
A Fuzzy Motion Adaptive Algorithm for  
Interlaced-to-Progressive Conversion 

 
 

P. Brox I. Baturone S. Sánchez-Solano 
Instituto de Microelectrónica de Sevilla - CNM – CSIC 

Avda. Reina Mercedes S/N. Edificio CICA 
41012 Sevilla (SPAIN) 

e-mail: brox@imse.cnm.es 
 
 
 

Abstract 

Interlaced-to-progressive algorithms are 
currently required by video format 
conversion systems in order to display a 
progressive scanning used in modern 
visualization equipments. De-
interlacing algorithms use interpolation 
techniques to calculate missing pixels 
in transmitted fields. A motion adaptive 
algorithm which employs fuzzy logic to 
adapt the interpolation strategy to the 
presence of motion in the images is 
proposed in this paper. The 
performance of this new approach is 
evaluated by extensive simulation of 
different video sequences.    

Keywords: Motion adaptive, de-interlacing, 
fuzzy inference systems. 

1     Introduction 

Motion detection is crucial to many fundamental 
tasks in image processing (such as de-interlacing 
[1] or picture rate-up conversion [2]) which 
resort to the interpolation of image sequence 
data to increase the vertical resolution of the 
image (de-interlacing) or the number of pictures 
which compose the video sequence (rate-up 
conversion). Motion adaptive interpolation 
techniques provide efficient solutions for this 
kind of problems because they allow to  apply 
different interpolation algorithms in the static 
and dynamic parts of the images. Obviously, 
their performance relies strongly upon the 
quality of motion detection schemes. 

Motion detectors basically evaluate the 
difference between pixels in consecutive 
pictures to make a decision. However, due to 
noise and vertical details, this value may not be 
a good measurement. To increase the robustness 
of motion detectors, several proposals have been 
described in the literature. Some examples are 
the use of a low-pass filter to reduce fluctuations 
of the values near edges, or the linear 
combination of several detector outputs [2]. 

Fuzzy logic has also been applied to detect 
motion in format conversion systems which take 
advantage of its interpolation capability to 
obtain new data in areas where the decision is 
not trivial. Techniques described in [3] and [4] 
propose fuzzy motion adaptive algorithms for 
de-interlacing.  

Interlaced format was introduced to halve the 
required bandwidth in current TV systems 
(NTSC, PAL). It consists in transmitting fields 
with the half of the lines instead of the whole 
frames. At the receiver side, a de-interlacing (or 
interlaced-to-progressive conversion) algorithm 
reconstructs the missing lines applying 
interpolation techniques. Figure 1 illustrates this 
process. The advent of HDTV systems, high 

Figure 1: De-interlacing task 



quality monitors, displays and projectors has 
increased the need for de-interlacing algorithms 
in the last few years.  

Linear de-interlacing techniques, which always 
perform the same kind of interpolation between 
pixels, have been widely applied. Among them, 
temporal algorithms (such as field insertion) 
exploit the correlation in the time domain 
achieving good results in static areas but 
introducing very annoying effects in moving 
areas of the image. Spatial interpolation 
algorithms (such as line doubling or line 
average) present as main advantage their low 
implementation cost, since memory is not 
required to store previous fields. However, they 
introduce blurring and stairs-case effect in 
vertical details and edges. Theoretically, a linear 
combination of both techniques should provide 
the best results. To provide it, motion adaptive 
interpolation techniques were introduced. 

A novel motion adaptive interpolation algorithm 
is proposed in this paper. It uses a fuzzy 
inference system to decide the most convenient 
interpolation according to the presence of 
motion. The paper is organized as follows. 
Section 2 includes the description of the 
algorithm and its application to de-interlace 
video sequences. The performance of the new 
algorithm, compared with others of similar 
complexity in terms of memory requirements, is 
evaluated in Section 3. Finally some conclusions 
are given in Section 4.  

2     Fuzzy Motion Adaptive Algorithm 

The idea of motion adaptive algorithms for de-
interlacing was originally described in [5]. It 
basically consists in using two different 

interpolators, one for static areas and another 
one for moving areas. The main novelty of our 
proposal is to use three instead of two kinds of 
interpolators depending on the level of motion in 
the picture. This is carried out by using a fuzzy 
logic-based inference system to apply the 
following heuristic knowledge in order to 
evaluate the missing pixels in a field: 

1) If motion is small then the best option is 
to use information from previous fields 
performing a temporal filtering (IT) as 
interpolation method. 

2) If motion is large then the best option is to 
use information from the current field 
performing a spatial filtering (IS) as 
interpolation method. 

3) In other cases, the motion is medium and 
a linear combination of the spatial and 
temporal filtering will be the best option. 

These rules, summarized in Table 1, allow 
improving the results of conventional motion 
detectors providing smooth transactions between 
the three interpolators. To achieve it, the fuzzy 
sets illustrated in Figure 2 are used to represent 
the concepts “SMALL”, “MEDIUM”, and 
“LARGE”, instead of threshold values.  

Table 1:  Fuzzy rule set of the proposed 
algorithm 

if    motion (x,y,t)     then                   I(x,y,t) 

 SMALL c1 = IT(x,y,t)

 LARGE c2 = IS(x,y,t)

 MEDIUM c3 = γ IT(x,y,t) + λ IS(x,y,t)
 

The input of the system is the bi-dimensional 
convolution of the difference of luminances, Hij, 
given by the following expression: 

Figure 2: Membership functions for the 
fuzzy motion adaptive system 
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where x and y are the spatial coordinates of the 
processed pixel in a frame, and t determines the 
order of the field in the sequence.  

Bi-dimensional convolution is very suitable to 
measure motion since it considers the spatial and 
temporal neighborhood of the current pixel. 
Besides, it provides high flexibility because 
convolution weights, Cij, allow giving more 
priority to nearest pixels in the neighborhood. 
Expression (1) shows one of the bi-dimensional 
convolution windows which have been used. 
Considering this expression, pixels (in dark 
grey) shown in Figure 3 are taking part in the bi-
dimensional convolution. A study using 
convolution windows with different sizes is 
presented in Section 3.  

The luminance component of the interpolated 
pixel is calculated applying the Fuzzy Mean 
defuzzication method as follows: 

 

 

 

where αi are the activation degrees of each rule.  

Substituting the consequents, ci (see Table 1), 
and applying that α1+α2+α3 is always equal to 1, 
the above expression can be given as: 

 
Figure 4 shows the block diagram of the fuzzy 
motion adaptive algorithm. According to (3), the 
algorithm applies a temporal filtering if the bi-
dimensional convolution of the difference of 
luminances is really small (α1 is equal to 1 and 
the rest of αi are 0). It performs a spatial 
filtering if the motion level is really large (α2 
takes the value 1 and the others αi are 0). 
Otherwise two rules are activated and a non-
linear combination between two of the three 
consequents is applied. 

From the description of the fuzzy system, 
different threshold values H1, H2 and H3 are 
used in the descriptions of membership 
functions for “SMALL”, “MEDIUM” and 
“LARGE” (see Figure 2). Regarding the 
consequents of the fuzzy rule set, the 
performance of the fuzzy motion adaptive 
algorithm also depends on the parameters γ and 
λ, which determine the third interpolator 
function as a linear combination of the intra-
field (IS) and inter-field (IT) method. Despite 
there is no restriction to determinate these five 
values, some of them achieve better results than 
the other ones. In order to estimate these values, 
a set of input/output training patterns from 
progressive video sequences is used to minimize 
an error function between the original values 
(obtained from the progressive video sequences) 

Figure 3: Pixels in dark grey are taking part in bi-dimensional convolution 

Figure 4: Block diagram of the fuzzy motion 
adaptive algorithm 
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and the interpolated ones. This is carried out 
performing a supervised learning algorithm.  

In order to realize it, the development 
environment Xfuzzy 3.0 is used [6]. It is a whole 
environment for designing fuzzy sets that is 
composed of a set of CAD tools covering the 
different stages of description, verification, 
simplification and synthesis of inference 
systems based on fuzzy logic. Xfuzzy 3.0 is free 
software and it can be downloaded from the web 
page: http://www.imse.cnm.es/Xfuzzy. 

Xfuzzy 3.0 integrates a CAD tool, xfsl, to tune 
fuzzy systems described in XFL (the 
specification language in Xfuzzy) [7]. 
Considering that rule consequents could be 
described as linear functions of there input 
variables (IT, IS and motion), the fuzzy system 
has been performed within Xfuzzy as a first-

order Takagi-Sugeno system. To achieve it, the 
rule set in Table 1 has been translated into the 
equivalent one shown in Table 2, where the 
membership function called “DUMMY” returns 
a value of one independently of the input value. 
This is necessary to include the input variables 
IT and IS in the antecedents of the rule set. 
Figure 5 illustrates the graphical user interface 
of the CAD tool xfedit within Xfuzzy 3.0 which 
eases the descriptions of the rule set. 

xfsl allows the user different learning algorithms 
as well as tuning only specific parameters of the 
system and a selecting criterion to stop the 
process. In particular, the well-known 
Marquardt-Levenberg algorithm is chosen and 
the parameters H1, H2, H3, λ and γ are enabled 
to participate in the tuning process. Figure 6 
shows the evolution of three error functions 
along the learning process after eleven 

if         motion (x,y,t) and IS(x,y,t) and IT(x,y,t)                      then                        I(x,y,t) 

 SMALL and DUMMY and DUMMY                      c1 = IT(x,y,t) 

 LARGE and DUMMY and DUMMY                      c2 = IS(x,y,t) 

 MEDIUM and DUMMY and DUMMY c3 = γ IT(x,y,t) + λ IS(x,y,t)

Table 2: Description of the fuzzy system rule set with Xfuzzy3.0 

Figure 5: Description of the fuzzy rule set using xfedit within Xfuzzy 3.0 
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iterations.  

Comparing with other fuzzy motion adaptive 
algorithms, our proposal reduces considerably 
the computational complexity of the method in 
[3] (it will be proved in the Section 3). The bi-
dimensional convolution of the difference 
matrix was firstly introduced in [4] to compute 
the set of fuzzy inference of rules. In our case, 
this operator is used as input of the fuzzy system 
to distinguish the different levels of motion in 
the image. 

3     Simulation results 

The simulation results presented in this section 
allow comparing our proposal with other de-
interlacing algorithms. In order to employ an 
objective performance measurement, original 
progressive video sequences whose even/odd 
lines were previously eliminated have been de-
interlaced and an error function has been 
employed to evaluate the behavior of different 
de-interlacing algorithms. The proposed 
algorithm has been compared with line 
doubling, line average, field insertion, VT 
filtering using two [8] and three fields [9] and 
the two fuzzy motion adaptive algorithms 
proposed in [3] and [4]. The three motion 

adaptive algorithms use the same interpolators: 
line average as spatial filtering and field 
insertion as temporal filtering (as it was 
explained in Section 2, our approach uses a 
linear combination of both techniques as third 
interpolator).  

Different sizes of the convolution windows have 
been considered for our method: 3x3, 5x3 and 
5x5. The weights of the new matrices 5x3 and 
5x5 are shown in expressions (4) and (5), 
respectively. They have been selected 
empirically, given more priority to closest pixels 
in the neighborhood.  Obviously, when the 
window size is bigger, more pixels are 

Figure 6: Evolution of the tuning process 



considered to evaluate motion with the 
corresponding increase in the computational 
cost.  

Table 2 shows the average PSNR values 
obtained when de-interlacing the fields of 
several standard video sequences. Three rows, 
corresponding to the three bi-dimensional 
windows used for our proposal, are included in 
the table. The PSNR results show that the new 
algorithm performs better than all the other 
algorithms∗ . The inclusion of a third consequent 
increases the robustness of the motion detector 
obtaining higher PSNR values than the other 
two fuzzy motion adaptive algorithms. This 
characteristic can be also corroborated with the 
de-interlaced images showed in Figure 7 and 
Figure 8 (especially in marked areas with white 
circles). Regarding the three options for our 
proposal, the method which works with a bigger 
bi-dimensional convolution window achieves 
the best results.  

Nevertheless, not only quality performance but 
also computational time and cost should be 
                                                      
∗   In spite of there are other perceptual measures, the 
majority of research community in image processing use 
the PSNR to estimate the quality of the reconstructed 
image. 

evaluated. This is the reason why all these 
algorithms have been programmed in Matlab 
and executed on the same PC (a 2.0 GHz 
Pentium 4 processor running the MS-Window 
XP operating system). The total CPU time and 
the computational time ratio according to the 
fastest algorithm are shown in Table 3. 
Moreover, the complexity is also evaluated in 
terms of memory requirements as it is shown in 
Table 4. Comparing with the VT (3 fields) 
algorithm (widely used in TV industry), our 
proposal requires an extra-field memory since 
four fields are used to evaluate the amount of 
motion. However, it increases considerably the 
detection of motion.  

4     Conclusions 

A novel motion adaptive algorithm for de-
interlacing has been presented in this paper. It 
employs a fuzzy system which model heuristic 
knowledge to classify different areas in the field 
according to the presence of motion. Different 
interpolations are applied depending on this 
classification. Field insertion is performed in 
static areas, line average in moving areas, and a 
combination of both in the rest of the image. As 
a result, the proposed method provides better 
solutions eliminating the blurring and the 

Video Sequence Missa Paris Trevor Salesman News Mother Carphone 

Format CIF (288x352) QCIF (144x176) 

Line Doubling 36.44 23.61 31.05 29.75 25.18 31.81 28.25 

Line Average 40.47 26.67 35.04 33.53 29.25 35.94 32.61 

Field Insertion 38.36 29.86 34.36 36.17 33.13 36.14 30.34 

VT 2 fields 40.25 30.73 36.61 36.54 35.46 39.61 34.08 

VT 3 fields 40.52 31.37 37.16 36.95 35.67 40.89 34.54 
Fuzzy Motion 
Adaptive  [3] 40.01 33.12 35.38 37.62 34.73 39.49 32.27 

Fuzzy Motion 
Adaptive [4] 40.18 35.28 36.69 38.29 37.51 41.87 34.78 

Proposed 1    
(3x3) 40.51 35.78 37.49 38.44 38.68 41.93 34.83 

Proposed 2    
(5x3) 40.58 35.93 37.61 38.49 38.91 42.02 34.92 

Proposed 3    
(5x5) 40.63 35.99 37.68 38.55 38.97 42.05 34.97 

Table 2: Average PSNR (values in dBs) when de-interlacing several video sequences 



annoying stairs-step effect of the de-interlaced 
images. Besides, it is achieved at the expense of 
a low increment in the complexity. 
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Proposed Algorithm 

       3x3            5x3             5x5 
CPU 

time (s) 2.03 2.05 3.28 10.62 14.65 143.03 29.21 30.95 31.71 32.14 

Ratio 1 1.01 1.61 5.23 7.21 70.42 14.37 15.25 15.62 15.82 

Table 3: Computation time required by de-interlacing algorithms 
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Motion 

adap.[4]

Proposed Algorithm 

   3x3          5x3          5x5 
Field 

Memories 0 0 1 1 2 3 3 3 3 3 

Line 
Delays 0 1 0 1 2 0 0 0 0 2 
Pixel 

Delays 0 0 0 0 0 4 4 2 4 4 

Table 4: Storage devices  



 

Figure 7: (a) Progressive frame of “Carphone” sequence. (b) The corresponding interlaced field. 
De-interlaced image applying: (c) line doubling, (d) line average, (e) field insertion, 

and (f) VT filtering 2 fields

Figure 8: De-interlaced image applying: (a) VT filtering 3 fields, (b) fuzzy motion adaptive 
in [3] and (c) in [4], proposal with 5x5 (d), 5x3 (e) and (f) 3x3 window 


