in the Weibull domain (i.e., γi < 0),

Gumbel domain (i.e., γi = 0), and Fréchet domain (i.e., γi > 0), for di�erent values of

ρ. In Table 3.2, certain speci�c models are considered.

ρ γi < 0 γi = 0 γi > 0

(1,+∞) γi/ρ 0 γi/ρ

1 γi 0 γi

+∞ 0 0 0

Table 3.1: The tail index γTi when (X1, . . . , Xd) follows an Archimedean copula with
φ ∈ RVρ(1) and FXi veri�es the von Mises condition with index γi.

Copula U(0, 1) Exp(λ) Par(δ, 1)

Gumbel −1/θ 0 1/δθ

Ali-Mikhail-Haq −1 0 1/δ

Copula 18 in Table 4.1 (Nelsen (2006)) 0 0 0

Table 3.2: The tail index γTi for certain speci�c models.

Remark 3.2.2. Let X be a d-dimensional random vector with survival distribution

function F and survival Archimedean copula Ĉ with generator ϕ, i = 1, . . . , d. We can

now consider the conditional distribution of

T ′i := [Xi |X ∈ ∂L(α)], for α ∈ (0, 1). (3.3)

Let V = (V1, . . . , Vd) be the vector whose components Vi represent the survival mar-

gins of X. By taking into account the above notation and the expression in Equation

(1.8), we obtain

[V|Ĉ(V) = 1− α]
d
= (ϕ−1(S1ϕ(1− α)), . . . , ϕ−1(Sdϕ(1− α))), (3.4)

where S = (S1, . . . , Sd) is uniformly distributed on the unit simplex. From Equation

(3.4), we adapt the discussion in Remark 3.8 in Brechmann (2014) to this case and we
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obtain that the survival distribution of T ′i is given by

F T ′i (x|α) =


(

1− ϕ(FXi (x))

ϕ(1−α)

)d−1

, if x ≤ Qi(α);

0, if x > Qi(α),

where FXi is the survival marginal distribution of Xi and Qi(α) is the associated quantile

function at level α ∈ (0, 1). The von Mises condition in De�nition 1.2.2 is now studied

for the survival distribution function of T ′i . Furthermore, since we are interested in the

behaviour of the distribution tail when the distribution tends to the maximum probability

1, we study the left-tail of the survival distribution.

By assuming that ϕ is twice di�erentiable, ϕ ∈ RVρ(1) with ρ′ ∈ [1,+∞], and that

FXi veri�es the von Mises condition with index γ′i ∈ R, it holds that:

i) If ρ′ ∈ [1,+∞), then F T ′i (·|α) veri�es the von Mises condition with tail index

γT
′
i =

γ′i
ρ′ ;

ii) If ρ′ = +∞, then F T ′i (·|α) veri�es the von Mises condition with tail index γT
′
i = 0.

The (1 − p)-quantile of T ′i represents the multivariate upper-orthant CoVaR de�ned in

De�nition 2.2.2 in Chapter 1. By using similar arguments to that of this chapter and

by considering this remark, we can also develop an extreme estimation procedure for the

multivariate upper-orthant CoVaR.

The relationship between the quantile functions UTi and UXi is established in the

following result.

Proposition 3.2.2 (Relation between UTi and UXi). Let (X1, . . . , Xd) be a random

vector with Archimedean copula with generator φ. Assume that φ ∈ RVρ(1), with ρ ∈
[1,+∞]. Denote Ti := [Xi|X ∈ ∂L(α)] with distribution function FTi(·|α) given by

Lemma 2.2.1. Let k = k(n)→∞, k/n→ 0, as n→∞, and

kU (n) := n

{
1− φ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
φ(α)

]}
. (3.5)

Therefore,

i) kU (n) is an intermediate sequence, that is, kU (n)→∞, kU/n→ 0 as n→∞.

ii) UTi
(
n
k

)
= UXi

(
n
kU

)
, where UXi is the marginal quantile function of Xi (see (1.5)).

Proof. For item i), since k(n)/n→ 0, as n→∞, and φ−1(0) = 1, kU/n→ 0 holds, as

n→∞. Furthermore, we have the following asymptotic approximation

kU (n) ∼ n (φ(α)(d− 1))1/ρ

(
k(n)

n

)1/ρ

, (3.6)
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as n → +∞. From Equation (3.6), it holds that k(n)/kU (n) → 0, as n → ∞, for

ρ ∈ (1,+∞]. Therefore, kU (n)→ +∞ as n→ +∞.

Since UXi(t) = F←Ti (1− 1/t) and using Lemma 2.2.1,

UTi

(
n

k(n)

)
= UXi

(
1

1− φ−1
[(

1− (1− k(n)/n)1/(d−1)
)
φ(α)

]) .
Therefore,

UTi

(
n

k(n)

)
= UXi

(
n

kU (n)

)
where kU (n) = n

{
1− φ−1

[(
1−

(
1− k(n)

n

)1/(d−1)
)
φ(α)

]}
. Consequently, item ii)

of Proposition 3.2.2 is also proved.

3.3 Proposed non-parametric estimator for multivariate Co-

VaR

Henceforth, we will focus on the case: γi > 0 and ρ ∈ [1,+∞) (in particular, this

implies γTi > 0). This choice is motivated by our applications in hydrology and espe-

cially in those of real rainfall data-sets. Indeed, in these real-life applications, we can

easily observe heavy tailed distributions (see, for instance, Pavlopoulos et al. (2008)

and Papalexiou et al. (2013)). Salvadori and De Michele (2001) also show some parti-

cular scaling features of extreme value distributions for rainfall data. For the marginal

distribution Xi, we therefore assume that there exists γi > 0 such that, for all x > 0,

UXi ∈ RVγi .

In this case, Propositions 3.2.1 and 3.2.2 yield, as n→∞,

xipn = UTi

(
1

pn

)
∼ UXi

(
n

kU

)(
k

n pn

)γi/ρ
= UXi

(
n

kU

)(
k

n pn

)γTi
, (3.7)

where kU is the same as in Equation (3.5), and k = k(n)→∞, k(n)/n→ 0, as n→∞.

Let (X1, . . . , Xd) be a d-dimensional random vector with continuous distribution

function F and Archimedean copula with generator φ. The goal is to estimate xipn
in (3.7) based on d-dimensional iid observations, (Xj), for j = 1, . . . , n, from F ,

where pn → 0, as n → +∞. Let Xi
n−bkU c,n be the (n − bkUc)-th order statistic of

(Xi
1, . . . , X

i
n). Therefore, the natural estimator of UXi

(
n
kU

)
is its empirical counter-

part, that is, Xi
n−bkU c,n (e.g., see de Haan and Ferreira (2006)).

From Equation (3.7), in order to de�ne the estimator of xipn , it thus remains to
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estimate γi and ρ. We estimate γi with the Hill estimator (see Hill (1975)):

γ̂i =
1

k1

k1−1∑
j=0

logXi
n−j,n − logXi

n−k1,n, (3.8)

where k1 is an integer sequence such that k1(n) → ∞, k1/n → 0, n → ∞, and such

that Xi
n−k1,n is the intermediate order statistic at level n − k1. We now deal with

the estimation of the regularly varying index ρ of the Archimedean generator φ. From

Charpentier and Segers (2008), if the distribution function of a random vectorX is given

by a d−dimensional Archimedean copula C with generator φ, then the distribution

function of every bivariate subvector (Xi, Xj) is given by the bivariate Archimedean

copula with the same generator. As a consequence, to estimate ρ, we focus on the

bivariate subvector (Xi, Xj). Furthermore, under our assumption, one can prove that

the upper tail dependence coe�cient in Equation (1.10) is given by λU = 2 − 21/ρ

(e.g., see Corollary 2.1. in Di Bernardino and Rullière (2014)). Therefore, we use the

following estimator of ρ:

ρ̂ :=
log(2)

log(2− λ̂U )
, (3.9)

where λ̂U is the estimator of the upper tail dependence coe�cient proposed by Schmidt

and Stadtmüller (2006) (see Equation (1.11)).

Let γ̂Ti := γ̂i
ρ̂ . We can therefore estimate xipn in (3.7) by

x̂ipn = Xi
n−bkU c,n

(
k

n pn

)γ̂Ti
. (3.10)

Remark 3.3.1. Notice that the proposed estimator in Equation (3.10) does not rely on

the latent MPIT Z := F (X1, . . . , Xd), which is not directly observed. Under assumptions

of Proposition 3.2.1, the application of the proposed extrapolation technique precludes the

necessity to previously estimate Z. Indeed, the estimator x̂ipn in Equation (3.10) is only

based on quantities that can be directly estimated by using the observed d-dimensional iid

sample (Xj), for j = 1, . . . , n. In Section 3.5, we provide a comparison with an empirical

quantile estimation of Ti constructed by using the empirical multivariate distribution

function Fn(Xj) (see Equation (3.20)).

3.4 Asymptotic convergence

3.4.1 Preliminary Results

In order to prove asymptotic normality of γ̂Ti , we need to quantify the rates of conver-

gence de�ned due to UXi ∈ RVγi , γi > 0. We therefore assume the following second-

order strengthening of the above regularity condition: UXi ∈ 2RVγi,τi(Ai), γi > 0 and
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τi < 0 (see Appendix A for the de�nition of 2RV).

Corollary 3.4.1 and Theorem 3.4.1 below are crucial in the proof of our main re-

sult Theorem 3.4.3. Under a second-order condition for the bivariate upper tail copula

ΛU (x, y) (see the condition in (3.11)), we can obtain an asymptotic normality result for

the estimator ρ̂ (see Corollary 3.4.1 below). The proof of Corollary 3.4.1 follows from

Corollary 2 in Schmidt and Stadtmüller (2006) and the Delta Method technique.

Corollary 3.4.1 (Asymptotic normality of ρ̂). Let F be a bivariate distribution function

of (Xi, Xj) with continuous marginal distribution functions FXi and FXj . Let C be the

Archimedean copula of (Xi, Xj) with generator φ ∈ RVρ(1), with ρ ∈ (1,+∞). Let

k2 = k2(n)→∞ and k2/n→ 0 as n→∞. Assume that the bivariate upper tail copula

ΛU (x, y) exists and has continuous partial derivatives. Furthermore, let Aρ : R+ → R+

be an auxiliary function such that Aρ(t)→ 0 as t→∞ and

lim
t→∞

ΛU (x, y)− t Ĉ(x/t, y/t)

Aρ(t)
= g(x, y) <∞, (3.11)

locally uniformly for (x, y)2 ∈ R2
+ := [0,∞]2\{(∞,∞)} for some non-constant function

g, where Ĉ represents the survival copula. Therefore, if
√
k2Aρ(n/k2) → 0 as n → ∞,

then √
k2(ρ̂− ρ)

d→ N
(
0, σ2

)
,

where N
(
0, σ2

)
is a centred normal-distributed random variable with

σ2 = σ2
U

(
log(2)

(2− λU ) log2(2− λU )

)2

and

σ2
U = λU +

(
∂

∂x
ΛU (1, 1)

)2

+

(
∂

∂y
ΛU (1, 1)

)2

+ 2λU

((
∂

∂x
ΛU (1, 1)− 1

)(
∂

∂y
ΛU (1, 1)− 1

)
− 1

)
. (3.12)

Note that the asymptotic variance in Corollary 3.4.1, vanishes in the asymptotically

independent case. Therefore, in the case ΛU = 0, it is veri�ed that λ̂U
P→ 0 (for

more details see Theorem A.1. and Corollary A.1. in Di Bernardino et al. (2013)).

Consequently, ρ̂ρ
P→ 1.

In Table 3.3, the second-order condition for the bivariate upper tail copula ΛU (x, y)

in Equation (3.11) is illustrated for certain classic Archimedean copula models with

ΛU (x, y) = x + y − (xθ + yθ)1/θ. We consider the Gumbel copula, Joe copula, and

Copulas (12), (14), (15) and (21) in Table 4.1 of Nelsen (2006). Observe that the

property in Equation (3.11) is not veri�ed for Copula (2) in Table 4.1 in Nelsen (2006).

In the following, we adapt the well-known Central Limit Theorem for the interme-
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Copula φ(t) Aρ(t)

Gumbel (− log(t))θ t−1

Joe − log(1− (1− t)θ) t−θ

(12) (1/t− 1)θ t−1

(14) (t−1/θ − 1)θ t−1

(15) (1− t1/θ)θ t−1

(21) 1− (1− (1− t)θ)1/θ t−θ

Table 3.3: Bivariate Archimedean copula models with ρ = θ and λU = 2− 21/θ.

diate order statistics in our setting. This result follows easily from Theorems 2.4.1 and

2.4.2 in de Haan and Ferreira (2006). Further details are given in Theorem 2.1 in Drees

(1998).

Theorem 3.4.1 (Theorem 2.1 in Drees (1998)). Let (X1, . . . , Xd) be a random vector

with Archimedean copula C with twice di�erentiable generator φ. Assume that φ ∈
RVρ(1), with ρ ∈ [1,+∞]. Let i ∈ {1, . . . , d}. Assume that UXi ∈ 2RVγi,τi(Ai), γi > 0

and τi < 0. Let k = k(n) → ∞, k/n → 0, n → ∞ such that limn→∞
√
kU Ai(n/kU )

exists and is �nite with the sequence kU de�ned as in Equation (3.5). Therefore, it holds

that, as n→ +∞,

√
kU (n)

 Xi
n−bkU c,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1).

Proof. From Proposition 3.2.2, it is veri�ed that UTi
(
n
k

)
= UXi

(
n
kU

)
, and kU (n)→∞,

kU/n → 0 as n → ∞. Since, by assumptions, UXi ∈ 2RVγi,τi(Ai), γi > 0, τi < 0, and
√
kUAi(n/kU )→ λ′ <∞, as n→∞, then, from Theorem 2.4.2 in de Haan and Ferreira

(2006), the result is attained.

3.4.2 Asymptotic convergence for γ̂i
ρ̂

The asymptotic normality of γ̂Ti is obtained in Theorem 3.4.2.

Theorem 3.4.2 (Asymptotic normality of γ̂Ti ; upper tail dependence case; ρ > 1). Let

(X1, . . . , Xd) be a random vector with Archimedean copula C with twice di�erentiable

generator φ. Assume that φ ∈ RVρ(1), with ρ ∈ (1,+∞). Let i ∈ {1, . . . , d} and FXi be
the twice di�erentiable distribution function of Xi. Assume that:

1. For (Xi, Xj), with i 6= j, the tail copula ΛU exists, has continuous partial deriva-

tives, and satis�es the second-order condition given in Equation (3.11) with auxi-

liary function Aρ(·).

2. UXi ∈ 2RVγi,τi(Ai), γi > 0 and τi < 0.
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3. k1 = k1(n)→∞, k1/n→ 0, n→∞ such that
√
k1Ai(n/k1)→ λ as n→∞ with

λ �nite.

4. k2 = k2(n)→∞, k2/n→ 0, n→∞ such that
√
k2Aρ(n/k2)→ 0 as n→∞.

Let r = limt→+∞

√
k1(n)√
k2(n)

∈ [0,∞] and γTi := γi
ρ . Therefore, as n→∞,

min(
√
k1,
√
k2)

(
γ̂Ti

γTi
− 1

)
d→

{
Θ1 + rΘ2, if r ≤ 1;
1
rΘ1 + Θ2, if r > 1,

where Θ1 ∼ N(µ/γi, 1) with µ = λ/(1 − τi), and Θ2 ∼ N(0, σ2/ρ2), with σ2 =

σ2
U

(
log(2)

(2−λU ) log2(2−λU )

)2
, λU := Λ(1, 1) the upper tail dependence coe�cient, and σ2

U

de�ned in (3.12).

Proof. Since UXi ∈ 2RVγi,τi(Ai) with γi > 0 and τi < 0, from Theorem 3.2.5 in de Haan

and Ferreira (2006) and Slutsky's Theorem (e.g., see Ser�ing (1980)), it is veri�ed that

√
k1

(
γ̂i
γi
− 1

)
d→ N (µ/γi, 1) , (3.13)

with µ = λ/(1 − τi). From Charpentier and Segers (2008), if the distribution function

of a random vector (X1, . . . , Xd) is given by a d−dimensional Archimedean copula C

with generator φ, then the distribution function of every bivariate subvector (Xi, Xj),

i 6= j, is obtained by the bivariate Archimedean copula with the same generator. As

a consequence, to estimate ρ such that φ ∈ RVρ(1), we focus on the bivariate case. In

addition, since the conditions of Corollary 3.4.1 are satis�ed under the assumptions of

Theorem 3.4.2, then by using the Delta Method, it is veri�ed that

√
k2

(
ρ

ρ̂
− 1

)
d→ N

(
0, σ2/ρ2

)
(3.14)

with σ2 provided in the statement of Theorem 3.4.2. We can now write

γ̂Ti
γTi

=
γ̂i
γi
× ρ

ρ̂
=: M1 ×M2

and we deal with the two factors separately:

- From (3.13), M1 = Θ1√
k1

+ oP

(
1√
k1

)
+ 1 with Θ1 ∼ N (µ/γi, 1);

- From (3.14), M2 = Θ2√
k2

+ oP

(
1√
k2

)
+ 1 with Θ2 ∼ N

(
0, σ2/ρ2

)
.

Hence, (
γ̂Ti

γTi
− 1

)
= M1 ×M2 − 1 =

Θ1√
k1

+
Θ2√
k2

+ oP

(
1√
k1

)
+ oP

(
1√
k2

)
.

Since k1 →∞ and k2 →∞, as n→∞, the result is provided.
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Remark 3.4.1 (Asymptotic behaviour of γ̂Ti ; upper tail independence case; ρ = 1).

Notice that, if ρ = 1 (i.e. tail copula ΛU ≡ 0) then the asymptotic variance in Theorem

3.4.2 vanishes. However, in the upper tail independence case, the consistency of the

proposed estimator γ̂Ti can be obtained. To be precise, if φ ∈ RV1(1) and the second

and third conditions of Theorem 3.4.2 hold, then γ̂Ti

γTi

P→ 1, for n→∞.

3.4.3 Main result

In the following theorem, our main result is presented, i.e., the asymptotic normality

for x̂ipn in (3.10).

Theorem 3.4.3 (Asymptotic normality of x̂ipn ; upper tail dependence case; ρ > 1).

Let (X1, . . . , Xd) be a random vector with Archimedean copula with twice di�erentiable

generator φ. Assume that φ ∈ RVρ(1), with ρ ∈ (1,+∞). Let i ∈ {1, . . . , d} and FXi
be the twice di�erentiable distribution function of Xi. Assume that FXi veri�es the von

Mises condition with index γi > 0. Denote Ti := [Xi|X ∈ ∂L(α)] with distribution

function FTi(·|α) given by Lemma 2.2.1.

Assume:

1. For (Xi, Xj), with i 6= j, the upper tail copula ΛU exists, has continuous partial

derivatives, and satis�es the second-order condition given in Equation (3.11) with

the auxiliary function Aρ(·).

2. UXi ∈ 2RVγi,τi(Ai), γi > 0 and τi < 0.

3. k = k(n)→∞, k/n→ 0, n→∞, such that Theorem 3.4.1 is satis�ed.

4. k1 = k1(n)→∞, k1/n→ 0, n→∞, such that
√
k1Ai(n/k1)→ λ as n→∞.

5. k2 = k2(n)→∞, k2/n→ 0, n→∞, such that
√
k2Aρ(n/k2)→ 0 as n→∞.

Let r = limn→+∞

√
k1(n)√
k2(n)

, r′ = limn→+∞

√
kU (n) log(dn)√

k1(n)
and r′′ = limn→+∞

√
kU (n) log(dn)√

k2(n)

with r, r′ and r′′ ∈ [0,∞].

Hence, as n→∞, if r ≤ 1 and limn→+∞
log(dn)√
k1(n)

= 0,

min

(√
kU ,

√
k1

log(dn)

)(
x̂ipn
xipn
− 1

)
d→


B + r′(Θ1 + rΘ2), r′ ≤ 1;

1
r′B + Θ1 + rΘ2, r′ > 1,

and, if r > 1 and limn→+∞
log(dn)√
k2(n)

= 0, then

min

(√
kU ,

√
k2

log(dn)

)(
x̂ipn
xipn
− 1

)
d→


B + r′′(1

rΘ1 + Θ2), r′′ ≤ 1;

1
r′′B + 1

rΘ1 + Θ2, r′′ > 1,
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where dn := k/(npn), B ∼ N(0, γ2
i ), Θ1 ∼ N(µ/γi, 1) with µ = λ/(1 − τi) and

Θ2 ∼ N(0, σ2/ρ2), with σ2 = σ2
U

(
log(2)

(2−λU ) log2(2−λU )

)2
, λU := Λ(1, 1) is the upper tail

dependence coe�cient and σ2
U is the same as in (3.12).

Proof. We write

x̂ipn
xipn

=
Xi
n−bkU c,n

UXi

(
n
kU

) × ( k

n pn

)γ̂Ti−γTi
=: N1 ×N2.

From Theorem 3.4.1,

N1
d→ B√

kU
+ 1 + oP

(
1√
kU

)
, where B ∼ N(0, γ2

i ). (3.15)

Let r = limt→+∞

√
k1(n)√
k2(n)

∈ [0,∞]. From Theorem 3.4.2, as n→∞,

min(
√
k1,
√
k2)

(
γ̂Ti

γTi
− 1

)
d→

{
Θ1 + rΘ2, if r ≤ 1;
1
rΘ1 + Θ2, if r > 1,

where Θ1 ∼ N(µ/γi, 1) with µ = λ/(1 − τi), limn→∞
√
k1(n)Ai(n/k1(n)) = λ < +∞,

and Θ2 ∼ N(0, σ2/ρ2) with σ2 as provided in Corollary 3.4.1.

Therefore, it is veri�ed that

min(
√
k1,
√
k2)

log(dn)

(
d γ̂

Ti−γTi
n − 1

)
d→

{
Θ1 + rΘ2, if r ≤ 1;
1
rΘ1 + Θ2, if r > 1,

where dn = k
npn

. The interested reader is also referred to the proof of Theorem 4.3.8 in

de Haan and Ferreira (2006). Consequently,

N2
d→


log(dn)√

k1
(Θ1 + rΘ2) + 1 + oP

(
log(dn)√

k1

)
, if r ≤ 1;

log(dn)√
k2

(
1
rΘ1 + Θ2

)
+ 1 + oP

(
log(dn)√

k2

)
, if r > 1.

(3.16)

On combining the asymptotic relations (3.15) and (3.16), if r ≤ 1, then

x̂ipn
xipn
− 1 =

B√
kU

+
log(dn)√

k1
(Θ1 + rΘ2) + oP

(
1√
kU

)
+ oP

(
log(dn)√

k1

)
. (3.17)

Similarly, if r > 1, then

x̂ipn
xipn
− 1 =

B√
kU

+
log(dn)√

k2

(
1

r
Θ1 + Θ2

)
+ oP

(
1√
kU

)
+ oP

(
log(dn)√

k2

)
. (3.18)

Hence, Theorem 3.4.3 comes from Equations (3.17) and (3.18).
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Remark 3.4.2 (Asymptotic consistency of x̂ipn ; upper tail independence case; ρ = 1).

Notice that, if ρ = 1 (i.e. tail copula ΛU ≡ 0), then the asymptotic variance σ2
U in

Theorem 3.4.3 vanishes. However, in the upper tail independence case, the consistency

of the proposed estimator x̂ipn can be obtained. To be precise, if φ ∈ RV1(1) and the

second, third, and fourth conditions of Theorem 3.4.3 hold, then
x̂ipn
xipn

P→ 1, for n→∞.

3.5 Simulation study

The aim of this section is to evaluate the performance of x̂ipn in �nite-size samples.

Although we restrict ourselves to a 3-dimensional case in this study, these illustrations

could be adaptable in any dimension d.

The performance of our extreme estimator x̂ipn is also compared with a pseudo-

empirical estimator (denoted x̂pseudopn ), an empirical estimator (x̂emppn ), and the semi-

parametric empirical estimator (ĈoVaR
i

α,1−ω(X)) de�ned in (2.17). In order to attain

x̂pseudopn , it is assumed that the distribution function of Ti is known (see Lemma 2.2.1).

We can then sample from the random variable Ti by using the fact that

Ti
d
= F−1

Xi

{
φ−1

[(
1− U1/(d−1)

)
φ(α)

]}
,

where U is a uniform random variable. Finally, the pseudo-empirical estimator x̂pseudopn

can be de�ned as the (n− bn pnc)-th order statistic of the sample obtained from Ti,

x̂pseudopn = T in−bn pnc,n. (3.19)

On the other hand, an empirical estimator (x̂emppn ) can be proposed without the need

for any information about Ti. To this end, we sample from the latent random variable

Ti = [Xi|F (X) = α] by using the empirical multivariate distribution function. Let (Xj),

j = 1, . . . , n, be a d-dimensional iid sample of X. For all t ∈ Rd, the d-dimensional

empirical distribution function of X is de�ned as Fn(t) := 1
n

∑n
j=1 1{Xj≤t}. T̃i is then

obtained by collecting the points (Xi
j), for j = 1, . . . , n, such that Fn(Xj) ∈ [α−h, α+h]

for a su�ciently small positive value h. The quantity h is adjusted to each considered

model and each sample size. The competitor estimator x̂emppn is given by

x̂emppn = T̃ in−bn pnc,n. (3.20)

Bear in mind that φ
θ̂n

included in (2.17) is the semi-parametric estimator of the genera-

tor of the copula φθ obtained by considering the maximum pseudo-likelihood estimator

of the parameter θ associated with φθ (e.g., see Genest et al. (1995)). We now consider

the following 3-dimensional distributional models:

1. Joe copula and Fréchet margins: Fi(t) = exp{−t−β}, i = 1, 2, 3, and C(u1, u2, u3) =
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1 − [1 − exp{log(1 − (1 − u1)θ) + log(1 − (1 − u2)θ) + log(1 − (1 − u3)θ)}]1/θ. In
this section, we take the dependence copula parameter θ = 3 and the marginal

parameter β = 3. Bear in mind that the assumptions of Theorem 3.4.3 are satis-

�ed. Indeed, φ ∈ RV3(1) and UXi ∈ 2RV1/3,−1, for i = 1, 2, 3. In addition, the

associated tail-logistic model is given by ΛU (x, y) = x + y − (x3 + y3)1/3, which

satis�es the second-order condition in Equation (3.11) , and λU = 0.74.

2. Independence copula with Fréchet margins:

Fi(t) = exp{−t−β}, i=1,2,3, and C(u1, u2, u3) = u1 u2 u3.

In this case, φ ∈ RV1(1) and the upper tail copula is given by ΛU = λU = 0.

However, using Remark 3.4.2, the consistency of γ̂Ti and x̂ipn is illustrated in this

section.

3. Gumbel copula with Pareto margins: Fi(t) = 1 − (δ1/(t + δ1))δ2 , i = 1, 2, 3,

and C(u1, u2, u3) = exp
{
−
(
(− log(u1))θ + (− log(u2))θ + (− log(u3))θ

)1/θ}
. In

the simulation study, we take the dependence copula parameter θ = 2 and the

marginal parameters δ1 = 1 and δ2 = 2. Bear in mind that the assumptions of

Theorem 3.4.3 are satis�ed. Indeed, φ ∈ RV2(1) and UXi veri�es the 2RV con-

dition with γi = 1/2 and τ = −1/2, for i = 1, 2, 3. Furthermore, ΛU (x, y) =

x + y − (x2 + y2)1/2 veri�es the second-order condition in Equation (3.11), and

λU = 0.59.

Various sample sizes are taken and we consider pn = 1/n and pn = 1/2n, the critical

layer level α = 0.9, and 500 Monte Carlo simulations.

Note that speci�c values for auxiliary sequences of our procedure (k1, k2, and k)

are chosen for each sample size as indicated in the �gures. In order to choose k1,

the estimator of γi is plotted against various values of k1. By balancing the potential

estimation bias and variance, a common practice is to choose k1 from the �rst stable

region of the plots (see e.g., Cai et al. (2015)). Finally, in order to gain stability in

the estimates, the obtained values are averaged in this region. A similar procedure is

developed for the auxiliary sequence k2 (for the estimation of ρ). The sequence k is

selected by observing the stability of the �nal ratio x̂ipn/x
i
pn .

Boxplots of ratio γ̂Ti/γTi In Figure 3.1, we present the boxplots of ratio γ̂Ti/γTi for

the three distributional models considered, and for di�erent sample sizes.
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Figure 3.1: Boxplots of the ratio γ̂Ti/γTi : for Joe copula with θ = 3 and Fréchet margins
with β = 3 (�rst row); for Independence copula and Fréchet margins with β = 3 (second
row); and for Gumbel copula with θ = 2 and Pareto margins with δ1 = 1 and δ2 = 2
(third row). We consider n = 150, n = 500, and n = 2000, and 500 Monte Carlo
simulations.
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Boxplots of ratio x̂ipn/x
i
pn Using Remark 3.4.2, an illustration of the consistency

of the proposed estimator is provided in the independent copula case. In Figure 3.2,

the obtained boxplots for the ratio x̂ipn/x
i
pn are presented for pn = 1/n and pn =

1/2n for n = 150 (left panel) and n = 1000 (right panel). For pn = 1/n, we also

provide the boxplots of the ratios ĈoVaR
i

α,1−ω(X)/xipn , x̂
pseudo
pn /xipn and x̂

emp
pn /xipn , with

the empirical competitor estimators previously de�ned in Equations (2.17), (3.19) and

(3.20), respectively.

Figure 3.2: Independence copula and Fréchet margins with β = 3. Boxplots for the ratio
x̂ipn/x

i
pn with pn = 1/n, pn = 1/2n, and n = 150 (left panel), n = 1000 (right panel).

Boxplots for the competitor empirical estimators with pn = 1/n are also displayed. We
consider α = 0.9 and 500 Monte Carlo simulations.

The obtained boxplots for the ratio x̂ipn/x
i
pn are presented for pn = 1/n and pn =

1/2n, in the Joe and Gumbel copula models in Figures 3.3 and 3.4, respectively. For

pn = 1/n, the comparison with the empirical competitor estimators is also provided.

In Figures 3.2, 3.3 and 3.4, it can be observed that the empirical (x̂emppn ), pseudo-

empirical (x̂pseudopn ) and semi-parametric empirical (ĈoVaR
i

α,1−ω(X)) competitor esti-

mators underestimate the conditional quantile xipn and are consistently outperformed

by the proposed EVT estimator x̂ipn . In addition, the empirical estimators are not

applicable for p < 1/n. Furthermore, the behaviour of the EVT estimator x̂ipn remains

stable when pn changes from 1/n to 1/2n.
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Figure 3.3: Trivariate Joe copula with θ = 3 and Fréchet margins with β = 3. Boxplots
for the ratio x̂ipn/x

i
pn with pn = 1/n, 1/2n for n = 150 (�rst row), n = 500 (second

row) and n = 2000 (third row). Boxplots for the competitor empirical estimators with
pn = 1/n are also displayed. We consider α = 0.9 and 500 Monte Carlo simulations.
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Figure 3.4: Trivariate Gumbel copula with θ = 2 and Pareto margins with δ1 = 1 and
δ2 = 2. Boxplots for the ratio x̂ipn/x

i
pn with pn = 1/n, 1/2n for n = 150 (�rst row),

n = 500 (second row) and n = 2000 (third row). Boxplots for the competitor empirical
estimators with pn = 1/n are also displayed. We consider α = 0.9 and 500 Monte Carlo
simulations.
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Asymptotic normality Finally, the asymptotic normality in Theorem 3.4.3 is illus-

trated in Figure 3.5 for the Joe copula model. The Q-Q plots in Figure 3.5 represent the

sample quantiles of min
(√

kU ,
√
k1

log(dn) ,
√
k2

log(dn)

)(
x̂ipn
xipn
− 1
)
versus the theoretical normal

quantiles for various sample sizes with pn = 1/n. Since the scatterplots line up on the

line in Figure 3.5, this indicates that the sample quantiles coincide largely with the

theoretical quantiles from the asymptotic distribution. Hence, Theorem 3.4.3 provides

an adequate approximation for �nite sample sizes.
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Figure 3.5: Joe copula with parameter θ = 3 and Fréchet margins with β = 3. Q-Q

plots for min
(√

kU ,
√
k1

log(dn) ,
√
k2

log(dn)

)(
x̂ipn
xipn
− 1
)
for pn = 1/n. We take n = 150 (left

panel, �rst row), n = 500 (right panel, �rst row) and n = 2000 (second row). We
consider α = 0.9 and 500 Monte Carlo simulations.

Behaviour of ratio x̂ipn in terms of α In Figure 3.6, the boxplots of ratio x̂ipn/x
i
pn

are presented for a Joe copula with θ = 4 and Fréchet margins with β = 4 by considering

di�erent values of the critical layer level α. Note that the convergence rate kU in
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Proposition 3.2.2 (see Equation (3.5)) satis�es ∂kU (α)
∂α ≤ 0 for �xed values of sample size

n and dimension d. Therefore, as can be observed in Figure 3.6, the performance of the

proposed estimators decreases when α increases.

alpha =0.85 alpha =0.90 alpha =0.95 alpha =0.98 alpha =0.99

0
1

2
3

4

Joe copula theta=4 with Fréchet margins beta=4

  n=150, k1=25, k2=55, kn= 35

alpha =0.85 alpha =0.90 alpha =0.95 alpha =0.98 alpha =0.99

0
1

2
3

4

Joe copula theta=4 with Fréchet margins beta=4

  n=500, k1=55, k2=190, kn= 120

Figure 3.6: Trivariate Joe copula with θ = 4 and Fréchet margins with β = 4. Boxplots
for the ratio x̂ipn/x

i
pn with pn = 1/n, n = 150 (left panel) and n = 500 (right panel).

Various values of α and 500 Monte Carlo simulations are considered.

3.6 Adaptive version

The intermediate sequence kU (n) in Proposition 3.2.2 is an unknown sequence that

depends on the generator of the considered Archimedean copula. In this section, a

plug-in procedure based on the estimation of kU is presented. This can be seen as

an adaptive version of the results in Section 3.4. For this purpose, the notion of the

self-nested diagonal of a copula and the associated non-parametric estimator are used

in the following (for further details see Di Bernardino and Rullière (2013)).

The de�nition of the self-nested diagonals of a copula δr is recalled in (1.9). Di Ber-

nardino and Rullière (2013) introduce the following estimation of a self-nested diagonal

δr given by using an interpolation procedure (see Lemma 3.6 in the aforementioned

paper).

De�nition 3.6.1 (De�nition 4.2 in Di Bernardino and Rullière (2013)). Let δ̂1 be an

estimator of δ1, and δ̂−1 be an estimator of the inverse function δ−1. Estimators of δh

and δ−h can be obtained for any h ∈ N\{0} by setting


δ̂h(u) = δ̂1 ◦ . . . ◦ δ̂1(u), (h times)

δ̂−h(u) = δ̂−1 ◦ . . . ◦ δ̂−1(u), (h times)

δ̂0(u) = u.
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At any order r ∈ R, an estimator of δ̂r of δr is

δ̂r(u) = z

((
z−1 ◦ δ̂h(u)

)1−η (
z−1 ◦ δ̂h+1(u)

)η)
, for u ∈ [0, 1], (3.21)

with η = r − brc and h = brc where brc denotes the integer part of r, and where z is a

strictly monotone function driving the interpolation (ideally the inverse of the generator

of the copula).

Several di�erent estimators for δ1 can be found in the literature. In particular, one

can propose δ̂1(u) = FY,n(u), where FY,n(u) is the empirical distribution function of

Y := max(U1, U2, . . . , Ud) with U the vector whose copula is C. Similarly, we consider

δ̂−1(u) = F−1
Y,n(u), with F−1

Y,n(u) as the empirical quantile function of Y . Illustrations of

the estimator δ̂r in De�nition (3.6.1) are presented in Example 3.6.1.

Using the self-nested diagonal family δr, we write the sequence kU (n) in Proposition

3.2.2 as:

kU (n) = n (1− δr(n)(α)),

where r(n) is a negative real sequence r(n) := log

(
1−

(
1− k(n)

n

)1/(d−1)
)
/ log(d).

Therefore, by using the non-parametric estimator δ̂r in De�nition 3.6.1, we introduce

the estimator

k̂U (n) = n (1− δ̂r(n)(α)), for α ∈ (0, 1). (3.22)

The following consistency result for k̂U (n) can now be proved.

Lemma 3.6.1. Let kU (n) be the intermediate sequence de�ned as in Proposition 3.2.2.

Let δ̂1(u) = FY,n(u), with FY,n(u) as the empirical distribution function of the random

variable Y := max(U1, U2, . . . , Ud), and δ̂−1(u) = F−1
Y,n(u), with F−1

Y,n(u) as the empiri-

cal quantile function of Y . Let k̂U (n) be the associated estimator proposed in Equation

(3.22) for a �xed α ∈ (0, 1), where z is a strictly monotone function driving the inter-

polation. Therefore,

k̂U (n)
kU (n)

P→ 1, as n→∞.

Proof. Firstly, we prove that δ̂h(u)
δh(u)

P→ 1, for u ∈ (0, 1) and for �xed h ∈ Z, where δh
is introduced in (1.9) and δ̂h(u) is de�ned in De�nition 3.6.1. Consider that h ∈ Z+.

Since δ̂1(u) := FY,n(u), where FY,n(u) is the empirical distribution function of Y :=

max(U1, U2, . . . , Ud), then from Glivenko Cantelli's Theorem, it is veri�ed that

sup
u∈[0,1]

|δ̂1(u)− δ1(u)| = sup
u∈[0,1]

|FY,n(u)− FY (u)| P→ 0, as n→∞.

By induction, we assume that supu∈[0,1] |δ̂m−1(u)−δm−1(u)| P→ 0. Since C is a Lipschitz

function (see De�nition 6.2.6 in Nelsen (2006)), from Theorem 1 in Kasy (2015) and
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from the uniform convergence of δ̂1(u), then supu∈[0,1] |δ̂m(u)− δm(u)| P→ 0, as n→∞.
Let h ∈ Z−. We have δ̂−1(u) := F−1

Y,n(u), where F−1
Y,n(u) is the empirical quantile

function of Y . From Theorem 3 in Mason (1982),

sup
u∈(0,1)

|δ̂−1(u)− δ−1(u)| = sup
u∈(0,1)

|F−1
Y,n(u)− F−1

Y (u)| P→ 0, as n→∞.

By induction, we suppose that supu∈(0,1) |δ̂m(u)−δm(u)| P→ 0. Since C−1 is a uniformly

continuous function in [0, 1], then from Theorem 1 in Kasy (2015) and from the uni-

form convergence of δ̂−1(u), we obtain supu∈(0,1) |δ̂m−1(u) − δm−1(u)| P→ 0, as n → ∞.

Therefore, δ̂h(u)
δh(u)

P→ 1, for u ∈ (0, 1) and for �xed h ∈ Z. Furthermore, by using Slut-

sky's Theorem (e.g., see Ser�ing (1980)), one can prove that δ̂r(u)
δr(u)

P→ 1, ∀u ∈ (0, 1) and

∀ r ∈ R �xed. Therefore, since δr is also a continuous and bounded function in r, from

Polya's Theorem (e.g., see Section A.1.1 in Embrechts et al. (1997)), then, for u ∈ (0, 1),

sup
r∈R
|δ̂r(u)− δr(u)| P→ 0, as n→∞.

From the application of this uniform consistency, we obtain the assertion of Lemma

3.6.1.

By using the result in Lemma 3.6.1 and stating that
√
kU (n)

((
k̂U (n)
kU (n)

)−γi
− 1

)
P→ 0

as n→∞, it can be proved that Xi
n−bk̂U c,n

is asymptotically as e�cient as Xi
n−bkU c,n.

To be more precise, an adaptive plug-in version of Theorem 2.1 in Drees (1998) can be

obtained, i.e.,

√
k̂U (n)

 Xi
n−bk̂U c,n

UXi

(
n

kU (n)

) − 1

 d→ γiN(0, 1), as n→∞. (3.23)

Further details are given in Hall and Welsh (1985), Drees and Kaufmann (1998), and

Danielsson et al. (2001). An adaptive version of Theorem 3.4.3 for x̂ipn can also be

provided. The proof is a slightly modi�ed version of the proof of Theorem 3.4.3, through

the application of the result in Equation (3.23) instead of Theorem 3.4.1. Illustrations

of this plug-in estimation version of x̂ipn , by using k̂U instead of kU , can be found in

Section 3.7 for the real hydrological data-set considered. In particular, to estimate the

adaptive sequence k̂U (n) in Section 3.7, the equality z(x) = exp(−x) was chosen. This

choice is recommended in Di Bernardino and Rullière (2013) when there is positive

dependence, since it is the best choice for any Gumbel copula, whatever the parameter

of the copula (see Corollary 3.7 in Di Bernardino and Rullière (2013)). Another natural

choice could be any estimator of the inverse of the generator of the copula. Finally, it

should be borne in mind that this function z does not change values of any δk, for k ∈ Z.
Therefore, the global shape of δr, as a function of r ∈ R, is not heavily in�uenced by
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the choice of z. For a in-depth analysis of the weak impact of the interpolation function

z in the evaluation of δr, the reader is referred to Section 4.3.1 in Di Bernardino and

Rullière (2013).

Example 3.6.1. In Figure 3.7, illustrations of δ̂r with r ∈ R are provided for two di�e-

rent interpolation functions. As in Di Bernardino and Rullière (2013), a 2−dimensional

Gumbel copula is generated with θ = 3 and sample size n = 2000 and n = 7000. We

consider z(x) = exp(−x) (�rst row of Figure 3.7) and z(x) = exp(−x1/θ) (i.e., the

inverse of the Gumbel generator copula, see second row of Figure 3.7) with r = −3.5,

−2.4, −1.2, 0.6, 1.2, 2.4, 3.5. As pointed out before, it can be observed that the mo-

di�cation of the interpolation function z does not produce signi�cant di�erences in the

estimation of δr.
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Figure 3.7: Gumbel copula with dependence parameter θ = 3. Estimation of δr(x)
by considering z(x) = exp(−x) (�rst row) and z(x) = exp(−x1/θ) (second row) with
r = −3.5, −2.4, −1.2, 0.6, 1.2, 2.4, 3.5, for n = 2000 (left panel) and n = 7000 (right
panel).

Finally, an illustration of Lemma 3.6.1 is provided in Example 3.6.2.

Example 3.6.2. In Figure 3.8, the boxplots of the ratio k̂U (n)/kU (n) are gathered for

a Joe copula θ = 3 with Fréchet margins β = 3 by considering various sample sizes,
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with k(n) =
√
n (left panel) and k(n) = n0.9 (right panel). In this case, z is chosen as

the inverse of the generator of the considered Joe copula.

Boxplots of k̂U (n)/kU (n)

Figure 3.8: Joe copula with dependence parameter θ = 3 and Fréchet margins with
β = 3. Boxplots for the ratio k̂U (n)/kU (n) for various values of n, α = 0.9, k(n) =

√
n

(left panel) and k(n) = n0.9 (right panel). 500 Monte Carlo simulations are taken.

3.7 Application in Bièvre region data-set

In this section, we focus on the estimation of the risk of a �ood in the Bièvre region

in the south of Paris (France) by using both the proposed multivariate extreme return

level (see Equation (3.1)) and the classic univariate return level (see Section 1.1).

Presentation of the hydrological data-set The data-set contains the monthly

mean of the rainfall measurements recorded in 3 di�erent meteorological stations of the

Bièvre region, from 2003 to 2013. The unit of measurement is mm. The size of the

data-set is n = 125. The localization of the 3 stations is presented in Figure 3.9 and the

data-set is represented in Figure 3.10. Let Xi denote the temporal series of the monthly

mean of the rainfall measurements for station i, for i = 1, 2, 3. Station 1 is called

Geneste (denoted X1), station 2 Loup Pendu (X2), and station 3 Trou salé (X3). The

data-set considered was provided by the Syndicat Intercommunal pour l'Assainissement

de la Valle de la Bièvre (SIAVB, see http://www.siavb.fr/).
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Figure 3.9: Localization of the three meteorological stations in the Bièvre region (in the
south of Paris, France).
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Figure 3.10: Rank-scatterplot for pairs of margins for the Bièvre region data-set.

The notion of autocorrelation can be de�ned as the correlation between observa-

tions of a time series separated by h time units. Autocorrelation plots are used as a

tool for testing randomness in a data-set. When the autocorrelations in the plot are

near zero for any and all time-lag separations, it could be possible to assume that there
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is no periodicity in the data-set. In Figure 2 in Di Bernardino and Prieur (2014), the

autocorrelation function for each station of Bièvre region data-set is gathered. If we

observe the aforementioned �gure, apparently, certain seasonality should be considered

for each station. However, the autocorrelation function of each station given in Figure 2

in Di Bernardino and Prieur (2014) is bounded between −0.2 and 0.2. Therefore, in our

case, the periodicity of the data-set is regarded as statistically insigni�cant and we sup-

pose the plausibility of the temporal independence assumption for these 3-dimensional

monthly rainfall measurements. Remark that, as an improvement of this work, a deep

study of the model of this data-set would be done by taking into account the certain

seasonality observed in the data-set. However, this issue lies beyond the scope of the

present chapter and may be addressed in future research.

For the sake of completeness, a test of exchangeability is performed (e.g., see Genest

et al. (2012)) for copula of the three pairs (X1, X2), (X1, X3), and (X2, X3): we obtain

p−values of 0.511, 0.206, and 0.181, respectively. The test is performed with the function

exchTest of the R package copula and suggests exchangeability for all pairs. That is,

we can reorder the variables Ui and Uj , i, j ∈ {1, 2, 3}, i 6= j, inside the pair (Ui, Uj),

without changing their copula function (see Figure 3.10). Furthermore, by using a

goodness-of-�t test for various parametrical multivariate distributions, Di Bernardino

and Prieur (2014) proposed a 3-dimensional Gumbel copula with dependence parameter

θ = 3.93 for this data-set. The critical layers ∂L(α) of this data-set for di�erent values

of α are displayed in Figure 3.11.

Figure 3.11: Associated critical layers ∂L(α), for α = 0.75 and 0.9.
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Univariate versus multivariate return levels Given the temporal series Xi of

the monthly mean of the rainfall measurements for station i, one can de�ne the classic

univariate return level with associated probability p as the quantity:

xi,univp = UXi

(
1
p

)
, for i = 1, 2, 3,

where p = 1/12T and T is called the return period, measured in years (see Section

1.1). As proposed by Salvadori et al. (2011), the return level associated with the three

stations can be obtained by considering the vector −→x univp :=
(
x1,univ
p , x2,univ

p , x3,univ
p

)
,

that is, the aggregation of univariate quantiles. Remark that not all hydrologists agree

with this approach, simply it is a fast way to spot a multivariate return level.

However, −→x univp does not take into account the dependence structure between the

three temporal series. As discussed in Section 1.1, while the return level in the univariate

setting is usually identi�ed without ambiguity (see, for instance, Corbella and Stretch

(2012), and Salvadori et al. (2011)), in the multivariate setting it is a troublesome task

(Salvadori et al. (2011), Vandenberghe et al. (2012), and Gräler et al. (2013)).

In this present chapter, a possible procedure is proposed for the identi�cation of the

contribution of the margins to the global (regional) multivariate risk (Salvadori et al.

(2011)). As mentioned at the beginning of this section, the information concerning

the dependence structure of the three rainfall measurements considered is integrated in

order to calculate the associated multivariate return levels. We consider xip := UTi

(
1
p

)
,

for i = 1, 2, 3, where Ti := [Xi | (X1, X2, X3) ∈ ∂L(α)], with α ∈ (0, 1) (see Equation

(3.1)), and we de�ne our multivariate return level as −→x p :=
(
x1
p, x

2
p, x

3
p

)
. In this case,

xip represents the return level associated with the i-th station conditioned to the fact

that the 3-dimensional rainfall data-set belongs to the iso-surface ∂L(α).

Estimation procedure and obtained results In the following, the return levels

xi,univp and xip on the considered rainfall data are estimated, for i = 1, 2, 3. We consider

here α = 0.9. In order to estimate xip, we �rst deal with the estimation of γ̂Ti for each

station. In Figure 3.12 (left panel, �rst row), the Hill estimator γ̂i is presented versus k1

for each station; k1 ∈ [7, 27] is chosen since this window is the �rst stable region of this

plot. Similarly, the stable region chosen for the considered ρ̂ corresponds to k2 ∈ [25, 50]

(see Figure 3.12, right panel, �rst row). Furthermore, the adaptive sequence k̂U (n) is

estimated as described in Section 3.6. In addition, the stable region chosen for x̂ipn is

k ∈ [30, 80] (see Figure 3.12, second row). Finally, to gain stability, the estimations γ̂i,

ρ̂ and x̂ipn are averaged in the chosen stable regions (see also Cai et al. (2015)).
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Figure 3.12: Hill estimators γ̂i versus k1, for i = 1, 2, 3 (left panel, �rst row). Estimator
ρ̂ based on the subvector (X1, X3) versus k2 (right panel, �rst row). Estimates x̂ipn
against various values of the intermediate sequence k, for i = 1, 2, 3, and pn = 12/10n
(second row). The chosen window for each intermediate sequence is shown with red
lines.

The obtained extreme estimation for −→x p is presented in Table 3.4 for di�erent

probability levels p. In Table 3.4, the empirical estimator x̂i,emp12/10n given in Equation

(3.20) is also included. Unsurprisingly, x̂i,emp12/10n provide smaller quanti�cations for risk

than the others estimators (see the simulation study in Section 3.5). Furthermore, using

the extreme quantile estimator proposed in Theorem 4.3.8 in de Haan and Ferreira

(2006), the univariate return level xi,univp is estimated for di�erent probability levels p

(see Table 3.5).

Note that in Table 3.4, γ̂i > 0 (i.e., the monthly mean of the rainfall measurements

for each station i belongs to the Fréchet MDA) and ρ̂ > 1 (i.e., upper tail dependency).

Values shown in Table 3.4 (in Table 3.5, respectively) represent the estimated multi-

variate return levels (univariate return levels, respectively) in mm with an associated
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return period of around 8 years (for p = 12/10n), 17 years (for p = 12/20n), 56 years

(for p = 12/65n) and 86 years (for p = 12/100n).

i Station γ̂i ρ̂ x̂i,emp12/10n x̂i12/10n x̂i12/20n x̂i12/65n x̂i12/100n

1 Geneste 0.227 4.852 52.33912 53.36817 55.12814 58.25515 59.44177

2 Loup Pendu 0.239 4.852 58.55755 59.36239 61.43124 65.11608 66.51731

3 Trou salé 0.222 4.852 41.49933 53.55529 55.28661 58.36007 59.52553

Table 3.4: Estimated extreme multivariate return level x̂ipn , for di�erent values of pn.
The Hill estimator γ̂i is calculated by taking the average for k1 ∈ [7, 27]; ρ̂ is obtained
by taking the average for k2 ∈ [25, 50]; x̂ipn are calculated by taking the average for

k ∈ [30, 80]. The empirical estimator x̂i,emp12/10n in Equation (3.20) is also displayed.

i Station x̂i,univ12/10n x̂i,univ12/20n x̂i,univ12/65n x̂i,univ12/100n

1 Geneste 68.72638 80.44542 105.14140 115.94974

2 Loup Pendu 77.65664 91.70115 121.65781 134.89910

3 Trou Salé 69.53792 81.14697 105.50862 116.13393

Table 3.5: Estimated extreme univariate return level x̂i,univp , for di�erent values of pn.

In Tables 3.4 and 3.5, a major contribution of the second station (i.e., X2) can be

observed. One can interpret that the manager of the Bièvre region needs to pay more

attention to this station since it contributes towards producing a �ood in the region to

a greater degree, both in the univariate and multivariate return level cases.

3.8 Conclusions

The proposed approach to the multivariate return level in the present chapter has

the advantage of using a mathematically consistent way of de�ning the multivariate

probability of dangerous events by relying on the iso-curves ∂L(α). However, there is

no universal choice of an appropriate approach to all real-world problems. It is necessary

to address the problem from a probabilistic point of view and to be aware of the practical

implications of the approach chosen.

It is also evident in our hydrological study, but not necessarily the case, that the

more variables/information included, the smaller the design quantiles become (see mul-

tivariate and univariate return levels in Tables 3.4 and 3.5). Indeed, marginal compo-

nents of the multivariate levels (i.e., x̂ip) are considerably lower than the corresponding

univariate return levels (i.e., x̂i,univp ) (see Tables 3.4 and 3.5). This fact can be intu-

itively interpreted: the probability of an extreme event which simultaneously exceeds a

return level in all margins is liable to be much lower than the probability of an event
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which exceeds the same level in any one of the margins considered alone. Therefore,

the univariate levels xi,univp should be set much larger in order to obtain the same small

exceedance probability p. Salvadori and De Michele (2013) discuss this dimensionality

paradox and provide a theoretical explanation. The interested reader is also referred to

Salvadori et al. (2011) and Gräler et al. (2013) for analogous considerations.

In particular, in our study, the large discrepancy between the estimated x̂ip and

x̂i,univp depends on the parameter setting considered (α = 0.9, pn = 12
10n ,

12
20n ,

12
65n ,

12
100n ,

with n = 125) and on the theoretical properties of the considered multivariate return

level xip. For further details about the properties of this risk measure, the interested

reader is referred to Propositions 2.3.3 - 2.3.5 and Corollary 2.5.4 in Chapter 2.

Furthermore, one should also be aware of the fact that our Ti-quantile approach

(see Equation (3.1)) is applied only to variables that are positively associated and that

have a focus on extremes in terms of large values. In all other cases, adaptations should

be made in order to operate in the proper region of the copula domain (such as the

directional multivariate return levels proposed by Torres et al. (2015)).

From a practical perspective, it is impossible to provide a general suggestion for

an appropriate approach to estimate multivariate design events that is applicable to

a broad set of design exercises. Hitherto, many applications have been based on the

concept of univariate return level, since the concept of multivariate return level has a

di�erent meaning and is potentially less conservative (as can be observed by comparing

Tables 3.4 and 3.5).

On the other hand, when the analyst estimates the extension of �ood inundation,

a joint return period approach could prove appealing. Indeed, an ensemble of equally

rare scenarios (i.e. those with the same return probability p) could help to assess the

variability of the �ood maps.







Chapter 4

The Component-wise Excess design

realization for Archimedean copulas

4.1 Introduction

Let X = (X1, . . . , Xd) be a random vector with distribution function F and survival

distribution function F . By taking into account the notion of critical layers in De�ni-

tion 1.1.4, Salvadori et al. (2011) provide the de�nition of design realization given in

De�nition 1.1.5. As we remark in Section 1.1, De�nition 1.1.5 is based on the idea of

introducing a suitable function that �weights� the realizations lying on the critical layer

of interest. Salvadori et al. (2011) point out that a realization lying on the critical layer

may be of major interest when all of its marginal components are exceeded with the

largest probability. Therefore, Salvadori et al. (2011) consider as the weight function the

multivariate survival distribution function of the considered risk vector (see De�nition

4.1.1).

De�nition 4.1.1 (Constrained optimization problem for Component-wise Excess de-

sign realization). The Component-wise Excess design realization δCE of level α is de�ned

as

δCE(α) = arg max
x∈ ∂L(α)

P(X ∈ [x,∞)). (4.1)

De�nition 4.1.1 suggests searching the point(s) x = (x1, . . . , xd) ∈ ∂L(α) in order to

maximize the probability that a dangerous realization y = (y1, . . . , yd) veri�es all the

following component-wise inequalities: y1 ≥ x1, . . . , yd ≥ xd.
Furthermore, Salvadori et al. (2011) estimate the Component-wise Excess design

realization to study the behaviour of a dam by using a parametric Gumbel setting. As

will be proved below, by considering an Archimedean copula, the constrained optimiza-

tion problem in De�nition 4.1.1 becomes tractable (see Section 4.2). The objectives in

this chapter are:

85
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- to provide the explicit expression of the Component-wise Excess design realiza-

tion given in Salvadori et al. (2011) by assuming a general Archimedean copula

dependency between the risks considered;

- to construct an extreme estimation procedure for the obtained Component-wise

Excess design realization by using Extreme Value Theory (EVT);

- to study and to compare the performance of our estimator on simulated data and

with the estimator of Salvadori et al. (2011) on the same real dam data-set as

studied in the aforementioned paper.

To this end, we will assume the following assumption setting:

Assumption 4.1.1 (Assumption setting).

a) The d−dimensional random risk vector X follows an Archimedean copula with

a twice di�erentiable generator φθ and a vector of dependence parameters θ. In

addition, the d−dimensional random risk vector has a partially strictly-increasing

joint distribution function F .

b) The marginal Xi considered has an absolutely continuous distribution FXi . We

denote as F−1
Xi

the left-continuous inverse of FXi , for i ∈ {1, . . . , d}.

c) The marginal Xi considered has a heavy tailed distribution, for i ∈ {1, . . . , d} (see
details in Section 4.4).

d) x→ φθ(1− 1/x) ∈ 2RV−ρ,β(AY ), with ρ ∈ [1,+∞) and β < 0.

Condition a) in Assumption 4.1.1 is useful to obtain a more tractable constrained

optimization problem for Component-wise Excess design realization in De�nition 4.1.1

(see Proposition 4.2.1). Furthermore, condition c) is used in Section 4.4 to construct the

extreme quantile estimator by using classic extrapolation techniques for heavy tailed

distributions. Condition c) is also motivated by our applications in hydrology. Indeed, in

these real-life applications, we can easily observe heavy tailed distributions (Pavlopoulos

et al. (2008) and Papalexiou et al. (2013)). Moreover, peak and volume variables in the

considered data-set in Section 4.7 turn out to be statistically compatible with heavy-

tailed distributions in Salvadori et al. (2016). However, it is crucial to notice that our

procedure can also be adapted in the case where Xi follows a light tailed distribution

(de Haan and Ferreira (2006)). The notions of regularly varying (RV) and second-order

regularly varying (2RV) functions are recalled in Appendix A.

The structure of the chapter is as follows: In Section 4.2, we provide the analytical

expression of the Component-wise Excess design realization in an Archimedean copula

framework. The tail behaviour of the random variable that constitutes our extreme

estimator for the Component-wise Excess design realization is studied in Section 4.3.

The proposed extreme non-parametric estimator for the Component-wise Excess design
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realization is presented in Section 4.4. In addition, a Central Limit Theorem for this

estimator is provided under certain regularly varying conditions in Section 4.5. The

performance of our estimator is analysed in Section 4.6. Our estimator is compared

with that of Salvadori et al. (2011) on a real dam data-set in Section 4.7. Finally, we

include conclusions of this chapter in Section 4.8.

4.2 Explicit expression of Component-wise Excess design

realization

In this section, we solve the constrained maximization problem in Equation (4.1) in order

to obtain the closed-form expression of the Component-wise excess design realization in

our Archimedean copula framework.

Proposition 4.2.1 (Component-wise Excess design realization in the Archimedean

copula setting). Let X = (X1, . . . , Xd) be the considered random risk vector. Assume

that X satis�es conditions a) and b) in Assumption 4.1.1. The solution δCE(α) of the

constrained maximization problem in Equation (4.1) is given by

δCE(α) =

{
F−1
X1

(
φ−1
θ

(
φθ(α)

d

))
, . . . , F−1

Xd

(
φ−1
θ

(
φθ(α)

d

))}
. (4.2)

Proof. Let α ∈ (0, 1). Let C and C be, respectively, the copula and the joint survival

function associated with the random vector V = (V1, . . . , Vd) with Vi
d
= FXi(Xi), for

i ∈ {1, . . . , d}. Note that the copula version of the constrained optimization problem in

Equation (4.1) can be written as

δCE(α) = arg max
v∈ ∂LC(α)

C(v1, . . . , vd), (4.3)

with ∂LC(α) = {v ∈ [0, 1]d : C(v) = α}.
Equivalently, one can write the constrained optimization problem (4.3) as

arg max
s

C(φ−1
θ (s1), . . . , φ−1

θ (sd))

s.t.:
d∑
i=1

si = φθ(α),

si ≥ 0, for i = 1, . . . , d.

(4.4)

Our aim is to �nd the solution of the constrained optimization problem in (4.4).

From Theorem 2.21 in Boche and Jorswieck (2007), if C(φ−1
θ (s1), . . . , φ−1

θ (sd)) is a

Schur-concave function (see De�nition 1.4.1), the global maximum for the problem in

(4.4) is achieved by s∗ =
(
φθ(α)
d , . . . , φθ(α)

d

)
. Therefore, our aim is to study the Schur-

concavity of the following function: C(φ−1
θ (s1), . . . , φ−1

θ (sd)).
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We now prove that C associated with an Archimedean copula is a Schur-concave

function. To this end, it is helpful to realize that by using the symmetry property,

one can take d = 2 without loss of generality. The interested reader is referred to

Marshall et al. (2011) (Section A.5) for further details. That is, it is su�cient to

prove that bivariate joint survival function C is a Schur-concave function. In addition,

every Archimedean copula is Schur-concave (see Proposition 1.4.3). Furthermore, from

Proposition 1.4.2, a bivariate copula C is Schur-concave if and only if Ĉ(u, v) (see Ĉ

de�nition in Section 1.4) associated with C is also a Schur-concave function.

Since, in our case, C is an Archimedean copula (see condition a) in Assumption

4.1.1), then Ĉ(u, v) is also a Schur-concave function. We remark that C(u, v) = Ĉ(1−
u, 1− v), for (u, v) ∈ [0, 1]2 (see Section 1.4). Therefore, in order to obtain the desired

result, we have to prove that Ĉ(f(u), f(v))), with f(u) = 1 − u, u ∈ [0, 1], is a Schur-

concave function. This last statement holds true because Ĉ(f(u), f(v)) is a composition

of an increasing Schur-concave function (Ĉ) and a concave function (f). The interested

reader is referred to Marshall et al. (2011) (Section B.2) for further details. Using

similar arguments, since C is a decreasing Schur-concave function and φ−1
θ is a convex

function, therefore C(φ−1
θ (s1), . . . , φ−1

θ (sd)) is a Schur-concave function.

Finally, by taking si = φ(vi), for i = 1, . . . , d, from Theorem 2.21 in Boche and

Jorswieck (2007), the global maximum in the constrained optimization problem (4.4)

is achieved through v∗ =
(
φ−1
θ

(
φθ(α)
d

)
, . . . , φ−1

θ

(
φθ(α)
d

))
. By using the Probability

Integral Transform Theorem (see Section 1.5.8.3 in Denuit et al. (2005)) for each margin,

we obtain the result. More precisely, the global optimum point for the constrained

optimization problem in Equation (4.1) is given by
(
F−1
X1

(v∗1), . . . , F−1
Xd

(v∗d)
)
.

As a limit case, we remark that, for d = 1, the solution of the maximization problem

in Equation (4.1) goes to the univariate marginal quantile.

We now present an illustration of Proposition 4.2.1. We consider the following

bivariate models:

• Ali-Mikhail-Haq copula with dependence parameter θ = 0.5 and Uniform margins;

• Clayton copula with dependence parameter θ = 3 and Exponential margins with

λ = 1;

• Gumbel copula with dependence parameter θ = 4 and Pareto margins with δ1 = 1

and δ2 = 2.

In Figure 4.1, we show critical layers ∂L(α) (red lines), the survival functions F (x1, x2)

(black surfaces), δCE(α) (green dots) for di�erent values of α and the associated maxi-

mum points (blue dots) for the three models considered.
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Figure 4.1: Critical layers ∂L(α) (red lines), survival functions (black surfaces), δCE(α)
(green dots) and the associated maximum points (blue dots) for the considered models.
We take α = 0.1 and 0.5 (�rst row); α = 0.6 and 0.8 (second row); α = 0.8 and 0.9
(third row).
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4.3 First and second order tail index for Y
d
= max{V1, . . . , Vd}

Let Y
d
= max{V1, . . . , Vd} be the random variable with distribution function FY . The

(�rst-order) tail behaviour of Y is studied in the following proposition. The interested

reader is also referred to Theorem 1.2.2.

Proposition 4.3.1 (The von Mises condition for Y ). Assume that X = (X1, . . . , Xd)

satis�es conditions a) and b) in Assumption 4.1.1. Assume that φθ ∈ RVρ(1), with ρ ∈
[1,+∞). Let Y

d
= max{V1, . . . , Vd} with Vi

d
= FXi(Xi), for i ∈ {1, . . . , d}. Therefore,

FY veri�es the von Mises condition with tail index γY = −1. In particular, Y ∈
MDA(−1).

Proof. The vector V := (V1, . . . , Vd) has an Archimedean copula as its distribution

function, therefore

P [max{V1, . . . , Vd} ≤ v] = φ−1
θ (dφθ(v)) , v ∈ (0, 1). (4.5)

Hence, we obtain

F ′
Y

(t) = (φ−1
θ )′[dφθ(t)] dφ′θ(t) and

F ′′
Y

(t) = (φ−1
θ )′′[dφθ(t)] d2 (φ′θ(t))2 + (φ−1

θ )′[dφθ(t)] dφ′′θ(t).

The limit in De�nition 1.2.2 can now be calculated.

limt↑1
(1−FY (t))F ′′

Y
(t)

(F ′
Y

(t))2

= lim
t↑1

(1− φ−1
θ (dφθ(t)))

(
(φ−1
θ )′′[dφθ(t)] d2 (φ′θ(t))2 + (φ−1

θ )′[dφθ(t)] dφ′′θ(t)
)(

(φ−1
θ )′[dφθ(t)] dφ′θ(t)

)2
= lim

t↑1
(1− φ−1

θ (dφθ(t))) (φ−1
θ )′′[dφθ(t)] (φ′θ(φ−1

θ (dφθ(t))))2

+ lim
t↑1

(1− φ−1
θ (dφθ(t)))φ′θ(φ−1

θ (dφθ(t)))
φ′′θ(t)

d (φ′θ(t))2
.

Given the assumption φθ ∈ RVρ(1), then φ′θ ∈ RVρ−1(1). Therefore,

lim
t↑1

(1− φ−1
θ (dφθ(t))) (φ−1

θ )′′[dφθ(t)] (φ′θ(φ−1
θ (dφθ(t))))2 = ρ− 1

and

lim
t↑1

(1− φ−1
θ (dφθ(t)))φ′θ(φ−1

θ (dφθ(t)))
φ′′θ(t)

d (φ′θ(t))2
= −ρ+ 1.

Finally, we conclude that limt↑1
(1−FY (t))F ′′

Y
(t)

(F ′
Y

(t))2
= 0⇒ γY = −1. Hence the result follows.
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The (second-order) tail behaviour of Y is studied in the following proposition.

Proposition 4.3.2. Assume that X = (X1, . . . , Xd) satis�es conditions a), b) and d)

in Assumption 4.1.1. Let Y
d
= max{V1, . . . , Vd} with Vi

d
= FXi(Xi), for i ∈ {1, . . . , d}.

Therefore, 1− UY ∈ 2RV−1,β(AY ).

Proof. From Equation (4.5), it is known that

FY (1− 1/t) = 1− φ−1
θ (dφθ(1− 1/t)) .

Since x → φθ(1 − 1/x) ∈ 2RV−ρ,β(AY ), then from Proposition 2.4 in Mao and Hu

(2012), we can write

FY (1− 1/t) = 1− φ−1
θ

[
d c t−ρ

(
1 + 1

βAY (t) + o(AY (t))
)]
.

In addition, x→ φθ(1− 1/x) ∈ 2RV−ρ,β(AY ) implies φθ ∈ RVρ(1). From Remark C in

Di Bernardino and Rullière (2014), it is veri�ed that 1− φ−1
θ (1/x) ∈ RV−1/ρ. We now

obtain

FY (1− 1/t) = (dc)1/ρ t−1
(

1 + 1
βAY (t) + o(AY (t))

)1/ρ
.

By using the Taylor expansion,

FY (1− 1/t) = (dc)1/ρ t−1
(

1 + 1
β ρAY (t) + o(AY (t))

)
.

It can be observed that |ÃY | := |1ρAY | ∈ RVβ from the assumptions. From Proposition

2.4 in Mao and Hu (2012), the result is given.

4.4 Non-parametric extreme estimator for Component-wise

Excess design realization

Assume that the considered risk vectorX satis�es conditions in Assumption 4.1.1. Using

Proposition 4.2.1, we now propose an extreme non-parametric estimation procedure for

each component of the Component-wise Excess design realization δCE(α) in Equation

(4.2) for extreme value α := αn → 1, for n→∞, where n is the sample size considered

and d ≥ 2.

From conditions a) and b) in Assumption 4.1.1, the i-th component of δCE(α) in

Equation (4.2) can be written as the (1 − p)-quantile of the random variable Xi with

p = 1 − φ−1
θ

(
φθ(α)
d

)
, for i ∈ {1, . . . , d}. Let α := αn → 1, therefore p := pn → 0, as

n→ +∞.

The goal of this section is to estimate

xipn := UXi

(
1

pn

)
, for i ∈ {1, . . . , d}, (4.6)
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for pn := 1 − φ−1
θ

(
φθ(αn)

d

)
→ 0, as n → +∞, and UXi(t) := F−1

Xi

(
1− 1

t

)
, for t > 1.

Therefore, the �nal estimator is based on the following �plug-in procedure�: we �rst

deal with the estimation of the random level pn, and secondly with the estimation of

xipn in (4.6). These two steps are detailed below.

First step: estimation of the random risk level pn Let Vi = FXi(Xi), for i ∈
{1, . . . , d}. The vector V := (V1, . . . , Vd) has the considered Archimedean copula as its

distribution function, therefore

P [max{V1, . . . , Vd} ≤ v] = φ−1
θ (dφθ(v)) , v ∈ (0, 1).

Let Y
d

:= max{V1, . . . , Vd}, therefore pn = 1 − F−1
Y

(αn). The random risk level pn can

be written as a function of the αn-quantile of Y , that is,

pn = 1− UY
(

1

1− αn

)
= 1− xY1−αn .

Under conditions a), b) and d) in Assumption 4.1.1, from Proposition 4.3.1, Y ∈
MDA (−1). Therefore, by using Theorem 1.1.13 in de Haan and Ferreira (2006), it

is veri�ed that UY ∈ ERV−1 (see Appendix A for the de�nition of ERV). Following the

same approximation technique as in Equation (3.1.6) in de Haan and Ferreira (2006),

we obtain

xY1−αn = UY

(
1

1− αn

)
∼ UY

(
n

kY

)
+ aY

(
n

kY

) ( kY
n (1−αn)

)γY
− 1

γY
, (4.7)

where kY is an intermediate sequence such that kY = kY (n) → ∞, kY (n)/n → 0, as

n→∞. Let Yn−kY ,n be the (n− kY )-th order statistic of the sample (Y1, . . . , Yn). The

natural estimator of UY
(
n
kY

)
is its empirical counterpart Yn−kY ,n. In order to estimate

aY (n/kY ) and γY , we consider the probability-weighted moment estimators de�ned in

Equations (3.6.9) and (3.6.10) in de Haan and Ferreira (2006). For the sake of clarity,

these estimators are laid out below. We take

γ̂Y = 1−
(
Pn

2Qn
− 1

)−1

(4.8)

and

âY

(
n

kY

)
:= σ̂PWM = Pn

(
Pn

2Qn
− 1

)−1

, (4.9)

with Pn := 1
kY

∑kY−1
i=0 Yn−i,n − Yn−kY ,n and Qn := 1

kY

∑kY−1
i=0

i
kY

(Yn−i,n − Yn−kY ,n).

The consistency results for the estimators Yn−kY ,n, γ̂Y and âY (n/kY ) can be found in

Theorems 2.4.1 and 3.6.1 in de Haan and Ferreira (2006).
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Hence, from Equation (4.7), we obtain

p̂n = 1− x̂Y1−αn = 1−
(
Yn−kY ,n + âY

(
n

kY

) ( kY
n (1−αn)

)γ̂Y
− 1

γ̂Y

)
. (4.10)

Second step: estimation of the extreme quantile xipn From condition c) in

Assumption 4.1.1, there exists γi > 0 such that, for all x > 0, UXi ∈ RVγi (Appendix
A).

In this case, as n→∞,

xipn = UXi

(
1

pn

)
∼ UXi

(
n

ki

)(
ki
n pn

)γi
, (4.11)

where ki is an intermediate sequence such that ki = ki(n) → ∞, ki(n)/n → 0, as

n → ∞. We denote the (n − ki)-th order statistic of the sample (Xi
1, . . . , X

i
n) as

Xi
n−ki,n. We estimate the tail index γi in Equation (4.11) by using the Hill estimator

(Hill (1975)) recalled in (3.8). We can therefore estimate xipn in (4.11) by

x̂ipn = Xi
n−ki,n

(
ki
n pn

)γ̂i
. (4.12)

Finally, by using a plug-in technique with Equations (4.10) and (4.12), we propose the

following extreme estimator for the i-th component of δCE(α) in Equation (4.2):

x̂ip̂n = Xi
n−ki,n

(
ki
n p̂n

)γ̂i
. (4.13)

Remark 4.4.1. Notice that Y is an unobservable random variable in real-life ap-

plications (see, e.g., Section 4.7). In this case, one has previously to construct a

pseudo-observed version of Y . More precisely, consider a real data-set of observations

{X(k) = (X
(k)
1 , . . . , X

(k)
d )}k∈{1,...,n} of the random risk vector X. Firstly, we de�ne

pseudo-observations {V(k) = (V
(k)

1 , . . . , V
(k)
d )}k∈{1,...,n} by setting every component i for

observation number k to

V
(k)
i =

1

n+ 1

n∑
j=1

1{
X

(j)
i ≤X

(k)
i

},

with i = 1, . . . , d, k ∈ {1, . . . , n}. One can check that, for any i = 1, . . . , d, k ∈
{1, . . . , n}, V (k)

i ∈ (0, 1). Therefore, it is obtained the desired univariate sample:

{Ŷ k := max{V (k)
1 , . . . , V

(k)
d }}k∈{1,...,n}. Consistency of this method in a non-parametric

setting has been established in Einmahl et al. (2001), Einmahl and Segers (2009). We

remark that, since Y cannot be observed, in our procedure we neglect the uncertainty

induced by the margins. More precisely, since the uncertainty induced by the estimation
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of Ŷ k is not taken into account in our procedure, then the main result in the follo-

wing Theorem 4.5.1 is only valid under full knowledge of the margins. Therefore, the

con�dence intervals provided in Theorem 4.5.1 can be understood only as optimistic ap-

proximations. However, this issue lies beyond the scope of the present chapter and may

be addressed in future work.

4.5 Asymptotic convergence

In this section, we obtain the Central Limit Theorem for the proposed extreme estimator

in (4.13). Theorem 4.5.1 provides two results: the consistency for the estimated random

risk level pn (see Equation (4.14)); the consistency of the �nal extreme quantile estimator

x̂ip̂n (see Equation (4.16)).

Theorem 4.5.1. Assume that X = (X1, . . . , Xd) satis�es conditions in Assumption

4.1.1. Let Y
d
= max{V1, . . . , Vd} with Vi

d
= FXi(Xi), for i ∈ {1, . . . , d}. Let αn → 1,

pn = 1− xY1−αn and p̂n remain as in Equation (4.10).

Suppose:

1. kY = kY (n)→∞, kY /n→ 0, and
√
kYAY (n/kY )→ λ ∈ R, for n→∞ 1;

2. n(1− αn) = o(kY ) and log (n (1− αn)) = o(
√
kY ), for n→∞.

Let dYn := kY /(n (1− αn)) and qγ(t) :=
∫ t

1 s
γ−1 log (s)ds. Let vn =

√
kY

aY

(
n
kY

)
qγY (dYn )

and

v̂n =
√
kY

âY

(
n
kY

)
qγ̂Y (dYn )

. Therefore, for n→∞,

v̂n(p̂n − pn)
d→ Θ1, (4.14)

where Θ1 = Γ + B + Λ + λ
β−1 and where B is a standard normal distribution and, Γ

and Λ are normal distributions de�ned as in Theorems 3.6.1 and 4.3.1 in de Haan and

Ferreira (2006).

Moreover, assume that:

3. UXi ∈ 2RVγi,τi(Ai), γi > 0 and τi < 0;

4. ki = ki(n)→∞, ki/n→ 0, and
√
kiAi(n/ki)→ λi ∈ R, for n→∞;

5. npn = o(ki) and log (n pn) = o(
√
ki), for n→∞.

Let din := ki/(n pn). De�ne xipn and x̂ip̂n as in Equations (4.11) and (4.13), respectively.

If, for n→∞, √
ki

log (din) vn
→ 0, (4.15)

then it is veri�ed that √
ki

log (din)

(
x̂ip̂n
xipn
− 1

)
d→ Θ2, (4.16)

where Θ2 is a normal random variable with mean λi/(1− τi) and variance γ2
i .

1AY is the auxiliary function of UY , since 1− UY ∈ 2ERV−1,β(AY ) (see proof of Theorem 4.5.1).
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Proof. Firstly, note that

v̂n(x̂Y1−αn − x
Y

1−αn)
d→ Θ1, (4.17)

where Θ1 = Γ + B + Λ + λ
β−1 and where B is a standard normal and, Γ and Λ are

normal distributions as de�ned in Theorems 3.6.1 and 4.3.1 in de Haan and Ferreira

(2006).

Indeed, from Proposition 4.3.2, condition d) in Assumption 4.1.1 implies that 1 −
UY ∈ 2ERV−1,β(AY ) and a(t) = (1 − UY (t)). Therefore, the asymptotic result in

Equation (4.17) comes from Theorems 3.6.1 and 4.3.1, and from Corollary 4.3.2 in

de Haan and Ferreira (2006).

Consequently, we obtain

v̂n(p̂n − pn)
d→ −Θ1,

(Theorem on page 24 in Ser�ing (1980)).

Under conditions 3, 4 and 5 in Theorem 4.5.1, and by applying Theorem 4.3.8 in

de Haan and Ferreira (2006), we determine that

√
ki

log (din)

(
x̂ipn
xipn
− 1

)
d→ Θ2,

where Θ2 is a normal random variable with mean λi/(1 − τi) and variance γ2
i (see

Theorem 3.2.5 in de Haan and Ferreira (2006)).

We now write x̂ip̂n as a function of x̂ipn . That is, we can write

x̂ip̂n = Xi
n−ki,n

(
ki

n p̂n
pn
pn

)γ̂i
= x̂ipn

(
p̂n
pn

)−γ̂i
.

Therefore, we obtain
√
ki

log (din)

(
x̂ip̂n
xipn
− 1

)

=

√
ki

log (din)

(
x̂ipn
xipn

(
p̂n
pn

)−γ̂i
− 1

)

=

√
ki

log (din)

(
p̂n
pn

)−γ̂i ( x̂ipn
xipn
−
(
p̂n
pn

)γ̂i)

=

√
ki

log (din)

(
p̂n
pn

)−γ̂i ( x̂ipn
xipn
− 1

)
+

√
ki

log (din)

[(
p̂n
pn

)−γ̂i
− 1

]
. (4.18)

On the other hand,
p̂n
pn

=
−Θ1

vn
+ 1 + oP

(
1

vn

)
.
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Hence, we obtain

√
ki

log (din)

[(
p̂n
pn

)−γ̂i
− 1

]
=

√
ki

log din

[(
−Θ1

vn
+ 1 + oP

(
1

vn

))−γ̂i
− 1

]
.

By using Taylor's expansion and condition (4.15), it is veri�ed that

√
ki

log (din)

[(
p̂n
pn

)−γ̂i
− 1

]
P→ 0. (4.19)

In addition, Equation (4.19) implies that(
p̂n
pn

)−γ̂i P→ 1. (4.20)

Finally, by using (4.19) and (4.20) in Equation (4.18), from Slutsky's Theorem, we

attain the result.

It should be borne in mind that the quantity din in the convergence rate of Equation

(4.16) remains unknown. However, an adaptive version of this consistency result is

provided in Corollary 4.5.1.

Corollary 4.5.1. Let d̂in := ki/(n p̂n). Conditions of Theorem 4.5.1 imply log (d̂in)
log (din)

P→ 1,

for n→∞. Hence an equivalent statement of Equation (4.16) is

√
ki

log (d̂in)

(
x̂ip̂n
xipn
− 1

)
d→ Θ2,

where Θ2 is de�ned as in Theorem 4.5.1.

The proof of Corollary 4.5.1 comes down trivially by using the convergency p̂n
pn

P→ 1

for n→∞ (see also proof of Theorem 4.5.1). We remark that the latter form proposed

in Corollary 4.5.1 is more useful for constructing con�dence intervals for x̂ip̂n (see Section

4.7).

4.6 Simulation study

A simulation and comparison study is implemented to investigate the �nite sample

performance of our estimator in this section. The estimation procedure presented in

this section involves the notation progressively introduced in Section 4.4. To improve

clarity, a comprehensive scheme of our extreme estimation procedure is presented in

Algorithm 1. The nature of the considered parameters is speci�ed; in particular, we

distinguish between tuning parameters and estimated/calculated quantities. Firstly, we

simulate under the chosen Archimedean copula model.
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Simulations
Choose the sample size n.
Choose the dimension d ≥ 2.
Simulate a sample (uk1, . . . , u

k
d) from a d-Archimedean copula, with k ∈ {1, . . . , n}.

Build the sample Yk := max{uk1, . . . , ukd}, for k ∈ {1, . . . , n}.
Obtain marginal distribution samples xki = F−1

Xi
(uki ) for i = 1, . . . , d and k = 1, . . . , n.

Algorithm 1 Comprehensive scheme for the estimator x̂ip̂n

Input parameters

Choose the extreme risk level α = αn.
Select the margin Xi, for i ∈ {1, . . . , d}.

Estimations

Choose kY (n) and estimate

- the tail index γ̂Y by using the estimator in Equation (4.8);

- the scale sequence âY
(
n
kY

)
by using the estimator in Equation (4.9);

- the intermediate order statistic Yn−kY ,n.

A speci�c value for kY (n) is chosen by following the stability strategy proposed in Remark

4.6.1.

Obtain p̂n as in Equation (4.10) by using quantities γ̂Y , âY
(
n
kY

)
and Yn−kY ,n.

Choose ki(n) and estimate

- the tail index γ̂i by using the Hill estimator in Equation (3.8);

- the intermediate order statistic Xi
n−ki,n.

A speci�c value for ki(n) is chosen by following the stability strategy proposed in Remark

4.6.1.

Obtain x̂ip̂n as in Equation (4.13) by using quantities p̂n, γ̂i and Xi
n−ki,n.

Secondly, we follow Algorithm 1 to obtain our estimator.

We now consider the following models in dimensions d = 2 and d = 5:

i) The Gumbel copula with dependence parameter θ = 3 and Fréchet margins with

β = 3 (i.e., Fi(t) = exp{−t−β}).

ii) The Joe copula with dependence parameter θ = 2 and Pareto margins with δ1 = 1

and δ2 = 2 (i.e., Fi(t) = 1− (δ1/(t+ δ1))δ2).

It should be borne in mind that assumptions of Theorem 4.5.1 are veri�ed in the con-

sidered cases i) and ii).

In Figure 4.2 we focus on the simulated model i). We present the boxplots of the ra-

tio x̂ip̂n/x
i
pn (Figure 4.2, �rst and third columns, respectively, for d = 2 and d = 5). Fur-

thermore, the Q-Q plots present the normalized sample quantiles of
√
ki

log (din)

(
x̂ip̂n
xipn
− 1

)
,
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based on 500 Monte Carlo simulations, versus the theoretical standard normal quantiles

(Figure 4.2, second and fourth columns, respectively, for d = 2 and d = 5). Analo-

gously, the results for the simulated model ii) are gathered in Figure 4.3. We take

n = 500, 100, 50 and αn = 1− 10/n.

Remark 4.6.1. In Algorithm 1, the intermediate sequences (ki and kY ) are chosen for

each sample size by using the following stability strategy. We �rst plot the estimator

against various values of the associated intermediate sequence. By balancing the poten-

tial bias and variance, the usual practice is to choose the sequence from the �rst stable

region of the plots (for further details, see Cai et al. (2015)). Furthermore, to gain

stability in the estimates, we take the average of the estimates corresponding to those

values of the sequence and regard this average as the �nal estimate value. In Figures

4.2 and 4.3, the chosen values for the auxiliary sequences are displayed in the main title

of each �gure.

The boxplots of the two proposed models, i) and ii), show the good performance of

our estimator in terms of bias and variance (see �rst and third columns in Figures 4.2 and

4.3). In the Q-Q plots, we observe that the scatters line up on the line y = x in each plot,

which indicates that the sample quantiles coincide largely with the theoretical quantiles

from the asymptotic distribution. Consequently, we conclude that the limit Theorem

4.5.1 provides an adequate approximation for �nite sample sizes. The performance of

our estimators remains stable when the dimension d increases. Finally, we propose

a comparison with the performance of the empirical estimator. A �nested� empirical

quantile is considered in order to estimate x̂ip̂n . Firstly, we estimate pn with the empirical

quantile of Y at level 1 − αn. Secondly, the empirical quantile of the Xi marginal

distribution is estimated at the obtained random risk level p̂n. Figure 4.4 shows the

boxplots obtained of the ratio between the empirical estimators and the theoretical

values of the i−th component of the Component-wise Excess design realization δCE(α)

for the i) and ii) models considered. We take n = 500, 100, 50, and αn = 1 − 10/n

(as in Figures 4.2 and 4.3). It can be observed in Figures 4.2-4.4 that the empirical

competitor estimator always underestimates x̂ip̂n and is consistently outperformed by

the proposed EVT estimator. Moreover, we observe that there are small di�erences

when the sample size increases.
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Gumbel copula with θ = 3 and Fréchet margins with β = 3
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Figure 4.2: Model i). Boxplots of the ratio x̂ip̂n/x
i
pn for d = 2 (�rst column) and d = 5

(third column). Q-Q plots for the normalized sample quantiles of
√
ki

log (din)

(
x̂ip̂n
xipn
− 1

)
versus the theoretical standard normal quantiles for d = 2 (second column) and d = 5
(fourth column). We consider n = 500 (�rst row), n = 100 (second row), n = 50 (third
row), and αn = 1− 10/n. We take 500 Monte Carlo simulations.
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Joe copula with θ = 2 and Pareto margins with δ1 = 1 and δ2 = 2
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Q−Q plot, n=50, ki = 15, kY = 45, d=2
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Figure 4.3: Model ii). Boxplots of the ratio x̂ip̂n/x
i
pn for d = 2 (�rst column) and d = 5

(third column). Q-Q plots for the normalized sample quantiles of
√
ki

log (din)

(
x̂ip̂n
xipn
− 1

)
versus the theoretical standard normal quantiles for d = 2 (second column) and d = 5
(fourth column). We consider n = 500 (�rst row), n = 100 (second row), n = 50 (third
row), and αn = 1− 10/n. We take 500 Monte Carlo simulations.
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Empirical estimation for the Component-wise Excess design realization
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Figure 4.4: Boxplots of the ratio between the empirical estimator and the theoretical
value of the i−th component of the Component-wise Excess design realization δCE(α)
for the i) and ii) models considered. We take n = 500, 100, 50; αn = 1 − 10/n; 500
Monte Carlo simulations; d = 2 (�rst and third rows) and d = 5 (second and fourth
rows).
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4.7 Application in Ceppo Morelli data-set

We now focus on estimating the Component-wise Excess design realization δCE(α) in

Equation (4.2) for an extreme value of α, for the �ood peak, volume and initial water

level of the Ceppo Morelli dam data-set. This dam is located in the Anza catchment

valley, a sub-basin of the Toce river (Italy), and was built in order to produce hydro-

electric energy. The data-set contains data on the maximum annual �ood peak (Q) and

volume (V ), and the initial water level in the reservoir before the �ood (L) covering a

period of 49 years, from 1937 to 1994. Q is measured in m3s−1, V in 106 ×m3, and L

in m above sea-level. The joint distribution function and the joint survival distribution

of (L,Q, V ) are denoted by FLQV and FLQV , respectively.

The selection of adequate �ood design is a frequent problem for dam engineers.

More than 40% of dam failures in the world are caused by overtopping. In order to

prevent dam failures due to overtopping, the adequacy of the dam spillway must be

assessed (De Michele et al. (2005)). For this purpose, the hydrological variables L, Q

and V are of great interest. For further details of this data-set, the reader is referred to

Salvadori et al. (2011) and references therein. Furthermore, Durante and Okhrin (2015)

propose an inference procedure for the Ceppo Morelli dam data-set through the use of

exchangeable Marshall copulas.

We represent the data in a trivariate rank-plot (Figure 4.5) and the rank-scatterplot

for pairs of margins (Figure 4.6).
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Figure 4.5: Trivariate rank-plot for (L,Q, V ).
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Figure 4.6: Rank-scatterplot for pairs of margins for the Ceppo Morelli dam data-set.

Salvadori et al. (2011) illustrated physical reasons for the assumption of indepen-

dence between L and (Q,V ). This fact is supported by Figures 4.5 and 4.6. Therefore,

an Archimedean copula model could not be the most appropriate model for (L,Q, V ).

Indeed, Salvadori et al. (2011) propose a nested Archimedean copula for (L,Q, V ) with

a Gumbel copula between Q and V . However, we provide several goodness-of-�t tests

on the data-set and the p-value for the 3-dimensional Gumbel model for (L,Q, V ) is not

statistically rejected. Hence, we can apply our estimation procedure to this data-set.

We point out that a procedure to select the best model for this 3-dimensional data-

set constitutes a highly interesting future line of study that lies beyond the scope of

the present chapter. Furthermore, Generalized Extreme Value (GEV) distributions are

supposed for Q and V (associated parameters are given in Table 1 in Salvadori et al.

(2011)). The marginal distribution of L is obtained via a non-parametric Normal Kernel

estimation in Salvadori et al. (2011). The Component-wise Excess design realizations

for each margin, for a millinery return period with α ≈ 0.946537 obtained by Salvadori

et al. (2011) are shown in the �rst row of Table 4.1 (denoted by δSCE). In the second

row of Table 4.1, we present the δECE , that is, the empirical estimated Component-wise

Excess design realizations for each margin. Our extreme estimators x̂p̂n are listed in

the third row of Table 4.1. Furthermore, by using Theorem 4.5.1 and Corollary 4.5.1,

con�dence intervals at the 95% level for x̂p̂n are also displayed.

In contrast with the estimator of Salvadori et al. (2011), which is based on a Gumbel

model, in this work we propose a non-parametric estimation procedure for the risk mea-

sure δCE(α). In our setting, only a general Archimedean copula framework is assumed

and the heavy tailed behaviour of the margins in order to apply the proposed estimator

(see Assumption 4.1.1).
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Strategy Q V L

m3s−1 106m3 m above sea-level

δSCE 352.76 25.21 781.25

δECE 337.82 19.41 781.13

x̂p̂n 359.68 26.01 781.21

CI(x̂p̂n ; 95%) [327.93; 387.33] [23.22; 28.60] [781.19; 781.23]

Table 4.1: Estimates of the Component-wise Excess design realizations for a millinery
return period, obtained by following di�erent strategies for the Ceppo Morelli dam
data-set. δSCE denotes the estimator of Salvadori et al. (2011), δECE denotes the em-
pirical estimator and x̂p̂n denotes our extreme estimator proposed in Equation (4.13).
Con�dence intervals at the 95% level for our estimator are also displayed.

Unsurprisingly, the empirical estimator underestimates the Component-wise Excess

design realization δCE(α) (see second row in Table 4.1) and is consistently outperformed

by the two other estimators (see �rst and third rows). Moreover, there is no signi�cant

statistical di�erence between our extreme estimator x̂p̂n and that of Salvadori et al.

(2011) δSCE . We note that, by using theoretical results in Section 4.5, we are able to

construct con�dence intervals for x̂p̂n . The estimator of Salvadori et al. (2011) δSCE and

x̂p̂n in Equation (4.13) are shown in Figure 4.7 with the critical iso-surface ∂L(α) for

α ≈ 0.946537.
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Figure 4.7: Critical iso-surface ∂L(α) for α ≈ 0.946537. The star and the dot markers
indicate, respectively, the estimator of Salvadori et al. (2011) δSCE and x̂p̂n in Equation
(4.13) for the Ceppo Morelli dam data-set.
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It should be noted that the Component-wise Excess design realizations shown in

Table 4.1 represent points that have the greatest probability of being component-wise

exceeded by an extreme realization with a return period longer than 1000 years. There-

fore, these points could be interpreted as a �safety lower-bound". That is, the structure

under design should, at least, withstand to realizations that have multivariate size of

the Component-wise Excess design realization δCE(α) for the millinery return period

α ≈ 0.946537. Hence, the underestimation of these quantities can represent a major

risk for dam managers and for environmental practitioners.

Furthermore, the target of the dam manager is to maintain a high water level, in

order to achieve the maximum bene�t through the production of electrical energy. From

the pair (Q,V ) of the calculated Component-wise Excess design realization, it is possible

to obtain the associated �ood hydrograph with peak Q and volume V . By using the

�ood hydrograph, one can calculate the maximum level of the dam associated with

(L,Q, V ), and one can check whether or not the crest level of the dam is exceeded by

the reservoir level (see Salvadori et al. (2011)). The maximum water level obtained in

Table 2 in Salvadori et al. (2011) for the associated values of (Q,V ) in δSCE (see the �rst

row in Table 4.1) is 782.08 m above sea-level. Since the values obtained by using x̂p̂n
are very similar to those of Salvadori et al. (2011), we can compare our L realization

with the maximum water level of 782.08 m above sea-level.

In this work, we focus on the estimation of the multivariate quantile of the hydro-

logical load acting on the structure, that is, on the spillway of the dam. However, in

order to evaluate the safety of the dam, one has to consider the interaction between the

hydrological load and the structure. Volpi and Fiori (2014) point out the importance

of considering the structure in hydraulic design and/or risk assessment problems in a

multivariate environment and advise against the uncritical use of design event-based

approaches. Indeed, the relationship between the structure and the hydrological loads

acting on it is neglected in the study of the present chapter. Requena et al. (2016)

and references therein, highlight the importance of considering the speci�c structure

when designing or assessing �ood risks in a multivariate context. Salvadori et al. (2016)

illustrate the structural approach in a real sea-storm data-set.

4.8 Conclusions

In this chapter, we provide the explicit expression of the multivariate risk measure

known as Component-wise Excess design realization given by Salvadori et al. (2011) in

the Archimedean copula setting. Furthermore, this measure is estimated by using Ex-

treme Value Theory techniques and the asymptotic normality of the proposed estimator

is studied. In contrast with the estimator of Salvadori et al. (2011) based on a Gum-

bel model, we propose a non-parametric estimation procedure for the Component-wise

Excess design realization. The performance of our estimator is evaluated on simulated
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data. Finally, we compare the performance of our estimator with the estimator of Sal-

vadori et al. (2011) on the same real dam data-set as studied in the aforementioned

paper. We conclude that there are no signi�cant statistical di�erences between the

values obtained from our extreme estimator and those of Salvadori et al. (2011).

Finally, it should be borne in mind that the improvement of Theorem 4.5.1 by using

uncertainty induced by the margins could be developed in a future study. Furthermore,

a procedure to select the best model for this 3-dimensional data-set of Ceppo Morelli

dam constitutes a highly interesting future line of study.



Appendix A

De�nitions of regularly varying

functions

In the following, the notions of regularly varying functions are introduced. These de�ni-

tions are useful in this thesis in order to provide the conditions to construct the extreme

estimators.

De�nition A.1 (RV function). A measurable function, h : R+ → R that is eventually

positive, is said to be of regular variation at in�nity with index γ ∈ R\{0}, denoted by

h ∈ RVγ, if, for any x > 0,

lim
t→∞

h(tx)

h(t)
= xγ . (A.1)

If (A.1) holds with γ = 0 for any x > 0, then h is said to be slowly varying at in�nity

and is written as h ∈ RV0.

There are a variety of concepts that extend RV , among which ERV , 2RV and

2ERV are the most signi�cant concepts.

De�nition A.2 (ERV function). A measurable function, h : R+ → R is said to be of

extended regular variation with index γ ∈ R, denoted by h ∈ ERVγ, if there exists a

function a : R+ → R+ such that for all x > 0,

lim
t→∞

h(tx)− h(t)

a(t)
=
xγ − 1

γ
, (A.2)

where, for γ = 0, the right-hand-side in (A.2) is interpreted as log(x).

The function a is referred to as an auxiliary function for h.

De�nition A.3 (2RV function). A measurable function, h : R+ → R that is eventually

positive, is said to be of second-order regular variation with the �rst-order parameter

γ ∈ R and the second-order parameter τ ≤ 0, denoted by h ∈ 2RVγ,τ (A), if there exist
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some ultimately positive or negative function A(t), with A(t)→ 0 as t→∞ such that

lim
t→∞

h(tx)
h(t) − x

γ

A(t)
= H(x), (A.3)

with

H(x) = xγ
∫ x

1
sτ−1ds, ∀x > 0.

Here, A is referred to as an auxiliary function of h.

If the functions a and A satisfy (A.2) and (A.3), respectively, then a ∈ RVγ and

|A| ∈ RVτ .

De�nition A.4 (2ERV function). A measurable function, h : R+ → R is said to be

of second-order extended regular variation with the �rst-order parameter γ ∈ R and the

second-order parameter τ ≤ 0, denoted by h ∈ 2ERVγ,τ (A), if there exists some positive

function a(t) and some ultimately positive or negative function A(t) with A(t) → 0 as

t→∞ such that

lim
t→∞

h(tx)−h(t)
a(t) − xγ−1

γ

A(t)
= Tγ,τ (x), (A.4)

with

Tγ,τ (x) =

∫ x

1
sγ−1

∫ s

1
uτ−1duds, ∀x > 0.

In De�nition A.4, a and A are referred as the �rst-order and second-order auxiliary

functions of h, respectively. It is easy to see that

Tγ,τ (x) =



1
τ

(
xγ+τ−1
γ+τ − xγ−1

γ

)
, τ < 0,

1
γ

(
xγ log(x)− xγ−1

γ

)
, τ = 0 6= γ

1
2(log(x))2, τ = 0 = γ.

From Theorem B.3.1 in de Haan and Ferreira (2006), if the functions a and A satisfy

(A.4), then |A| ∈ RVτ and a ∈ 2RVγ,τ with auxiliary function A.

The notion of regular variation for a vector is presented in De�nition A.5.

De�nition A.5 (Multivariate Regularly Varying (MRV) Vector). A random vector

X = (X1, . . . , Xd) with joint distribution function F is said to be multivariate regularly

varying (X ∈MRV ) if there exists a Radon measure ν on [0,∞]\{0}, such that

lim
t→∞

1− F (tx)

1− F (t1)
= ν([0, x]c),

for all points x ∈ [0,∞)\{0}, which are continuity points of the function ν([0, ·]c).
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Observe also that for any non-negative MRV random vector X, its non-degenerate

univariate margins Xi have regularly varying right-hand-side tails, that is,

FXi(t) := t−βL(t), t ≥ 0,

where β > 0 is the marginal heavy tail index and L(t) is a slowly varying function, that

is, L(x t)/L(t)→ 1 as t→∞ for any x > 0.

For more details about regular variation, the reader is referred to Sections B.1 and

B.3 in de Haan and Ferreira (2006) and Mao and Hu (2012). Further details about

multivariate regularly varying can be found in Resnick (2007), Resnick (2008) and

Embrechts et al. (1997).



Appendix B

Alternative calculation for C.-E.

design realization

In this Appendix, we provide a complementary development in order to verify that

v∗ =
(
φ−1
θ

(
φθ(α)
d

)
, . . . , φ−1

θ

(
φθ(α)
d

))
is a critical point for the constrained optimization

problem given in Equation (4.3).

From Equation (4.1), since x = (x1, . . . , xd) ∈ ∂L(α), we can write, for j ∈
{1, . . . , d},

xj = F−1
Xj

φ−1
θ

φθ(α)−
d∑

i=1,i 6=j
φθ(FXi(xi))

 = g(α,θ, x1, . . . , xj−1, xj+1, . . . , xd),

where F−1
Xj

denotes the left-continuous inverse of the margin distribution FXj , for j ∈
{1, . . . , d}. As a consequence, from Equation (4.1), we can take xd = g(α,θ, x1, . . . , xd−1)

and the Component-wise Excess design realization in De�nition 4.1.1 can be written as

δCE(α) = arg max
(x1,...,xd−1) :

F (x1,...,xd−1,+∞)>α

P[X1 ≥ x1, . . . , Xd ≥ g(α,θ, x1, . . . , xd−1)]. (B.1)

Finally, from Sklar's Theorem (see Section 1.4) in our Archimedean framework, we ob-

tain that condition F (x1, . . . , xd−1,+∞) > α holds true if and only if C(u1, . . . , ud−1, 1) >

α ⇔
∑d−1

i=1 φθ(ui) ≤ φθ(α). It is well-known that the iso-surface ∂L(α) is lower-

bounded by the univariate marginal quantiles, and therefore the restriction in the ma-

ximization problem (B.1) implies that xi ∈ [F−1
Xi

(α),+∞), for all i ∈ {1, . . . , d− 1}.

Note that the copula version of the optimization problem in Equation (B.1) can be

written as the constrained optimization problem given in Equation (4.3). Let vd :=

φ−1
θ

(
φθ(α)−

∑d−1
i=1 φθ(vi)

)
= g(α,θ, v1, . . . , vd−1). We substitute the d−th component

in the joint survival function C (see the expression in Section 1.4), and obtain
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C(v1, . . . , vd−1, g(α,θ, v1, . . . , vd−1))

= P[V1 ≥ v1, . . . , vd ≥ g(α,θ, v1, . . . , vd−1)]

= 1 +
∑
∀i<d

[
−vi + (−1)d−1φ−1

θ (φθ(α)− φθ(vi))
]

+
d−1∑
l=2


∑

∀(i1,...,il)
i1<···<il<d

(−1)lφ−1
θ

 ∑
∀j∈(i1,...,il)

φθ(vj)



+ (−1)d−lφ−1
θ

φθ(α)−
∑

∀j∈(i1,...,il)

φθ(vj)

+ (−1)dα. (B.2)

The derivative with respect to each margin of the function in Equation (B.2) can

now be calculated. We obtain

∂C(v1, . . . , vd−1, g(α,θ, v1, . . . , vd−1))

∂vk
= −1− (−1)d−1 φ′θ(vk)

φ′θ
(
φ−1
θ (φθ(α)− φθ(vk))

)+

+
∑

∀i<d,i 6=k

φ′θ(vk)

φ′
(
φ−1
θ (φθ(vk) + φθ(vi))

)
− (−1)d−2 φ′θ(vk)

φ′θ
(
φ−1
θ (φθ(α)− φθ(vk)− φθ(vi))

) +

+

d−2∑
l=2


∑

∀(i1,...,il),ij 6=k
i1<...<il<d

(−1)l+1 φ′θ(vk)

φ′θ

(
φ−1
θ

(
φθ(vk) +

∑
∀j∈(i1,...,il)

φθ(vj)
))

− (−1)d−(l+1) φ′θ(vk)

φ′θ

(
φ−1
θ

(
φθ(α)− φθ(vk)−

∑
∀j∈(i1,...,il)

φθ(vj)
))
 .

Notice that ∂C(v1,...,vd−1,g(α,θ,v1,...,vd−1))
∂vk

|v1=v∗1 ,...,vd−1=v∗d−1
= 0, for all k < d. There-

fore, for all k < d, v∗k = φ−1
θ

(
φθ(α)
d

)
is a stationary point for the system of �rst-order

derivative equations provided above.

Hence, the d−dimensional point v∗ =
(
φ−1
θ

(
φθ(α)
d

)
, . . . , φ−1

θ

(
φθ(α)
d

))
is a stationary-

point solution for the optimization problem in Equation (4.3) in the Archimedean copula

framework.
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