
Circuit Implementation of Piecewise-Affine
Functions Based on Lattice Representation

M. C. Martı́nez-Rodrı́guez1,2, I. Baturone1,2, P. Brox2

1 Department of Electronics and Electromagnetism, University of Seville
2 Microelectronics Institute of Seville (IMSE-CNM), Spanish National Research Council (CSIC)

Seville, Spain
Email: macarena@imse-cnm.csic.es

Abstract—This paper introduces a digital architecture to im-
plement piecewise-affine (PWA) functions based on represen-
tation methods from the lattice theory. Given an explicit and
continuous PWA function, the parameters required to implement
the lattice approach can be obtained by an off-line preprocessing
that can be automated. Other advantages of the proposal are
that it implements a continuous PWA function with potentially
no errors and the minimum number of parameters to store. This
has been proven experimentally by implementing the proposal
in a Xilinx FPGA and comparing its performance with other
implementations, all of them addressing a typical non linear
control problem.

I. INTRODUCTION

A piecewise-affine (PWA) function, fPWA : D → R,
provides a linear (affine) output for each region in which the
input domain, D, is partitioned (D ⊂ Rn):

fPWA(x) = [xT 1]T φi, ∀x ∈ Pi (1)

where φi ∈ Rn, and Pi are P non overlapping regions, called
polytopes, that induce a polyhedral partition of the domain.

Each polytope is a closed set of points delimited by E
edges:

P = { x ∈ Rn : hT
j x + kj ≤ 0}, j = 1 . . . E (2)

where hj ∈ Rn, kj ∈ R, and the E edges are (n-1)-
dimensional hyper-planes in the form hT

j x + kj = 0.
Since PWA functions can approximate any non linear func-

tion, they have been employed in many application domains.
In the field of circuit theory, PWA models have been very
useful for analyzing non linear circuits (in particular for its
low computational cost) [1]. In the field of circuit design, many
approaches have been reported to implement PWA functions so
as to evaluate non linear functions with small size, low power
consumption, and high speed. While the first proposals were
analog solutions [2], several digital architectures have been
proposed recently [3]-[9]. In particular, digital implementation
of PWA functions plays a relevant role in the embedded
control area. Since PWA functions can be used to approxi-
mate any non linear function, there is an active research in
synthesizing PWA controllers using Lyapunov-based methods
and, specially, model predictive control (MPC). In MPC, the
control action is obtained by solving a finite horizon open-loop
optimal control problem at each sample time [10].

Analog implementations of PWA functions follow mainly
function expansion models, such as canonical or simplicial
forms. Digital ones follow mainly generic and simplicial
forms. To the best of our knowledge, this is the first digital
implementation following lattice PWA forms. The proposed
architecture has been implemented in a Xilinx Spartan 3 FPGA
and proven to solve a typical non linear control problem.

The paper is organized as follows. Section II briefly summa-
rizes the digital implementations of PWA functions reported
till now. Section III reviews how lattice PWA forms can
approximate any continuous function and how they can be
derived. The digital architecture proposed to implement them
is exposed in Section IV. The case study of designing a
PWA controller with the proposed approach is described and
compared with other reported approaches in Section V. Finally,
some conclusions are given in Section VI.

II. DIGITAL IMPLEMENTATION OF PWA FUNCTIONS

A. Generic PWA implementation

To determine the location of the input, a solution is the
comparison of the input variable (x) with all the edges of each
polytope. However, this implies a high computational cost. As
an alternative to avoid this combinatory search, the authors in
[11] propose to build off-line a binary search tree, where each
non-leaf node represents an edge and each leaf represents the
index of a polytope. Exploring the tree from the root to a leaf
makes it possible to locate the polytope that contains the input
x. Once the polytope is located, the affine function associated
with the polytope is evaluated.

A digital architecture to implement this approach is des-
cribed in [3]. This architecture consists of a serial input
acquisition block, a finite state machine block that implements
the binary search tree, a memory that stores the coefficients
of the edges and the functions, and a multiplier-accumulator
block that calculates serially the expression for the edge and
the output.

The number of coefficients to store is (n + 1) × (E + P).
The time invested to calculate the value of the function is
[n+(n+2)×treeDepth]TCK , being TCK the clock period and
treeDepth the depth of the search tree. This implementation
may be not adequate for certain PWA functions that require a
highly deep tree and many parameters to store.

B. Simplicial PWA implementation

A piecewise-affine simplicial (PWAS) architecture was pro-
posed in [12] as a good trade-off between approximation
capability and circuit complexity. The domain D is divided
into simplexes as follows; every component of D is divided
into m subintervals, and each resulting hyper-rectangle is
partitioned into n! non overlapping simplexes. The coordinates
of the corner of the hyper-rectangle closest to the origin that
contains a given point x can be found by extracting the integer
part of x. The exact simplex is coded by the decimal part of
x.

Several digital architectures have been reported in the lite-
rature implementing this approach [4]-[8]. They consist of a
memory that stores the values of the function at the simplexes
vertices, a block to find the simplex within the hyper-rectangle
that the point belongs to, and a multiplier-accumulator or a
weighted sum block that calculates the affine expression for
the output.

The time to calculate the value depends on the architecture
and goes from one TCK to [log2(m+n)]TCK [7]. The number
of coefficients to store is (m + 1)n. The main drawback of
this implementation is the curse of dimensionality, that is, the
complexity grows exponentially with the number n of inputs.

C. Hierarchical PWA implementation

The hierarchical PWA implementation is proposed in [9] to
reduce the possible complexity of the above approaches. A
complex PWA controller can be obtained by interconnecting
simple PWA modules of few inputs or small number of
partitions. The modules are directly connected among them
or with addition, subtraction, minimum or maximum as the
only operators.

The main problem of the hierarchical PWA implementation
is that there is not a standard configuration of modules. Each
application needs to be studied separately.

III. LATTICE PWA APPROACH

The lattice representation selects properly the affine function
of each piece without taking into account the boundaries of the
pieces explicitly. According to [14], any continuous and ex-
plicit PWA function, fPWA(x), can be represented by a lattice
PWA function L(x|φ, ψ), such that fPWA(x) = L(x|φ, ψ) in
the form:

L(x|φ, ψ) = min
1≤i≤P

{
max1≤j≤P

ψij=1
{l(x|φj)}

}
,∀x ∈ Rn (3)

where φ = [φ1, ..., φn]T is a P × (n + 1) parameter matrix
whose rows are the coefficients of the affine functions, lj(x),
of the P polytopes, and ψ = [ψij] is a P×P zero-one structure
matrix defined as follows.

Assume that Pi,Pj are two n-dimensional polytopes where
l(x|φi) and l(x|φj) are the values of the local affine functions
corresponding to those polytopes, then:

ψij =
{

1 if l(vk|φi) ≥ l(vk|φj), 1 ≤ k ≤ ki

0 otherwise (4)

where vk are the vertices of Pi with 1 ≤ k ≤ ki, being
ki ∈ Z+, the number of vertices of Pi.

Given a continuous and explicit PWA function, the authors
in [14] provide an algorithm to find the simplest lattice
representation with the form in (3). The starting step is to
calculate the explicit PWA function, recording the local affine
functions, the constrained inequalities, and the vertices of each
region, so as to obtain the parameter, φ, and structure, ψ,
matrixes. The subsequent steps are to simplify the matrixes
as follows.

A. Row simplification
Let ψi, ψj be rows of ψ. If the inequation ψi − ψj ≤ 0

holds for any i, j ∈ {1, . . . , P}, the row ψj is redundant in ψ.
Hence, there is a simplified structure matrix ψ̃ ∈ R(P−1)×P ,
such that L(x|φ, ψ) = L(x|φ, ψ̃) where and ψ ∈ RP×P =[ψ1,
. . ., ψP]T and ψ̃ = [ψ1, . . . , ψj−1, ψj+1, . . . , ψP]T .

B. Column simplification
Given the structure matrix ψ = [ψij]P×P , the dual structure

matrix, ψ̂ = [ψ̂ij]P×P , is defined as follows:

ψ̂ij =
{

1 if l(vk|φi) ≤ l(vk|φj), 1 ≤ k ≤ ki

0 otherwise (5)

a) Given any i, j, k ∈ {1, . . . , P}, if k, j,∈ Ii, and ψ̂i,j = 1
then ψij = 0, where Ii = {k|l(x|φk) ≤ l(x|φi),∀x ∈ Pi}

b) If ψij = 0,∀1 ≤ j ≤ P , then there is a sim-
plified structure matrix ψ̂ ∈ R(P−1)×P and a simplified
parameter matrix φ̂ ∈ R(P−1)×(n+1) such that L(x|φ, ψ) =
L(x|φ, ψ̃) where φ ∈ RP×(n+1)=[φ1, . . . , φP]T and φ̃ ∈
R(P−1)×(n+1)=[φ1, . . . , φj−1, φj+1, . . . , φP]T .

After such simplifications, the lattice expression is the
following:

L(x|φ̃, ψ̃) = min
1≤i≤Q

{
max1≤j≤S

ψ̃ij=1

{
l(x|φ̃j)

}}
,∀x ∈ Rn (6)

It calculates the minimum of Q maximums (being Q the
number of rows in ψ̃ ∈ R(Q×S)), where each maximum is
applied to as many affine functions as ones are in the corres-
ponding row of ψ̃. The main advantage of this implementation
is that, even the off-line pre-processing could be large, it is
neither necessary to implement the edges nor to locate the
input into a polytope. As an example, the one-dimensional
PWA function illustrated in Fig. 1 has the following lattice
representation:

L(x|φ̃, ψ̃) = min{max{l(x|φ̃I), l(x|φ̃II)}, l(x|φ̃III)} (7)

IV. LATTICE-PWA IMPLEMENTATION

The architecture proposed consists of the following main
blocks, shown in Fig. 2:

• Compute: This block contains a multiplier-accumulator
(in case of a serial implementation) or multipliers and an
adder (in case of a parallel one) that calculates the affine
expressions for a given input. It also contains a memory

I II III

fPWA

x

(a)

101
011
011

100
011~

(b)

Fig. 1. (a) One-dimensional PWA function. (b) Its corresponding structure
matrix (ψ) and simplified structure matrix (ψ̃).

that stores the S × (n + 1) coefficients associated with
the simplified parameter matrix.

• Control: This block determines the inputs to the block
MAX MIN, decides the operator to be implemented
(maximum or minimum), and addresses the memory
of the compute block to calculate the different affine
functions. Finally, it indicates (with an enable signal)
when the output of the block MAX MIN is the valid
output of the system.

• MAX MIN: This block calculates the maximum or the
minimum of two affine expressions. Its inputs, controlled
by the Control block, can be the output of the Compute
block, an initialization value (0 or 1), or the output of the
MAX MIN block in a previous state.

The inputs can be loaded in parallel or in serial accordingly
to the structure of the Compute block. The designer can select
one implementation or another depending mainly on time and
area restrictions.

In order to simplify the microelectronic realization, the
range of the input and output values is normalized in the
interval [0,1], and consequently the coefficients are evaluated
for this range. Since the number of MIN operations to carry out
is the number of rows (Q) of the simplified structure matrix,
ψ̃ and the number of MAX operations is given by the number
of 1’s (U) in ψ̃, the circuit latency is is proportional to Q+U
if the n inputs are processed in parallel or to (Q+U)×(n+1)
if they are processed serially.

V. APPLICATION EXAMPLE

The described circuit architecture has been implemented in
a Xilinx Spartan 3 FPGA (xc3s200-5ftp256). The developed
HDL description is valid for any system with two inputs

Compute

Control

MAX_MIN

EN

Fig. 2. Proposed architecture.

2

3

1

9
5 11

8

410

(a)

011111
100000~

100
100
2127.13185.13215.0
4308.05364.15528.0
07499.18166.0
8271.04014.14077.0

~

(b)

Fig. 3. (a) The domain D divided into polytopes for the application example.
(b) Its corresponding simplified parameter and structure matrixes.

TABLE I
APPROXIMATION ERROR OF THE CIRCUIT

Bit Number 8 10 12 14 16
RMSE 0.059 0.013 0.003 5e-4 2e-4

and one output. The methodology used to design and imple-
ment the proposed architecture employs CAD tools from two
environments: Matlab&Simulink and ISE 12.3 by Xilinx. A
design tool for DSPs called Xilinx System Generator, which
is integrated into Simulink, is used to develop the circuit
implementation. This tool allows the designer to increase the
programmability of the circuit since it makes it possible to
fit the realization with the parameters stored in the Matlab
workspace. For instance, this Matlab configuration file fixes
the memory coefficients used in the Compute block and the
number of bits to code the inputs and the output.

The functionalities of the proposed architecture have been
analyzed with the application example of regulating to the
origin the double integrator system described in [10]. The
design of the optimal PWA control function to implement
is performed by the Hybrid Toolbox for Matlab available in
[15]. The resulting PWA function is defined over the domain
D=-8.8×-4.4 and has odd symmetry with regards the vertical
axis. The implementation considers the advantage given by the
symmetry so that the regions that take part in the lattice PWA
implementation are 1, 2, 3, 5, 9, and 11, as shown in Fig.
3. The regions indexed as 2 and 3 are the maximum and the
minimum of output values, so they are implemented implicitly.
Applying the algorithm described in Section III (with the
above considerations), the lattice representation obtained to
implement is the following:

L(x|φ̃, ψ̃) = max{l(x|φ1), l(x|φ5), l(x|φ9), l(x|φ11)} (8)

The lattice approach (as well as the generic PWA approach)
can implement a continuous PWA function with ideally no
error so that the RMSE tends to zero as the number of bits
increases. This is shown in Table I. The root mean square error
(RMSE) has been calculated by comparing the desired output
given by the Hybrid Toolbox (û) with the output provided
by the lattice PWA circuit (ũ) over 400 points distributed

TABLE II
COMPARISON OF IMPLEMENTATIONS

Generic PWA [3] PWAS (serial) [7] PWAS (parallel) [7] Hierarchical PWA [9] Lattice PWA
Slices 12% 11% 16% 7% 7%

Clock Period 9.35 ns 14 ns 48.7 ns 8.16 ns 17.61 ns
Multipliers 1 1 3 2 2
Throughput 22 cycles (206.58 ns) 14 cycles (196 ns) 1 cycle (48.7 ns) 1 cycle (8.16 ns) 5 cycles (88.06 ns)

Latency 22 cycles (206.58 ns) 19 cycles (266 ns) 1 cycle (48.7 ns) 11 cycles (89.76 ns) 11 cycles (193.73 ns)
Parameters to store 21 256 768 15 (exploiting symmetry) 15 (exploiting symmetry)

(a)

-8 -6 -4 -2 0 2 4 6 8
-4

-3

-2

-1

0

1

2

3

4

1

2

(b)

Fig. 4. (a) Control surface given by the lattice PWA implementation. (b)
Evolution of the plant state.

homogeneously over the application domain, as follows:

RMSE =

√√√√ 1
400

400∑

1

(û(xi) − ũ(xi))2 (9)

Considering 12 bits, the control surface provided by the
circuit is shown in Fig. 4a. The implementation requires 2
multipliers and employs the 7% of logic slices. The estimated
maximum working frequency is 56.78MHz. The circuit latency
is 11 cycles and it provides a valid output every 5 cycles
(circuit throughput).

Xilinx System Generator allows that the controller imple-
mented in the FPGA can interact with a plant model described
in Matlab. This verification is known as hardware-in-the-loop
testing. The results obtained with such testing after closed-
loop simulations (with the circuit implemented with 12bits)
illustrate the evolution of the plant state towards the origin, as
desired (Fig. 4b).

Table II allows comparing the features of the proposed
lattice implementation with other existing implementations
described in Section II (all of them with 12 bits). The proposal
based on lattice representation offers a good trade-off between
area occupation, throughput, and approximation error.

VI. CONCLUSIONS

The proposed architecture to implement continuous PWA
functions based on lattice representation offers small size,
high speed, and potentially no error. Its required parameters
can be obtained by an off-line preprocessing. The design and
FPGA implementation of an application example in the control
domain has been automated with Matlab and ISE tools.

ACKNOWLEDGMENT

This work has been partially supported by European
Community under the MOBY-DIC Project FP7-IST-248858
(www.mobydic-project.eu), by Ministerio de Ciencia e In-
novación under the Project TEC2008-04920 and DPI2008-
03847, and by Junta de Andalucı́a under the Project P08-TIC-
03674 (with support from the PO FEDER-FSE).

REFERENCES

[1] C. Kahlert and L. O. Chua, A generalized canonical piecewise-linear
representation, IEEE Trans. on Circuits and Systems, vol. 37, no. 3, pp.
373-383, 1990.

[2] J. Ramı́rez-Angulo, E. Sánchez-Sinencio, A. Rodrı́guez-Vázquez, A
piecewise linear function approximation using current-mode circuits,
IEEE Int. Conf. on Circ. and Systems, pp. 2021-2024, San Diego CA,
May 1992.

[3] A. Oliveri, T. Poggi, M. Storace, Circuit implementation of piecewise-
affine functions based on a binary search tree, European Conference on
Circuit Theory and Design, 2009. ECCTD 2009, pp.145-148, Aug. 2009.

[4] R. Rovatti, C. Fantuzzi, S. Simani, High-speed DSP-based implemen-
tation of piecewise-affine and piecewise-quadratic fuzzy systems, Signal
Processing, vol. 80, no. 6, pp. 951-963, June 2000.

[5] J. P. Echevarria, M. Martı́nez, J. Echanobe, I. del Campo, J. Tarela, Digital
hardware implementation of high dimensional fuzzy systems, Applications
of Fuzzy Sets Theory, Springer, pp. 245252, 2007.

[6] R. Rovatti, M. Borgatti, R. Guerrieri, A geometric approach to maximum-
speed n-dimensional continuous linear interpolation in rectangular grids,
IEEE Trans. on Computers, vol. 47, no. 8, pp. 894-899, Aug. 1998.

[7] M. Storace, T. Poggi, Digital architectures realizing piecewise-linear
multi-variate functions: two FPGA implementations, Int. J. Circ. Th.
Appl., vol. 39, no. 1, pp. 1-15, 2009.

[8] T. Poggi, F. Comaschi, M. Storace, Digital circuit realization of piecewise
affine functions with non-uniform resolution: theory and FPGA implemen-
tation, IEEE Trans. on Circuits and Systems II, vol. 52, no. 2, pp. 131135,
2010.

[9] I. Baturone, M. C. Martı́nez-Rodrı́guez, P. Brox, A. Gersnoviez,
S. Sánchez-Solano, Digital implementation of hierarchical Piecewise-
Affine Controllers, 20th IEEE Int. Symp. on Industrial Electronics (ISIE),
pp. 1497-1502, June 2011.

[10] A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit
linear quadratic regulator for constrained systems, Automatica, vol. 38,
no. 1, pp. 3-20, January 2002.

[11] P. Tondel, T. A. Johansen, A. Bemporad, Evaluation of piecewise affine
control via binary search tree, Automatica, vol. 39, no. 5, pp. 945-950,
May 2003.

[12] P. Julian, A. Desages, O. Agamennoni, High-level canonical piecewise
linear representation using a simplicial partition, IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol.46,
no.4, pp. 463-480, Apr. 1999.

[13] J. M. Tarela, M. V. Martinez, Region configurations for realizability of
lattice Piecewise-Linear models, Mathematical and Computer Modelling,
vol. 30, no. 11-12, pp. 75-83, Dec. 1999.

[14] C. Wen, X. Ma, B. E. Ydstie, Analytical expression of explicit MPC
solution via lattice piecewise-affine function, Automatica, vol. 45, no. 4,
pp. 910-917, Apr. 2009.

[15] Hybrid Toolbox:http://www.ing.unitn.it/ bemporad/hybrid/toolbox, 2004.

