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El tema central de esta tesis es el estudio de desigualdades con pesos para algunos de
los operadores clásicos del análisis armónico. De entre estos operadores, los que más nos
interesan, son aquellos que son invariantes por dilataciones multiparamétricas. El principal
representante de estos objetos es el operador maximal fuerte, elemento protagonista de esta
tesis. Las dos cuestiones fundamentales que abordamos son las siguientes:

• Las propiedades de acotación de dichos operadores clásicos en espacios de Lebesgue
con pesos. En particular, nos centramos en el estudio del problema de dos pesos para
el operador maximal geométrico asociado a una cierta base general. Los resultados
obtenidos se refieren fundamentalmente a las denominadas bases de Muckenhoupt,
para las que se define una condición suficiente para el problema de dos pesos de
tipo bump. Además, se estudia con detalle la desigualdad de Fefferman-Stein para
el operador maximal fuerte. Finalmente, se caracteriza también el problema de un
peso para estos operadores maximales generales en términos de condiciones débiles
de tipo restringido.

• El cálculo preciso de la norma de estos operadores clásicos en función de la constante
Ap del peso. Mostramos primero una estrategia para probar la optimalidad del
exponente de la constante Ap del peso que evita el desarrollo de ejemplos específicos.
Por último, aunque esta cuestión para el operador maximal fuerte continúa abierta,
presentamos ciertos resultados parciales que se pueden entender como el primer paso
hacia una teoría de pesos multiparamétrica cuantitativa.
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Abstract

This PhD dissertation is focused on the study of weighted norm inequalities for classical
operators in harmonic analysis; in particular, those commuting with multiparameter families
of dilations. We address two main issues which are intimately connected to each other:
the boundedness properties of these operators in weighted spaces and the sharp bounds on
their operator norms in terms of the constant associated with the weight.

Concerning the first subject, we examine the boundedness properties of various maximal
operators in weighted Lebesgue spaces. Let B a collection of open sets in Rn. Given
a measure µ, Mµ

B denotes its associated geometric maximal operator. When µ is the
Lebesgue measure, we simply write MB. We first study those pairs of weights on Rn,
(w, v), for which MB is bounded from Lp(v) to Lp(w), for 1 < p < ∞. For this two-
weight problem, restricted to those B that are Muckenhoupt bases, we define a sufficient
condition in terms of power and logarithmic bumps. We also study the corresponding
problem in the multilinear case.

Second, we consider the case where v =MRw and R is the collection of n-dimensional
rectangles with sides parallel to the coordinate axes. In this case, we obtain the endpoint
Fefferman-Stein inequality, as p→ 1, for those weights w that are in the strong-A∞ class;
that is, the class of weights that satisfy the Ap condition with respect to rectangles for
some p > 1.

Finally, we characterize the boundedness of Mµ
B on Lp(ν) provided µ satisfies an

appropriate doubling condition with respect to B, p is large enough and ν is any arbitrary
locally finite measure. In this case, B can be any homothecy invariant collection of convex
sets in Rn and the characterization of the boundedness is in terms of a very weak restricted
type condition. As a consequence of this result, we discuss applications to Muckenhoupt
weights as well as results in differentiation theory.

In relation to the sharp bounds, we are interested in proving the optimality of weighted
inequalities of the form:

‖Tf‖Lp(w) .n,p,T [w]βAp‖f‖Lp(w),

for a certain operator T and w an Ap weight. We show that whenever the above estimate
is true, then necessarily β satisfies a lower bound which is a function of the asymptotic
behaviour of the unweighted Lp-norm ‖T‖Lp(Rn) as p goes to 1 and +∞. By combining
these results with known weighted inequalities, we derive the sharpness of this exponent
β, without building any specific example, for maximal, Calderón–Zygmund and fractional
integral operators. We then study in detail the above estimate, as well as its weak version,
in the case where T = MR and w is a weight in the strong-Ap class. Although for the
latter operator no such optimal quantitative estimates are currently known, we describe
some partial results we have obtained.
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Introduction

The main goal of this dissertation is to study weighted inequalities associated with
operators that commute with multiparameter families of dilations. Multiparameter harmonic
analysis addresses the study of such classes of operators. Indeed, it is an outgrowth of
harmonic analysis when attempting to understand the function theory associated to product
domains. The first results can be found in the early 1930’s with the works of Saks, Zygmund,
Jessen and Marcinkiewicz, where the main properties of the strong maximal function were
identified. A pretty well developed summary of the main achievements in multiparameter
analysis until 1985 can be found in [Fef86]. Nowadays, the multiparameter theory is a quite
active research area with many different topics under study and it is not our intention to
give an overview of it. What we would like to remark is that many classical problems of
one parameter harmonic analysis remain open in the multiparameter setting, or have only
weaker analogues. As we will see soon, this is also the case for the multiparameter weighted
inequalities.

Let us be more specific about the central operator of this thesis. For a locally integrable
function f, we will define the strong maximal function of f on Rn as the maximal average
of f with respect to rectangles with sides parallel to the coordinate axes; that is,

Msf(x) := sup
R∈R
R3x

1
|R|

∫
R

|f(y)|dy, x ∈ Rn,

where R denotes the family of n-dimensional rectangles with sides parallel to the coordinate
axes. If we replace the rectangles by cubes in the above definition, we obtain the Hardy-
Littlewood operator M. Since this object is the multiparameter version of the Hardy-
Littlewood operator, it can be considered as the prototype for multiparameter analysis.
While this object commutes with n-parameter dilations, the Hardy-Littlewood operator does
not. Both, M and Ms, are bounded on Lp(Rn) with respect to the Lebesgue measure;
however, their endpoint behaviour, as p → 1 is completely different. The replacement of
the Lebesgue measure by a weight, in the definition ofMs, opens up new challenges in the
study of the boundedness properties of the strong maximal operator. Some of them wiIl be
faced in this thesis.

In order to describe our contributions in the study of the weighted inequalities for the
strong maximal operator and other multiparameter objects, we give a brief overview of the
main achievements in the one parameter weighted theory. We will be comparing the results
achieved for the Hardy-Littlewood maximal operator with the analogous for the strong
maximal operator.

xii
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One-weight norm inequalities. Given an operator that is bounded on Lp(Rn), 1 < p <∞, it is a natural question to ask under which conditions on a measure µ, the same operator
is bounded on Lp(µ); that is, if we let T denote some classical operator and we wish to
characterize the measures µ on Rn such that∫

Rn
[Tf(x)]pdµ(x) 6 C

∫
Rn

|f(x)|pdµ(x).

If we restrict ourselves to those measures that are non-negative and absolutely continuous
with respect to the Lebesgue measure, the answer to this question is the essence of the
theory of weighted norm inequalities. Although the roots of this theory can be found in
the works of Helson, Szegö, Rosenblum and others, it was really in the 1970’s when the
modern theory begun. First, Muckenhoupt [Muc72] defined the class of weights w for
which the Hardy-Littlewood operator maps Lp(w) into itself. Shortly afterwards, Hunt,
Muckenhoupt, and Wheeden [HMW73] established that the same class of weights also
characterizes the boundedness of the Hilbert transform on Lp(w). A bit later, Coifman
and C. Fefferman [CF74] gave a more flexible argument which also applied to more general
Calderón-Zygmund operators. The family of weights that was identified through all these
initial investigations was the Ap-class; that is, non-negative locally integrable functions w
that satisfy:

[w]Ap := sup
Q

(
1
|Q|

∫
Q

w(y)dy

)(
1
|Q|

∫
Q

w(y)1−p
′
dy

)p−1
< +∞,

where the supremum is taken over all cubes Q in Rn.
After these first papers, similar results were soon obtained for a variety of other operators

and there exists now a vast literature on one-weight norm inequalities. As a very partial
list, we refer the reader to [GCRdF85, Duo01, Gra09, CUMP11] and the references therein.

What about the operators and geometric objects that behave well with respect to more
general dilation groups? The theory of one-weight inequalities for the strong maximal oper-
ator is pretty well developed. Indeed, Bagby and Kurtz [BK85] proved that the boundedness
of the strong maximal operator was characterized in terms of the strong Ap-class, that is
defined as the Ap-class replacing the cubes by rectangles:

[w]A∗p := sup
R

(
1
|R|

∫
R

w(y)dy

)(
1
|R|

∫
R

w(y)1−p
′
dy

)p−1
< +∞,

for all rectangles R ∈ R. As it is described in [GCRdF85, Chapter 4.6], this class of weights
characterizes in general the boundedness of the basic n-parameter operators.

Two-weight norm inequalities. It is a natural problem to try to generalize the above
results to Lp spaces with different weights; more precisely, given an operator T , we want to
determine sufficient and necessary conditions on a pair of weights (w, v) on Rn such that
a two-weight norm inequality of the following form is valid:∫

Rn
[Tf(x)]pwdx 6 C

∫
Rn

|f(x)|pvdx,



xiv Contents

for 1 < p < ∞. We can also formulate the weak version of this problem; that is, to
characterize the couples of weights (w, v) such that

w({x ∈ Rn : T(f)(x) > λ}) 6
C

λp

∫
Rn

|f(x)|pv(x)dx, λ > 0.

Both these problems are referred to as the two-weight norm inequalities and one of the
chapters of this thesis is devoted to the first one. The understanding of the two-weight
question has turned out to be considerably more difficult than the one-weight problem.
Muckenhoupt and Wheeden [MW76] so discovered that the two-weight Ap condition is
necessary but not sufficient for the strong Lp-boundedness of both the maximal operator
and the Hilbert transform. Since then, progress has been made and small improvements in
results has often required the development of very sophisticated and valuable techniques.
There have been two main approaches to the resolution of the two-weight inequality ques-
tion, which involve either testing conditions or bump conditions. Testing conditions were
originally introduced by Sawyer [Saw82a] to characterize the two-weight strong (p,p) in-
equality for the Hardy-Littlewood maximal function. He proved that the Hardy-Littlewood
maximal operator M satisfies the strong inequality∫

Rn
[Mf(x)]pwdx 6 C

∫
Rn

|f(x)|pvdx,

1 < p <∞, if and only if∫
Q

[M(v1−p
′1Q)(x)]pwdx 6 C

∫
Q

v1−p
′
(x)dx, (1)

for every cube Q. In [Saw88], he extended this approach to linear operators with positive
kernels, like the fractional integral operators and Poisson integrals. After the original work
of Sawyer, no progress was made on the study of similar questions for other operators, until
the innovative work of Nazarov, Treil and Volberg [NTV97, NTV03]. In these latter papers,
they developed the theory of singular integrals on non-homogeneus spaces that allowed them
to prove Sawyer’s type conditions for several operators. In [NTV08], they defined Sawyer-
type conditions that are necessary and sufficient for families of Haar multipliers. Partial
information about the two-weight problem for singular integrals can be found in [PTV]. The
study of testing conditions for some classical operators is still an open problem with current
interest, as shows the very recent resolution by Lacey [Lac13] for the Hilbert transform,
following previous results by Lacey, Sawyer, Shen and Uriarte-Tuero in [LSSUT]. Still more
recently, Hytönen [Hyt] has completely solved this problem for the Hilbert transform.

Testing conditions in the multiparameter setting have only been studied for the strong
maximal function. Indeed, the two-weight problem for this operator was first solved by
Sawyer [Saw82b]. See also [Jaw86] for a generalization of this result. He proved the same
characterization as in the case of the Hardy maximal operator, but some extra assumptions
were required. First, condition (1) needs to be taken in a union of rectangles instead of in
just rectangle. More precisely, the testing condition is the following:∫

G

|Ms(σ1G)|pw 6 C
∫
G

v1−p
′
(x)dx

for every set G ⊂ Rn that is a union of rectangles in R. Secondly, the weighted strong
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maximal operator associated to the measure v1−p ′ is required to be bounded on Lp(v1−p ′).
Observe that this weighted operator defined with respect to cubes is always bounded in-
dependently of the measure. However, since the Besicovitch covering argument as well as
the Calderón-Zygmund decomposition fails in the case of rectangles, we cannot guarantee
the boundedness of this operator in general. These two extra requirements express the
differences between the one parameter and the multiparameter case.

The fact that Sawyer-type conditions involve the operator under study itself, makes
difficult to use them in applications. It is not easy to find pairs of weights satisfying these
conditions. Moreover, unlike the Ap-weights, the testing conditions are just defined for
individual operators: if the operator is changed, the work of finding or checking pairs of
weights must be repeated. This drawback explains the development of a different line
of research that looks for sufficient conditions, close in form to the Ap condition. That
kind of condition should be easier to test in practice. This approach is known as seeking
bump conditions because the norms involved in the two-weight condition are bumped up
in the Lebesgue integrability scale. These conditions first appeared in connection with
estimates for integral operators related to the spectral theory of Schrödinger operators: see
C. Fefferman [Fef83] and Chang, Wilson and Wolff [CWW85]. Independently, Neugebauer
[Neu83] introduced the power bump conditions for the Hardy-Littlewood maximal operator.
Motivated by these previous works, Pérez generalized and improved them in [Pér95b] and
in [Pér95c]. In fact, he proved that if (w, v) satisfies(

1
|Q|

∫
Q

w

)
‖v−1‖Φ,Q <∞ (2)

for all cubes Q then ∫
Rn

[Mf(x)]pwdx 6 C
∫
Rn

|f(x)|pvdx,

for all 1 < p < ∞. Here the second term in (2) is a bumped up average of v−1 with
respect to a certain young function Φ that is a bit bigger than tp ′−1. After this initial
paper, in [Pér94a] Pérez extended this result for fractional integral operators. In contrast
to testing conditions, it is, in general, easier to determine if a couple of weights satisfies
(2). However, it may be also very difficult if Φ is a very complicated Young function.

Though (2) is just a sufficient condition for the two-weight problem, the growth condi-
tion on Φ is necessary in the following sense: if the maximal operator M maps Lp(v) into
Lp(w) when (u, v) satisfies (2), then necessarily Φ is bigger than tp ′−1. For this reason,
over the last few years bump conditions have become very popular as optimal sufficient con-
ditions for two-weight norm inequalities. For example, the result for the Hilbert transform
was proved in [CUMP07] and by different methods in [CUMP12] for any Calderón-Zygmund
operator with C1-kernel. Very recently the solution was extended in [CURV13] to the Lips-
chitz case and proved in full generality in [Ler13b]. In general, the type of bump conditions
that appears for standard operators T are

sup
Q
‖w‖Ψ,Q‖v−1‖Φ,Q <∞,

where Ψ and Φ satisfy some kind of growth condition. This type of conditions for linear
operators appeared for first time in [Pér94a].

The main contribution of this thesis to the two-weight problem for the strong maximal
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function is exactly the investigation of appropriate bump conditions for the boundedness of
Ms from Lp(v) to Lp(w). This is the first time that a bump condition is introduced for
the study of weighted inequalities for multiparameter operators.

Fefferman-Stein inequalities Among two-weight norm inequalities, those that involve
pairs of weights of the form (w,Mw) are especially important. These kind of weighted
norm inequalities have been deeply studied for different operators, but we are interested in
here with those that involve maximal operators; namely, inequalities of the form:∫

Rn
(Mf)pw 6 C

∫
Rn

|f|pMw, 1 < p <∞, (3)

where M denotes some maximal operator. Estimates like (3) are referred as Fefferman-
Stein inequalites. They are important since, among other things, they can be used to derive
the boundedness of vector-valued maximal operators. This inequality was first proved for
the Hardy-Littlewood maximal function by C. Fefferman and Stein, [FS71], for every non-
negative, locally integrable weight w. Indeed, the main application in [FS71] was exactly
the vector-valued extension of the classical Hardy-Littlewood maximal theorem. For the
strong maximal function the same inequality is true provided that w ∈ A∗r, for some r > 1.
This result was proved by Lin [Lin84] and the extra condition on the weight is an instance
of the differences between the two operators.

Quantitative weighted theory. Another very important issue in the theory of weighted
norm inequalities is the study of optimal quantitative estimates for the norm ‖T‖Lp(w)

whenever w ∈ Ap; that is, the description of the precise bounds of T in terms of the Ap
constant [w]Ap of the weight. The first author who studied that question for the Hardy-
Littlewood operator was Buckley [Buc93]. He proved the following quantitative estimate

‖M‖Lp(w) 6 Cn,p[w]
1
p−1
Ap

, w ∈ Ap, (4)

where the constant Cn,p does not depend on the weight and 1/(p − 1) cannot be re-
placed with any smaller exponent. After that, Petermichl and Volberg [PV02], settling
the corresponding optimal bound for the Beurling-Ahlfors transform, resolved a conjecture
by Astala, Iwaniec and Saksman [AIS01, Eq. 45]. This result has important applications
to the regularity theory of Beltrami equations. This result brought a lot of attention to
the subject.The next important paper in the area is due to Petermichl [Pet07], where it
is described the optimal bounds for the Hilbert transform. Then she extended the result
for the Riesz trasforms in [Pet08]. Since then, the corresponding question concerning the
sharp dependence of the norm of a general Calderón-Zygmund operator on the Ap constant
of the weight has led to an overwhelming amount of activity and development of relevant
tools. It was in 2010 when Hytönen, [Hyt12], exhibited the optimal bound for general
Calderón-Zygmund operators T ; namely, he showed that

‖T‖Lp(w) 6 Cn,p[w]
max{1, 1

p−1 }

Ap
, w ∈ Ap.

Subsequent important developments and simplifications of his result can be found in [HP],
[HLP] and [Ler13a]. This subject and allied matters are still under intense investigation as
for example in [LM13] and [Ler13c].
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Multiparameter sharp weighted inequalities have not been developed, as there exists a
serious obstruction in carrying over the already described achievements of classical weighted
theory to the multiparameter setting. As we will see through this thesis this is somehow
another manifestation of the failure of the Besicovitch covering argument.

Main contributions. This thesis presents a first effort to extend some important recent
achievements in weighted norm inequalities to the multiparameter setting. Besides answer-
ing some of the questions that we will describe soon, we believe that we also establish
a certain research direction towards a more quantitative multiparameter weighted theory.
More precisely, the novelties are the following:

• The definition of the two-weight problem for the strong maximal operator with the
bump approach.

• The resolution of the endpoint Fefferman-Stein inequality for the strong maximal
operator in any dimension.

• A new characterization of the boundedness of the strong maximal function defined
with respect to a doubling measure. This characterization is in terms of a very weak
restricted type condition.

• A partial solution to the multiparameter analogue of Buckley’s result (4).

The study of these problems in the multiparameter setting emphasizes the differences
between the one parameter and the multiparameter analysis. The difficulties arise because
the objects under study are quite different. Since we are interested in operators that be-
have well with respect to more general dilation groups, the tools developed for the study of
weighted inequalities do not generally work. For example, covering arguments like the Besi-
covitch covering lemma or the Calderón-Zygmund decomposition, that are used repeatedly
in the one parameter theory, fail in the case of rectangles. Indeed, while the (centered)
Hardy-Littlewood maximal operator, defined with respect to a general measure, is always
bounded independently of the measure, the analogous multiparameter operator is not. The
tools and techniques used to solve the problems that we address here are somehow classi-
cal in the multiparameter theory. However, the more efficient use of these tools together
with a deep understanding of the properties of rectangles in weighted spaces, have made
the resolution of some of the aforementioned problems possible. Also we believe that the
arguments that we exhibit here could give insights when considering other multiparameter
questions.

We now give a brief account of the specific questions considered in this thesis together
with their corresponding solutions.

Problem 0.1. Given p, 1 < p < ∞, determine a sufficient bump condition on a pair of
weights (w, v) so that the the strong maximal operator Ms is bounded from Lp(v) to
Lp(w); that is, for which we have the following inequality:∫

Rn
[Msf(x)]

pwdx 6 C
∫
Rn

|f(x)|pvdx. (5)
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This problem finds an answer in Theorem 2.5. In particular we prove that if (w, v)
satisfy the bump condition

sup
R

(
1
|R|

∫
R

w

)
‖v−1‖Φ,R <∞,

for some Φ such that Φn(Φ(t)) is bigger, in order of magnitude, than tp ′−1 and w ∈ A∗p
for some p, then we have the two -weight norm inequality (5). Here Φn(t) := t(1 +
(log+ t)n−1).

We can also pose similar problems replacing Ms by a multilinear maximal operator
associated with more general basis of open sets. Our contribution in this case is described
in Theorem 2.18.

Problem 0.2. Find sufficient conditions for those weights w such that

w({x ∈ Rn :Msf(x) > λ}) 6 C
∫
Rn

|f(x)|

λ

(
1+

(
log+ |f(x)|

λ

)n−1
)
Msw(x)dx, λ > 0.

Note that by interpolation, this estimate implies a particular version of (5), where
v ≡Msw.

Mitsis showed in [Mit06] that the estimate was true in dimension n = 2 for any weight
w ∈ ∪p>1A

∗
p. Theorem 2.22 of this thesis extends Mitsis’s result to all dimensions.

Problem 0.3. Let B be a homothecy invariant collection of convex sets in Rn. Given a
doubling measure µ, we want to study the mapping properties of the geometric maximal
operator Mµ

B acting on Lp(ν). Here ν denotes a non negative, locally finite measure and
the operator Mµ

B is defined as

M
µ
Bf(x) := sup

B∈B
B3x
µ(B)>0

1
µ(B)

∫
B

|f(y)|dµ(y),

if x ∈ ∪B∈BB and Mµ
Bf(x) := 0 if x /∈ ∪B∈BB.

The authors in [HS09] prove that if dµ ≡ dν ≡ dx, where dx denotes the Lebesgue
measure, then the operator MB satisfies∣∣{x ∈ Rn :MB(1E)(x) >

1
2 }
∣∣ 6 c|E|

for every measurable set E if and only if MB is bounded on Lp(Rn) for some p > 1.
Theorem 3.11 of this thesis extends this result for any B-doubling measure µ. It is shown
that the operator Mµ

B satisfies

µ{x ∈ Rn :Mµ
B(1E)(x) >

1
2 } 6 cµ(E)

for every measurable set E if and only if Mµ
B is bounded on Lp(ν) for some p > 1.

As a consequence of this result we provide an alternative characterization of the class of
Muckenhoupt weights A∞,B for homothecy invariant Muckenhoupt bases B consisting
of convex sets. See Theorem 3.12 for this characterization. In particular this theorem
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gives a new characterization of the boundedness of the weighted strong maximal operator
Mw
s whenever w is a product-doubling weight. In addition we discuss applications in

differentiation theory. See Corollary 3.13.
Problem 0.4. Let T be an operator and w an Ap-weight, 1 < p <∞. Prove the optimality
(in terms of the exponent on the Ap constant) of weighted inequalities of the form:

‖Tf‖Lp(w) 6 Cn,p,T [w]
β
Ap
‖f‖Lp(w), (6)

‖Tf‖Lp,∞(w) 6 Cn,p,T [w]
β ′

Ap
‖f‖Lp(w). (7)

Theorem 4.2 establishes a necessary lower bound for the exponent β in (6). More pre-
cisely, β > Ψ, where Ψ is a function related to the asymptotic behaviour of the unweighted
Lp norm ‖T‖Lp(Rn) as p goes to 1 and +∞.
Problem 0.5. Let T be an operator that commutes with n-parameter dilations andw ∈ A∗p,
1 < p <∞. Prove the optimality (in terms of the exponent on theA∗p constant) of weighted
inequalities of the form:

‖Tf‖Lp(w) 6 Cn,p,T [w]
β
A∗p
‖f‖Lp(w), (8)

‖Tf‖Lp,∞(w) 6 Cn,p,T [w]
β ′

A∗p
‖f‖Lp(w). (9)

Proposition 4.7 and Theorem 4.8 describe new optimal estimates (8) and (9) for T the
strong maximal function and w ∈ A∗p a power weight and a product weight respectively.
In particular, for w(x) = w1(x1) · · ·wn(xn) ∈ A∗p we obtain the following sharp weighted
inequalities:

‖Msf‖Lp(w) 6 Cn,p[w]
1
p−1
A∗p
‖f‖Lp(w).

‖Msf‖Lp,∞(w) 6 Cn,p[w]
1
p−1 (1−

1
np )

A∗p
‖f‖Lp(w).

Outline of contents. There are four chapters in this thesis and the content of each of
one is briefly as follows. In Chapter 1 we give a overview of the theory that contains some
definitions, general results and techniques that are necessary for the rest of the manuscript.
This chapter does not contain any new result. Chapter 2 is devoted to study the two-weight
problem for the strong maximal function and its multilinear version. Namely, we present the
solution of Problem 0.1 and 0.2. In Chapter 3 we characterize the boundedness of Mµ

B in
terms of a Tauberian condition, provided µ satisfies an appropriate doubling condition. This
chapter is largely devoted to solve Problem 0.3. Chapter 4 contains the solution of Problem
0.4 and some partial results concerning Problem 0.5. More precisely, we first describe a
new approach to test sharpness of weighted estimates that can be applied to many classical
operators in harmonic analysis. Although most of the optimal results obtained with that
approach were already known, the method allows us to avoid the use of specific examples
and deal with all the operators at once. We also describe new sharp results concerning the
strong maximal operator. At the end of each chapter, we discuss some open questions and
considerations related with the contents of each chapter.



Notations

Symbol Meaning

A . B A 6 CB for some numerical constant C > 0
A .m B A 6 CB for some constant C > 0 that depends on m
A ' B A . B and B . A

N the set of natural numbers
R the set of real numbers
C the set of complex numbers
Rn the n-dimensional Euclidean space
dx Lebesgue measure
µ non-negative measure
w weight

|x|
√
|x1|2 + · · ·+ |xn|2 when x = (x1, · · · , xn) ∈ Rn

x̄j (x1, . . . , x̂j, . . . , xn) ∈ Rn−1, where the variable x̂j is missing
C∞(Rn) the space of smooth functions from Rn to C

∂mj f the m-th partial derivative of f(x1, · · · , xn) with respect to xj
∂βf ∂α1

1 · · ·∂αnn f

S (Rn) {f ∈ C∞(Rn) : supx∈Rn |xα∂βf(x)| <∞ ∀α,β}
Lp(X,µ) the Lebesgue space over the measure space (X,µ)
Lp(X) the Lebesgue space over the measure space (X, | · |)
Lp,∞(X,µ) the weak Lebesgue space over the measure space (X,µ)
Lp,∞(Rn) the weak Lebesgue space over the measure space (Rn, | · |)
LΦ(X,µ) the Orlicz space associated to the Young function Φ over (X,µ)

‖f‖Φ,E inf
{
λ > 0 : 1

|E|

∫
EΦ

(
|f(x)|
λ

)
dx 6 1

}
1E the characteristic function of the set E ∈ Rn

log+(t) max(0, log t) for t > 0
Φn(t) t(1+ (log+(t))n−1)

1
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f̄q the quantity (
∑∞
j=1(fj)

q)1/q where f := {fj}
∞
j=1

Φ̄ the complementary of a Young function Φ
|E| the Lebesgue measure of the set E ∈ Rn

DR the mesh of dyadic rectangles associated to the rectangle R
B a basis; that is, a collection of open sets in Rn

Q the basis of n-dimensional axes parallel cubes
R the basis of n-dimensional axes parallel rectangles
G the basis of n-dimensional rectangles with arbitrary orientation
Mµ the Hardy-Littlewood maximal operator with respect to µ
M the Hardy-Littlewood maximal operator
M
µ
c the centered Hardy-Littlewood maximal operator with respect to µ

MΦ the Orlicz maximal operator
M the multilinear operator associated to the basis Q
M
µ
s the strong maximal operator with respect to µ

Ms the strong maximal operator
MΦ
s the strong Orlicz maximal operator

Ms the multilinear operator associated to the basis Q
M
µ
B the maximal operator associated to the basis B with respect to µ

MB the maximal operator associated to the basis B
M
µ
α the fractional maximal operator

Iα the fractional integral operator
H the Hilbert transform
Hs the multiple Hilbert transform
Rj the j-th Riesz transform
Sd the dyadic square function
[b, T ](·) bT(·) − T(b)(·)



Chapter 1

Preliminaries

In this chapter we introduce definitions and concepts used in this study. We start with the
basic framework where the problems we have already stated will be studied. We also define
the main operators and their basic mapping properties in the Lebesgue spaces. Then we
extend these properties to the setting of weights and we describe in detail the classes of
weights w for which these operators are bounded on Lp(w). Some of the definitions and
results will be presented without references or proofs, although in the last section we point
out the general bibliography used.

1.1 Framework

In this section we recall some notions related to the theory of Lp spaces and Orlicz
spaces; both spaces define the environment where this thesis is developed.

Our basic setting is a measure space (X,Σ,µ), that is a set X together with a σ-algebra
Σ of sets in X and a non-negative measure µ on X. The measure µ is always assumed
to be σ-finite.The most important space of functions in this thesis is the space Lp(X,µ),
1 6 p < ∞, defined as the collection of measurable functions from X to C whose p-th
powers are integrable; the norm of f ∈ Lp(X,µ) is defined as

‖f‖Lp(X,µ) :=
(∫
X

|f(x)|pdµ(x)

) 1
p

.

For p = ∞, L∞(X,µ) denotes the Banach space of essentially bounded functions from X

to C; that is, the space of functions f such that

‖f‖L∞(X,µ) := ess sup
x∈X

|f(x)| <∞,

where
ess sup

x∈X
|f(x)| := inf{α > 0 : µ({x ∈ X : |f(x)| > α}) = 0}.

We also work on the weak Lp-spaces, denoted by Lp,∞(X,µ). For 1 6 p < ∞, the space
Lp,∞(X,µ) is the collection of all measurable functions f : X→ C such that

‖f‖Lp,∞(X,µ) := sup
λ>0

λµ({x ∈ X : |f(x)| > λ})
1
p <∞.

3



4 Chapter 1. Preliminaries

For 1 < p <∞, p ′ denotes the dual or conjugate exponent of p defined by the relation
1/p + 1/p ′ = 1. In general X will be Rn or a subset of Rn. In the cases where µ is
the Lebesgue measure we often do not give the measure and we simply write Lp(X) and
Lp,∞(X) or Lp and Lp,∞ when X = Rn. When µ is absolutely continuous with respect to
the Lebesgue measure and dµ = wdx, then we write Lp(w) and Lp,∞(w). Most of the
time we will be working on these spaces and w will be called a weight (see Section 1.3).

We introduce some basic facts about the theory of Orlicz spaces. These spaces define a
more flexible setting than that provided by Lp spaces. These will play a central role in our
approach to two-weight norm inequalities and may be understood as natural generalizations
of the Lp spaces. Indeed, we can say that f ∈ Lp if and only ifΦ(|f|) ∈ L1, whereΦ(t) = tp.
The theory of Orlicz spaces applies this idea to more general convex functions Φ, that are
called Young functions. More precisely, a function Φ : [0,∞)→ [0,∞) is a Young function
if it is continuous, convex and strictly increasing, satisfying Φ(0) = 0 and Φ(t) → ∞
as t → ∞. Note that since Φ is convex, Φ ′ exists almost everywhere and is increasing;
therefore,

Φ(t) 6
∫t
0
Φ ′(s)ds 6 tΦ ′(t). (1.1)

Given a Young function Φ, we define the Orlicz space LΦ(X,µ) to be the set of mea-
surable functions f such that ∫

X

Φ

(
f

λ

)
dµ <∞

for some λ > 0. We define a norm for LΦ(X,µ) introducing the Luxembourg norm

‖f‖Φ,X := inf
{
λ > 0 :

∫
X

Φ

(
|f(x)|

λ

)
dµ 6 1

}
.

In the case that X is a subset E of Rn and dµ = dx, we simply write LΦ. In this particular
case, the following definition will be frequently used:

Definition 1.1. We define the localized LΦ-norm of a function f over a set E of Rn as

‖f‖Φ,E := inf
{
λ > 0 :

1
|E|

∫
E

Φ

(
|f(x)|

λ

)
dx 6 1

}
. (1.2)

It will be helpful to observe the following feature of this so-called norm. If Φ1 and Φ2 are
two Young functions then:

Φ1(t) 6 Φ2(t) for all t ∈ (0,∞)⇒ ‖f‖Φ1,E 6 ‖f‖Φ2,E (1.3)

for all positive functions f.

Associated with each Young function Φ, one can define a complementary function

Φ̄(s) := sup
t>0

{st−Φ(t)} (1.4)

for s > 0. Such Φ̄ is also a Young function and we have

Φ−1(t)Φ̄−1(t) ∼ t for all t ∈ (0,∞) (1.5)
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and
st 6 C

[
Φ(t) + Φ̄(s)

]
for all s, t > 0. Also the Φ̄-norms are related to the LΦ-norms via the the generalized
Hölder inequality, namely

1
|E|

∫
E

|f(x)g(x)|dx 6 2 ‖f‖Φ,E ‖g‖Φ̄,E. (1.6)

There are certain classes of Young functions that have a particular relevance to the material
in the next chapter. For this reason we present the next definitions:

Definition 1.2. Φ is said to be doubling if there exists a positive constant α such that

Φ(2t) 6 αΦ(t)

for all t > 0.

Definition 1.3. We say that a Young function Φ is submultiplicative if for each t, s > 0

Φ(ts) 6 Φ(t)Φ(s).

We finish this section with some illustrative examples of Young functions.

• If Φ(t) = tp, 1 6 p < ∞, then LΦ(X,µ) = Lp(X,µ). In the case dµ(x) = dx we
use the notation ‖ ‖p,E for the corresponding localized norm on a set E.

• Define Φ(t) = exp(t2) − 1. If the measure space is finite, LΦ(X,µ) consists of the
exponentially square-integrable functions.

• Let 1 6 r <∞ and s ∈ R. If s > 0 then Φ(t) = tr(log(e+ x))s is aYoung function.
Observe that for any set E ∈ Rn we have the following relation:

‖ · ‖Lr(E) 6 ‖ · ‖Φ,E 6 ‖ · ‖Lr+ε(E)

for any ε > 0. In this case, we will say that the localized LΦ-norm is stronger than
the Lr- norm but it is weaker than the Lr+ε-norm.

1.2 The main operators

In this section we describe the main operators we will be working with in this thesis. We
first recall some basic definitions and we introduce some notation. We say that an operator
T is linear if

T(f+ g) = T(f) + T(g) and T(λf) = λT(f)

for all functions f, g and all λ ∈ C. The operator is sublinear if

|T(f+ g)| 6 |T(f)|+ |T(g)| and |T(λf)| = |λ||T(f)|

for all functions f, g and all λ ∈ C. Given two Lebesgue spaces Lp(X,µ) and Lq(Y,ν),
we say that a linear or sublinear operator T is bounded from Lp(X,µ) to Lq(Y,ν) (and we
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write T : Lp(X,µ)→ Lq(Y,ν)) if for all functions f ∈ Lp(X,µ) we have

‖Tf‖Lq(Y,ν) .p,T ,ν,µ ‖f‖Lp(X,µ).

The operator norm of T , denoted by ‖T‖Lp(X,µ)→Lq(Y,ν), is defined as

‖T‖Lp(X,µ)→Lq(Y,ν) := sup
f 6=0

‖Tf‖Lq(Y,ν)
‖f‖Lp(X,µ)

.

We use the shorthand notation ‖T‖Lp(X,µ) when T maps Lp(X,µ) into itself.
The operators T that we present here include maximal operators, Calderón-Zygmund

operators, fractional integrals and square functions. Maximal operators will be described
in more detail because these operators are central objects in this thesis. We will be mainly
interested in the mapping properties of these operators in the Lebesgue spaces Lp(Rn,µ);
that is, in estimates of the type

‖Tf‖Lp(Rn) .n,p,T ‖f‖Lp(Rn), 1 < p 6 +∞, (1.7)

together with appropriate endpoint bounds as p→ 1+.

Maximal operators. We will often use B to denote a collection of open sets in Rn, that
is, a basis. We mainly focus in our work on two special bases of open sets; namely the basis
Q, consisting of all n-dimensional cubes with sides parallel to the coordinate axes, and the
basis R consisting of all rectangles with sides parallel to the coordinate axes.
Definition 1.4. Let µ be a non-negative measure on Rn, finite on compact sets, and let
B be a basis. For f ∈ L1loc(µ) we define the maximal operator with respect to µ by

M
µ
Bf(x) := sup

B∈B
B3x
µ(B)>0

1
µ(B)

∫
B

|f(y)|dµ(y),

if x ∈ ∪B∈BB and Mµ
Bf(x) := 0 if x /∈ ∪B∈BB.

When µ is the Lebesgue measure we drop the superscript µ and we just writeMB. For
the basis Q the corresponding maximal operator is the Hardy-Littlewood maximal operator
denoted byM. The maximal operator associated to the basis R is referred to as the strong
maximal operator, and is denoted by Ms.

The boundedness properties of MB depend strongly on the geometry of the basis B.
Note that MB is a bounded operator in L∞ for any basis B. However, the existence of
Lp bounds, 1 < p < ∞, and of endpoint bounds as p → 1+ cannot be guaranteed in the
generality of B. Indeed, if B is the family of all rectangles in Rn, allowing all rotations,
dilations and translations, thenMB is called the universal maximal operator which is known
to be unbounded for any p < +∞; see [dG81]. There are some bases B for which the
boundedness properties of MB are well understood. In order to illustrate this, we present
the following definitions.
Definition 1.5. A basis B is homothecy invariant, if it satisfies
(i) For every B ∈ B and every y ∈ Rn we have that τyB ∈ B, where τyB := {x + y :

x ∈ B}.
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(ii) For every B ∈ B and s > 0 we have that dilsB ∈ B, where dilsB := {sx : x ∈ B}.

Definition 1.6. MB satisfies a Tauberian condition with respect to a fixed γ ∈ (0, 1) if
there exists some constant cB,γ > 0 such that, for every measurable set E ⊂ Rn, we have∣∣{x ∈ Rn :MB(1E)(x) > γ}

∣∣ 6 cB,γ|E|. (AB,γ)

It is essential to notice that the previous estimate is supposed to hold only for a fixed
γ ∈ (0, 1). However, in practice, many times one has a Tauberian condition of the form
(AB,γ) for every γ ∈ (0, 1) and typically cB,γ blows up to infinity as γ→ 0+.

For a homothecy invariant basis B of convex sets, the Lp boundedness of MB is
characterized in terms of Tauberian conditions.

Theorem 1.7 (Hagelstein & Stokolos, [HS09]). Let B be a homothecy invariant basis
consisting of convex sets in Rn. Then the following are equivalent:

(i) The operator MB satisfies a Tauberian condition (AB,γ) with respect to some fixed
γ ∈ (0, 1).

(ii) There exists some 1 < po = po(B,γ,n) < +∞ such thatMB : Lp(Rn)→ Lp(Rn)
for all p > po.

In virtue of the previous theorem, the Tauberian condition (AB,γ) for a single γ ∈ (0, 1)
is equivalent to Tauberian conditions for every γ ∈ (0, 1) whenever B is a homothecy
invariant basis consisting of convex sets in Rn.

We now turn our attention to the main bases of this thesis; that is, Q and R. The next
two theorems describe Lp and endpoint bounds for M and Ms, respectively.

Theorem 1.8 (Hardy & Littlewood, [?] & Wiener, []). Let 1 < p <∞, thenM : Lp(Rn)→
Lp(Rn). Moreover, the following endpoint holds.

∣∣{x ∈ Rn :Mf(x) > λ}
∣∣ .n ∫

Rn

|f(x)|

λ
dx, λ > 0,

Theorem 1.9 (Jessen, Marcinkiewicz & Zygmund, [JMZ35]). Let 1 < p < ∞, then
Ms : L

p(Rn)→ Lp(Rn). Moreover, the following endpoint holds.

∣∣{x ∈ Rn :Msf(x) > λ}
∣∣ .n ∫

Rn

|f(x)|

λ

(
1+

(
log+ |f(x)|

λ

)n−1
)
dx. (1.8)

Theorem 1.8 is the classical maximal theorem of Hardy and Littlewood. The distribu-
tional inequality (1.8) is due to Jessen, Marcinkiewicz and Zygmund from [JMZ35]. See
also [CF75] for a geometric approach to the same result. By interpolation, the previous
endpoint bounds imply the Lp bounds, for both M and Ms.

The boundedness properties of Mµ
B are much harder than the corresponding ones for

the maximal operator MB, with definitive information only for special cases of bases B
and measures µ. The boundedness properties for Mµ

B where B is a homothecy invariant
basis is one of the problems of this thesis and it is presented in Chapter 3. If B = Q,R,
we drop the subscript B and write Mµ and Mµ

s . As in the case of dµ = dx, the one-
parameter operator Mµ is easier to analyze than the operator Mµ

s . However, even in the
one-parameter case, there is no complete characterization of the measures µ for whichMµ
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is bounded on Lp(Rn,µ). Below we present some known results for the basis Q that are
relevant for this thesis.

• A special one-dimensional result. In dimension n = 1, let µ be any non-negative
Borel measure. We have that Mµ : L1(µ) → L1,∞(µ) and by interpolation Mµ :
Lp(µ) → Lp(µ) for all 1 < p 6 +∞. This result is very special to one dimension
since the proof depends on a covering lemma for intervals of the real line. Observe
that there is essentially no restriction on the measure µ. See for example [Sjö83] for
the details of this result.

• The centered, one-parameter maximal function with respect to a measure µ.
A common variation of Mµ is the weighted centered Hardy-Littlewood maximal
function, given as

Mµ
c f(x) := sup

r>0

1
µ(Q(x, r))

∫
Q(x,r)

|f(y)|dµ(y),

where Q(x, r) denotes the cube with sides parallel to the coordinate axes and side-
length r > 0, centered at x ∈ Rn. Then for any non-negative Borel measure µ we
have that Mµ

c : L1(Rn) → L1,∞(Rn) and thus, by interpolation, Mµ
c : Lp(Rn) →

Lp(Rn) for all 1 < p 6 +∞.
The proof of this result depends on the Besicovitch covering lemma and it remains
valid whenever the Besicovitch argument goes through. Thus, the condition that the
maximal function defined above is centered is essential. For example, it was shown
in [Sjö83] that if γ is the Gaussian measure in R2 then the non-centered weighted
maximal operator Mγ does not map L1 to L1,∞.
The second essential hypothesis, hidden in the definition of Mµ

c , is that it is a one-
parameter maximal operator, that is, we average with respect to a one-parameter
family of cubes. Here one could replace cubes by Euclidean balls or more general
“balls”, given by translations and one-parameter dilations of a convex set in Rn
symmetric about the origin.
On the other hand, emphasizing the need for the one-parameter hypothesis mentioned
previously, the boundedness fails for Mµ

s , even if we consider a centered version of
it. The reason is that the family R is an n-parameter family of sets for which the
Besicovitch covering is not valid. See for example [Fef81b] for an example of a locally
finite measure µ for which Mµ

s,c is unbounded on Lp(µ) for all p < ∞. In the next
section we will describe in detail this case where µ is a weight.

• The non-centered, one-parameter maximal function with respect to a doubling mea-
sure. Let µ be a non-negative Borel measure. The following definition is standard.
Definition 1.10. The measure µ is called doubling if there is a constant ∆µ > 0
such that, for every cube Q = Q(x, r) ⊆ Rn we have

µ(2Q) 6 ∆µµ(Q),

where 2Q = Q(x, 2r).

It is an easy observation that for µ doubling, the non-centered weighted maximal op-
eratorMµ is pointwise equivalent to its centered version, that is,Mµf(x) 'Mµ

c f(x),
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where the implicit constants depend only on ∆µ. It follows from the discussion above
that the maximal operator Mµ with respect to a doubling measure µ maps L1(µ) to
L1,∞(µ) and Lp(µ) to Lp(µ) for all 1 < p 6∞.

Calderón-Zygmund operators. Let K be a function defined on Rn × Rn\{(x, x) : x ∈
Rn}. We say that K is a standard kernel if it satisfies the size estimate

K(x,y) 6 c

|x− y|n

and, for some δ > 0, the regularity condition

|K(x,y) − K(z,y)|+ |K(y, x) − K(y, z)| 6 c |x− z|δ

|x− y|n+δ

whenever 2|x− z| < |x− y|. We are now ready to define Calderón-Zygmund operators.

Definition 1.11. A linear operator T is a Calderón-Zygmund operator if

• T is bounded from L2(Rn) to L2(Rn).

• There exists a standard kernel K such that

Tf(x) =

∫
Rn
K(x,y)f(y)dy

for any f ∈ L2(Rn) and x /∈ supp(f).

The main examples of Calderón-Zygmund operators are those given as a convolution
with a standard kernel K(x,y) = k(x − y), where k is a locally integral on Rn\{0}. The
archetypal operator of this type is the Hilbert transform H. It is given by convolution
against the kernel K(x) = 1/(πx) for x ∈ Rn. More precisely, let f be in the Schwartz class
S (R), and define the Hilbert transform as

Hf(x) =
1
π

lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy. (1.9)

The n-dimensional analogue of the Hilbert transform is the Riesz transform. Indeed, for
1 6 j 6 n, the j-th Riesz transform of f is given by

Rjf(x) =
Γ(n+1

2 )

π
n+1
2

lim
ε→0+

∫
|x−y|>ε

xj − yj
|x− y|n+1 f(y)dy, (1.10)

for all f ∈ S (R). Here Γ denotes the gamma function.
Boundedness of Calderón-Zygmund operators from the Lebesgue spaces Lp(Rn) to

Lp(Rn), 1 < p < ∞, and L1(Rn) to L1,∞(Rn) is completely understood. The proof can
be found in [Gra08, Chapter 5].

Fractional operators. We first consider a fractional variant of the maximal operatorMµ.
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Definition 1.12. Let 0 < α < n, we define the fractional maximal operator as

Mµ
αf(x) = sup

Q3x

1
µ(Q)1−α/n

∫
Q

|f(y)| dµ(y). (1.11)

Note that the case α = 0 corresponds to the operator Mµ. By Hölder’s inequality

1
µ(Q)1−α/n

∫
Q

|f(y)| dµy 6

(∫
Q

|f(y)|n/αdµy

)α/n
,

which implies Mµ
α : Ln/α(µ)→ L∞(µ). When µ is the Lebesgue measure we simply write

Mα. If µ is doubling (see Definition 1.10), then a similar argument to the one indicated
forMµ shows thatMµ

α is weak (1, (n/α) ′). Thus, by interpolation,Mµ
α : Lp(µ)→ Lq(µ)

if the exponents p and q are related by the relation

1
p
−

1
q
=
α

n
. (1.12)

The fractional maximal operator is intimately related to the following operator.

Definition 1.13. Let f ∈ S (Rn). For 0 < α < n, the fractional integral operator or Riesz
potential Iα is defined by

Iαf(x) :=

∫
Rn

f(y)

|x− y|n−α
dy.

We notice that the function | · |n−α is locally integrable for 0 < α < n, so Iα is well
defined. This operator is pointwise bigger thanMα. Moreover,it has the same boundedness
properties as Mα; that is: Iα : Lp(Rn) → Lq(Rn) and Iα : L1(Rn) → Lq,∞(Rn), where
1 6 p < q satisfies (1.12).

Square functions. Let ∆ denote the collection of dyadic cubes in Rn. Given Q ∈ ∆, let
Q̂ be its dyadic parent, that is, the unique dyadic cube containing Q whose side-length is
twice that of Q.

Definition 1.14. The dyadic square function is the defined as the operator

Sdf(x) :=

∑
Q∈∆

(fQ − fQ̂)
21Q(x)

1/2

where fQ = −
∫
Q f(x) dx.

This operator is bounded on Lp(Rn) for 1 < p <∞.

1.2.1 Multiparameter operators

Most of the operators considered so far in this section, commute with one-parameter di-
lations of Rn; namely, the conditions satisfied by them are not affected by the change of
scale x→ xt, t > 0. Now, we gather some practical information concerning the operators
which are invariant under n-parameter dilations in Rn.
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The most basic example of the multiparameter theory is the strong maximal operator
Ms, that we have already presented. In fact, if we define the n-parameter dilation

x→ δ(x) = (δ1x1, δ2x2, · · · δnxn)

with δi > 0 for every i, we have that for any arbitrary positive function f

Ms(fδ) = (Msf)δ

with fδ(x) = f(δx). Thus the operator Ms commutes with n-parameter dilations.
Another interesting example of a multiparameter operator is the multiple Hilbert trans-

form, defined by

Hsf(x) :=
1
πn

lim
ε1,ε2,··· ,εn→0+

∫
|x1−y1|>ε1

· · ·
∫
|xn−yn|>εn

f(y)

(x1 − y1) · · · (xn − yn)
dy.

Its boundedness properties on Lp(Rn) follows directly by the studying of the n-composition
of the corresponding one-dimensional operators. More precisely, given an operator T acting
on functions f : Rn → R, for every j = 1, · · · ,n, Tj denotes the operator defined by

T jf(x) := T(f(x1, · · · , xj−1, ·, xj+1, · · · , xn))(xj).

That is, the operator T acting on the j-th variable while keeping the remaining variables
fixed. In particular, we have

Hsf(x) = H
1 ◦H2 ◦ · · · ◦Hnf(x) (1.13)

whereH is exactly the usual Hilbert transform. Also, it is not difficult to obtain the following
estimate:

Msf(x) 6M
1 ◦M2 ◦ · · · ◦Mnf(x). (1.14)

where Mj is the one dimensional (Hardy-Littlewood) maximal operator in the j-th coordi-
nate. Since it is already known that the operators Hj and Mj are bounded on Lp(Rn),
from identity (1.13) and inequality (1.14) we deduce the Lp boundedness of Hs and Ms,
respectively.

1.3 Weights

A weight is a non-negative locally integrable function on Rn that takes values in (0,∞)
almost everywhere. Given a weight w and a measurable set E, we use the notation

w(E) =

∫
E

w(x)dx

to denote the w-measure of the set E. In this section we are interested in estimates of the
form

‖Tf‖Lp(w) .n,p,w,T ‖f‖Lp(w), 1 < p 6 +∞, (1.15)
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where T is any of the operators presented in the last section. We also present the cor-
responding endpoint bounds as p → 1+ that are are typically harder (and stronger) than
their Lp analogues (1.15). To study this estimate (1.15) we need to introduce the classes
of Muckenhoupt weights Ap.

1.3.1 Ap-weights

Definition 1.15. We say that a weight w belongs to the class Ap, 1 < p < +∞, if

[w]Ap := sup
Q∈Q

(
1
|Q|

∫
Q

w(y)dy

)(
1
|Q|

∫
Q

w(y)1−p
′
dy

)p−1
< +∞. (1.16)

For the limiting case p = 1 the class A1 is defined to be the set of weights w such that

[w]A1 := sup
Q∈Q

(
1
|Q|

∫
Q

w(y)dy

)
ess sup

Q
(w−1) < +∞.

This is equivalent to w having the property

Mw(x) 6 [w]A1 ·w(x), a.e. x ∈ Rn.

It follows from Hölder’s inequality and the definitions above that for all 1 6 p < q < +∞
we have that Ap ⊂ Aq, that is, the classes Ap are increasing in p > 1. It is thus natural
to define the limiting class A∞ as

A∞ :=
⋃
p>1

Ap =
⋃
p>1

Ap.

We notice here that there are several definitions of the A∞ class that appeared in the
literature and all of them are equivalent. Another classical definition is the one introduced
by Hruščev [Hru84]; namely, that A∞ consists of those w such that:

[w]A∞ := sup
Q∈Q

(
1
|Q|

∫
Q

w(y)dy

)
exp

(
1
|Q|

∫
Q

logw(y)−1dy

)
< +∞. (1.17)

Since the above condition coincides with the formal limit conditions (1.16) as p tends to∞, it explains perfectly the name A∞. For more details in the equivalent definitions of the
A∞ class, we refer the interested reader to [DMRO13b].

For a weight w, belonging to the Ap-class, we have the next result:
Theorem 1.16 (Muckenhoupt, [Muc72]). The following statements are true.
(i) Let 1 < p < ∞, M : Lp(w) → Lp(w) if and only if M : Lp(w) → Lp,∞(w), if and

only if w ∈ Ap.

(ii) M : L1(w)→ L1,∞(w) if and only if w ∈ A1.
Therefore the Ap-class is equivalent to estimate (1.15) in the case T = M. In the

case of T = H, (1.15) was obtained by R. Hunt, B. Muckenhoupt and R. Wheeden for
Ap-weights. Then, R. Coifman and C. Fefferman extended this result for any Calderón-
Zygmund operator T . In this case the Ap-class turns out to be sufficient for boundedness,
although not always necessary.



1.3. Weights 13

Theorem 1.17 (Coifman & C. Fefferman, [CF74]). If T is a Calderón-Zygmund operator,
then the following statements are true:

• For any w ∈ Ap, 1 < p <∞, T : Lp(w)→ Lp(w).

• For any w ∈ A1, T : L1(w)→ L1,∞(w).
For the case of T being the square dyadic function, (1.15) is also characterized in terms

of the Ap condition. The case of the fractional operators T requires a variant of the Ap
class of weights. More precisely,

Theorem 1.18 (Muckenhoupt & Wheeden, [MW74]). Iα and Mα are bounded from
Lp(wp) to Lq(wq) if and only if the exponents p and q are related by the equation (1.12)
and w satisfies the so called Ap,q condition; that is, w ∈ Ap,q if

[w]Ap,q := sup
Q

(
1
|Q|

∫
Q

wq dx

)(
1
|Q|

∫
Q

w−p ′ dx

)q/p ′
<∞. (1.18)

1.3.2 Weights associated to bases

We say that w is a weight associated to the basis B if w is a non-negative locally integrable
function on Rn and w(B) :=

∫
Bw(x)dx < +∞ for every B ∈ B. For the bases Q we

have already seen in Theorem 1.16 that the validity of (1.15) for any 1 < p < +∞ is
characterized by the membership of w to the class Ap. Thus, we extend Definition 1.15
to general bases.

Definition 1.19. We say that a weight w belongs to the class Ap,B, 1 < p < +∞, if

[w]Ap,B := sup
B∈B

(
1
|B|

∫
B

w(y)dy

)(
1
|B|

∫
B

w(y)1−p
′
dy

)p−1
< +∞.

For the limiting case p = 1 the class A1,B is defined to be the set of weights w such that

[w]A1,B := sup
B∈B

(
1
|B|

∫
B

w(y)dy

)
ess sup

B
(w−1) < +∞.

This is equivalent to w having the property

MBw(x) 6 [w]A1,B ·w(x), a.e. x ∈ Rn.

It is again natural to define the limiting class A∞,B as

A∞,B :=
⋃
p>1

Ap,B =
⋃
p>1

Ap,B.

For the basis Q, this definition is exactly Definition 1.15.
For general bases B and associated weights w, very little is known concerning the

boundedness of MB and Mw
B on Lp(w). In fact, we do not have a clear characterization

like Theorem 1.16. However, the following abstract theorem from [Pér91] gives a necessary
and sufficient condition for the boundedness of the Mw

B, in terms of the maximal operator
MB in the special case that w ∈ A∞,B.
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Theorem 1.20 (Pérez, [Pér91]). Let B be a basis. The following are equivalent:

(i) For every 1 < p < +∞ and every w ∈ Ap,B we have that

MB : Lp(w)→ Lp(w).

(ii) For every 1 < p < +∞ and every w ∈ A∞,B we have that

Mw
B : Lp(w)→ Lp(w).

In Chapter 3 we characterize (1.15) for MB whenever B is a homothecy invariant
basis of convex sets. As it was described in the unweighted case (see Theorem 1.7), the
characterization is in terms of Tauberian conditions. Though we do not present the result
here, we state the weighted version of Definition 1.6 that will be used in the following
chapters.

Definition 1.21. We will say that the maximal operatorMB satisfies a weighted Tauberian
condition with respect to some γ ∈ (0, 1) and a weight w if there exists a constant
cB,γ,w > 0 such that, for all measurable sets E ⊂ Rn we have

w({x ∈ Rn :MB(1E)(x) > γ}) 6 cB,γ,ww(E). (AB,γ,w)

In this case, we will say that the weight w satisfies (AB,γ,w) for some fixed level γ ∈ (0, 1).

Next, we analyze two particular bases B for which estimate (1.15) has been already
studied in more detail.

The basis R and the strong Ap-weights.

Definition 1.19 for the basis R gives what is referred to as the strong Ap-class and we use
the shorthand notation A∗p := Ap,R. Since the A∗p-weights will play an essential role in this
dissertation, we describe this class in detail. An important feature of strong Ap-weights,
1 6 p 6∞, is that if we fix any t ∈ R then the weight

wt(x ′) := w(x ′, t), x ′ ∈ Rn−1,

is an A∗p-weight on Rn−1, uniformly in t ∈ R. In practice, uniformly means that all
the constants connected with the properties of the A∗p-weight wt can be taken to be
independent of t. We can express this property in a complementary way. Given a weight
w ∈ A∗p, we write x̄j := (x1, . . . , x̂j, . . . , xn) ∈ Rn−1, where the variable x̂j is missing,
and we set wx̄j(t) := w(x1, . . . , xj−1, t, xj+1, . . . , xn), t ∈ R. The point here is that we
“freeze” the variable x̄j ∈ Rn−1 and consider the one-dimensional weight wx̄j . We then
have the following:

Lemma 1.22. Let 1 6 p <∞. Then w ∈ A∗p if and only if, for every 1 6 j 6 n we have
that the one-dimensional weight wx̄j ∈ Ap, uniformly in x̄j ∈ Rn−1. Furthermore, for each
1 6 j 6 n we have

sup
x̄j

[wx̄j ]Ap 6 [w]A∗p . (1.19)
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Remark 1.23. We would like to stress that this lemma highlights the one-dimensional
nature of the elements of the A∗p-class. It was already proved in [Kur80] for the case
1 < p <∞ and extended to p = 1 in [BK85]. Here, we have restated the lemma showing
the relation between the constants [w]A∗p and [wj]Ap , that follows directly if we keep track
of the constants. The first implication of this lemma is a consequence of the Lebesgue
differentiation theorem. The second goes through the boundedness of the strong maximal
operator. See [GCRdF85, Theorem 6.2] for a complete account of it.

In the case of R, as it happened for Q, there are different definitions of A∗∞ and they
are all equivalent. One of them, that we will use throughout this thesis is the following:
w ∈ A∗∞ if there exist constants δ, c > 0 such that, given any rectangle R ∈ Rn and a
measurable subset S ⊂ R, then

w(S)

w(R)
6 c

(
|S|

|R|

)δ
. (1.20)

Remark 1.24. Let w ∈ A∗∞. By the previous definition we see that there exists some
ε = ε(w) > 0 such that, for every rectangle R ∈ Rn and all measurable sets F ⊂ Rn, we
have

|R ∩ F| 6 ε|R|⇒ w(R ∩ F) 6 1
2w(R)⇒ w(R \ F) >

1
2w(R).

In fact, it suffices to choose ε > 0 so that cεδ 6 1
2 , where c, δ are the constants associated

to w ∈ A∗∞ from (1.20). Since for any t ∈ R the weight wt := w(·, t) is an A∗∞-weight on
Rn−1, uniformly in t, the parameter ε > 0 can be chosen sufficiently small so that we have
the previous property also for wt, rectangles R ′ ∈ Rn−1 and sets F ′ ⊂ Rn−1, uniformly in
t.

The following theorem shows estimate (1.15) for the case of T =Ms.

Theorem 1.25 (Bagby & Kurtz, [BK85]). The following statements are true.

(i) Let 1 < p < +∞. Then Ms : Lp(w) → Lp(w) if and only if Ms : Lp(w) →
Lp,∞(w), if and only if w ∈ A∗p.

(ii) If w ∈ A∗1 then

w({x ∈ Rn :Msf(x) > λ}) .n,w

∫
Rn

|f(x)|

λ

(
1+

(
log+ |f(x)|

λ

)n−1
)
w(x)dx, λ > 0.

(1.21)

Thus, the boundedness properties of Ms on Lp(w), 1 < p < +∞, are completely
characterized for the basisR. However, the endpoint estimate (1.21) for the strong maximal
operator is not so transparent. Indeed, the presence of the logarithmic terms on the right
hand side of the (1.21) results in the condition A∗1 being sufficient, but not necessary, for
the validity of (1.21). A necessary condition for (1.21), which is weaker than w ∈ A∗1 ,
appears in [BK85] but the authors show that it is not sufficient. On the other hand, the
weighted endpoint estimate (1.21) has been characterized in [Gog92] in terms of a certain
covering property for rectangles. See also [KK91, Theorem 4.3.1] for a detailed proof of
this fact. Similar characterizations of the boundedness properties of maximal operators on
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general Lp(µ)-spaces in terms of covering properties are contained for example in [Jaw86,
Theorem 2.2] and [GCRdF85, Lemma IV.6.11], while the approach goes back to [C76] and
[CF75]. There is however no characterization in the spirit of the Muckenhoupt A∗p-classes,
of the weights w such that (1.21) holds.

The study of estimate (1.15) for the weighted strong maximal operator Mw
s is more

complicated. For the weighted strong maximal operator Mw
s , R. Fefferman showed in

[Fef81b] that it maps Lp(w) to Lp(w) whenever w ∈ A∗∞:
‖Mw

s f‖Lp(w) 6w,n cp,n‖f‖Lp(w) 1 < p 6∞. (1.22)

The corresponding endpoint inequality

w({x ∈ Rn :Mw
s f(x) > λ}) .n,w

∫
Rn

(
1+

(
log+ |f(x)|

λ

)n−1
)
w(x)dx

is also true whenever w ∈ A∗∞. This was proved by Jawerth and Torchinsky in [JT84] and
independently by Long and Shen [LS88]. A weaker sufficient condition for the boundedness
ofMw

s appears in [JT84] but it is quite technical and we will not describe it here; it shows
however that w ∈ A∗∞ is not a necessary condition for the boundedness of Mw

s on Lp(w),
nor for the corresponding endpoint distributional estimate above.

The membership of a weight w in the class A∗p also characterizes the boundedness of
the multiple Hilbert transform Hs on Lp(w), 1 < p < ∞. Indeed, these weights are the
natural ones in the multiparameter setting. See [GCRdF85, Chapter IV.6] for more details
on this subject.

Muckehoupt bases

Theorem 1.20 as well as Theorem 1.16 and Theorem 1.25 motivate the following definition,
which is from [Pér91].

Definition 1.26. A basis B is a Muckenhoupt basis if for every 1 < p < +∞ and every
w ∈ Ap,B, we have that

MB : Lp(w)→ Lp(w).

With this definition, Theorem 1.20 states that B is a Muckenhoupt basis if and only if
the weighted maximal operator satisfiesMw

B : Lp(w)→ Lp(w) for every 1 < p < +∞ and
every w ∈ A∞,B. On the other hand, Theorem 1.16 and Theorem 1.25 show, respectively,
that Q and R are Muckenhoupt bases. Another interesting example of a Muckenhoupt
basis is given by the Córdoba-Zygmund basis in R3, consisting of rectangles with sides
parallel to the coordinate axes and sidelengths of the form (s, t, st), s, t > 0.

Remark 1.27. We point out here that if B is a Muckenhoupt basis, then the following are
equivalent:

• w ∈ A∞,B.

• w satisfies (AB,γ,w) for some fixed level γ ∈ (0, 1).

Although this is an original result contained in the thesis, it is announced here because
we will use it several times in the next chapter. It will be detailed in Chapter 3.
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1.4 References
In this chapter we have just provided a rough description of the concepts and tools we will
need in this dissertation. We refer the interested reader to the following monographs for
a more detailed information on these issues. The main features of the Lebesgue spaces
and the boundedness properties of the operators presented in Section 1.2 can be found in
[Gra08]. A classical reference for Orlicz spaces is the book by Bennett and Sharpley [BS88].
For a very clear explanation on the properties of a Young function and the construction of
its complementary function, we refer to [Wil08, Chapter 10]. We also refer to the recent
book [CUMP12, Chapter 5.1] for a description of the localized LΦ-norm. A general analysis
on the boundedness properties of the maximal operators Mµ

B is presented in [Jou83]. A
general introduction to multiparameter harmonic analysis is contained in [Fef86]. For a
definition of the multiparameter version of the Hilbert transform as well as of more general
multiparameter singular integral operators see for example [Fef81a] and [FS82]. Finally, a
complete account of the results related to weighted norm inequalities (Section 1.3) can be
found in [Duo01, Chapter 7], [GCRdF85, Chapter IV] and [Gra09, Chapter 9]. In particular,
the definition of Muckenhoupt weights for general bases is in [GCRdF85, Chapter IV.4].





Chapter 2

Two-Weight norm inequalities for
maximal operators

The main purpose of this chapter is to show our contribution to Problem 0.1 and Problem
0.2. Though we are mainly focus on the strong maximal operator and the basis of rectangles
R, results related to Problem 0.1 are also extended to the multilinear setting and to other
more general bases of open sets.

2.1 Strong two-weight problem and bump conditions

We remember that in Problem 0.1 we are interested in finding sufficient conditions on
(w, v) so that Ms is bounded from Lp(v) to Lp(w). We recall first a few facts about
the two-weight norm inequalities for the Hardy-Littlewood maximal function. Though this
operator is rather different than the strong maximal one, its understanding motivates our
approach.

Sawyer [Saw82a] characterized those pairs of weights (w, v) for which the Hardy-
Littlewood maximal operator M is bounded from Lp(v) to Lp(w) for 1 < p < ∞. He
showed that:

Theorem 2.1 (Sawyer, [Saw82a]). M : Lp(v) → Lp(w) if and only if for every cube
Q ∈ Q, (w, v) satisfies the testing condition∫

Q

(M(1Qσ))pwdx . σ(Q), (2.1)

where σ denotes the dual weight of v; that is, σ := v1−p
′ .

On the other hand, it is also known that the two weight Muckenhoupt condition Ap

sup
Q

(
1
|Q|

∫
Q

u1dx

)(
1
|Q|

∫
Q

u
1−p ′
2 dx

)p−1
<∞

is necessary but not sufficient for the maximal operator to be of strong type (p,p) with
respect to the pair of measures (u1,u2). As it was pointed out in the introduction, the
fact that Sawyer’s condition involves the maximal operator itself makes it often difficult to
test in practice. Therefore, though this condition characterizes completely the two weight

19
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problem, it would be very useful to look for sufficient conditions close in form to the Ap
condition. The first step in this direction was done by Neugebauer [Neu83]. He proved that
if the pair of weights (w, v) is such that for r > 1

sup
Q

(
1
|Q|

∫
Q

wprdx

)1/pr( 1
|Q|

∫
Q

v−p
′rdx

)1/p ′r
<∞,

then ∫
Rn

(wMf)p dx .n,p,r,w,v

∫
Rn

(vf)p dx (2.2)

for all nonnegative functions f. We henceforth study the problem in the form (2.2), using the
weights (wp,νp) in order to simplify our calculations. Using Definition 1.1, Neugebauer’s
condition can be restated in terms of the localized Lp norm as follows:

sup
Q
‖w‖Lpr(Q)‖v−1‖Lp ′r(Q) <∞. (2.3)

Notice that the Ap condition can also be rewritten with the new formulation as follows

sup
Q
‖w‖Lp(Q)‖v−1‖Lp ′(Q) <∞. (2.4)

This tells us that if we replace the Lp,Lp ′-average norms in (2.4) by some stronger ones,
as in (2.3), then we get a condition that is sufficient for (2.2) to hold. At the same time,
this new condition preserves the geometric structure of the classical Ap. Conditions like
(2.3) are known as power bump conditions. These conditions can be generalized replacing
the localized Lp,Lp ′-norms in (2.4) by stronger localized norms, which are not necessarily
as big as the Lpr,Lp ′r-norms. Indeed, Pérez ([Pér95b], [Pér91] proved that it was enough
to only substitute the norm associated with the weight v−1 by a stronger one defined in
terms of certain Banach function spaces X with an appropriate boundedness property. To
be more precise, we define the Bp condition, first introduced in [Pér95b], as follows

Definition 2.2. Let 1 < p <∞. We say that a Young function Φ satisfies the Bp condition
and we write Φ ∈ Bp, if there is a positive constant c such that∫∞

c

Φ(t)

tp
dt

t
<∞. (2.5)

As the following theorem shows, this growth condition turns out to be optimal sufficient
for the boundedness of the Hardy-Littlewood function from Lp(vp) to Lp(wp).

Theorem 2.3 (Pérez, [Pér95b]). Let 1 < p <∞, and let Φ be a doubling Young function
such that the complementary Young function Φ̄ satisfies the condition (2.5).

(i) Let (w, v) be a couple of weights such that

sup
Q

(
1
|Q|

∫
Q

wp
)1/p

‖v−1‖Φ,Q <∞. (Ap,Φ)
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Then ∫
Rn

(wMf)p dx .n,p,Φ,w,v

∫
Rn

(vf)p dx,

for all non-negative functions f.

(ii) Condition (2.5) is also necessary in the following sense. Suppose that Φ is a Young
function such that M maps Lp(vp) into Lp(wp) whenever the couple of weights
(w, v) satisfies condition (Ap,Φ). Then, Φ̄ ∈ Bp.

Let us clarify a bit more the role of the Bp condition in (Ap,Φ). Note that if a Young
function Φ verifies the Bp condition, then Φ(t) . tp, say for t > 1. Indeed, since Φ ∈ Bp
there exists c > 0 such that ∫∞

c

Φ(s)

sp
ds

s
<∞.

Actually, we have that ∫∞
1

Φ(s)

sp
dt

t
<∞.

Indeed observe that if c > 1, then∫∞
1

Φ(s)

sp
ds

s
6
∫c
1

Φ(s)

sp
ds

s
+

∫∞
c

Φ(s)

sp
ds

s
<∞.

So we get that

∞ >

∫∞
1

Φ(s)

sp
ds

s
>

∫2t
t

Φ(s)

sp
ds

s
>
Φ(t)

2ptp
∫2t
t

ds

s
=
Φ(t)

tp
ln 2
2p

for t > 1.
Therefore, the hypothesis of Theorem 2.3 implies that Φ̄(t) & tp and then Φ(t) & tp

′ ,
by the equality (1.4) of the complementary Young function. Therefore (1.3) assures that

‖v−1‖Lp ′(Q) 6 ‖v
−1‖Φ,Q

for all Q. We conclude that condition (Ap,Φ) is in general stronger than the Ap condition.
However, upon choosing an appropriate Young function Φ we can make it so that (Ap,Φ) is
arbitrarily close to the Ap condition, in the logarithmic scale. In fact, note that there exists
a big range of Young functions in Bp for which the corresponding norm is a bit bigger than
the localized Lp ′-norm and do produce sufficient conditions for the two-weight problem. In
this sense, is very easy to describe Young functions Φ ∈ Bp such that

‖v−1‖Lp ′(Q) 6 ‖v
−1‖Φ,Q 6 ‖v−1‖Lq(Q), q > p ′.

The Orlicz spaces have more refined scales of integrability than the Lp spaces. Indeed, this
flexibility plays an important role in the definition of optimal sufficient conditions (see (ii)
in the last theorem).

The first purpose of this chapter is to study the strong two-weight norm inequalities
for Ms in terms of bump conditions; that is, to describe a sufficient condition for the
boundedness of the strong maximal function using an appropriate Bp condition.

As we explained in the introduction, the two-weight problem for the strong maximal
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operator was already characterized by Sawyer [Saw82b] in terms of testing conditions. The
problem was also studied in [Pér93] with a more similar approach to the one that we present
here. It was proved that if (u, v) is a couple of weights satisfying for some r > 1

sup
R

(
1
|R|

∫
R

wp dx

)1/p( 1
|R|

∫
R

v−p
′r dx

)1/p ′

<∞ (2.6)

and wp ∈ A∗∞, then Ms : L
p(vp) → Lp(wp). In this case, the strong weighted estimate

is obtained from weak type ones using interpolation and the fact that there exists a reverse
Hölder’s inequality for the weights that verify (2.6). However, this good property disappears
if we substitute the Lpr-norm associated with the weight v−1 by a weaker one. Therefore,
we will need a different strategy in order to solve the two-weight problem with general bump
conditions. In order to state the result we need to define the appropriate class of Young
functions that enables to obtain bump conditions in the case of rectangles.

Definition 2.4. Let 1 < p < ∞. A Young function Φ is said to satisfy the strong B∗p
condition, if there exists a positive constant c such that∫∞

c

Φn(Φ(t))

tp
dt

t
<∞, (2.7)

where Φn(t) := t[1+ (log+ t)n−1] for all t > 0. In this case, we say that Φ ∈ B∗p.

We are now ready to state our two-weight theorem.

Theorem 2.5. Let 1 < p <∞, and letΦ be a Young function such that the complementary
Young function Φ̄ satisfies condition (2.7).

(i) Let (w, v) be a couple of weights such that wp ∈ A∗∞ and

sup
R

(
1
|R|

∫
R

wp
)1/p

‖v−1‖Φ,R <∞. (A∗p,Φ)

Then ∫
Rn

(wMsf)
p dx .n,p,Φ,w,v

∫
Rn

(vf)p dx

for all non-negative functions f.

(ii) Condition (2.7) is also necessary. Namely, suppose that Φ is a Young function such
thatMs : L

p(vp)→ Lp(wp) whenever the couple of weights (w, v) satisfies property
(A∗p,Φ). Then Φ̄ ∈ B∗p.

If this result is compared with Theorem 2.3, then there are some differences between
them. First, Theorem 2.5 does not require the Young function Φ to be doubling. As we
will see in Section 2.3, the doubling condition is not necessary. Moreover, Theorem 2.5 not
only needs a more restrictive class of young functions (the class B∗p), but also we ask for an
extra condition on the weight w. Observe that in (ii) of the above theorem, the hypothesis
wp ∈ A∗∞ does not play any role. This leads one to think that may be this condition is not
necessary. The last section in this chapter discusses this matter.
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The starting point of the proof of this theorem is the study of the growth condition
(2.7) and its connection with the boundedness of the strong maximal function. Then we
need to understand the geometry of the rectangles in order to deal with their covering
properties throughout the proof. This last point is also necessary for the second problem
we have posed. In the next two sections we address these issues in order to present the
proof of Theorem 2.5 in Section 2.4.2.

2.2 On covering properties

It is very well-known that the boundedness properties of a maximal functionMB are closely
connected to the covering properties of the corresponding basis B. It is for this reason that
we present in this section some results related to covering arguments. For the bases B we
are interested in here, the covering lemmas of Vitali type do not work. Thus it is necessary
to deal with some alternative tools such as:

• Selection procedures that allow to remove the unnecessary elements of the basis and
preserve the elements with good sparseness properties.

• Control of the overlap of the selected elements of the basis. This control can be for
example in norm.

Since we mainly work in weighted spaces, our proofs will focus on the weighted versions of
the covering lemmas. The solution of Problem 0.2 requires a very precise understanding
of the geometry of the basis, while for Problem 0.1 it is enough a more loose approach.
Considering that, we first analyze in detail the basis R and we then extend some of the
results to a more general context.

2.2.1 The basis of rectangles R

In this section we recall some sparseness properties of n-dimensional rectangles, introduced
in [CF75]. Here we adopt the slightly different approach from [LS88]. We begin with some
definitions and notation that we need in order to present these properties.

Definition 2.6. Let R = {Rj}16j6N be a finite sequence of rectangles from R. We will
say that R satisfies the sparseness property (P1) or it is ε-scattered, 0 < ε < 1, if

|Rj ∩
⋃
i<j

Ri| 6 ε|Rj|, j = 1, 2, . . . ,N. (P1)

For some of our purposes, we will need to consider a refinement of the sparseness
property. For t ∈ R and E ⊂ Rn we introduce the slice operator

Pt(E) := {x ′ ∈ Rn−1 : (x ′, t) ∈ E}.

Thus Pt(E) is the ‘slice’ of E by a hyperplane perpendicular to the n-th coordinate axis at
level t ∈ R. The (n− 1)-dimensional projection is

P‖(E) := {x ′ ∈ Rn−1 : (x ′, t) ∈ E for some t ∈ R}.
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We will also use the one-dimensional projection P⊥ defined for E ⊂ Rn as

P⊥(E) := {t ∈ R : (x ′, t) ∈ E for some x ′ ∈ Rn−1}.

If R ∈ R observe that we have

R = P‖(R)× P⊥(R) = Pt(R)× P⊥(R), for all t ∈ P⊥(R).

For any interval I ⊂ R, let I∗ be the interval with the same center and three times the
length of I, |I∗| = 3|I|. For R ∈ R we then use the notation

R∗ := P‖(R)× (P⊥(R))∗.

Thus R∗ is the rectangle with the same center as R and whose sides parallel to the first
n− 1 coordinate axes have the same lengths as the corresponding sides of R; the side of R
which is parallel to the n-th coordinate axis has length equal to three times the length of
the corresponding side of R.

Now we consider the second sparseness property.

Definition 2.7. Let R = {Rj}16j6N be a finite sequence of rectangles from R. We will
say that R satisfies the sparseness property (P2) if{

P⊥(R1) > P⊥(R2) > · · · > P⊥(RN),
|Rj ∩

⋃
i<j R

∗
i | 6 ε|Rj|, j = 1, 2, . . . ,N,

(P2)

where 0 < ε < 1.

For t ∈ R we now consider the collection T (t) = T = {Pt(Rj)}16j6N ⊂ Rn−1 which
is produced by slicing all the n-dimensional rectangles of R by a hyperplane perpendicular
to the n-th coordinate axis, at the level t. The collection T depends on t but we will many
times suppress this fact in what follows.

The main point about the collections R and T and the sparseness property (P2) is
contained in the following standard fact:

Lemma 2.8. Suppose that the sequence R = {Rj}16j6N has the sparseness property (P2).
Then, for all t ∈ R, the (n−1)-dimensional collection of rectangles T (t) = {Pt(Rj)}16j6N
has the sparseness property (P1), uniformly in t; that is:

|Pt(Rj) ∩
⋃
i<j

Pt(Ri)| 6 ε|Pt(Rj)|, j = 1, 2, . . . ,N.

Proof. We fix some 1 6 j 6 N and t ∈ P⊥(Rj). Denoting I := {i < j : Pt(Rj)∩Pt(Ri) 6= ∅}
we have by the second condition in (P2) that

ε|Rj| > |Rj ∩
⋃
i<j

R∗i | = |
⋃
i<j

(Rj ∩ R∗i )| > |
⋃
i∈I

(Rj ∩ R∗i )| (2.8)

Observe that for i ∈ I we have that ∅ 6= P⊥(Rj)∩ P⊥(Ri) 3 t and by the first condition in
(P2) we have |P⊥(Ri)| > |P⊥(Rj)|. A moment’s reflection shows that if I1, I2 are intervals in
R, |I2| > |I1| and I1 ∩ I2 6= ∅ then I1 ⊆ I∗2 . We conclude that P⊥(Rj) ⊆ P⊥(R∗i ). Thus the
n-dimensional rectangle Rj∩R∗i is of the form P⊥(Rj)×P‖(Rj∩R∗i ). However, i ∈ I implies
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that Pt(Rj ∩ Ri) = Pt(Rj) ∩ Pt(Ri) 6= ∅, so we conclude that P‖(Rj ∩ R∗i ) = Pt(Rj ∩ Ri)
and thus

Rj ∩ R∗i = P⊥(Rj)× Pt(Rj ∩ Ri). (2.9)

Now estimate (2.8) and identity (2.9) give

ε|P⊥(Rj)|× |Pt(Rj)| = ε|Rj| >
∣∣⋃
i∈I
P⊥(Rj)× Pt(Rj ∩ Ri)

∣∣
= |P⊥(Rj)|×

∣∣⋃
i∈I
Pt(Rj ∩ Ri)

∣∣
= |P⊥(Rj)|×

∣∣Pt(Rj) ∩⋃
i∈I
Pt(Ri)

∣∣
= |P⊥(Rj)|× |Pt(Rj) ∩

⋃
i<j

Pt(Ri)|.

This proves the lemma for t ∈ P⊥(Rj). For t /∈ P⊥(Rj) the conclusion follows trivially.

The importance of this Lemma is contained in the following covering argument.

Lemma 2.9 (Córdoba and R. Fefferman, [CF75]). Let Σ = {Rk}16j6M be any finite
collection of rectangles contained in R. Then there exists a subcollection of rectangles
R = {Rsj }16j6N ⊂ Σ satisfying property (P2) with parameter ε = 1/2, such that:

(i)
∣∣⋃M
j=1 R

s
j

∣∣ .n |
⋃N
j=1 R

s
j |.

(ii) ‖ exp(θ
∑N
j=1 1Rsk)

1
n−1 ‖

L1(
⋃N
j=1 Rj)

6 2|
⋃N
j=1 R

s
j |, θ > 0.

(iii) ‖
∑N
j=1 1Rsj ‖Lp(⋃Nj=1 R

s
j )

.n,p |
⋃N
j=1 R

s
j |

1
p .

The proof of this Lemma is contained in [CF75] and it is based upon Lemma 2.8. Note
that we consider a specific ε because it is enough for our purposes, but the same theorem
can be stated for any 0 < ε < 1.

We now present a weighted version of inequalities (i) and (iii). The first lemma assures
that the w-measure of any collection of rectangles is comparable to the w-size of a subcol-
lection that verifies property (P2). The second one gives a precise quantitative bound on
the overlap of the rectangles in R under the sparseness property (P2).

Lemma 2.10. Let {Rj}j∈J be a family of rectangles in R. Suppose further that w ∈ A∗∞.
Then there exists a finite subcollection of rectangles R = {Rsj }16j6N such that:

(i) The collection R has the property (P2) with parameter ε.

(ii) We have the estimate

w(∪jRj) .ε,w,n w(∪jRsj ).

Note that same lemma can also be stated with property (P1) instead of (P2).
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Proof. First we reorder the rectangles Rj so that P⊥(R1) > P⊥(R2) > · · · > P⊥(RM). We
choose Rs1 := R1 and assume that the rectangles Rs1,Rs2, . . . ,Rsτ, have been selected. Also
let 1 6 jo < M so that Rsτ = Rjo . We then choose Rsτ+1 to be the rectangle with the
smallest index among the rectangles S ∈ {Rjo+1, . . . ,RM} that satisfy

|S ∩
⋃
j6τ

(Rsj )
∗| 6 ε|S|.

Since the collection {Rj}16j6M is finite, the selection process will end after a finite number
of N steps, and the collection {Rsk}16k6N will automatically satisfy (i). Now assume
that some S ∈ {R1, . . . ,RM} was not selected. We can then find some positive integer
No ∈ {1, 2, . . . ,N} such that

|S ∩
⋃
j6No

(Rsj )
∗| > ε|S|.

Thus we get for all x ∈ S

Ms(1∪j6N(Rsj )
∗)(x) >Ms(1∪j6No(Rsj )∗)(x) > ε,

which means that ⋃
16j6N

Rj not selected

Rj ⊆ {x :Ms(1∪j6N(Rsj )
∗)(x) > ε}.

However, since w ∈ A∗∞ we know that Ms : Lpo(w) → Lpo,∞(w) for some po > 1. We
conclude that

w
( ⋃

16j6N
Rj not selected

Rj
)
.ε,w,n w(∪j6N(Rsj )∗) . w(∪j6NRsj ).

Thus
w(∪jRj) .ε,w,n w(∪jRsj ).

Lemma 2.11. Let w ∈ A∗∞ and suppose that the finite sequence R = {Rj}16j6N ⊂ R
satisfies property (P2) with ε sufficiently small, depending on the weight w. We set Ω :=
∪Nj=1Rj. For 1 < p <∞ we have

( ∫
Ω

∣∣ N∑
j=1

1Rj
∣∣pw(x)dx) 1

p

.w,n cp,nw(Ω)
1
p

with cp,n = On(p
n−1) as p→ +∞.

Proof. For a sequence {Rj}16j6N as before, consider the sequence T (t) of (n − 1)-
dimensional rectangles, by slicing the collection R with a hyperplane perpendicular to
the n-th coordinate axis, at level t ∈ R. Let Ωt := Pt(Ω) denote the corresponding slice
of Ω at level t and set Tj := Pt(Rj) in order to simplify the notation. By Lemma 2.8 the
collection T (t) = {Tj}16j6N has the property (P1). We set Ej := Tj \ ∪i<jTi. For fixed
t ∈ R, the function wt(x ′) = w(x ′, t), x ′ ∈ Rn−1, is an A∗∞-weight in Rn−1, uniformly in
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t ∈ R; see Subsection 1.3.2 in Chapter 1. By the property (P1) and the fact that wt ∈ A∗∞
uniformly in t, we will have that wt(Tj) > wt(Ej) >

1
2w
t(Tj) if ε > 0 was selected suffi-

ciently small in property (P2), and thus also in (P1), according to Remark 1.24. Define the
linear operator

Lwtf(x
′) :=

N∑
j=1

1
wt(Tj)

( ∫
Tj

f(y ′)wt(y ′)dy ′
)
1Ej(x

′), x ′ ∈ Rn−1.

For any locally integrable function f on Rn−1 we have that Lwtf(x ′) 6 Mwt
s f(x

′), x ′ ∈
Rn−1. Also observe that for f,g locally integrable we have∫
Ωt

Lwtf(x
′)g(x ′)wt(x ′)dx ′ =

∫
Ωt

N∑
j=1

1
wt(Tj)

( ∫
Ej

g(y ′)wt(y ′)dy ′
)
1Tj(x

′)f(x ′)wt(x ′)dx ′

=

∫
Ωt

L∗wtg(x
′)f(x ′)wt(x ′)dx ′.

Furthermore L∗
wt

(1Ωt) =
∑N
k=1

wt(Ek)
wt(Tk)

1Tk > 1
2
∑N
k=1 1Tk . For any locally integrable

function g on Rn−1 we thus have

∫
Ωt

g(x ′)

N∑
j=1

1Tj(x
′)wt(x ′)dx ′ .

∫
Ωt

g(x ′)L∗wt(1Ωt)(x
′)wt(x ′)dx ′

=

∫
Ωt

Lwtg(x
′)wt(x ′)dx ′ 6 ‖Mwt

s g‖Lp ′(wt,Rn−1)w
t(Ωt)

1
p

.w,n (p ′ − 1)−(n−1)‖g‖Lp ′(wt,Rn−1)w
t(Ωt)

1
p ,

where in the last step we use the precise asymptotic estimate for cp,n in (1.22):

cp,n = On((p− 1)−n) as p→ 1+. (2.10)

Taking now the supremum over g ∈ Lp ′(Rn−1) with ‖g‖Lp ′(wt,Rn−1) 6 1 gives the estimate

∫
Ωt

∣∣ N∑
j=1

1Tj(x
′)
∣∣pwt(x ′)dx .w,n p

(n−1)pwt(Ωt), (2.11)

as p → ∞. It is essential to note here that this estimate is uniform in t ∈ R. Thus
integrating over t ∈ P⊥(Ω), gives the claim.

Observe that since we use a slicing argument and work in one dimension less, we get
the dependance on p with exponent n−1, which will be essential for the proof of Theorem
2.22.

2.2.2 Covering properties for a general basis B

We begin with an extension of the Definition 2.6.
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Definition 2.12. Let B be a basis and 0 < γ < 1. A finite sequence {Aj}
M
i=1 ⊂ B of sets

of finite Lebesgue measure is called γ-scattered with respect to the Lebesgue measure if
for all 1 < j 6M, ∣∣∣∣Aj⋂⋃

i<j

Ai

∣∣∣∣ 6 γ|Aj|.
The main point behind this definition is the following property: it is possible to select

a sub-collection of the given sets so that the (Lebesgue) size of the collected ones is still
comparable to the original collection. The connection between both concepts, Tauberian
and γ-scattered is provided by the following lemma. In particular, we see that Definition
2.12 also assures the same sparseness property in terms of the w-size if w satisfies a certain
weighted Tauberian condition (see Definition 1.21).

Lemma 2.13 (Jawerth, [Jaw86]). Let B be a basis and let w be a weight associated to
this basis. Suppose further that w satisfies the Tauberian condition (AB,γ,w) for some
0 < γ < 1. Then given any finite sequence {Aj}

N
j=1 of sets Aj ∈ B,

(a) there exists a subsequence {Asi }i∈I of {Aj}Mj=1 which is γ-scattered with respect to
the Lebesgue measure;

(b) Asi = Ai, i ∈ I;

(c) for any 1 6 i < k 6 N+ 1,

w
( ⋃
i<k

Ai

)
.γ

[
w
( ⋃
i<j

Ai

)
+w

( ⋃
j6i<k

Asi

)]
.

In this lemma we are assuming that Asi = ∅ whenever i /∈ I. For a detailed proof
of this lemma we refer the interested reader to [GLPT11, Lemma 5.1]. Note that this
result is an extension to a context of general basis of Lemma 2.10 and the result is pretty
strong. Actually, it guarantees not only that the family Asi is γ-scattered with respect to the
Lebesgue measure, but also that is λ-scattered (λ = λ(γ)) with respect to both measures,
w and σ. Remember also that according to Remark 1.27 the Tauberian condition (AB,γ,w)
is equivalent to A∞,B whenever B is a Muckenhoupt basis (see Definition 1.26). Thus we
recover the result in Lemma 2.10 for the case of rectangles.

2.3 Characterization of the B∗p condition

In this section we describe the strong B∗p class, that will provide the appropriate class of
Young functions Φ to define the two-weight bump condition (A∗p,Φ). Let us point out first
some considerations about the classical Bp condition.

2.3.1 The classical Bp condition

Given a certain Young function Φ we can define the corresponding Orlicz maximal operator

MΦf(x) := sup
Q∈Q
Q3x

‖f‖Φ,Q, (2.12)
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The Lp boundedness of this operator is intimately connected with the Bp condition and the
proof of Theorem 2.3 relies upon this fact. More precisely, Pérez proved the following key
observation: when 1 < p < ∞ and Φ is a doubling (see Definition 1.2) Young function,
then

MΦ : Lp(Rn) −→ Lp(Rn) if and only if Φ ∈ Bp. (2.13)

We first remark that the hypothesis ofΦ being doubling was only used to prove the necessity
of the Bp condition, but we show now that it can be removed. Indeed, we have the following
original result:

Proposition 2.14. If MΦ is bounded on Lp(Rn), then Φ satisfies Bp.

Proof. if we assume that for any non-negative function f the operator MΦ is bounded on
Lp(Rn) and we take f = 1[0,1]n , we have∫

Rn
MΦ(1[0,1]n)(y)pdy <∞. (2.14)

Now, it is easy to see that there exist positive dimensional constants a, b such that,
whenever |y| > a we have that

MΦ(1[0,1]n)(y) &
1

Φ−1( |y|
n

b )
.

This inequality can be proved using the same argument as in the case of Φ(t) = t described
in [WZ77, p. 104]. Hence∫

Rn
MΦ(1[0,1]n)(y)pdy &p

∫∞
0
tp

∣∣∣∣∣
{
y ∈ Rn : |y| > a, 1

Φ−1( |y|
n

b )
> t

}∣∣∣∣∣ dtt
'p
∫∞
0
tp

∣∣∣∣∣
{
y ∈ Rn : a < |y| < Φ

(
1
t

)1/n
b1/n

}∣∣∣∣∣ dtt
'n,p

∫∞
0
tp
(
bΦ

(
1
t

)
− a1/n

)
dt

t
.

Since Φ is increasing and Φ(t)→∞ as t→∞, we can choose some t0 > 0 such that for
every t 6 t0,

bΦ

(
1
t

)
− a1/n >

b

2Φ
(
1
t

)
.

Then

∞ >

∫∞
0
tp−1

(
bΦ

(
1
t

)
− 1
)
dt

&n,p

∫t0
0
tp−1Φ

(
1
t

)
dt 'n,p

∫∞
1/t0

Φ(t)

tp
dt

t
.
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It would be interesting to ask whether a similar connection can be established between
the Bp condition and the boundedness of the Orlicz maximal operatorMΦ

s associated with
rectangles rather than cubes. For each locally integrable function f and a Young function
Φ we define the strong Orlicz maximal operator as

MΦ
s f(x) := sup

R∈R
R3x

‖f‖Φ,R.

In particular, when Φ(t) = t the maximal operator MΦ
s is exactly the classical strong

maximal operator. The necessity of the Bp condition for the Lp boundedness ofMΦ
s follows

trivially from the equivalence (2.13). However, the Bp condition (2.5) is not sufficient as
the following example shows

Example 2.15. Let f = 1[0,1]n , and

Φ(t) =
tp

(log(1+ t))1+δ , for all t ∈ (0,∞)

with 0 < δ < 1. It is easy to verify that such a function Φ satisfies (2.5) but not (2.7).
For simplicity in the notation, we consider only the case when n = 2. If |xi| is big enough
for i = 1, 2, say |xi| > 4, then

MΦ
s f(x1, x2) &

1
Φ−1(|x1||x2|)

' 1
(|x1||x2|)1/p(log(1+ |x1||x2|))(1+δ)/p

,

since Φ−1(t) ∼ t1/p(log(1+ t))(1+δ)/p for all t ∈ (0,∞). Then Fubini’s theorem gives∫
R2

(
MΦ
s f(x)

)p
dx &

∫∞
4

∫∞
4

(
1

Φ−1(|x1||x2|)

)p
dx2dx1

&
∫∞
4

∫∞
4

1
x1x2 (log (1+ x1x2))1+δ

dx2dx1

&
∫∞
4

∫∞
4

1
(1+ x1x2) (log (1+ x1x2))1+δ

dx2dx1

∼
1
δ

∫∞
4

1
x1(log(1+ 4x1))δ

dx1

>
1
δ

∫∞
16

1
(1+ x1)(log(1+ x1))δ

dx1 =∞.

However,

‖f‖Lp(R2) = ‖1[0,1]2‖Lp(R2) = 1.

Hence MΦ
s is not bounded on Lp(R2).The general case for n > 2 is similar and we omit

the details.

Though Bp condition (2.5) is not sufficient for the Lp boundedness ofMs
Φ, it becomes

so if we restrict to those Young functions that are submultiplicative (see Definition 1.3).
We will show this result at the end of the next section.
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2.3.2 The case of rectangles

The condition B∗p, as defined in (2.4), is a stronger condition than Bp. In fact, we do not
only need a control on the growth of the function at infinity, but also on the growth of the
logarithmic of the function. As the next theorem shows, this smaller class does characterize
the boundedness of MΦ

s in terms of the B∗p class.

Theorem 2.16. Let 1 < p <∞. Suppose that Φ is a Young function. Then the following
statements are equivalent:

(i) Φ ∈ B∗p.

(ii) the operator MΦ
s is bounded on Lp(Rn).

(iii) For all non-negative functions f and u the next inequality holds∫
Rn

[Ms(f)(x)]
p 1
[MΦ̄
s (u

1/p)(x)]p
dx .n,p

∫
Rn
f(x)p

1
u(x)

dx. (2.15)

(iv) Given a weight w ∈ A∗∞, the Orlicz maximal operatorMΦ
s satisfies the strong (p,p)

inequality ∫
Rn

[MΦ
s (f)(x)]

pw(x)dx .n,p,w

∫
Rn
f(x)pMsw(x)dx (2.16)

for all non-negative functions f.

Particular examples of Young functions Φ ∈ Bp are described in detail in [Pér94b,
section 4.3]. Example 2.15 together with theorem in hand, show that B∗p $ Bp. A typical
Young function that belongs to the class B∗p is B(t) = ts with 1 6 s < p. Some more
sophisticated examples are the following:

Φ(t) ∼ tα log−β(e+ t) 1 < α < p, β ∈ R;

Φ(t) ∼ tp log−β(e+ t) β > n;

Φ(t) ∼ tp log−n(e+ t) [log(log(e+ t))]−γ, γ > 1.

Proof of Theorem 2.16. We first assume that (i) holds and show (ii). To this end, for each
t > 0, we split the function f into f = ft + f

t with ft := f1|f|>t/2 and ft := f1|f|6t/2.
Then,

MΦ
s f 6M

Φ
s (ft) +M

Φ
s (f

t) 6MΦ
s (ft) + t/2

and
{x ∈ Rn : MΦ

s f(x) > t} ⊂ {x ∈ Rn : MΦ
s (ft)(x) > t/2}.

Set
Ωt := {x ∈ Rn : MΦ

s (ft)(x) > t/2}.

For every x ∈ Ωt let Rx ∈ R be a rectangle such that

‖ft‖Φ,Rx > t.
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Without loss of generality we may assume that {Rx}x∈Ωt is a finite sequence {Rj}16j6M.
By [GLPT11, Lemma 6.1], the condition ‖ft‖Φ,Rj > t implies that

1 <
∥∥∥∥ftt

∥∥∥∥
Φ,Rj

6
1
|Rj|

∫
Rj

Φ

(
|ft(x)|

t

)
dx. (2.17)

Given the collection {Rj}
M
j=1, by the covering Lemma 2.9 we may extract a subcollection

{Rsj }
N
j=1. Then Property (i) of Lemma 2.9 together with inequality (2.17) gives:

|Ωt| .n

∣∣∣∣ N⋃
j=1

Rsj

∣∣∣∣ .n N∑
j=1

|Rsj | .n

N∑
j=1

∫
Rsj

Φ

(
|ft(x)|

t

)
dx

'n
∫
⋃N
j=1 R

s
j

N∑
j=1

1Rsj (x)Φ
(
|ft(x)|

t

)
dx.

We will use the following elementary estimate: For each θ > 0 there exists a constant
cθ > 0 such that for all s, t > 0 we have

st 6 cθs[1+ (log+ s)n−1] + exp(θt 1
n−1 ) − 1, n > 2. (2.18)

The interested reader can find a detailed proof of this classical inequality in [Bag83]. Ap-
plying (2.18) together with Property (ii) of Lemma 2.9, we get for every ε > 0:

∣∣∣∣ N⋃
j=1

Rsj

∣∣∣∣ .n ε
∫
⋃N
j=1 R

s
j

CθΦn(1
ε
Φ

(
|ft(x)|

t

))
+ exp

θ N∑
j=1

1Rsj (x)

− 1

 dx
.n

εCθΦn(1/ε)
∫
⋃N
j=1 R

s
j

Φn

(
Φ

(
|ft(x)|

t

))
+ ε

∣∣∣∣ N⋃
j=1

Rsj

∣∣∣∣dx
 .

If ε is small enough, the second summand in the right hand side of the inequality above
can be absorbed into the left-hand side. Then we obtain∣∣∣∣ N⋃

j=1
Rsj

∣∣∣∣ .n ∫⋃N
j=1 R

s
j

Φn

(
Φ

(
|ft(x)|

t

))
dx.

Since Φn(Φ(0)) = 0, we have

|Ωt| .n

∫
⋃N
j=1 R

s
j

Φn

(
Φ

(
|ft(x)|

t

))
dx

.n

∫
{y∈Rn:|f(x)|>t/2}

Φn

(
Φ

(
|f(x)|

t

))
dx.

This inequality and the fact {x ∈ Rn : MΦ
s f(x) > t} ⊂ Ωt, together with the change of
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variable s = |f(y)|/t, yields

‖MΦ
s f‖

p
Lp(Rn) = p

∫∞
0
tp|{x ∈ Rn : MΦ

s f(x) > t}|
dt

t
6 p
∫∞
0
tp|Ωt|

dt

t

.n,p

∫∞
0

∫
{x∈Rn:|f(x)|>t/2}

tpΦn

(
Φ

(
|f(x)|

t

))
dx
dt

t

'n,p
∫
Rn

∫2|f(x)|
0

tpΦn

(
Φ

(
|f(x)|

t

))
dt

t
dx

.n,p

∫
Rn

∫∞
1/2

|f(x)|p
Φn(Φ(s))

sp
ds

s
dx

.n,p ‖f‖pLp(Rn),

where in the last approximate inequality we have used the hypothesis Φ ∈ B∗p. This proves
(ii).

Let us assume that (ii) holds. Using the generalized Hölder inequality (1.6) we obtain

Ms(hg)(x) 6 2MΦ
s h(x)M

Φ̄
s g(x).

The above inequality together with the boundedness of MΦ
s on Lp(Rn) implies∫

Rn
[Ms(hg)(x)]

p 1
[MΦ̄
s g(x)]

p
dx 6 2

∫
Rn

[MΦ
s h(x)]

p dx

6 2‖MΦ
s ‖
p
Lp(Rn)→Lp(Rn)

∫
Rn
h(x)p dx.

Taking h = fu−1/p and g = u1/p, we obtain the claim (iii).

To prove that (iii) implies (i), for any N ∈ N, we let f := 1[0,1/2]n and uN := 1[0,1/2]n+
1Rn\[0,1/2]n

N in (2.15). Note that u is asymptotically equal to f as N → ∞. However, we
need to extend the support of uN throughout Rn in order to turn it into a weight. Hence
we get ∫

Rn

(
Ms(1[0,1/2]n)(x)

MΦ̄
s (1[0,1/2]n +

1Rn\[0,1/2]n

N )(x)

)p
dx <∞.

Note that MΦ̄
s (f+ g) 6M

Φ̄
s f+M

Φ̄
s g. This observation together with monotone conver-

gence gives ∫
Rn

(
Ms(1[0,1/2]n)(x)
MΦ̄
s (1[0,1/2]n)(x)

)p
dx <∞. (2.19)

As pointed out before, it is not difficult to see that for any point (x1, · · · , xn) ∈ Rn such
that |xj| > 1 for all j ∈ {1, · · · ,n}, we have

Ms(1[0,1/2]n)(x) = sup
R∈R
R3x

|R ∩ [0, 1/2]n|
|R|

&n
1

|x1||x2| · · · |xn|
,
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and

MΦ̄
s (1[0,1/2]n)(x) = sup

R∈R
R3x

inf
{
λ > 0 : Φ̄

(
λ−1) 6 |R|

|R ∩ [0, 1/2]n|

}

= sup
R∈R
R3x

1
Φ̄−1

(
|R|

|R∩[0,1/2]n|

)
&n,Φ

1
Φ̄−1 (|x1||x2| · · · |xn|)

.

Inserting these two estimates into (2.19) and using property (1.4), we deduce that

∞ >

∫∞
1
· · ·
∫∞
1

(
Φ̄−1 (x1x2 · · ·yn)
x1x2 · · · xn

)p
dxn · · ·dx1

'n,Φ
∫∞
1
· · ·
∫∞
1

(
1

Φ−1 (x1x2 · · · xn)

)p
dxn · · ·dx1.

To evaluate the integral with respect to the variable xn, we just use the property (1.1) that
relates a Young function and its derivative. Then∫∞

1

(
1

Φ−1 (x1x2 · · · xn)

)p
dxn =

1
x1 · · · xn−1

∫∞
Φ−1(x1···xn−1)

Φ ′(z)

zp
dz

>
1

x1 · · · xn−1

∫∞
Φ−1(x1···xn−1)

Φ(z)

zp
dz

z
.

Now we integrate with respect to the variable xn−1 in order to obtain∫∞
1

∫∞
1

(
1

Φ−1 (x1x2 · · · xn)

)p
dxn dxn−1

&n,Φ

∫∞
1

1
x1 · · · xn−1

∫∞
Φ−1(x1···xn−1)

Φ(z)

zp
dz

z
dxn−1

'n,Φ
∫∞
Φ−1(x1···xn−2)

∫ Φ(z)
x1···xn−2

1

1
x1 · · · xn−1

dxn−1
Φ(z)

zp+1 dz

'n,Φ
1

x1 · · · xn−2

∫∞
Φ−1(x1···xn−2)

ln
(

Φ(z)

x1 · · · xn−2

)
Φ(z)

zp
dz

z
.

Integrating the right hand side with respect to the variable xn−2∫∞
1

1
x1 · · · xn−2

∫∞
Φ−1(x1···xn−2)

ln
(

Φ(z)

x1 · · · xn−2

)
Φ(z)

zp
dz

z
dxn−2

=
1

x1 · · · xn−3

∫∞
Φ−1(x1···xn−3)

∫ Φ(z)
x1···xn−3

1

1
xn−2

ln
(

Φ(z)

x1 · · · xn−2

)
dxn−2

Φ(z)

zp
dz

z

' 1
x1 · · · xn−3

∫∞
Φ−1(x1···xn−3)

(
ln
(

Φ(z)

x1 · · · xn−3

))2
Φ(z)

zp
dz

z
.

We continue this process by integrating in the next variables xn−3, · · · , x1 in turn and we
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obtain

∞ >

∫∞
1
· · ·
∫∞
1

(
1

Φ−1 (x1x2 · · · xn)

)p
dxn · · ·dx1

&n,Φ

∫∞
Φ−1(1)

(ln (Φ(z)))n−1 Φ(z)

zp
dz

z

which implies (i) inmediately.
In order to see that that (iv) implies (ii), we take w = 1 in the right side of (2.16). We

postpone the proof of the implication (ii)→ (iv) until Subsection 2.4.2, since the argument
is very similar to the one presented in the proof of Theorem 2.18. This concludes the
proof.

As it was already announced there exists a subcollection of Young functions in Bp for
which the operator MΦ

s is bounded in Lp(Rn), for p > 1.

Proposition 2.17. Let 1 < p <∞. Assume that Φ is a submultiplicative Young function
such that Φ ∈ Bp. Then the operator MΦ

s is bounded on Lp(Rn).

Proof. The proof is an immediate consequence of the fact that for a submultiplicative
Young function such that Φ ∈ Bp, there exits ε > 0 for which Φ ∈ Bp−ε; see [Pér95b,
Lemma 4.3]. Indeed, using the previous theorem we only need to prove that Φ ∈ B∗p. Note
that ∫∞

c

Φn(Φ(t))

tp
dt

t
=

∫∞
c

Φ(t)

tp
dt

t
+

∫∞
c

Φ(t)

tp−ε
(log+Φ(t))n−1

tε
dt

t
. (2.20)

The first term in the right hand of(2.20) is clearly bounded. On the other hand,

(log+Φ(t))n−1

tε
6
Φ(t)δ(n−1)

tεδ(n−1) ,

for every δ > 0. Since Φ is in the class Bp, it follows that Φ(t) . tp for t > 1 and hence
for δ = ε

p(n−1) the above term is bounded. This further implies that the second term of
(2.20) is bounded by a constant multiple of∫∞

c

Φ(t)

tp−ε
dt

t
,

which together with the aforementioned fact that Φ ∈ Bp−ε gives the boundedness of the
second term of (2.20).

We observe that a typical example of a submultiplicative Young function that belongs
to the class Bp is Φ(t) = tr with 1 6 r < p. A more interesting example is given by the
function Φ(t) = tr(1 + log+ t)α with 1 6 r < p and α > 0. It is not difficult to see that
such functions are submultiplicative and they are in the Bp class. The important difference
to be noted here is that though the B∗p class characterizes the boundedness of MΦ

s , that
Φ is submultiplicative and belongs to the class Bp, does not.
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2.4 Solutions to Problem 0.1
In this section we present the proof of the strong two-weight Theorem 2.5 as a inmediate
consequence of a more general result stated in terms of multilinear operators and very
general bases.

2.4.1 Some multilinear results for general bases

In this section, we address similar questions to Problem 0.1, but involving the multilinear
version of the strong maximal function and some other more general maximal functions.
We start by introducing some notation that we will use through this section. By B we
denote, as usual, a collection of bounded open sets in Rn. If {Φj}mj=1 is a sequence of
Young functions, we define the multi(sub)linear Orlicz maximal function by

M
~Φ
B (~f )(x) := sup

B∈B,B3x

m∏
j=1
‖fj‖Φj,B.

where ~f = (f1, . . . , fm) and ~Φ = (Φ1, . . . ,Φm). In particular, when Φj(t) = t for all
t ∈ (0,∞) and all j ∈ {1, · · · ,m}, we simply write M

~Φ
B as MB; that is,

MB(~f )(x) = sup
B∈B,B3x

m∏
j=1

1
|B|

∫
B

|fj(y)|dy.

When m = 1, we use MB
Φ and MB to respectively denote M

~Φ
B and MB. When B ≡ R

we will simply use the notation M
~Φ
s and Ms to denote the strong Orlicz multi(sub)linear

operator and the strong multi(sub)linear maximal function respectively.
The multilinear maximal operator was first defined by Lerner et al. in [LOPT09], with

respect to the basis of cubes Q. The strong version and the general one were introduced in
[GLPT11]. In particular, it was proved that a certain power bump variant of the multilinear
version of the Ap condition is sufficient for the weak boundedness of Ms. More precisely,
for 1 < p1, · · · ,pm < ∞ and 0 < p < ∞ such that 1

p =
∑m
j=1

1
pj
, the multilinear strong

maximal function maps

Lp1(v1)× · · · × Lpm(vm)→ Lp,∞(w),
provided that (w,~v) = (w, v1, . . . , vm) are weights that satisfy the power bump condition

sup
R∈R

(
1
|R|

∫
R

w(x)dx

) m∏
j=1

(
1
|R|

∫
R

v
(1−p ′j)r
j dx

) p

p ′
j
r

<∞ (2.21)

for some r > 1. In the case that w =
∏m
j=1 v

p/pj
j , the strong boundedness of Ms is

also characterized; see [GLPT11, Corollary 2.4 and Theorem 2.5]. The weight theory for
the multilinear operator M has been also fully developed by Lerner et al. [LOPT09] and
generalized by Moen [Moe09].

Inspired by these previous works, our first goal in this section is to introduce the mul-
tilinear version of (Ap,Φ) and (A∗p,Φ) for weights (w,~v) associated with a general basis.
Then, the Lp1(v1)×· · ·×Lpm(vm)→ Lp(w) boundedness of MB will be proved whenever
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w is any arbitrary weight such that wp satisfies a certain Tauberian condition. This result
is the content of the following theorem.

Theorem 2.18. Let 1 < p1, · · · ,pm < ∞ and 0 < p < ∞ such that 1
p =

∑m
j=1

1
pj
.

Assume that B is a basis and that {Φj}
m
j=1 is a sequence of Young functions such that

M
~̄Φ
B is bounded from Lp1(Rn)×· · ·×Lpm(Rn) to Lp(Rn). Let (w,~v ) = (w, v1, · · · , vm)

be weights such that wp satisfies (AB,γ,w), and that

sup
B∈B

(
1
|B|

∫
B

w(x)p dx

)1/p m∏
j=1
‖v−1
j ‖Φj,B <∞. (2.22)

Then MB is bounded from Lp1(vp1
1 )× · · · × Lpm(vpmm ) to Lp(wp).

Remark 2.19. We observe that for all x ∈ Rn and for all non-negative functions ~f =
(f1, . . . , fm),

M
~̄Φ
B (~f)(x) 6

m∏
j=1

M
Φ̄j
B (fj)(x).

Thus, if we assume that each MΦ̄j
B is bounded on Lpj(Rn), then M

~̄Φ
B is bounded from

Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn). Therefore, the conclusion of Theorem 2.18 is that
the operator MB is bounded from Lp1(vp1

1 )×· · ·×Lpm(vpmm ) to Lp(wp), whenever (w,~v)
satisfies (2.22).

Proof of Theorem 2.18. Let N > 0 be a large positive integer. We will prove the required
estimate for the quantity∫

2−N<MB(~f )62N+1
MB(~f )(x)pwp(x)dx

with a bound independent of N. We restrict for simplicity to the case that every fj,
j ∈ {1, · · · ,m}, is a bounded function with compact support. The general case will follows
by density. In this situation, we claim that for each integer k with |k| 6 N, there exists a
compact set Kk and a finite sequence bk = {Bkα}α>1 of sets Bkα ∈ B such that

wp(Kk) 6 w
p({MB(~f ) > 2k}) 6 2wp(Kk)

The sequence of sets {∪B∈bkB}Nk=−N is decreasing. Moreover,⋃
B∈bk

B ⊂ Kk ⊂ {MB(~f ) > 2k},

and
m∏
j=1

1
|Bkα|

∫
Bkα

|fj(y)|dy > 2k, α > 1, (2.23)

To see the claim, for each k we choose a compact set K̃k ⊂ {MB(~f ) > 2k} such that

wp(K̃k) 6 w
p({MB(~f ) > 2k}) 6 2wp(K̃k).
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For this K̃k, there exists a finite sequence bk = {Bkα}α>1 of sets Bkα ∈ B such that every
Bkα satisfies (2.23) and such that

K̃k ⊂
⋃
B∈bk

B ⊂ {MB(~f ) > 2k}.

Now, we take a compact set Kk such that ∪B∈bkB ⊂ Kk ⊂ {MB(~f ) > 2k}. Finally,
to ensure that {∪B∈bkB}Nk=−N is decreasing, we begin the above selection from k = N

and once a selection is done for k we do the selection for k − 1 with the next additional
requirement

K̃k−1 ⊃ Kk.

This proves the claim. Since {∪B∈bkB}Nk=−N is a sequence of decreasing sets, we set

Ωk =

{⋃
α B

k
α =

⋃
B∈bk B when |k| 6 N,

∅ when |k| > N.

Observe that these sets are decreasing in k, i.e., Ωk+1 ⊂ Ωk when −N < k 6 N.

We now distribute the sets in
⋃
k bk over µ sequences {Ai(l)}i>1, 0 6 l 6 µ−1, where

µ will be chosen momentarily to be an appropriately large natural number. Set i0(0) = 1.
In the first i1(0) − i0(0) entries of {Ai(0)}i>1, i.e., for

i0(0) 6 i < i1(0),

we place the elements of the sequence bN = {BNα }α>1 in the order indicated by the index
α. For the next i2(0) − i1(0) entries of {Ai(0)}i>1, i.e., for

i1(0) 6 i < i2(0),

we place the elements of the sequence bN−µ. We continue in this way until we reach the
first integer m0 such that N−m0µ > −N, when we stop. For indices i satisfying

im0(0) 6 i < im0+1(0),

we place in the sequence {Ai(0)}i>1 the elements of bN−m0µ. The sequences {Ai(l)}i>1,
1 6 l 6 µ − 1, are defined similarly, starting from bN−l and using the families bN−l−sµ,
s = 0, 1, · · · ,ml, whereml is chosen to be the biggest integer such thatN−l−mlµ > −N.

Since wp is a weight associated to B and it satisfies the Tauberian condition (AB,γ,w),
we can apply the coverging Lemma 2.13 to each {Ai(l)}i>1 for some fixed 0 < γ < 1. Then
we obtain sequences

{Asi (l)}i>1 ⊂ {Ai(l)}i>1 , 0 6 l 6 µ− 1,

which are γ-scattered (see Definition 2.12) with respect to the Lebesgue measure. In view
of the definition of the set Ωk and the construction of the families we can use assertion (c)
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of Lemma 2.13 to obtain that for any k = N− l− sµ with 0 6 l 6 µ− 1 and 1 6 s 6 ml,

wp(Ωk) = w
p(ΩN−l−sµ) 6 c(γ)

[
wp(Ωk+µ) +w

p

 ⋃
is(l)6i<is+1(l)

Asi (l)

]

6 c(γ)wp(Ωk+µ) + c(γ)
is+1(l)−1∑
i=is(l)

wp(Asi (l)).

For the case s = 0, we have k = N− l and

wp(Ωk) = w
p(ΩN−l) 6 c(γ)

i1(l)−1∑
i=i0(l)

wp(Asi (l)).

Now, all these sets {Asi (l)}
is+1(l)−1
i=is(l)

belong to bk with k = N− l− sµ and therefore

m∏
α=1

1
|Asi (l)|

∫
Asi (l)

|fj(x)|dx > 2k. (2.24)

It now readily follows that∫
2−N<MB(~f )62N+1

MB(~f )(x)pwp(x)dx 6 2p
N−1∑
k=−N

2kpwp(Ωk)

and then
N−1∑
k=−N

2kpwp(Ωk) =

µ−1∑
`=0

∑
06s6m`

2p(N−l−sµ)wp(ΩN−l−sµ) (2.25)

= c(γ)

µ−1∑
`=0

∑
16s6m`

2p(N−l−sµ)wp(ΩN−l−sµ+µ)

+c(γ)

µ−1∑
`=0

∑
06s6m`

2p(N−l−sµ)

is+1(l)−1∑
i=is(l)

wp(Asi (l)).

Observe that the first term in the last equality of (2.25) is equal to

c(γ)2−pµ
µ−1∑
`=0

∑
06s6m`−1

2p(N−l−sµ)wp(ΩN−l−sµ) 6 c(γ)2−pµ
N−1∑
k=−N

2kpwp(Ωk).

If we choose µ so large that c 2−µp 6 1
2 , the first term on the right hand side of (2.25)

can be subtracted from the left hand side of (2.25). This yields

∫
2−N<MB(~f )62N+1

MB(~f )pwp dx .n,p

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

2p(N−l−sµ)wp(Asi (l)).
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By (2.24) and the generalized Hölder’s inequality (1.6) we obtain

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

2p(N−l−sµ)wp(Asi (l)) (2.26)

6 c(γ)
µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

wp(Asi (l))

 m∏
j=1

1
|Asi (l)|

∫
Asi (l)

|fj|dx

p

6 c(γ)
µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

wp(Asi (l))

 m∏
j=1
‖fjvj‖Φ̄j,Asi (l)‖v

−1
j ‖Φj,Asi (l)

p

6 c(γ)
µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

 m∏
j=1
‖fjvj‖Φ̄j,Asi (l)

p |Asi (l))|,
where in the last step we use the assumption (2.22). For each l we let I(l) be the index
set of {Asi (l)}06s6m`, is(l)6i<is+1(l), and

E1(l) = A
s
1(l) & Ei(l) = A

s
i (l) \

⋃
i<j

Asi (l) ∀ i ∈ I(l).

Since the sequences {Asi (l)}i∈I(l) are γ-scattered with respect to the Lebesgue measure,
for each i we have that |Asi (l)| 6 1

1−γ |Ei(l)|. Then we have the following estimate for the
last term in (2.26)

1
1− γ

µ−1∑
l=0

∑
i∈I(l)

 m∏
j=1
‖fjvj‖Φ̄j,Asi (l)

p |Ei(l)|. (2.27)

Since the collection {Ei(l)}i∈I(l) is a disjoint family and M
~̄Φ
B is bounded from Lp1(Rn)×

· · · × Lpm(Rn) to Lp(Rn), we can estimate this last equation (2.27). Then

µ−1∑
l=0

∑
i∈I(l)

∫
Ei(l)

[
M

~̄Φ
B ((f1v1, · · · fmvm))(x)

]p
dx

.n,p,γ

∫
Rn

[
M

~̄Φ
B ((f1v1, · · · fmvm))(x)

]p
dx

.n,p,γ

m∏
j=1
‖fjvj‖pLpj(Rn).

Letting N→∞ yields the desired assertion of the theorem.

We can reformulate this result for the particular case of Muckenhoupt bases; see Defi-
nition 1.26. For these bases the generalization of the power bump condition (2.21) assures
the boundedness of M

~̄Φ
B . Therefore we can deduce the following result.

Corollary 2.20. LetB be a Muckenhoupt basis. Let 1
m < p <∞ and 1 < p1, . . . ,pm <∞

such that 1
p = 1

p1
+ · · · + 1

pm
. If the weights (w,~v) = (w, v1, · · · , vm) satisfy the power
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bump condition

sup
B∈B

(
1
|B|

∫
B

w(x)dx

) m∏
j=1

(
1
|B|

∫
B

v
(1−p ′j)r
j dx

) p

p ′
j
r

<∞ (2.28)

for some r > 1 and w ∈ A∞,B, then MB is bounded from Lp1(v1) × · · · × Lpm(vm) to
Lp(w).

Proof. For each j ∈ {1, · · · ,m}, we set ṽj := v
1/pj
j and Φj(t) := tp

′
jr for all t ∈ (0,∞).

Set w̃ := w1/p. Then the power bump condition (2.28) can be rewritten as

sup
B∈B

{
1
|B|

∫
B

w̃p dx

}1/p m∏
j=1
‖ṽ−1
j ‖Φj,B <∞.

In this case, for all x ∈ Rn,

M
Φ̄j
B f(x) = sup

B∈B,B3x
‖f‖Φ̄j,B = sup

B∈B,B3x

{
1
|B|

∫
B

|f(y)|(p
′
jr)
′
dy

}1/(p ′jr) ′

.

Note that for each MB
Φ̄j

is bounded on Lpj(Rn) if and only if pj/(p ′jr) ′ > 1. Since r > 1

every MB
Φ̄j

is actually bounded. Moreover, Remark 2.19 this implies that M
~̄Φ
B is bounded

from Lp1(Rn)× · · · × Lpm(Rn) to Lp(Rn). Thus, by Theorem 2.18

MB : Lp1(ṽp1
1 )× · · · × Lpm(ṽpmm )→ Lp(w̃p),

which completes the proof.

Specializing to the multilinear strong maximal function Corollary 2.20 can be strength-
ened in the case that the pair (w,~v) satisfies a logarithmic bump condition.

Corollary 2.21. Let 1 < p1, · · · ,pm <∞ and 1
m < p <∞ such that 1

p =
∑m
j=1

1
pj
. Let

(w,~v ) = (w, v1, · · · , vm) such that w and vj, for every j, are weights, and wp satisfies
the A∗∞ condition. Let Φj be a Young function such that Φ̄j ∈ B∗pj .

sup
R∈R

(
1
|R|

∫
R

w(x)p dx

)1/p m∏
j=1
‖v−1
j ‖Φj,R <∞.

Then Ms is bounded from Lp1(vp1
1 )× · · · × Lpm(vpmm ) to Lp(wp).

Proof. From Theorem 2.16 and the assumption that each Φ̄j is a Young function satisfying
the condition (2.7), it follows that every MΦ̄j

s is bounded on Lpj(Rn). Applying Remark
2.19 and Theorem 2.18 with B = R we obtain the desired conclusion.

2.4.2 The case of the strong maximal function

We conclude the section by applying the general results to the particular basis R, consisting
on axes parallel rectangles. There were two pending tasks concerning this basis, the proof
of Theorem 2.5 and one of the equivalences of the characterization of the B∗p condition.
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Both are a straightforward consequence of the results in Subsection 2.4.1. We first present
the proof of Theorem 2.5 that follows directly from Corollary 2.21.

Proof of Theorem 2.5. We first notice that (i) is the linear case (m = 1) of Corollary 2.21.
For the proof of (ii) we proceed as in [Pér95b, Proposition 3.2]. That is, consider any
non-negative function g and define the couple of weights (u, v) = (MΦ

s (g
1/p)−1,g−1/p).

Obviously, (u, v) satisfies condition (A∗p,Φ). By hypothesis the following inequality is sat-
isfied ∫

Rn
[Ms(f)(x)]

p 1
[MΦ
s (g

1/p)(x)]p
dx .

∫
Rn
f(x)p

1
g(x)

dx.

Therefore, by Theorem 2.16, this inequality implies that Φ̄ ∈ B∗p.

Finally we give the proof of the pending equivalence of the characterization of the B∗p
condition. In particular, the fact that Theorem 2.16 (ii) implies Theorem 2.16 (iv) can be
deduced by proceeding as in the proof of Theorem 2.18. Indeed, we will prove the estimate∫

2−N<MΦ
s (f )62N+1

MΦ
s (f )(x)

pw(x)dx .n,p,w

∫
Rn
f(x)pMsw(x)dx,

where N is a large integer. We use the same covering argument of Theorem 2.18 replacing
(2.23) by

1
|Rkα|

∫
Rkα

|f(y)|dy > 2k.

Repeating equations (2.24) and (2.25), we will get

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

2p(N−l−sµ)w(Asi (l))

.n,p,w

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

w(Asi (l))‖f‖
p
Φ,Asi (l)

.n,p,w

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

∥∥∥∥∥f
(
w(Asi (l))

|Asi (l)|

)1/p
∥∥∥∥∥
p

Φ,Asi (l)

|Asi (l)|

.n,p,w

µ−1∑
`=0

∑
06s6m`

is+1(l)−1∑
i=is(l)

∥∥∥f(Msw)
1/p
∥∥∥p
Φ,Asi (l)

|Asi (l)|,

where in the penultimate step we used the generalized Hölder inequality (1.6). Finally, we
will obtain the claimed conclusion using the hypothesis (ii), that is that the operator MΦ

s

is bounded on Lp(Rn). We omit the details.
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2.5 Fefferman-Stein inequalities

As we described already in the introduction, by this we mean in general a two-weight norm
inequality of the form∫

Rn
(Mf)pw .n,p,w

∫
Rn

|f|pMwdx, 1 < p <∞, (2.29)

where M denotes some maximal operator. This inequality was first proved for the Hardy-
Littlewood maximal function by C. Fefferman and Stein, [FS71], for every non-negative,
locally integrable weight w. For the strong maximal function the same inequality is true
provided that w ∈ A∗∞; see [Lin84] for a direct proof of this result and also [Pér93], where
the Fefferman-Stein inequality is obtained as a corollary of a more general two weight-norm
inequality. Note also that (2.29) follows from Theorem 2.5. Indeed, the pair of weights
(w,Msw) satisfies the A∗1 condition and, trivially, the bump condition for any Young
function Φ.

Observe that, as in the case of the boundedness of the weighted strong maximal function
(see estimate (1.22)), we need an extra assumption on the weight in order to prove the
Fefferman-Stein inequality for the strong maximal function. This should be contrasted to
the corresponding result for the weighted centered Hardy-Littlewood maximal function, as
well as (2.29), where no assumption on the weight is needed.

The form of the endpoint Fefferman-Stein inequality depends on the corresponding
unweighted endpoint properties of the maximal operator under study. For the usual Hardy-
Littlewood maximal function M the right statement is

w({x ∈ Rn :Mf(x) > λ}) .n
1
λ

∫
Rn

|f(x)|Mw(x)dx.

This result follows easily by the usual covering arguments for cubes. It is also a direct
consequence of the boundedness of Mw

c . Observe that both approaches are not longer
applicable in the case of rectangles. In fact, the natural endpoint Fefferman-Stein inequality
for the strong maximal function was proved by Mitsis, [Mit06], in dimension n = 2. In
particular Mitsis showed that

w({x ∈ R2 :Msf(x) > λ}) .w

∫
R2

|f(x)|

λ

(
1+ log+ |f(x)|

λ

)
Msw(x)dx.

Our goal in this section is to derive the extension of this result to higher dimensions,
answering Problem 0.2. This is the content of the following theorem.

Theorem 2.22. Let w ∈ A∗∞. For all dimensions n > 1 we have

w({x ∈ Rn :Msf(x) > λ}) .n,w

∫
Rn

|f(x)|

λ

(
1+

(
log+ |f(x)|

λ

)n−1
)
Msw(x)dx. (2.30)

By interpolation, the Fefferman-Stein inequality of our main theorem above implies the
strong Lp version of the Fefferman-Stein inequality from [Lin84], [Pér93]. Furthermore,
since every A∗1-weight is an A∗∞-weight, we recover the endpoint inequality (1.21) for A∗1-
weights.
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2.5.1 A solution to Problem 0.2

We are now ready to present the proof of Theorem 2.22.

Proof of Theorem 2.22. We assume that n > 2 since in one dimension Ms is the usual
Hardy-Littlewood maximal function and there is nothing (new) to prove. It suffices to prove
the theorem for λ = 1. Let F := {x ∈ Rn :Ms(f)(x) > 1}. For every x ∈ F let Rx ∈ R be
a rectangle such that

1
|Rx|

∫
Rx

|f(y)|dy > 1. (2.31)

Without loss of generality we may assume that {Rx}x∈F is a finite sequence {Rj}16j6M.
Then applying Lemma 2.10 we obtain the subcollection R := {Rsj }

N
j=1 ⊂ R. By (i) of

that Lemma the collection R has the sparseness property (P2). We assume that ε > 0
was chosen small enough in Lemma 2.10, and thus in (P2), so that Lemma 2.11 is valid.
Observe that (P2) also implies that∣∣Rsj ∩⋃

i<j

Rsi
∣∣ 6 ε|Rsj |.

By choosing ε > 0 small enough we can also assume that w(Rsj ∩
⋃
i<j R

s
i ) 6 1

2w(R
s
j ),

according to Remark 1.24. Setting Ej := Rsj \
⋃
i<j R

s
i we will thus have

w(Rsj ) > w(Ej) >
1
2w(R

s
j ), j = 1, 2, . . . ,N, (2.32)

and the choice of ε > 0 depends only on the weight w ∈ A∗∞. Denoting Ω :=
⋃N
j=1 R

s
j ,

we use (2.31) and (iii) of Lemma 2.10 to estimate

w(F) .ε,w,n w(Ω) 6
N∑
j=1

w(Rsj ) 6
N∑
j=1

w(Rsj )

|Rsj |

∫
Rsj

|f(y)|dy

=

∫
Ω

f(x)

N∑
j=1

w(Rsj )

|Rsj |
1Rsj (x)dx.

Define the linear operators

Tf(x) =

N∑
j=1

1
|Rsj |

∫
Rsj

f(y)dy1Ej(x), T∗f(x) =

N∑
j=1

1
|Rsj |

∫
Ej

f(y)dy1Rsj (x), x ∈ Rn.

For locally integrable f,g we have∫
Ω

Tf(x)g(x)dx =

∫
Ω

T∗g(x)f(x)dx, Tf(x) 6Msf(x), x ∈ Rn.
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By (2.32) we have

T∗w(x) =

N∑
j=1

w(Esj )

|Rsj |
1Rsj (x) '

N∑
j=1

w(Rsj )

|Rsj |
1Rsj (x)

thus we can estimate for any δ > 0

w(Ω) .
∫
Ω

fT∗w 6
∫
{Ω:T∗w6δMsw}

f(x)T∗w(x)dx+

∫
{Ω:T∗w>δMsw}

f(x)
T∗w(x)

Msw(x)
Msw(x)dx

6 δ
∫
Rn

|f(x)|Msw(x)dx+

∫
{Ω:T∗w>δMsw}

f(x)
T∗w(x)

Msw(x)
Msw(x)dx.

Applying the pointwise estimate (2.18) presented in Section 2.3.2 we get for every
θ > 0:

w(Ω) . (δ+ cθ)

∫
Rn

|f(x)|
(
1+

(
log+ |f(x)|

)n−1
)
Msw(x)dx

+

∫
{Ω: T∗w>δMsw}

(
exp

[
θ

(
T∗w(x)

Msw(x)

) 1
n−1
]
− 1
)
Msw(x)dx.

We now estimate the last term,

Q :=

∫
{Ω: T∗w>δMsw}

(
exp

[
θ

(
T∗w(x)

Msw(x)

) 1
n−1
]
− 1
)
Msw(x)dx

=

∞∑
j=1

θj

j!

∫
{Ω: T∗w>δMsw}

(
T∗w(x)

Msw(x)

) j
n−1
Msw(x)dx 6

∑
16j6n−1

+
∑
j>n−1

:= I+ II.

For I we just observe that since j/(n − 1) 6 1 and T∗w/(δMsw) > 1 we have the
elementary estimate(

T∗w/Msw
) k
n−1 =

(
T∗w/(δMsw)

) j
n−1 δ

j
n−1

= δ
j
n−1−1(T∗w/(δMsw)

) j
n−1−1 T∗w

Msw

6 δ
j
n−1−1 T

∗w

Msw
.

So we have

I 6
∑

16j6n−1

θjδ
j
n−1−1

j!

∫
Ω

T∗w(x)dx 6
θ

δ
eδ

1
n−1
∫
Ω

T1(x)w(x) .δ,n θw(Ω).

Here we abuse notation by denoting T1, T∗1(x) the action of T , T∗, respectively, on the con-
stant function 1. For II we use the fact that T∗w '

∑N
j=1

w(Rsj )

|Rsj |
1Rsj 6Msw

∑N
j=1 1Rsj '
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MswT
∗1. We have

II 6
∑
j>n−1

∫
Ω

θj

j!

(
T∗w(x)

Msw(x)

) k
n−1−1

T∗w(x)

Msw(x)
Msw(x)dx

.n,w
∑
j>n−1

θj

j!

∫
Ω

(T∗1(x))
j
n−1−1T∗w(x)dx

.n,w
∑
j>n−1

θj

j!

∫
Ω

(T∗1(x))
j
n−1 T∗w(x)dx

(
because T∗1 & 1 on Ω

)

.n,w
∑
j>n−1

θj

j!

∫
Ω

T(T∗(1)
j
n−1 )(x)w(x)dx :=

∑
j>n−1

θj

j!Qj.

Since w ∈ A∗po for some 1 < po < ∞ and Tf 6 Msf we have ‖T(f)‖Lpo(w) .w,n
‖f‖Lpo(w). This together with Lemma 2.11 yields

Qj .n,w w(Ω)
1
p ′o

( ∫
Ω

|T∗1(x)|
jpo
n−1w(x)dx

) 1
po

.n,w [jpo/(n− 1)]jw(Ω).

Overall we get

II .n,w
∑
j>n−1

θj

j!
(jpo)

j

(n− 1)jw(Ω) .n,w
∑
j>n−1

(θepo/(n− 1))j√
j

w(Ω)

.n,w
(θepo/(n− 1))n√

n
w(Ω),

if θ is small enough. Thus Q .n,w θw(Ω). We have proved that for θ > 0 small and
fixing δ = 1 in the previous estimates we have

w(Ω) .n,w θw(Ω) + (1+ cθ)
∫
Rn

|f(x)|
(
1+

(
log+ |f(x)|

)n−1
)
Msw(x)dx.

Choosing θ > 0 sufficiently small we thus have

w(F) . w(Ω) .n,w

∫
Rn

|f(x)|
(
1+

(
log+ |f(x)|

)n−1
)
Msw(x)dx,

which is the desired estimate.

We have actually proved the following weighted analogue of the Córdoba-Fefferman
covering Lemma 2.9 presented in Section 2.2.1.

Lemma 2.23. Let w ∈ A∗∞. Suppose that {Rj}j∈J is a finite sequence of rectangles from
R. Then there exists a subcollection {Rsj }16j6N ⊂ ∪j∈JRj such that

(i) w(∪j∈JRj) .n,w w(∪Nj=1R
s
j ).

(ii) For every δ > 0 there exists θo = θo(n,w, δ) > 0 such that, for every θ < θo we
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have∫
{Ω: T∗w(x)>δMsw(x)}

(
exp

[
θ

(
T∗w(x)

Msw(x)

) 1
n−1
]
− 1
)
Msw(x)dx .n,w,θ,δ w(∪Nj=1R

s
j ).

Here T∗w =
∑N
j=1

w(Rsj )

|Rsj |
1Rsj .

2.6 Notes and references

References

The results described here have first appeared in [LL] and [LP14]. The two-weight problem
for the strong maximal function in terms of bump conditions was proposed by Carlos Pérez
and his paper [Pér95b]. The principal tools to deal with rectangles in the two-weight context
have been inspired from [Jaw86]. Theorem 2.18 is a natural extension of Theorem 2.5 in
[GLPT11]. Theorem 2.22 extends the result of Mitsis in [Mit06] to higher dimensions. The
proof of Mitsis uses the combinatorics of two-dimensional rectangles, which allow one to
get favorable estimates for the measures

|{x ∈ Rj :
N∑
j=1

1Rj(x) = `}|;

here {Rj}16j6N is a sequence of rectangles which satisfy a certain sparseness property and
` is any integer in {1, 2, . . . ,N}. These combinatorics do not seem to be readily available
in higher dimensions and so we have adopted a different approach, which relies on the
boundedness of the weighted strong maximal functionMw

s and the precise estimate for its
norm, (2.10). In particular, our approach is inspired by the arguments in [LS88], a paper
which seems to have been overlooked by most of the works on weighted inequalities for the
strong maximal function.

Extra condition on the weight w and covering arguments

There is a key difference between Theorem 2.5 and the analogous result for the Hardy-
Littlewood operator (Theorem 2.3). Indeed, for the former not only do we need a more
restrictive class of Young functions (the class B∗p), but also we ask for an extra condition
on the first weight of the pair (w, v). Is it possible to remove this extra condition on w or
consider a weaker one?

The difference between the two-weight problems forM andMs also appears if we study
the problem in terms of testing conditions. Indeed, the analogous version of Theorem 2.1
for the strong maximal function was first described by Sawyer in [Saw82b] and requires
some extra assumptions. The same result was also proved in the more general context of
basis of open sets by Jawerth in [Jaw86]. More precisely we have:

Theorem 2.24 (Sawyer, [Saw82b]). Let (w, v) be a couple of weights in Rn and 1 < p <∞. Suppose that σ(x) = v(x)1−p
′ and assume that Mσ

s is bounded in Lp(σ). Then the
following two conditions are equivalent:

(i) The operator Ms is bounded from Lp(v) to Lp(w).
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(ii) For every set G ⊂ Rn that is a union of rectangles in R we have∫
G

|Ms(σ1G)|pw . σ(G). (2.33)

In the case of the Hardy-Littlewood maximal function, if we restrict to its dyadic or
center version, we have thatMσ always maps Lp(σ) into itself; see Section 1.2 in Chapter
1. This is not longer true in the case of the strong maximal function, thus we require Mσ

s

to be bounded on Lp(σ).
This extra assumption should be compared to the extra condition in Theorem 2.5, where

the condition was required to deal with the w-overlap of the rectangles. Indeed, it is known
in general that the understanding of the boundedness properties of a maximal operatorMµ

B

is equivalent to the study of the covering properties (with respect to the measure µ) of the
elements in the basis B:

Theorem 2.25 (Córdoba, [C76]). Given a basis B in Rn, and a measure µ such that
0 < µ(B) <∞ for all B ∈ B. The following statements are equivalent:

(i) Mµ
B is weak type (p ′,p ′) with respect to µ and it is bounded on Lp ′(µ).

(ii) From any finite sequence {Bj} ∈ B, we can select a subcollection {Bsj } such that

∥∥∥∥∑
j

1Bsj

∥∥∥∥
Lp(µ)

. µ

⋃
j

Bj

 1
p

. µ

⋃
j

Bsj

 1
p

.

As we have already discussed in the first chapter of this thesis, the geometry of rectangles
in Rn is much more intricate than that of cubes in Rn andMµ

s is not in general a bounded
operator. The A∗∞ condition is sufficient in order to deal with rectangles and with their
covering properties (see Lemma 2.10) in weighted spaces. A weaker sufficient condition for
the boundedness of MR,w appears in [27] but it is quite technical and difficult to handle.
Since it is known that A∗∞ is not a necessary condition for the boundedness of Mw

s on
Lp(w), an admissible candidate for a weaker condition may be the mix Tauberian condition

µ({x ∈ Rn :Mw
s (1E)(x) > γ}) .n,w w(E). (AwR,γ,w)

This condition is described in the next chapter and Corollary 3.2 shows that characterizes
completely the Lp(w)-boundedness ofMw

s whenever w is doubling. This kind of condition
is, for sure, weaker than the A∗∞. However we were not even able to prove Theorem 2.5
assuming that Mw

s maps Lp(w) into Lp(w), what seems more natural if we compare our
two-weight result with Theorem 2.24

We note that this discussion also relates to the Fefferman-Stein problem for Ms. In
Theorem 2.22 we have also restricted to weights w ∈ A∗∞ to deal with the overlap of the
rectangles, while in the case of M no condition was required on the weight.

The weak problem

Another interesting problem is the characterization of those pairs of weights (w, v) such
that the strong maximal function is bounded from Lp(v) to Lp,∞(w), or satisfies the weak
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(p,p) inequality

w({x ∈ Rn :Ms(f)(x) > λ}) .n,p,[w,v]A∗p
1
λp

∫
Rn

|f(x)|pv(x)dx, λ > 0. (2.34)

Complete answers for these questions are known for the Hardy-Littlewood maximal function.
Indeed, the following very well-known theorem characterizes completely the weak problem:

Theorem 2.26 (Muckenhoupt, [Muc72]). Given p, 1 < p <∞ the weak-type inequality

w({x ∈ Rn :M(f)(x) > λ}) .n,p,[w,v]Ap
1
λp

∫
Rn

|f(x)|pv(x)dx, λ > 0.

holds if and only if (w, v) ∈ Ap.

For the strong maximal function, however, the Ap condition is necessary but it is not
sufficient; see the manuscript [LP], still in progress. In this case, we need to deal with
the covering properties and as it was pointed out in the last subsection, we can control
the w-overlap of rectangles with an extra-condition. The following theorem shows the only
known result for the weak problem

Theorem 2.27 (Pérez, [Pér93]). Let 1 < p < ∞. Suppose that (w, v) is a couple of
weights such that w ∈ A∗∞ and for some 1 < r <∞, (w, v) ∈ Ap,r; that is:

[w, v]A∗p,r = sup
R∈R

(
1
|R|

∫
R

w

)(
1
|R|

∫
R

vr(1−p
′)

)p−1
r

< +∞. (2.35)

Then
Ms : L

p(v) −→ Lp,∞(w).
Indeed, since this Arp condition verifies an open property (see [Pér93, Theorem 1.3]),

the strong (p,p) boundedness can be also deduced. Moreover note that as a corollary of
Theorem 2.5 we also have this result under the hypothesis that Φ satisfies a more general
bump condition. However, it should be possible to have a weaker condition than in the
strong problem. In that sense, it could seem reasonable to try to prove that if the pair of
weights (w, v) ∈ A∗p and w ∈ A∗∞, then we have theMs is weak (p,p), p > 1. However,at
least for now, we have not been able to improve Theorem 2.27.

Moreover, it was not either known a weak version of Theorem 2.24. In [LP] we prove that
the same characterization in terms of testing conditions, with a weak version of condition
2.33, answers to this problem.

The endpoint case

A problem that looks even more difficult is the endpoint version of the two-weight problem
for the strong maximal function. More precisely, determine all the couple of weights (w, v)
such that

w({x ∈ Rn :Msf(x) > λ}) .n,w,v

∫
Rn

|f(x)|

λ

(
1+

(
log+ |f(x)|

λ

)n−1
)
v(x)dx. (2.36)
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The analogous estimate for the Hardy-Littlewood operator is the following weak (1, 1)
inequality:

w({x ∈ Rn :Msf(x) > λ}) .n,w,v

∫
Rn

|f(x)|v(x)dx.

This estimate is characterized in terms of the A1 condition. But in the case of the strong
maximal operator, even in the one weight problem, v = w, it turns out that A∗1 is not
necessary for estimate (2.36). See Theorem 1.25 for a detailed explanation of this fact. For
the case v ≡Msw estimate (2.36) is the Fefferman-Stein inequality (2.30), that has been
proved whenever w ∈ A∗∞. Again it is not known if this estimate remains true if w is any
weight or if it verifies a weaker condition than the A∗∞.





Chapter 3

Tauberian conditions and weights

Let B be a homothecy invariant collection of convex sets in Rn. Given an appropriately
doubling measure µ, the purpose of this chapter is to characterize the boundedness prop-
erties of the geometric maximal operator Mµ

B in terms of Tauberian conditions. We first
introduce a few facts related to the notion of doubling for the bases B. Then we prove the
main result concerning a basis G consisting of rectangles with arbitrary orientation whose
maximal operator satisfies a Tauberian condition. The extension of this result to general
bases of convex sets answers to Problem 0.3. We finally discuss some applications of this
result in differentiation theory and in the study of weighted inequalities for Mw

s and MB.
In particular, we will focus in the case that B is a Muckenhoupt basis.

3.1 Maximal operators Mµ
B

Throughout this thesis we have studied the mapping properties ofMµ
B for certain bases

B and measures µ. For example, in Section 1.2 of Chapter 1, we presented some known
results for the basis Q. Also in Subsection 1.3.2 of the same chapter, we described the
particular case of the operator Mw

s where the measure was restricted to be a weight.
Our goal in this chapter is to study the Lp(µ)-boundedness of Mµ

B whenever B is a
homothecy invariant collection of convex sets in Rn. The case where µ is the Lebesgue
measure was already presented in Chapter 1, Theorem 1.7. In particular, it was shown that
MB : Lp(Rn)→ Lp(Rn) if and only if MB satisfies a Tauberian condition∣∣{x ∈ Rn :MB(1E)(x) > γ}

∣∣ 6 cB,γ|E|.

The intention here is to extend this result to a more general context.
As a first step, we turn our attention to the maximal functionMµ

G defined with respect
to a non-negative measure µ which is doubling with respect to the basis and a homothecy
invariant basis G in Rn consisting of rectangles. Observe that the rectangles here can have
arbitrary orientation. Our first objective is to find a characterization of the measures ν such
that Mµ

G : Lp(ν) → Lp(ν) for some p > 1 in terms of a mixed µ,ν-Tauberian condition.
Here ν denotes any arbitrary measure and we just assume is non-negative and locally finite.
A Tauberian condition, in this more general context, takes the following form

ν({x ∈ Rn :Mµ
G(1E)(x) > γ}) 6 c

µ
G,γ,νν(E). (AµG,γ,ν)
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More precisely, the result that we present here gives a characterization of the bound-
edness of Mµ

G on Lp(ν), for sufficiently large p > 1, in terms of the Tauberian condition
(AµG,γ,ν) whenever the measure µ is doubling with respect to G.

Theorem 3.1. Let G be a homothecy invariant basis consisting of rectangles and µ,ν be
two non-negative measures on Rn, finite on compact sets. Assume that µ is doubling with
respect to G. The following are equivalent:

(i) The measures µ,ν satisfy the Tauberian condition (AµG,γ,ν) with respect to some
fixed level γ ∈ (0, 1).

(ii) There exists 1 < po = po(c
µ
G,γ,ν,γ,µ) < +∞ such that Mµ

G : Lp(ν) → Lp(ν) for
all p > po.

The proof of Theorem 3.1 is presented in Section 3.3 and the notion of doubling is
detailed in the following section. It is important to note that Theorem 3.1 has an interesting
corollary whenever µ ≡ ν. In this special case our main theorem concerns the boundedness
of the operatorMµ

G on Lp(µ) for sufficiently large p > 1 and µ doubling with respect to G.
Indeed, we already know that for a doubling measure µ the operator Mµ is of weak type
(1, 1) and thus of strong type (p,p) for all p > 1. Thus both (i) and (ii) of this theorem are
always satisfied for Q and µ ≡ ν. However, for G = R and µ product doubling we get a
new characterization of the measures µ such that Mµ

s is bounded on Lp(µ) for sufficiently
large p > 1. When µ ≡ ν the mixed Tauberian condition becomes:

µ({x ∈ Rn :Mµ
G(1E)(x) > γ}) 6 c

µ
G,γ,µµ(E). (AµG,γ,µ)

We then have:

Corollary 3.2. Let G be a homothecy invariant basis consisting of rectangles and µ be
a non-negative measure on Rn, finite on compact sets. Assume that µ is doubling with
respect to G . The following are equivalent:

(i) The measure µ satisfies the Tauberian condition (AµG,γ,µ) with respect to some fixed
level γ ∈ (0, 1).

(ii) There exists 1 < po = po(c
µ
G,γ,ν,γ,µ) < +∞ such that Mµ

G : Lp(µ) → Lp(µ) for
all p > po.

Another important feature of Theorem 3.1 is that it is an essential step to study the
problem for any homothecy invariant bases of convex sets. Indeed, we shall reduce this
general case to a special case of rectangles GB associated to the basis B. In the next
section we describe this associated basis and the extension of Theorem 3.1 to the more
general context of homothecy invariant bases consisting of convex sets is presented in
Section 3.4.

3.2 Doubling measures with respect to a basis of convex sets

In this section we discuss the properties of measures which are doubling with respect
to a basis of convex sets. By a basis of convex sets we will always mean a homothecy
invariant basis B consisting of non-empty, bounded, open convex sets with non-empty
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interior. Definition 1.10 introduces the notion of doubling associated to the basis of cubes.
Here we extend this definition to a more general context. Remember that for σ ∈ Rn,
E ⊂ Rn and c > 0 we write τσE = {σ+ x : x ∈ E} and dilcE = {cx : x ∈ E}.

Definition 3.3. Let µ be a non-negative measure which is finite on compact sets. We will
say that µ is doubling with respect to B if there is a constant ∆µ,B > 1 such that, for
every B ∈ B and every σ ∈ Rn such that B ⊂ τσdil2B we have

µ(τσdil2B) 6 ∆µ,Bµ(B).

We always assume ∆µ,B to be the smallest possible constant so that the previous inequality
holds uniformly for all B ∈ B. When the underlying basis B is clear from the context we
will write ∆µ for ∆µ,B.

Remark 3.4. The previous definition of a doubling measure reduces to the usual doubling
condition (up to changes in the doubling constant) if B = Q or B = b. However, the
doubling condition with respect to R is quite different than the doubling condition with
respect to cubes. In fact, if one wants to study the behavior of the operator Mµ

s with
respect to a measure µ then the “natural” condition is that µ is doubling with respect
to R. For example in [PWX11], measures that are doubling with respect to R are called
product doubling and we will adopt the same terminology here. The same notion of
product doubling is discussed for example in [JT84]. Naturally, weights w ∈ A∗∞ give
product doubling measures w(x)dx.

Observe also that for a general basis of convex sets B there is in general no natural
homothecy center as the convex sets in B might not be symmetric with respect to some
point. In order to avoid confusion in all these subtle issues we will always specify the basis
according to which a measure is assumed to be doubling.

The John ellipsoid. One of the technical annoyances when dealing with general convex
sets is the lack of a natural homothecy center as the convex sets we will consider will not
in general be symmetric with respect to some point. In order to deal with this lack of
symmetry and resulting technical issues, the classical lemma of F. John, [Joh48], will be
very useful. See also [Bal97] for a very nice exposition of this and related topics.

Lemma 3.5 (F. John). Let B be a bounded convex set in Rn. Then B contains a unique
ellipsoid EB, of maximal volume. We will call EB the John ellipsoid of B. The John ellipsoid
of B is such that

EB ⊂ B ⊂ nEB.

Here cEB denotes the dilation of the ellipsoid EB by a factor c > 0 with respect to its
center.

Given a basis B consisting of convex sets we will now construct an associated basis GB

consisting of rectangles as in [HS09]. To this end let B ∈ B and EB be the John ellipsoid
of B. Then there is a (not necessarily unique) rectangle R ⊃ EB of minimal volume. It is
elementary to check that for any ellipsoid E , a rectangle R of minimal volume that contains
E satisfies

E ⊂ R ⊂
√
nE .
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Given B ∈ B, let RB be a rectangle of minimal volume containing nEB. By the above
observations and John’s lemma we get for every B ∈ B that

B ⊂ nEB ⊂ RB ⊂ n
√
nEB ⊂ n3/2B.

Here the dilations cB are with respect to the center of the John ellipsoid associated to
B. We now define the basis GB as

GB := {RB : B ∈ B}.

Since B is homothecy invariant the rectangle RB may be selected so that GB is homothecy
invariant and we always assume that this is the case.

The following lemma is an immediate consequence of the above discussion. We omit
the easy proof.

Lemma 3.6. Let B be a basis of convex sets and GB be the homothecy invariant basis of
associated rectangles as constructed above. Suppose that µ is doubling with respect to B
with doubling constant ∆µ,B. We have:

(i) The measure µ is doubling with respect to GB with doubling constant

∆µ,GB
6 ∆

1+d 32 logne
µ,B .

(ii) We have the pointwise equivalence

1
cn
M
µ
GB
f(x) 6Mµ

Bf(x) 6 cnM
µ
GB
f(x), x ∈ Rn,

where cn := ∆
d 32 logne
µ,B .

(iii) If B ∈ B and RB is the associated rectangle of B with B ⊂ RB ⊂ n
3
2B then

µ(B) > ρµ(RB),

where ρ := c−1
n and cn as defined in (ii).

Properties of general doubling measures. The doubling condition has some important
consequences in that the measure is “homogeneously” distributed in the space. We sum-
marize these properties in the proposition below. We note that these properties are classical
and refer the reader to [Ste70, Chapter 8.6] for more details.

Proposition 3.7. Let µ be a (not identically zero) locally finite, non-negative Borel measure.
Assume that µ is doubling with respect to some family K consisting of all the homothetic
copies of a fixed rectangle. The following properties are satisfied.

(i) We have µ(U) > 0 for every open set U ⊂ Rn.

(ii) Let R ∈ K and DR be the dyadic grid generated by R. There exists a constant
γµ > 1, depending only on the doubling constant of µ and the dimension n such
that µ(R) 6 γ−mµ µ(R(m)), where R(m) is the ancestor of R, m generations higher.
In particular µ(Rn) = +∞.
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(iii) The maximal operator Mµ
K is of weak type (1, 1) and strong type (p,p) for all 1 <

p 6 ∞, with respect to µ, and the operator norms depend only on the doubling
constant of the measure µ, the exponent p and the dimension n. Also the centered
maximal operator Mµ

K,c satisfies the same bounds.

(iv) If B is a convex set in Rn we have µ(∂B) = 0 where ∂B := B̄ \ B is the boundary of
B.

Proof. We first introduce some notation related to dyadic rectangles that will be repeatedly
used in the rest of this chapter. For a rectangle R ∈ R we denote by DR the mesh of “dyadic
rectangles” associated to R. The “dyadic children” of R are produced by dividing each side
of R into two equal parts while the dyadic parent of R is the rectangle R(1) whose sidelengths
are double the corresponding sidelengths of R and shares exactly one corner with R. Thus
every R ⊂ Rn has exactly 2n dyadic children and is contained in a unique dyadic parent.
For a dyadic rectangle R we write R(1) for the parent of R and R(j) for the ancestor of R
which is j generations “before” R.

The proof of (i) can be found for example in [Ste70, Chapter 8]. For (ii) let R(1) be
the dyadic parent of R and let {Rj}2

n

j=1 denote the dyadic children of R(1) and suppose that
R = R1. Then

µ(R(1)) =
2n∑
j=1

µ(Rj) = µ(R1) +
2n∑
j=2

µ(Rj) > (1+ (2n − 1)δ−1
µ )µ(R1),

where δµ > 1 is the doubling constant of µ. Let γµ = 1+ (2n − 1)δ−1
µ > 1. Since R is m

generations inside R(m) we iterate to get µ(R) 6 γ−mµ µ(R(m)) as desired.
For (iii) observe that Mµ

K is essentially the Hardy-Littlewood maximal operator with
respect to a doubling measure and the result is classical. Since the measure µ is doubling
the operators Mµ

K,M
µ
K,c are pointwise comparable and satisfy the same bounds.

Finally for (iv) let us fix the convex set B and x ∈ ∂B. Let H be a supporting hyperplane
of B through x and let H− be the open half-space defined by H so that H− ∩ B = ∅. Let
R ∈ K, centered at x and sR be the rectangle with the same center as R and sides s < 1
times the corresponding sides of R. So sR is an homothetic copy of R. Consider the 4n
subrectangles Rs,j produced by dividing each side of sR into four equal parts. Now at least
one of these Rs,j’s is contained in the open half space H−. Let us call this rectangle R ′ and
observe that it is of the form R ′ = z+ 1

4sR ⊂ sR and R ′ ∩ B = ∅. We can then estimate

µ(∂B ∩ sR) = µ(∂B ∩ sR ∩ R ′) + µ(∂B ∩ sR \ R ′)

= µ(∂B ∩ sR \ R ′) 6 µ(sR) − µ(R ′)

6 µ(sR) −
1
δ2µ
µ(sR) 6 cµ(sR),

with c < 1. Applying (iii) for the centered operator Mµ
K,c we see that

1 > c > µ(∂B ∩ sR)/µ(sR)→ 1∂B, µ-almost everywhere as s→ 0+,

which implies that µ(∂B) = 0.
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3.3 Proof of the Theorem 3.1

In this section we give the details of the proof of Theorem 3.1. First of all observe that if
M
µ
G : Lp(ν) → Lp(ν) then trivially (AµG,γ,ν) is satisfied for every γ ∈ (0, 1). For the rest

of this section we will thus assume that (AµG,γ,ν) holds for some γ ∈ (0, 1). Let β ∈ (γ, 1).
Any such choice of β will work equally well but for definitiveness we can take β to be the
arithmetic mean of γ and 1. The hypothesis implies that

ν({x ∈ Rn :Mµ
G(1E)(x) > β}) 6 cν(E) for all measurable sets E ⊆ Rn. (3.1)

Here c = c
µ
G,γ,ν but we suppress these dependencies for the sake of simplicity. We will

need the following notation introduced in [HS09]. For every measurable set E ⊂ Rn we
define H 0

β (E) := E and for k > 1

H k
β (E) := {x ∈ Rn :Mµ

G(1H k−1
β (E))(x) > β}.

With these definitions at hand it is not difficult to check the following basic properties. Let
k,k ′ > 0 be non-negative integers and A,B measurable subsets of Rn. Then

H 1
β (H

k
β (A)) = H k+1

β (A), (3.2)
A ⊆ B⇒H k

β (A) ⊆ Hkβ(B), (3.3)
If k ′ 6 k then H k ′

β (A) ⊆H k
β (A). (3.4)

(AµG,γ,µ) implies (3.1) which in turn implies that ν(H k
β (A)) 6 ckν(A). (3.5)

The properties above will be used in several parts of the proof with no particular mention.
The following lemma is the heart of the proof of Theorem 3.1.

Lemma 3.8. Let µ be a doubling measure with respect to G, with doubling constant ∆µ,
and E be a measurable set in Rn. Suppose that for some α ∈ (0,β) and R ∈ G we have

1
µ(R)

∫
R 1Edµ = α. Then

R ⊂H
kα,β
β (E) where kα,β :=

⌈
− log(βα)
logβ

⌉⌈
2+ log+(β∆µ))

log(1/β)

⌉
+ 1.

Here we denote by dxe the smallest positive integer which is no less than x.

Before giving the proof of the lemma let us see how we can use it to conclude the proof
of Theorem 3.1. By restricted weak type interpolation it suffices to show that for every
0 < λ < 1 and every measurable set E ⊂ Rn we have the estimate

ν({x ∈ Rn :Mµ
G(1E)(x) > λ}) 6

C

λpo
ν(E) (3.6)

for some po > 1 and some constant C > 0, independent of λ and E. Estimate (3.6) above
is the claim that the sublinear operatorMµ

G is of restricted weak type (po,po) with respect
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to the measure ν, for some po > 1. Now we have

ν({x ∈ Rn :Mµ
G(1E)(x) > λ}) 6 ν({x ∈ Rn : λ < Mµ

G(1E)(x) < β})
+ ν({x ∈ Rn :Mµ

G(1E)(x) > β}) (3.7)

6 ν({x ∈ Rn : λ < Mµ
G(1E)(x) < β}) +

c
λpo

ν(E),

by (3.1), for all po > 0. In order to estimate the first summand let

Eλ,β := {λ < M
µ
G(1E)(x) < β}.

For every x ∈ Eλ,β there exists Rx ∈ G and λ < α < β with

Rx 3 x, µ(Rx) > 0 and µ(Rx ∩ E)
µ(Rx)

= α.

By Lemma 3.8 we get that Rx ⊂ H
kα,β
β (E). Now observe that kα,β is a nonincreasing

function of α. Thus for all α > λ we have that kα,β 6 kλ,β which by (3.4) implies that
H
kα,β
β (E) ⊆H

kλ,β
β (E). Combining these observations we get that

Eλ,β ⊆
⋃

x∈Eλ,β

Rx ⊆H
kλ,β
β (E).

Using (3.5) we now see that

ν(Eλ,β) 6 ν(H
kλ,β
β (E)) 6 ckλ,βν(E).

By the explicit expression for kλ,β observe that we can write

kλ,β 6
log(βλ )
log 1

β

ηβ,µ + 1

with ηβ,µ > 2, depending only on β and µ. Thus

ckλ,β 6 ccηβ,µ log
1
λ/ log

1
β 6

c
λpo

=
c
µ
G,γ,ν
λpo

,

with po = ηβ,µ logcµG,γ,ν/log(1/β) > 0. Remember that β is completely determined by the
level γ in hypothesis (AµG,γ,µ) so that po = po(c

µ
G,γ,ν,γ,µ). Together with (3.7) this

completes the proof of (3.6) and thus of Theorem 3.1.
For the proof of Lemma 3.8 we will need an intermediate result. For this we introduce

a final piece of notation. If R ∈ G then there is a natural “dyadic system of rectangles”
associated to R which we will denote by DR. This system has the properties

(i) We have that R ∈ DR ⊆ G.

(ii) Every S ∈ DR has a unique dyadic parent S(1) and 2n dyadic children. Furthermore,
each corner of a rectangle S ∈ DR is shared by S and exactly one of its dyadic children.

(iii) If V,S ∈ DR then V ∩ S ∈ {∅,V,S}.
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We leave the details of the dyadic construction above to the interested reader. In the case
where the rectangles have sides parallel to the coordinate axes, this construction is described
in detail in [Kor07, chapter 1]. We now define the dyadic weighted maximal function with
respect to DR and µ as

M
µ
DR
f(x) := sup

S∈DR
S3x
µ(S)>0

1
µ(S)

∫
S

|f(y)|dµ(y), x ∈ Rn.

The dyadic maximal function just defined satisfies all the desired bounds:

Proposition 3.9. Let µ be a locally finite non-negative measure. We have that Mµ
DR

:

L1(µ)→ L1,∞(µ). We conclude that the family {R : R ∈ DR,R 3 x,µ(R) > 0} differentiates
L1loc(µ).

Note that there is no doubling assumption on the measure µ in this proposition. Indeed,
the proof amounts to selecting the maximal “dyadic rectangles” S ∈ DR ∩ [0, 2N)n such
that 1

µ(S)

∫
S |f(y)|dµ(y) > λ and noting that they are disjoint. One then lets N → +∞.

An identical argument works for “dyadic rectangles” contained in the other quadrants of
Rn. We omit the easy details of the proof.

Lemma 3.10. Let µ,E and R be as in the hypothesis of Lemma 3.8 above. Then there
exists a non-negative integer N such that

µ(R ∩H N+2
β (E)) >

1
β
µ(E ∩ R).

Proof. We perform a Calderón-Zygmund decomposition of 1E∩R at level β with respect to
the dyadic grid DR as defined in Proposition 3.7. Namely, let {Sj}j ⊂ DR be the collection
of “dyadic rectangles” which are maximal among the S ∈ DR that satisfy

1
µ(S)

∫
S

1E∩R(y)dµ(y) > β.

Observe that µ(S) > 0 for all rectangles S by Proposition 3.7. Furthermore µ(E∩R)/µ(R) <
β so that every dyadic rectangle S as above is contained in a maximal dyadic rectangle.
This selection algorithm together with the hypothesis µ(R∩E)/µ(R) = α < β allows us to
choose a µ-a.e. disjoint family {Sj}j ⊂ DR such that⋃

j

Sj ⊆ R, Sj 6= R for all j,

{x ∈ Rn :Mµ
DR

(1E∩R)(x) > β} =
⋃
j

Sj, (3.8)

1
µ(Sj)

∫
Sj

1E∩Rdµ > β,

1E∩R 6 1∪jSj µ-a.e. in R. (3.9)

For any constant c > 1 we let c ∗Sj denote the rectangle containing Sj that has sidelength
c times the sidelength of Sj and has a common corner with Sj and S(1)j . With this notation
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we have S(1)j = 2 ∗ Sj while the doubling hypothesis for µ implies that µ(S(1)j ) 6 ∆µµ(Sj)
for every j.

For each j we set Sj,0 := Sj. Suppose we have defined Sj,0 ⊂ · · · ⊂ Sj,k for some k > 0.
We define Sj,k+1 to be a rectangle of the form cj,k+1 ∗ Sj, where cj,k+1 > 1 is chosen so
that Sj,k ⊂ Sj,k+1 and

µ(Sj,k+1)

µ(Sj,k)
=

1
β
> 1. (3.10)

Observe that such a choice is always possible since the function f(c) := µ(c ∗Sj,k)/µ(Sj,k)
satisfies f(1) = 1, f(c)→ +∞ as c→ +∞ and by (iv) of Proposition 3.7 it is continuous
on [1,+∞).

For k > 0 we now set

Ek :=
⋃
j

Sj,k.

Observe that for k > 0 we have

Ek+1 ⊂ {x ∈ Rn :Mµ
G(1Ek)(x) > β}. (3.11)

Indeed if x ∈ Ek+1 then x ∈ Sj0,k+1 for some j0. We estimate

M
µ
G(1Ek)(x) = sup

S∈G
S3x

µ(S ∩ Ek)
µ(S)

>
µ
(
Sj0,k+1 ∩

⋃
j Sj,k

)
µ(Sj0,k+1)

>
µ
(
Sj0,k

)
µ(Sj0,k+1)

= β,

by (3.10). Next we claim that for every k > 0 we have

Ek ⊂H k+1
β (E). (3.12)

For k = 0 this is an immediate consequence of (3.8) since

E0 =
⋃
j

Sj = {x ∈ Rn :Mµ
DR

(1E∩R)(x) > β}

⊆ {x ∈ Rn :Mµ
G(1E)(x) > β} = H 1

β (E).

Assume now that (3.12) is valid for some k > 0. By (3.11), the inductive hypothesis and
properties (3.2),(3.3) we get that

Ek+1 ⊂ {x ∈ Rn :Mµ
G(1Ek)(x) > β} = H 1

β (Ek) ⊆H 1
β (H

k+1
β (E)) = H k+2

β (E),

which proves the claim.

Now let N be the smallest non-negative integer such that β−(N+1) > ∆µ, where ∆µ
is the doubling constant of the measure µ. It follows that

S
(1)
j ⊆ Sj,N+1 (3.13)

for every j. Indeed, assume for the sake of contradiction that Sj,N+1 ( S
(1)
j . Then the



3.3. Proof of the Theorem 3.1 61

doubling property of µ implies that µ(Sj,N+1) < µ(S
(1)
j ). Thus

∆µ >
µ(S

(1)
j )

µ(Sj)
>
µ(Sj,N+1)

µ(Sj)
= β−(N+1)

which contradicts the choice of N.

Now (3.13) implies that for every j we have

µ(Sj,N)

µ
(
S
(1)
j

) >
µ(Sj,N)

µ(Sj,N+1)
= β

and we can conclude that for every j

µ(EN ∩ S
(1)
j )

µ
(
S
(1)
j

) =
µ
(⋃

ν Sν,N ∩ S
(1)
j

)
µ
(
S
(1)
j

) >
µ
(
Sj,N ∩ S

(1)
j

)
µ
(
S
(1)
j

) > min
(
1,
µ
(
Sj,N

)
µ
(
S
(1)
j

) ) > β.

Hence ⋃
j

S
(1)
j ⊆ {x ∈ R :Mµ

G(1EN)(x) > β}. (3.14)

Let {S
(1)
jk

}k denote the maximal elements of {S
(1)
j }j. Then the sets {S

(1)
jk

}k are µ-a.e.
pairwise disjoint and

⋃
k S

(1)
jk

=
⋃
j S

(1)
j . Note that all S(1)jk ’s are contained in R since for

all j we have Sj $ R. We also have that we have S(1)jk 6= Sm for any k,m. Indeed, if
S
(1)
jk

= Sm for some k,m then we would have S(1)jk $ S
(1)
m which is impossible because of

the maximality of the S(1)jk ’s among the S(1)m ’s. Thus none of the S(1)jk were selected in the
Calderón-Zygmund decomposition so that

µ(S
(1)
jk
∩ E ∩ R) 6 βµ(S(1)jk )

and hence µ(S(1)jk ∩E) 6 βµ(S
(1)
jk

) for all k since S(1)jk ⊆ R for all k. Using the last estimate
and (3.14) we now have

µ({x ∈ R :Mµ
G(1EN)(x) > β}) > µ

(⋃
j

S
(1)
j

)
= µ

(⋃
k

S
(1)
kj

)
=
∑
k

µ(S
(1)
kj

) >
1
β

∑
k

µ(E ∩ S(1)kj )

=
1
β
µ(E ∩

⋃
k

S
(1)
kj

) =
1
β
µ(E ∩

⋃
j

S
(1)
j )

>
1
β
µ(E ∩

⋃
j

Sj).

Now (3.9) implies that 1E∩R 6 1R∩∪jSj almost everywhere so that µ(E∩R) 6 µ(R∩∪jSj).
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Thus the previous estimate reads

µ({x ∈ R :Mµ
G(1EN)(x) > β}) >

1
β
µ(E ∩ R)

which by (3.12) implies that µ(R ∩H N+2
β (E)) > β−1µ(E ∩ R) as desired.

We can now conclude the proof of Lemma 3.8.

Proof of Lemma 3.8. By the hypothesis of the lemma there exists α ∈ (0,β) and R ∈ G
with µ(E ∩ R)/µ(R) = α. Let jo be the smallest positive integer such that β−joα > β.
Such an integer obviously exists since β < 1. There are two possibilities.

case 1: We have that µ(R∩H
j(N+2)
β (E)) < βµ(R) for j = 0, . . . , jo−1. Then we claim

that we have

µ(R ∩H
k(N+2)
β (E)) >

1
βk
µ(R ∩ E) for all k = 1, . . . , jo. (3.15)

We will prove (3.15) by induction on k. Indeed, the case k = 1 is just Lemma 3.10. Assume
that (3.15) is true for some 1 6 k 6 jo − 1. Then, since µ(R ∩H

k(N+2)
β (E)) < βµ(R)

we can apply Lemma 3.10 for the rectangle R and the set Hk(N+2)
β (E) in place of E to

conclude that

µ(R ∩H N+2
β (H

k(N+2)
β (E))) >

1
β
µ
(
H
k(N+2)
β (E) ∩ R

)
>

1
β

( 1
β

)k
µ(R ∩ E)

=
( 1
β

)k+1
µ(R ∩ E).

However this is just (3.15) for k+ 1 since H N+2
β (H

k(N+2)
β (E)) = H

(k+1)(N+2)
β (E).

Now by (3.15) for k = jo we get that

1
µ(R)

µ
(
R ∩H

jo(N+2)
β (E)

)
>
( 1
β

)jo µ(R ∩ E)
µ(R)

= β−joα > β

by the choice of jo. This implies that R ⊆H
jo(N+2)+1
β (E).

case 2: We have that µ(R∩H
j(N+2)
β (E)) > βµ(R) for some j ∈ {0, . . . , jo− 1}. In fact,

by the hypothesis we necessarily have that j > 1 in this case. Then

1
µ(R)

µ
(
R ∩H

j(N+2)
β (E)

)
> β

which implies that R ⊆ {x ∈ Rn :Mµ
G(1H

j(N+2)
β (E)

)(x) > β} = H
j(N+2)+1
β (E).

Observe that in either one of the complementary cases considered above we can conclude
that R ⊆H

jo(N+2)+1
β (E). This proves the lemma with kα,β = jo(N+ 2) + 1. It remains

to estimate kα,β. This can be easily done by going back to the way the integers N and
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jo were chosen. For N remember that it is the smallest non-negative integer such that
(1/β)N+1 > ∆µ. If 1/β > ∆µ then the choice N = 0 will do. If 1/β < ∆µ then we get
that N is the smallest positive integer which is greater or equal to log(β∆µ)/ log(1/β).
Thus the choice

N :=

⌈
log+(β∆µ)
log(1/β)

⌉
covers both cases. Likewise, jo is the smallest integer such that β−jo > β/α or jo is the
smallest integer greater than log(β/α)/ log(1/β). Thus we can choose

jo :=

⌈ log(βα)
log 1

β

⌉
. (3.16)

We set

kα,β := jo(N+ 2) + 1 =

⌈ log(βα)
log 1

β

⌉(⌈
log+(β∆µ)
log(1/β)

⌉
+ 2
)
+ 1

=

⌈ log(βα)
log 1

β

⌉⌈
2+ log+(β∆µ)

log(1/β)

⌉
+ 1.

Of course, any integer greater than the kα,β above will also do since the sets H k
β (E) are

increasing in k.

3.4 Some remarks on Theorem 3.1

We now discuss some consequences of Theorem 3.1 and related issues.

Exentension of Theorem 3.1 to bases of convex sets Theorem 3.1 can be extended
to the case that the Tauberian condition is given with respect to a homothecy invariant
basis B consisting of convex sets; that is,

ν({x ∈ Rn :Mµ
B(1E)(x) > γ}) 6 cµB,γ,νν(E). (AµB,γ,ν)

As in the case where the basis G consisted of rectangles, we will need to assume the
doubling property of the measure µ with respect to the basis B. In particular, the result
that we obtain is the following.

Theorem 3.11. Let B be a homothecy invariant basis consisting of convex sets and µ,ν
be two non-negative measures on Rn, finite on compact sets. Assume that µ is doubling
with respect to B. The following are equivalent:

(i) The measures µ,ν satisfy the Tauberian condition (AµB,γ,ν) with respect to some
fixed level γ ∈ (0, 1).

(ii) There exists 1 < po = po(c
µ
B,γ,ν,n,γ,µ) < +∞ such that Mµ

B : Lp(ν) → Lp(ν)
for all p > po.
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Though we omit the proof of the theorem in this thesis, the general strategy that we
pursue is the following. Assuming that (AµB,γ,ν) is satisfied for some level γ ∈ (0, 1) we
show that the maximal operator Mµ

GB
also satisfies a Tauberian condition with respect

to every level α ∈ (γ, 1). This is the more technical and difficult part. We then use
Theorem 3.1 to conclude thatMµ

GB
is bounded on some Lp(ν)-space, for sufficiently large

p. According to Lemma 3.6 the operatorsMµ
GB

andMµ
B are pointwise comparable so this

completes the proof.

Weighted Tauberian conditions. Let w be a weight. When µ ≡ ν ≡ w the mixed
Tauberian condition (AµG,γ,ν) becomes the weighted Tauberian condition

w({x ∈ Rn :MB(1E)(x) > γ}) 6 cB,γ,ww(E) (AB,γ,w)

that was introduced in Definition 1.21. This condition has been considered many times in
the literature, especially in the context of weighted inequalities for the strong maximal func-
tion and other Muckenhoupt bases. Indeed, it appears for example in [GLPT11], [Jaw86],
[JT84], [LL], [Pér91] and [Pér93]. Condition (AB,γ,w) is typically presented in the litera-
ture as a presumably weaker substitute for the hypothesis w ∈ A∞,B and is usually referred
to as condition (A). For example, in [JT84] condition (AB,γ,w) is used as a hypothesis in
order to prove Lp(w)-bounds for the weighted strong maximal function Mw

s . Likewise, in
[Pér91] it is shown that if B is a Muckenhoupt basis andMB satisfies (AB,γ,w) for a fixed
γ ∈ (0, 1) then MB satisfies a Fefferman-Stein inequality, namely∫

Rn
MBf(x)

pw(x)dx .n,p,w

∫
Rn

|f(x)|pMBw(x)dx, 1 < p < +∞.

Finally, in [GLPT11] and [LL], the condition is used in order to deal with covering prop-
erties of rectangles which are relevant in the study of two weight problems for the strong
maximal function. The following theorem shows however that condition (AB,γ,w) is just
an equivalent characterization of A∞,B for quite a large class of bases B. Observe first the
next general result.
Theorem 3.12. Let B be a homothecy invariant basis consisting of convex sets. Let w be
a non-negative, locally integrable function on Rn. Then the following are equivalent:
(i) Condition (AB,γ,w) is satisfied for the weight w and the basis B, for a fixed level

γ ∈ (0, 1).

(ii) There exists 1 < po = po(cB,γ,w,γ,n) < +∞ such thatMB : Lp(w)→ Lp(w) for
all p > po.

Proof. It is trivial that (ii) implies (i). The converse implication for w ≡ 1 is essentially
[HS09, Theorem 1]. Now a careful inspection of the proofs of the relevant results in [HS09]
reveals that the arguments therein actually show that if MB and w satisfy (AB,γ,w)
then MB is of restricted type (q,q) for some q > 1, with respect to the weight w.
Marcinkiewicz interpolation now gives (ii) for any p > q. Alternatively, the proof follows
from Theorem 3.11.

It is important to note here that if the basis B is additionally a Muckenhoupt basis
Theorem 3.12 immediately gives Remark 1.27; namely, that conditions (AB,γ,w) and A∞,B
are actually equivalent whenever B is a Muckenhoupt basis.
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Differentation theory A dual point of view for the investigations presented in this chap-
ter can be given in the language of differentiation theory. Given a collection of convex
sets in Rn which is invariant under dilations and translations we want to study when
the corresponding maximal operator differentiates L∞(Rn). Theorem 3.11 shows that the
boundedness properties of quite general maximal operators can also be characterized in
terms of Tauberian conditions. In turn, it is a classical result of Busemann and Feller,
[BF34], that a homothecy invariant basis B consisting of open sets differentiates L∞(Rn)
if and only if the corresponding maximal operator MB satisfies a Tauberian condition

|{x ∈ Rn :MB(1E)(x) > γ}| 6 cγ|E|,

for every γ ∈ (0, 1) and for every measurable set E. This point of view is discussed in
detail in [dG76] and taken up in [HS09]. In the last work it is shown that a homothecy
invariant basis consisting of convex sets differentiates L∞(Rn) (with respect to the Lebesgue
measure) if and only if it differentiates Lp(Rn) for some sufficiently large p > 1. Note here
that, lacking the convexity hypothesis on the basis, one needs Tauberian conditions at all
levels γ ∈ (0, 1). This should be contrasted to the results in [HS09] as well as in the current
chapter where the convexity assumption allows us to only assume a Tauberian condition at
a fixed level.

A direct consequence of Theorem 3.11, is the following corollary that is somehow a
“weighted” version of the Busemann-Feller theorem.

Corollary 3.13. Let B be a homothecy invariant basis consisting of convex sets and µ,ν
be locally finite, non-negative measures on Rn. Assume in addition that µ is doubling
with respect to B. If the condition (AµB,γ,ν) is satisfied then B differentiates L∞(ν) with
respect to the measure µ.

3.5 References
The results that we present here are completely contained in [HLP]. My initial motivation
to study this problem was to understand the so-called (A) condition described in Section
3.4. After studying the paper by Hagelstein and Stokolos [HS09], we realized that the (A)
condition was equivalent to the Muckenhoupt condition A∞,B in the case of B being a
Muckenhoupt basis. Then we tried to extend all the results described in [HS09] to the more
general context of weights, in part to get a better sense of the boundedness of the weighted
strong maximal function Mw

s .





Chapter 4

Optimal exponents in weighted
estimates

In this chapter we study optimal quantitative estimates for the Lp(w)-norm of some of
the operators T we have defined in Chapter 1. We first recall Problem 0.4 and we state
Theorem 4.2, that points out the close connection between the weighted estimates and the
behaviour of the unweighted operator norm at the endpoints p = 1 and p = ∞. As an
application of this theorem, we derive the sharpness of certain known weighted inequalities
without building any specific example. Then, we study in detail the case that T is the
strong maximal function and we describe some partial results we have obtained.

4.1 Background of Problem 0.4

A main problem in modern Harmonic Analysis is the study of sharp norm bounds for
an operator T on weighted Lebesgue spaces. The usual examples include the operators we
have introduced in Section 1.2; that is, maximal functions, Calderón-Zygmund operators
and fractional integral operators. In Section 1.3 we saw that, for these operators, the
weighted norm inequality

‖Tf‖Lp(w) .n,p,w,T ‖f‖Lp(w), 1 < p < +∞, (4.1)

is characterized in terms of the Ap classes of weights. See Theorem 1.16, Theorem 1.17
and Theorem 1.18 for more details. The question that we address in Problem 0.4 is the
following:

Which is the precise dependance on the weight in estimate (4.1) for each T considered
so far?

We can answer this question in two steps:

i. The first step is to look for quantitative bounds for the strong norm ‖T‖Lp(w) and
the weak norm ‖T‖Lp(w)→Lp,∞(w) in terms of the Ap constant of the weight. It is
well known that the dependance on the Ap constant, for the main examples, should
be of the form:

‖T‖Lp(w) .n,p,T [w]βAp w ∈ Ap, (4.2)

67
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and

‖T‖Lp(w)→Lp,∞(w) .n,p,T [w]β
′

Ap
w ∈ Ap. (4.3)

This is frequently the more difficult step.

ii. The second step is to find the sharp dependence, typically with respect to the power
of [w]Ap ; that is, what are the smallest possible exponents β,β ′ so that (4.2) and
(4.3) hold uniformly for all weights w? This step has been traditionally the easier
one, with relatively straightforward counterexamples. However, as we will describe in
Section 4.3 and 4.4, in some cases it is the hard part of the argument.

In recent years, the techniques employed to solve Problem 0.4 for some of the classical
operators T has resulted a development of new tools and methods in harmonic analysis.
We now focus our attention on the strong estimate (4.2). This kind of inequality was first
obtained for T =M by Buckley, [Buc93], who proved the following quantitative estimate

‖M‖Lp(w) .n,p [w]
1
p−1
Ap

, w ∈ Ap, (4.4)

and 1/(p− 1) cannot be replaced with any ε, 0 < ε < 1/(p− 1). Afterwards, Petermichl
[Pet07] proved the celebrated A2 conjecture for T = H. In particular, she showed that the
Hilbert transform satisfies

‖H‖Lp(w) .n,p [w]
max{1, 1

p−1 }

Ap
, w ∈ Ap (4.5)

and is sharp. In each of these cases, the optimality of the exponent is proven by exhibiting
specific examples adapted to the operator under analysis. In the case of Hilbert transform,
the examples are specific for the range 1 < p < 2 and then, the sharpness for large p is
obtained by duality.

Similar weighted estimates are known to be true for other classical operators, such as
commutators [b, T ] of Calderón-Zygmund operators T and BMO functions b, the dyadic
square function Sd, vector valued maximal operatorsMq for 1 6 p,q 6∞, Bochner-Riesz
multipliers Bλ and fractional integrals Iα. In all these cases, the sharpness of the exponent
β (step (ii) above) is always obtained by constructing specific examples for each operator.

One of the main purposes of this chapter is to present a different approach to test
sharpness of weighted estimates of the form (4.2). In particular, we show that the sharpness
is intimately related to the asymptotic behaviour of the unweighted Lp-norm of T as p→ 1
and p→∞. To introduce this result, we need to present the next definition which captures
the endpoint asymptotic behaviour of ‖T‖Lp(Rn).

Definition 4.1. Given a bounded operator T on Lp(Rn) for 1 < p <∞, we define αT to
be the “endpoint order" of T as follows:

αT =: sup{α > 0 : ∀ε > 0, lim sup
p→1

(p− 1)α−ε‖T‖Lp(Rn) =∞}. (4.6)

The analogue of (4.6) for p large is the following. Let γT be defined as

γT =: sup{γ > 0 : ∀ε > 0, lim sup
p→∞

‖T‖Lp(Rn)
pγ−ε

=∞}. (4.7)
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To illustrate this definition, consider for example T = H. Then, it is known that the
size of its kernel (see 1.10), implies that the unweighted Lp norm satisfies

‖H‖Lp(Rn) '
1

p− 1 (4.8)

as p → 1. Indeed, if we consider the indicator function in the interval [0, 1], a simple
calculation shows

H(1[0,1])(x) =
1
π
log |x|

|x− 1| .

Note that H(1[0,1])(x) blows up logarithmically in x near the points 1 and 0 and decays
like |x|−1 outside the interval (0, 1). Thus

‖H‖Lp(Rn) &
∫∞
1

|x|−pdx

and (4.8) follows immediately. Therefore αH = 1. Moreover by duality

‖H‖Lp(Rn) ' p (4.9)

as p → ∞. Then γH = 1. The computation of the orders αT and βT for a general
Calderón-Zygmund operator T follows similarly. See Section 4.3 below for a more complete
discussion on this subject. Once we have presented this definition, we can state the following
result.

Theorem 4.2. Let T be an operator (not necessarily linear). Suppose further that for some
1 < p0 <∞

‖T‖Lp0(w) .n,p0,T [w]βAp0
w ∈ Ap0 . (4.10)

Then
β > max

{
γT ;

αT
p0 − 1

}
.

Indeed, the computation of estimates like (4.8) and (4.9) has already played a role in
analysis. In this sense, we mention Yano’s extrapolation argument [Yan51] (see also [dG81,
p. 61, Theorem 3.5.1]), where this kind of estimate allows one to prove local endpoint
boundedness properties for the operator T in appropriate L log L spaces or expL. Although
Theorem 4.2 and Yano’s extrapolation theorem are quite different, both share the intention
of extract more information, than the initial provided, of the operator T .

This theorem presents a standardized answer to the second step (ii) we have stated
above. In particular, if we apply this result to known weighted inequalities like (4.4) and
(4.5), we derive their sharpness without building any particular example for each operator.
Furthermore, this approach provides some lower bounds on what one might expect in new
situations, where the construction of suitable counterexamples may be more tricky.

4.2 Rubio de Francia algorithm and proof of Theorem 4.2

The key ingredient to prove Theorem 4.2 is an application of the so called Rubio de Francia
algorithm. This is a basic but powerful method that was fruitful since it was first applied
to factorization of weights and extrapolation. A classic reference for an explanation of this
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iteration algorithm is [GCRdF85, Lemma 5.1]. In the proof we introduce two versions of
the algorithm, both can be found in [CUMP11, Proof of Theorem 1.4].

Proof of Theorem 4.2. We first prove the bound β > αT
p0−1 . The first step is to prove the

following inequality, which can be seen as an unweighted Coifman-Fefferman type inequal-
ity that relates the operator T to some maximal operator, namely the Hardy–Littlewood
maximal operator M. We have that

‖T‖Lp(Rn) .n,p0,T ‖M‖
β(p0−p)
Lp(Rn) 1 < p < p0. (4.11)

Lets start by defining, for 1 < p < p0, the operator R as follows:

R(h) :=

∞∑
k=0

1
2k

Mk(h)

‖M‖k
Lp(Rn)

,

where for k > 1,Mk :=M◦· · ·◦M is k iterations of the maximal operator, andM0h := |h|.
The operator R has the following properties:

(A) h 6 R(h);

(B) ‖R(h)‖Lp(Rn) 6 2 ‖h‖Lp(Rn);

(C) R(h) ∈ A1 and [R(h)]A1 6 2 ‖M‖Lp(Rn).

To verify (4.11), consider 1 < p < p0 and apply Holder’s inequality to obtain

‖T(f)‖Lp(Rn) =
( ∫

Rn
|Tf|p (Rf)

−(p0−p)
p
p0 (Rf)

(p0−p)
p
p0 dx

)1/p
6

( ∫
Rn

|Tf|p0 (Rf)−(p0−p) dx
)1/p0 ( ∫

Rn
(Rf)p dx

)p0−p
pp0 .

For clarity in the exposition, we denote w := (Rf)−(p0−p). Then, by the key hypothesis
(4.10) together with properties (A) and (B) of the Rubio de Francia’s algorithm, we have
that

‖T(f)‖Lp(Rn) .n,p0,T [w]βAp0

( ∫
Rn

|f|p0 wdx
)1/p0

‖f‖
p0−p
p0
Lp(Rn)

.n,p0,T [w]βAp0

( ∫
Rn

|f|p dx
)1/p0

‖f‖
1− p

p0
Lp(Rn)

'n,p0,T [w]βAp0
‖f‖Lp(Rn)

'n,p0,T [w1−p ′0 ]
β(p0−1)
Ap ′0

‖f‖Lp(Rn),

since [w]Aq = [w1−q ′ ]q−1
Aq ′

. Now, since p0−p
p0−1 < 1 we can use Jensen’s inequality to

compute the constant of the weight as follows

[w1−p ′0 ]Ap ′0
= [(Rf)

p0−p
p0−1 ]Ap ′0

6 [R(f)]
p0−p
p0−1
Ap ′0

6 [R(f)]
p0−p
p0−1
A1
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Finally, by making use of property (C), we conclude that

‖T(f)‖Lp(Rn) .n,p0,T ‖M‖
β(p0−p)
Lp(Rn) ‖f‖Lp(Rn),

which clearly implies (4.11). Once we have proved the key inequality (4.11), we can relate
the exponent on the weighted estimate to the endpoint order of T . To that end, we will
use the known asymptotic behaviour of the unweighted Lp norm of the maximal function.
It is well known that

‖M‖Lp(Rn) .n
1

p− 1. (4.12)

when p is close to 1. Then, for p close to 1, we obtain

‖T‖Lp(Rn) .n,p0,T (p− 1)−β(p0−p) .n,p0,T (p− 1)−β(p0−1) (4.13)

Therefore, multiplying by (p − 1)αT−ε (any ε > 0), using the definition of αT and taking
upper limits we have,

+∞ = lim sup
p→1

(p− 1)αT−ε‖T‖Lp(Rn) .n,p0,T lim sup
p→1

(p− 1)αT−ε−β(p0−1).

This last inequality implies that β > αT
p0−1 , so we conclude the first part of the statement

of the theorem.
For the proof of the other inequality, β > γT , we follow the same line of ideas, but with

a twist involving the dual space Lp ′(Rn). Fix p, p > p0. We perform the same iteration
technique as before changing p with p ′. We repeat details for the sake of completeness.

R ′(h) =

∞∑
k=0

1
2k

Mk(h)

‖M‖k
Lp
′
(Rn)

.

Then we have

(A’) h 6 R ′(h);

(B’) ‖R ′(h)‖Lp ′(Rn) 6 2 ‖h‖Lp ′(Rn);

(C’) [R ′(h)]A1 6 2 ‖M‖Lp ′(Rn).

Fix f ∈ Lp(Rn). By duality there exists a non-negative function h ∈ Lp ′(Rn), ‖h‖Lp ′(Rn) =
1, such that,

‖Tf‖Lp(Rn) =

∫
Rn

|Tf(x)|h(x)dx

6
∫
Rn

|Tf|(R ′h)
p−p0
p0(p−1) h

p(p0−1)
p0(p−1) dx

6

(∫
Rn

|Tf|p0(R ′h)
p−p0
p−1 dx

)1/p0 (∫
Rn
hp
′
dx

)1/p ′0

=

(∫
Rn

|Tf|p0(R ′h)
p−p0
p−1 dx

)1/p0

.
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Now we use the key hypothesis (4.10) and Hölder’s inequality to obtain

‖Tf‖Lp(Rn) .n,p0,T [(R ′h)
p−p0
p−1 ]βAp0

(∫
Rn

|f|p0(R ′h)
p−p0
p−1 dx

)1/p0

.n,p0,T [(R ′h)
p−p0
p−1 ]βAp0

(∫
Rn

|f|pdx

)1/p(∫
Rn

(R ′h)p
′
dx

) 1
p ′

p−p0
p0(p−1)

.n,p0,T [(R ′h)
p−p0
p−1 ]βAp0

(∫
Rn

|f|pdx

)1/p
by (B’) .

.n,p0,T [R ′h]
β
p−p0
p−1

Ap0

(∫
Rn

|f|pdx

)1/p
by Jensen’s

.n,p0,T ‖M‖
β
p−p0
p−1

Lp
′
(Rn)

(∫
Rn

|f|pdx

)1/p
by (C’).

Hence,
‖T‖Lp(Rn) .n,p0,T ‖M‖

β
p−p0
p−1

Lp
′
(Rn) p > p0. (4.14)

This estimate is dual to (4.11). To finish the proof we recall that, for large p, namely
p > p0, we have the asymptotic estimate, ‖M‖Lp ′(Rn) ' 1

p ′−1 6 p. Therefore, we have
that

‖T‖Lp(Rn) .n,p0,T p
β
p−p0
p−1 .n,p0,T p

β

since p > p0 > 1. As before, dividing by pγT−ε and taking upper limits, we obtain

+∞ = lim sup
p→∞

‖T‖Lp(Rn)
pγT−ε

.n,p0,T lim sup
p→∞ pβ−γT+ε.

This last inequality implies that β > γT , so we conclude the proof of the theorem.

4.3 Application of Theorem 4.2

In this section we first show how to derive the sharpness of several known weighted inequal-
ities from our general result in Theorem 4.2. Then we will provide additional information
that can be deduced from the theorem. In particular, we prove a new weighted estimate
for a certain class of Orlicz maximal operators which we show is sharp as a consequence of
Theorem 4.2. In the cases where it is not known a sharp weighted estimate, we provide a
lower bound for the exponent β of the Ap constant. This is the case for the Bochner-Riesz
multipliers and the maximal operator MB, where B is any Muckenhoupt basis.

4.3.1 Optimality without examples

Next results will follow directly from Theorem 4.2 if we check the appropriate endpoint
values αT and γT that were introduced in Definition 4.1. Although this technique requires
a precise computation of ‖T‖Lp(Rn), it avoids the construction of counterexamples that
involve weights and functions. More precisely, we answer to the second step of the question
presented at the beginning of the chapter without constructing specific examples.
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Operators with large kernel and commutators Consider any Calderón-Zygmund oper-
ator whose kernel K satisfies

|K(x,y)| > c

|x− y|n
. (4.15)

for some c > 0 and if x 6= y (we can consider the Hilbert transform H as a model example
of this class in R and the Riesz transforms for Rn, n > 2). Then, it is true (see [Ste93, p.
42]) that, for p→ 1+,

‖T‖Lp(Rn) '
1

p− 1, (4.16)

which clearly implies that αT = 1. By duality we can see that γT = 1.
For the Calderón-Zygmund operators T that satisfy (4.15), we consider the commutator

[b, T ]f := bT(f) − T(bf),

where b is a BMO function. In order to calculate its corresponding endpoint values, we use
the example from [Pér97, Section 5, p. 755]. There, for the choices b(x) = log(|x|) and
T = H the Hilbert transform, it is shown that

‖[b,H]‖Lp(Rn) &
1

(p− 1)2 ,

which implies that α[b,H] = 2. More generally, the k-th iteration of the commutator which
is defined recursively by

Tkb := [b, Tk−1
b ], k ∈ N,

satisfies αHkb = γHkb
= k. The value for γHkb follows by duality as in the case of Calderón-

Zygmund operators.
We then obtain, as an immediate consequence of Theorem 4.2, that the following known

weighted inequalities are sharp:

‖T‖Lp(w) .n,p,T [w]
max{1, 1

p−1 }

Ap
, w ∈ Ap,

‖[b, T ]‖Lp(w) .n,p,T ‖b‖BMO [w]
2max{1, 1

p−1 }

Ap
, w ∈ Ap,

‖Tkb‖Lp(w) .n,p,T ‖b‖BMO [w]
(k+1)max{1, 1

p−1 }

Ap
, w ∈ Ap.

For proof of the upper bounds of these estimates, see [Hyt12] for the case of Calderón-
Zygmund operators and [CPP12] for the case of commutators.

Maximal operators and square functions We consider first the k-th iteration of the
maximal function; that is, Mk := M(Mk−1), where k ∈ N. In this case we have that
αMk = k. The case k = 1 corresponds to estimate (4.35) and the case k > 1 is obtained
by iteration of Buckley’s result (4.4). The fact that γMk = 0 is trivial. Then the following
weighted inequality is sharp.

‖Mk‖Lp(w) 6 c [w]
k
p−1
Ap

, w ∈ Ap.
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We now consider the vector-valued extension of the Hardy-Littlewood maximal function.
Let 1 < q <∞ and 1 < p <∞, then this operator is defined as:

Mqf(x) :=
( ∞∑
j=1

(Mfj(x))
q
)1/q

,

where f := {fj}
∞
j=1 is a vector-valued function. The fact that αMq

= 1 can be verified
in the same way as in the case q = 1. In particular, the computation of αM follows the
same ideas described for the Hilbert transform in Section 4.1. For γMq

, we can find an
example of a vector-valued function satisfying ‖Mqf‖Lp(Rn) &n p1/q‖fq‖Lp(Rn) which
implies that γMq

= 1/q. This is already known; see [Ste93, p.75] for the classic proof.
Then the following inequality is sharp.

‖Mqf‖Lp(w) .n,p,q [w]max{ 1
q ,

1
p−1 }‖fq‖Lp(w), w ∈ Ap. (4.17)

We finally include here the case of the dyadic square function Sd. We first note that
αSd = 1 by testing against the indicator function of the unit cube (as in the case of the
Hilbert transform). The value of γSd = 1

2 was previously known, see for instance [CUMP12,
p. 434]. As before, we conclude that the following inequality is sharp.

‖Sdf‖Lp(w) .n,p [w]
max{ 12 ,

1
p−1 }

Ap
‖f‖Lp(w) w ∈ Ap. (4.18)

The proof of inequalities (4.18) and (4.17) can be found in [CUMP12].

Fractional integral operators We first consider the maximal fractional operator Mα

introduced in Definition 1.12. Note that

‖Mα‖qLp(Rn)→Lq(Rn) &
1

q− n
n−α

.

This can be seen again by considering the indicator of the unit cube. Now we can use an
off-diagonal version of the extrapolation theorem for Ap,q classes from [Duo11, Theorem
5.1]. Then we obtain, by the same line of ideas as in Theorem 4.2, that the following
inequality is sharp.

‖Mα‖Lp(wp)→Lq(wq) .n,p,α [w]
p ′
q (1−α

n )

Ap,q
, (4.19)

for 0 6 α < n, 1 < p < n/α and q is defined by the equation (1.12).
For the case of the fractional integral Iα we can easily compute the following estimate:

‖Iα‖qLp(Rn)→Lq(Rn) >
1

q− n
n−α

.

Then, arguing as above we conclude that the following weighted inequality is also sharp.

‖Iα‖Lp(wp)→Lq(wq) .n,p,q [w]
(1−α

n )max{1,p
′
q }

Ap,q
. (4.20)

The proof of inequalities (4.19) and (4.20) can be found in [LMPT10].
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4.3.2 New further results

On Orlicz maximal operators. We are interested here in the operator MΦ that we
introduced in Section 2.3.1 (see equation (2.12)). As we have seen these operators plays
an important role in applications. In particular, we will study those associated with the
young functions Φλ(t) := t logλ(e+ t), λ ∈ [0,∞). Note that the case λ = 0 corresponds
to M. The case λ = k ∈ N corresponds to ML(logL)k , which is pointwise comparable to
Mk+1 (see, for example, [Pér95a]).

We have seen that the sharp exponent in weighted estimates for these operators is
1/(p− 1) for λ = 0 and k/(p− 1) for λ = k ∈ N. The following theorem provides a sharp
bound for these intermediate exponents in R+ \ N. This theorem is a mixed Ap − A∞
result involving the Fujii-Wilson A∞’s constant defined as

[w]A∞ := sup
Q

1
w(Q)

∫
Q

M(χQw)dx.

Theorem 4.3. Let λ > 0, 1 < p <∞ and w ∈ Ap. Then

‖MΦλ‖Lp(w) .n,p,λ [w]
1
p

Ap
[σ]

1
p+λ

A∞ (4.21)

where σ = w1−p ′ . As a consequence we have

‖MΦλ‖Lp(w) .n,p,λ [w]
1+λ
p−1
Ap

.

Furthermore, the exponent is sharp.

Mixed estimates like (4.21) were proved for first time in [HP] (See Section 4.5 for more
information on this subject).

Proof. We start with the following variant of the classical Fefferman-Stein inequality which
holds for any weight w. For t > 0 and any nonnegative function f, we have that

w ({x ∈ Rn :MΦλf(x) > t}) .n,λ

∫
Rn
Φλ

(
f(x)

t

)
Mw(x) dx, (4.22)

where M is the usual Hardy–Littlewood maximal operator. The result can be obtained by
using a Calderón–Zygmund decomposition adapted toMΦλ as in Lemma 4.1 from [Pér95b].

Now, if the weight w is in A1, then inequality (4.22) yields the linear dependence on
[w]A1 ,

w ({x ∈ Rn :MΦλf(x) > t}) .n,λ [w]A1

∫
Rn
Φλ

(
f(x)

t

)
w(x) dx.

From this estimate and by using an extrapolation type argument as in [Pér, Section 4.1],
we derive easily that, for any w ∈ Ap

w ({x ∈ Rn :MΦλf(x) > t}) .n,λ [w]Ap

∫
Rn
Φλ

(
f(x)

t

)p
w(x) dx. (4.23)
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Now, we follow the same ideas from [HPR12, Theorem 1.3]. We write the Lp norm as

‖MΦλf‖
p
Lp(w) .p

∫∞
0
tpw{x ∈ Rn :MΦλft(x) > t}

dt

t

where ft := fχf>t. Since w ∈ Ap, then by the precise open property of Ap classes
(see [HPR12, Theorem 1.2]), we have that w ∈ Ap−ε where ε ∼ 1

[σ]A∞ . Moreover, the
constants satisfy that [w]Ap−ε 6 c[w]Ap . We apply (4.23) with p−ε instead of p to obtain
after a change of variable

‖MΦλf‖
p
Lp(w) .n,p,λ [w]Ap

∫
Rn
fp
∫∞
1

Φλ(t)
p−ε

tp
dt

t
w dx

.n,p,λ [w]Ap

∫∞
1

(log(e+ t))pλ
tε

dt

t
‖f‖p

Lp(w)

.n,p,λ [w]Ap

(
1
ε

)λp+1
‖f‖p

Lp(w)

.n,p,λ [w]Ap [σ]
λp+1
A∞ ‖f‖p

Lp(w).

Taking p-roots we obtain the desired estimate (4.21).
Regarding the sharpness, we will prove now that the exponent in the term on the right

hand side of (4.21) cannot be improved. This follows from Theorem 4.2 since it is easy to
verify (again by testing against the indicator of the unit cube) that

‖MΦλ‖Lp(Rn) '
1

(p− 1)1+λ .

From this estimate we conclude that the endpoint order verifies αT = 1+ λ for T =MΦλ .
Then Theorem 4.2 provides the desired conclusion.

Remark 4.4. Given a Young function Φ and a weight w ∈ Ap, we cannot say in general
that MΦ is bounded on Lp(w). We first need to restrict to those functions Φ ∈ Bp,
because only in that case MΦ is a bounded operator on Lp(Rn) (recall the statement
2.13). But even in that case, w ∈ Ap is not a sufficient condition for MΦ to be bounded
on Lp(w). Consider, in particular, the young function Φ(t) = tq, 1 < q < p, then Φ ∈ Bp
and MΦ : Lp(w) → Lp(w) if and only if w ∈ Ap/q $ Ap. Therefore, Theorem 4.3 just
covers the particular logarithmic class of Young functions Φλ.

On Bochner-Riesz multipliers. For λ > 0 and R > 0, the Bochner-Riesz multiplier is
defined as follows

(BλRf)(x) :=

∫
Rn

(
1− (|ξ|/R)2

)λ
+
f̂(ξ)e2πiξx dξ,

where f̂ denotes the Fourier transform of f ∈ S (Rn). For R = 1 we write simply Bλ. It is
a known fact that this operator has a kernel Kλ(x) defined by

Kλ(x) =
Γ(λ+ 1)
πλ

Jn/2+λ(2π|x|)
|x|n/2+λ

, (4.24)
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where Γ is the Gamma function and Jη is the Bessel function of integral order η (see [Gra09,
p. 352]). The following result is a consequence of Theorem 4.2.

Corollary 4.5. Let 1 < p <∞. Suppose further that the following estimate holds

‖B(n−1)/2‖Lp(w) .n,p [w]βAp , (4.25)

for any w ∈ Ap. Then β > max
{
1; 1
p−1

}
.

Proof. We use the known asymptotics for Bessel functions, namely

Jη(r) = cr
−1/2 cos(r− τ) +O(r−3/2)

for some constants c, τ > 0, τ = τη, and r > r0 � 1 (see [Ste93, p.338, Example 1.4.1,
eq. (14)]). Combining this with (4.24), we obtain that

K(n−1)/2(x) '
cos(|x|− τ) +ϕ(|x|)

|x|n
. (4.26)

for some ϕ : R→ R such that |ϕ(r)| . r−1. We see that this kernel does not satisfy the size
condition (4.15). However, (4.26) is sufficient to conclude that αB(n−1)/2 = γB(n−1)/2 = 1.
Testing on the indicator function of the unit cube (we use again [Ste93, p. 42]) we obtain,
after a change of variables and for some r1 > r0, that

‖B(n−1)/2‖p
Lp(Rn) &

∫
r>r1

|cos(r− τ) +ϕ(r)|p

rp
dr.

We choose r2 > r1 large enough such that |ϕ(r)| < 1/4 and consider the set A = {r ∈ R :
r > r2, | cos(r− τ)| > 1/2}. We obtain that

‖B(n−1)/2‖p
Lp(Rn) &

∫
A

1
rp
dr &

∫
r>1

1
rp
dr &

1
p− 1

for p close to 1. The estimate in the middle follows by the monotonicity of the function
t 7→ t−p and taking into account that we can find the exact description of the set A as a
union of intervals. The value for γB(n−1)/2 = 1 follows by duality.

In particular, this result shows that the claimed weighted norm inequality for the maximal
Bochner-Riesz operator from [LS12] cannot hold (see also [LS13]).

On Muckenhoupt basis As a final application of Theorem 4.2, we can derive a lower
bound for the optimal exponent that one could expect in a weighted estimate for a maximal
operator associated to a generic Muckenhoupt basis MB. We note that it is not even
possible to have an example working for a general basis. The only requirement on the
operator MB is that its Lp norm must blow up when p goes to 1 (no matter the ratio of
blow up). Precisely, we have the following theorem.

Theorem 4.6. Let B be a Muckenhoupt basis. Suppose in addition that the associated
maximal operator MB satisfies the following weighted estimate:

‖MB‖Lp0(w) .B,p0 [w]βAp0,B
(4.27)
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for some 1 < p0 <∞. If lim sup
p→1+

‖MB‖Lp(Rn) = +∞, then β > 1
p0−1 .

Proof of Theorem 4.6. The idea is to perform the iteration technique from Theorem 4.2 but
withMB instead of the standard H–L maximal operator. Then we obtain, for 1 < p < p0,
that

‖MB‖Lp(Rn) .B,p0 ‖MB‖
β(p0−p)
Lp(Rn) .B,p0 ‖MB‖

β(p0−1)
Lp(Rn) . (4.28)

The last inequality holds since ‖MB‖Lp(Rn) > 1. We remark here that, since we are
comparing MB to itself, it is irrelevant to know the precise quantitative behaviour of its
Lp-norm for p close to 1. In fact, we cannot use any estimate like (4.12) since we are
dealing with a generic basis. Just knowing that the Lp norm blows up when p goes to 1,
allows us to conclude that β > 1

p0−1 .

As an application, we can show that the result for Calderón weights from [DMRO13a]
is sharp. Precisely, for the basis B0 of open sets in R of the form (0,b), b > 0, the authors
prove that the associated maximal operator N defined as

Nf(t) = sup
b>t

1
b

∫b
0
|f(x)| dx

is bounded on Lp(w) if and only if w ∈ Ap,B0 and, moreover, that

‖N‖Lp(w) .p [w]
1
p−1
Ap,B0

.

By the preceding result, this inequality is sharp with respect to the exponent on the char-
acteristic of the weight.

4.4 Quantitative multiparameter theory
All the results mentioned so far concern the classical or one-parameter theory, where the
operators under study commute with one-parameter dilations of Rn. A natural starting
point for a quantitative multi-parameter weighted theory would be the analogue of Buckley’s
estimate (4.4) for the strong maximal function, namely, a sharp estimate on ‖Ms‖Lp(w)

in terms of the A∗p-constant of the weight. This problem together with the corresponding
weak one are addressed in this section.

Let w ∈ A∗p. Then Lemma 1.22 assures that wx̄j ∈ Ap, 1 6 j 6 n (see Subsection
1.3.2 for the definition ofwx̄j). Thus, using the pointwise inequality (1.14), we can estimate
‖Ms‖Lp(w) by applying the one dimensional sharp weighted inequality of Buckley (4.4) for
every weight wx̄j , 1 6 j 6 n; that is,

‖Mj‖Lp(wx̄j) .p sup
x̄j

[wx̄j ]
1
p−1
Ap

. (4.29)

Then, we obtain:

‖Msf‖Lp(w) .n,p sup
x̄1

[wx̄1 ]
1
p−1
Ap
· · · sup

x̄j

[wx̄n ]
1
p−1
Ap
‖f‖Lp(w)

.n,p [w]
n
p−1
Ap∗‖f‖Lp(w), (4.30)
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where in (4.29) we have used the relation (1.19).
In order to estimate ‖Ms‖Lp(w)→Lp,∞(w), we can follow exactly the same iteration

argument. We will use again the sharp one-dimensional weighted inequality (4.29) together
with its weak-Lp analogue

‖Mj‖Lp(wj)→Lp,∞(wj) . sup
x̄j

[wx̄j ]
1
p

Ap
, (4.31)

which is due to Muckenhoupt [Muc72]. Now for any 1 6 j 6 n we have

‖Msf‖Lp,∞(w) . sup
x̄j

[wx̄j ]
1
p

Ap
‖M1 ◦ · · · ◦Mj−1 ◦Mj+1 ◦ · · · ◦Mnf‖Lp(w)

.n,p sup
x̄j

[wx̄j ]
1
p

Ap

n∏
k=1
k6=j

sup
x̄k

[wx̄k ]
1
p−1
Ap
‖f‖Lp(w).

Then, using again the relation (1.19), we have

‖Msf‖Lp,∞(w) .n,p [w]
1
p+

n−1
p−1

A∗p
‖f‖Lp(w). (4.32)

The question now is whether estimates (4.30) and (4.32) are sharp. Estimate (1.14) has
produced unweighted sharp results, like the end-point estimate (1.8) obtained in [JMZ35].
However, we do not have enough evidence to even conjecture which are the sharp estimates
in the weighted framework.

The general strategy to test sharpness described in Theorem 4.2 gives trivial information
for the case of rectangles. Observe that since the basis R is a Muckenhoupt basis, we just
get that a lower bound for β in estimate (4.2) for T = Ms is 1/(p − 1) (see Theorem
4.6). The main obstacle in the multiparameter case is the failure of the classical covering
arguments (Vitali or Besicovitch) for rectangles with arbitrary eccentricities. Indeed, it
is an essential fact underlaying the sharp quantitative estimate (4.4), that Mw

c , defined
with respect to a general measure, is always bounded independently of the measure. In
this sense, see the elegant proof by Lerner [Ler08] of Buckley’s result. However, this fails
for the strong maximal function and it is just another manifestation of the failure of the
covering arguments. These facts were explained in Section 1.2.

For these reasons, the only cases with complete answers are those concerning product
weights and power weights. As we will see now, estimates (4.30) and (4.32) are not sharp
in these cases.

4.4.1 Power weights

Throughout this subsection, let w(x) = |x|α. It is a classical result (see for example [Kur80,
p.236]) that this power weight w is in A∗p if and only if −1 < α < p − 1, 1 < p < ∞. In
the one parameter case potential weights have been very useful for testing the optimality
of quantitative estimates. For example, Buckley [Buc93] proved that estimate (4.4) was
sharp by constructing a counterexample with power weights. However, in the multilinear
case these weights, in some sense, behave like one dimensional weights.
Proposition 4.7. Let 1 < p < ∞. We have the following estimates for w(x) = |x|α,
−1 < α < p− 1.
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(i) ‖Msf‖Lp(w) .n,p [w]
1
p−1
A∗p
‖f‖Lp(w).

(ii) ‖Msf‖Lp,∞(w) .n,p [w]
1
p

A∗p
‖f‖Lp(w).

Proof. We just give the proof of (ii). The proof of (i) follows the same lines. Observe also
that an argument similar to the one presented in the proof of Theorem 4.3 also proves (i)
from (ii). In this case, we would need the sharp reverse Hölder for rectangles described in
the last section of this chapter.

There are two cases:

case α > 0. We estimate

w({x ∈ Rn :Msf > λ}) =

∫
{x∈Rn:Msf>λ}

|x|αdx 6 n
α
2

∫
{x∈Rn:Msf>λ}

n∑
j=1

|xj|
αdx

.n

n∑
j=1

∫
{x∈Rn:Msf>λ}

|xj|
αdx

.n,p

n∑
j=1

1
λp

[|xj|
α]Ap

∫
Rn

|f|p|xj|
αdx,

where in the last step we have used estimate (4.31). Observe that, by using the relation
(1.19) in Lemma 1.22, [|xj|

α]Ap 6 [w]Ap∗, 1 6 j 6 n. Thus we obtain the required
estimate after taking the p-th roots. Moreover, for this particular weight we also have
[w]A∗p 6 [|xj|

α]Ap uniformly in x̄j ∈ Rn−1, for all 1 6 j 6 n. Thus the weight w has
the same Ap constant in every direction, which is also the same as the A∗p constant of w.
Then Buckley’s example proves the sharpness of this result.

case α < 0. We denote by Sj := {x ∈ Rn : |xj| = max16k6n |xk|}.

w({x ∈ Rn :Msf > λ}) =

∫
{x∈Rn:Msf>λ}

|x|αdx 6
n∑
j=1

∫
{x∈Rn:Ms(f1Sj)>

λ
n }

|x|αdx

.n

n∑
j=1

∫
{x∈Rn:Ms(f1Sj)>

λ
n }

|xj|
αdx

.n,p

n∑
j=1

1
λp

[|xj|
α]Ap

∫
Rn

|f1Sj |
p|xj|

αdx

.n,p
1
λp

[w]Ap∗

∫
Rn

|f|pwdx.

4.4.2 Product weights

We say that w is a product weight if w(x) = w1(x1) · · ·wn(xn). Note that in this case
wx̄j := wj for every 1 6 j 6 n. Then by Lemma 1.22 a product weight is in A∗p if and
only if wj ∈ Ap.
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Theorem 4.8. Let w ∈ A∗p be a product weight, 1 < p < ∞. Then the following
quantitative weighted inequalities hold and are sharp:

(i) ‖Msf‖Lp(w) .n,p [w]
1
p−1
A∗p
‖f‖Lp(w).

(ii) ‖Msf‖Lp,∞(w) .n,p [w]
1
p−1 (1−

1
np )

A∗p
‖f‖Lp(w).

Observe that this theorem assures that the behaviour of ‖Ms‖Lp(w)→Lp,∞(w) is worse
than the case of the Hardy-Littlewood maximal function.

Proof of Theorem 4.8. The proof of (i) follows by noticing that in the product case [w]A∗p =
[w1]Ap · · · [wn]Ap . Then the desired estimate follows directly from (4.30). To see that this
is sharp we use the example of Buckley from [Buc93]. In particular we set

wj(xj) := |xj|
(p−1)(1−δ), 1 6 j 6 n, (4.33)

where 0 < δ < 1 and
fR(x) :=

n∏
j=1

|xj|
(δ−1)1[0,R]n(x) (4.34)

where R > 0. Then it is not hard to see that [w]A∗p ∼ 1
δn(p−1) and MsfR(x) >

1
δn fR(x) for

any x ∈ [0,R]n. Thus an estimate of the type

‖Msf‖Lp(w) .n,p [w]βA∗p
‖f‖Lp(w)

for some β > 0 implies that

1
δn
‖fR‖Lp(w) .n,p [w]βA∗p

‖fR‖Lp(w) ⇒
1
δn

.n,p
1

δn(p−1)β .

Letting δ→ 0+ we see that necessarily β > 1
p−1 .

We now give the proof of the statement in (ii). We will use again the sharp one-
dimensional weighted inequality (4.29) together with its weak-Lp analogue (4.31). Now for
any 1 6 j 6 n we have

w({x ∈ Rn :Msf > λ}) .
1
λp

[wj]Ap

∫
Rn

[M1 ◦ · · · ◦Mj−1 ◦Mj+1 ◦ · · · ◦Mnf]pw

.n,p [wj]Ap

n∏
k=1
k6=j

[wk]
p
p−1
Ap

1
λp

∫
Rn

|f|pw

'n,p
[w]

p
p−1
A∗p

[wj]
1
p−1
Ap

1
λp
‖f‖p

Lp(w).

We have thus proved that

‖Msf‖Lp,∞(w) .n,p [w]
1
p−1
A∗p

max
16j6n

[wj]
− 1
p(p−1)

Ap
‖f‖Lp(w).
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Observe that [w]A∗p 6 (max16j6n[wj]Ap)n so we get

‖Msf‖Lp,∞(w) .n,p [w]
1
p−1−

1
np(p−1)

A∗p
‖f‖Lp(w),

which is the desired estimate.
Now we show that the power [w]

1
p−1 (1−

1
np )

A∗p
cannot be replaced by any smaller power

of [w]A∗p . For this we consider the function fR and the weight w from (4.34) and (4.33),
respectively. Since MsfR > 1

δn fR on [0,R]n we have

w({x ∈ Rn : MsfR(x) > δ
−n}) > w({x ∈ [0,R]n : fR(x) > 1})

= w({x ∈ [0,R]n : x1 · · · xn < 1})
=: w(ER).

Now we estimate for R > 1 and n > 2

w(ER) >
∫R
R
− 1
n−1

x
(p−1)(1−δ)
1 · · ·

∫R
R
− 1
n−1

x
(p−1)(1−δ)
n−1

( ∫ 1
x1···xn−1

0
x
(p−1)(1−δ)
n dxn

)
dxn−1 · · ·dx1

=
1

(p− 1)(1− δ) + 1

n−1∏
j=1

∫R
R
− 1
n−1

dxj

xj

&p (logR)n−1.

An easy calculation also shows that ‖fR‖Lp(w) = (Rδ/δ)
n
p . Now we assume that we have

an estimate of the form

λw(x ∈ Rn : Msf(x) > λ})
1
p .n,p [w]βA∗p

‖f‖Lp(w)

for all λ > 0, f ∈ Lp(w) and some β > 0. Plugging in our choices of fR and w, choosing
λ := δ−n and raising to the power p we get that we should have

(logR)n−1

Rnδ
.n,p

1
δβnp(p−1) δ

npδ−n

for all δ ∈ (0, 1) and R > 1. The value logR := (n− 1)(nδ)−1 gives R > 1 for δ small and
maximizes the left hand side and gives

1
δn−1 .n,p

1
δβnp(p−1)+n−np .

Letting δ→ 0+ we get βnp(p− 1) + n− np > n− 1⇒ β > 1
p−1(1−

1
np).

4.5 Notes and references

References

Results concerning Theorem 4.2 and its application are contained in [LPRa]. This result
extends the ideas of [FP97] used to prove sharp weighted estimates for the Hilbert transform
with weights in A1 and the range p > 2. Furthermore, we remark that the first part of the
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proof, namely the proof of inequality (4.11) can be obtained as an immediate consequence of
the extrapolation result from Duoandikoetxea [Duo11]. Indeed, this inequality is equivalent
to the first inequality of (3.3) in Theorem 3.1 of his mentioned paper. We describe in detail
the proof for the sake of completeness. In turn, estimate (4.14) coincides with the second
inequality of (3.3) in Theorem 3.1. The proof of this estimate is slightly different to the
one presented in [Duo11] avoiding the factorization lemma.

The quantitative multiparameter results presented in Section 4.4 are a joint work with
I. Parissis and it is still in progress.

Improving the sharp bounds

In Theorem 4.2 we studied sharpness with respect to the power of the Ap constant of
the weight. Although the results we have presented are sharp, there are several further
improvements that can be made in the following sense:

• Beyond power functions. The techniques used in the proof of Theorem 4.2 actually
allow us to deduce sharper results for some particular cases. For the H–L maximal
function M, by considering the indicator function of the unit cube, it is easy to
conclude that

‖M‖Lp(Rn) ' (p− 1)−1, (4.35)

for p close to 1. This precise endpoint behavior allows us to prove that we cannot
replace in the weighted inequality (4.4) the function t 7→ t(p−1)−1 by any other
smaller growth function ϕ. To be more precise, the following inequality fails

‖M‖Lp(w) . ϕ([w]Ap)

for any non-decreasing function ϕ : [0,∞)→ [0,∞) such that

lim
t→∞ ϕ(t)t

1
p−1

= 0.

The proof follows the same ideas of Theorem 4.2. A similar argument can be used
to derive an analogous result for a generic operator T if the asymptotic behaviour of
‖T‖Lp(Rn) as p→ 1 and p→∞ is known.

• Mixed Ap-A∞ bounds. This kind of estimates were first introduced in [HP]. More
precisely, it was shown that the maximal function satisfies

‖M‖Lp(w) 6 c [w]
1
p

Ap
[σ]

1
p

A∞ w ∈ Ap. (4.36)

where σ = w1−p ′ and where

[σ]A∞ := sup
Q

1
σ(Q)

∫
Q

M(χQσ)dx

is the Fujii-Wilson A∞’s constant which is smaller than the usual one (1.17). Estimate
(4.36) was used in [HP] to improve the A2 theorem from [Hyt12]. The idea behind
the mixed estimates is that one only needs the weight to be in Ap for part of the
estimates, while for the other part something weaker, like w ∈ Ar for r > p, is
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enough. Here we just want to note that we can formulate Theorem 4.2 in terms of
mixed constants. In particular, if we replace (4.10) by

‖T‖Lp0(w) 6n,p,T [w]β1
Ap0

[σ]β2
A∞ .

Then, trivially, β1+ β2
p0−1 > max

{
γT ; αT

p0−1

}
. It would be interesting to give a lower

bound just for β1, in order to quantify the role of the Ap in the estimate above.

Quantitative Reverse Hölder inequality for rectangles

The sharp reverse Hölder property for the Ap classes of weights has a very important role in
the study of quantitative estimates. We show next a result for the strong Ap weights. As
far as the author knows this proof has not appeared in the literature before. It follows the
same lines as in the case of cubes, but we need to deal with a different covering argument.

Lemma 4.9. Let w ∈ A∗p, 1 < p <∞ and let r(w) = 1+ 1
22p+1[w]A∗p

. Then

(
1
|R|

∫
R

wr(w)

)1/r(w)

6
2
|R|

∫
R

w.

Proof. Let wR = 1
|R|

∫
Rw. Then for arbitrary positive δ we have

1
|R|

∫
R

w(x)δw(x)dx =
δ

|R|

∫∞
0
λδw({x ∈ R : w(x) > λ})

dλ

λ

=
δ

|R|

∫wR
0

+
δ

|R|

∫∞
wR

· · ·

= I+ II.

Observe that I 6 (wR)
δ+1.

For II we need to make some further calculations. First, for any rectangle R we define

ER = {x ∈ R : w(x) 6
1

2p−1[w]A∗p
wR}.

Using Hölder’s inequality with p and its conjugate p ′, we have that for every rectangle R
and every f > 0 (

1
|R|

∫
R

fdx

)p
w(R) 6 [w]A∗p

∫
R

fpwdx.

In particular, for any measurable set E ⊂ R we can rewrite the last inequality for f ≡ 1E(
|E|

|R|

)p
6 [w]A∗p

w(E)

w(R)
(4.37)

Hence, as ER is a mesurable subset of R, we have(
|ER|

|R|

)p
6 [w]A∗p

w(ER)

w(R)
6 [w]A∗p

wR
w(R)

|ER|
1

2p−1[w]A∗p
=

1
2p−1

|ER|

|R|
.
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Then,
|ER| 6

1
2 |R|. (4.38)

Second, we make the following claim: for every λ > wR

w({x ∈ Rn : w(x) > λ}) 6 2λ|{x ∈ R : w(x) >
λ

2p−1[w]A∗p
wR}| (4.39)

To prove this claim we consider a multidimensional analogue of Riesz’s lemma (see [KLS05]).
As w ∈ L1loc(Rn) and we assume wR < λ, then this lemma assures the existence of a
countable set of pairwise disjoint rectangles Rj ⊂ R satisfying

1
|Rj|

∫
Rj

wdx = λ

for each j, and w(x) 6 λ for almost all points x ∈ R\
(⋃

j>1 Rj

)
. This decomposition

together with (4.38) yields

w({x ∈ R : w(x) > λ}) 6 w(
⋃
j>1

Rj) 6
∑
j

w(Rj) = λ
∑
j

|Rj|

6 2λ
∑
j

|{x ∈ Rj : w(x) >
1

2p−1[w]A∗p
wRj}|

6 2λ|{x ∈ R : w(x) >
1

2p−1[w]A∗p
λ}|,

since wRj = λ. This proves claim (4.39). Now we can estimate II

II =
δ

|R|

∫∞
wR

λδw({x ∈ R : w(x) > λ})
dλ

λ

6
2δ
|R|

∫∞
wR

λδ+1|{x ∈ R : w(x) >
1

2p−1[w]A∗p
λ}|
dλ

λ

= (2p−1[w]A∗p)
δ+1 2δ

|R|

∫∞
wR

2p−1[w]A∗p

λδ+1|{x ∈ R : w(x) > λ}|
dλ

λ

6 (2p−1[w]A∗p)
δ+12 δ

1+ δ
1
|R|

∫
R

w1+δdx.

Setting δ = 1
22p+1[w]A∗p

, we obtain using t1/t 6 2, t > 1

1
|R|

∫
R

wδ+1dx 6 2(wR)δ+1.

which concludes the proof.

This result and its extension to p =∞ is contained in the manuscript [LPRb].
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