
A Fuzzy Motion Adaptive Algorithm for
Interlaced-to-Progressive Conversion

P. Brox I. Baturone S. Sánchez-Solano
Instituto de Microelectrónica de Sevilla - CNM – CSIC

Avda. Reina Mercedes S/N. Edificio CICA
41012 Sevilla (SPAIN)

e-mail: brox@imse.cnm.es

Abstract

Interlaced-to-progressive algorithms are
currently required by video format
conversion systems in order to display a
progressive scanning used in modern
visualization equipments. De-
interlacing algorithms use interpolation
techniques to calculate missing pixels
in transmitted fields. A motion adaptive
algorithm which employs fuzzy logic to
adapt the interpolation strategy to the
presence of motion in the images is
proposed in this paper. The
performance of this new approach is
evaluated by extensive simulation of
different video sequences.

Keywords: Motion adaptive, de-interlacing,
fuzzy inference systems.

1 Introduction

Motion detection is crucial to many fundamental
tasks in image processing (such as de-interlacing
[1] or picture rate-up conversion [2]) which
resort to the interpolation of image sequence
data to increase the vertical resolution of the
image (de-interlacing) or the number of pictures
which compose the video sequence (rate-up
conversion). Motion adaptive interpolation
techniques provide efficient solutions for this
kind of problems because they allow to apply
different interpolation algorithms in the static
and dynamic parts of the images. Obviously,
their performance relies strongly upon the
quality of motion detection schemes.

Motion detectors basically evaluate the
difference between pixels in consecutive
pictures to make a decision. However, due to
noise and vertical details, this value may not be
a good measurement. To increase the robustness
of motion detectors, several proposals have been
described in the literature. Some examples are
the use of a low-pass filter to reduce fluctuations
of the values near edges, or the linear
combination of several detector outputs [2].

Fuzzy logic has also been applied to detect
motion in format conversion systems which take
advantage of its interpolation capability to
obtain new data in areas where the decision is
not trivial. Techniques described in [3] and [4]
propose fuzzy motion adaptive algorithms for
de-interlacing.

Interlaced format was introduced to halve the
required bandwidth in current TV systems
(NTSC, PAL). It consists in transmitting fields
with the half of the lines instead of the whole
frames. At the receiver side, a de-interlacing (or
interlaced-to-progressive conversion) algorithm
reconstructs the missing lines applying
interpolation techniques. Figure 1 illustrates this
process. The advent of HDTV systems, high

Figure 1: De-interlacing task

quality monitors, displays and projectors has
increased the need for de-interlacing algorithms
in the last few years.

Linear de-interlacing techniques, which always
perform the same kind of interpolation between
pixels, have been widely applied. Among them,
temporal algorithms (such as field insertion)
exploit the correlation in the time domain
achieving good results in static areas but
introducing very annoying effects in moving
areas of the image. Spatial interpolation
algorithms (such as line doubling or line
average) present as main advantage their low
implementation cost, since memory is not
required to store previous fields. However, they
introduce blurring and stairs-case effect in
vertical details and edges. Theoretically, a linear
combination of both techniques should provide
the best results. To provide it, motion adaptive
interpolation techniques were introduced.

A novel motion adaptive interpolation algorithm
is proposed in this paper. It uses a fuzzy
inference system to decide the most convenient
interpolation according to the presence of
motion. The paper is organized as follows.
Section 2 includes the description of the
algorithm and its application to de-interlace
video sequences. The performance of the new
algorithm, compared with others of similar
complexity in terms of memory requirements, is
evaluated in Section 3. Finally some conclusions
are given in Section 4.

2 Fuzzy Motion Adaptive Algorithm

The idea of motion adaptive algorithms for de-
interlacing was originally described in [5]. It
basically consists in using two different

interpolators, one for static areas and another
one for moving areas. The main novelty of our
proposal is to use three instead of two kinds of
interpolators depending on the level of motion in
the picture. This is carried out by using a fuzzy
logic-based inference system to apply the
following heuristic knowledge in order to
evaluate the missing pixels in a field:

1) If motion is small then the best option is
to use information from previous fields
performing a temporal filtering (IT) as
interpolation method.

2) If motion is large then the best option is to
use information from the current field
performing a spatial filtering (IS) as
interpolation method.

3) In other cases, the motion is medium and
a linear combination of the spatial and
temporal filtering will be the best option.

These rules, summarized in Table 1, allow
improving the results of conventional motion
detectors providing smooth transactions between
the three interpolators. To achieve it, the fuzzy
sets illustrated in Figure 2 are used to represent
the concepts “SMALL”, “MEDIUM”, and
“LARGE”, instead of threshold values.

Table 1: Fuzzy rule set of the proposed
algorithm

if motion (x,y,t) then I(x,y,t)

 SMALL c1 = IT(x,y,t)

 LARGE c2 = IS(x,y,t)

 MEDIUM c3 = γ IT(x,y,t) + λ IS(x,y,t)

The input of the system is the bi-dimensional
convolution of the difference of luminances, Hij,
given by the following expression:

Figure 2: Membership functions for the
fuzzy motion adaptive system

()

2
)1,,()1,,(

),,(
121
242
121

16
1

1

)1,1,1(),,1()1,1,1(
)1,1,(),,()1,1,(

)1,1,1(),,1()1,1,1(

1),,(
3

1

3

1

+−−
=
















=

















−+++−−+
−+−−

−+−−−−−
=









=∑ ∑

= =

tyxItyxI
tyxHC

tyxHtyxHtyxH
tyxHtyxHtyxH

tyxHtyxHtyxH
H

CHtyxmotion
i

ij
j

ij

() ()()
() ()() ()3,,),,(,,

,,),,(,,),,(

32

31

tyxtyxtyxI
tyxtyxtyxItyxI

S

T

αλα
αγα

⋅+⋅
+⋅+⋅=

where x and y are the spatial coordinates of the
processed pixel in a frame, and t determines the
order of the field in the sequence.

Bi-dimensional convolution is very suitable to
measure motion since it considers the spatial and
temporal neighborhood of the current pixel.
Besides, it provides high flexibility because
convolution weights, Cij, allow giving more
priority to nearest pixels in the neighborhood.
Expression (1) shows one of the bi-dimensional
convolution windows which have been used.
Considering this expression, pixels (in dark
grey) shown in Figure 3 are taking part in the bi-
dimensional convolution. A study using
convolution windows with different sizes is
presented in Section 3.

The luminance component of the interpolated
pixel is calculated applying the Fuzzy Mean
defuzzication method as follows:

where αi are the activation degrees of each rule.

Substituting the consequents, ci (see Table 1),
and applying that α1+α2+α3 is always equal to 1,
the above expression can be given as:

Figure 4 shows the block diagram of the fuzzy
motion adaptive algorithm. According to (3), the
algorithm applies a temporal filtering if the bi-
dimensional convolution of the difference of
luminances is really small (α1 is equal to 1 and
the rest of αi are 0). It performs a spatial
filtering if the motion level is really large (α2
takes the value 1 and the others αi are 0).
Otherwise two rules are activated and a non-
linear combination between two of the three
consequents is applied.

From the description of the fuzzy system,
different threshold values H1, H2 and H3 are
used in the descriptions of membership
functions for “SMALL”, “MEDIUM” and
“LARGE” (see Figure 2). Regarding the
consequents of the fuzzy rule set, the
performance of the fuzzy motion adaptive
algorithm also depends on the parameters γ and
λ, which determine the third interpolator
function as a linear combination of the intra-
field (IS) and inter-field (IT) method. Despite
there is no restriction to determinate these five
values, some of them achieve better results than
the other ones. In order to estimate these values,
a set of input/output training patterns from
progressive video sequences is used to minimize
an error function between the original values
(obtained from the progressive video sequences)

Figure 3: Pixels in dark grey are taking part in bi-dimensional convolution

Figure 4: Block diagram of the fuzzy motion
adaptive algorithm

() ()

()
()2

,,

,,,,
),,(3

1

3

1

∑

∑

=

=

⋅
=

i
i

i
ii

tyx

tyxctyx
tyxI

α

α

and the interpolated ones. This is carried out
performing a supervised learning algorithm.

In order to realize it, the development
environment Xfuzzy 3.0 is used [6]. It is a whole
environment for designing fuzzy sets that is
composed of a set of CAD tools covering the
different stages of description, verification,
simplification and synthesis of inference
systems based on fuzzy logic. Xfuzzy 3.0 is free
software and it can be downloaded from the web
page: http://www.imse.cnm.es/Xfuzzy.

Xfuzzy 3.0 integrates a CAD tool, xfsl, to tune
fuzzy systems described in XFL (the
specification language in Xfuzzy) [7].
Considering that rule consequents could be
described as linear functions of there input
variables (IT, IS and motion), the fuzzy system
has been performed within Xfuzzy as a first-

order Takagi-Sugeno system. To achieve it, the
rule set in Table 1 has been translated into the
equivalent one shown in Table 2, where the
membership function called “DUMMY” returns
a value of one independently of the input value.
This is necessary to include the input variables
IT and IS in the antecedents of the rule set.
Figure 5 illustrates the graphical user interface
of the CAD tool xfedit within Xfuzzy 3.0 which
eases the descriptions of the rule set.

xfsl allows the user different learning algorithms
as well as tuning only specific parameters of the
system and a selecting criterion to stop the
process. In particular, the well-known
Marquardt-Levenberg algorithm is chosen and
the parameters H1, H2, H3, λ and γ are enabled
to participate in the tuning process. Figure 6
shows the evolution of three error functions
along the learning process after eleven

if motion (x,y,t) and IS(x,y,t) and IT(x,y,t) then I(x,y,t)

 SMALL and DUMMY and DUMMY c1 = IT(x,y,t)

 LARGE and DUMMY and DUMMY c2 = IS(x,y,t)

 MEDIUM and DUMMY and DUMMY c3 = γ IT(x,y,t) + λ IS(x,y,t)

Table 2: Description of the fuzzy system rule set with Xfuzzy3.0

Figure 5: Description of the fuzzy rule set using xfedit within Xfuzzy 3.0

()5

11111
12321
13631
12321
11111

42
1

3























=C

()4

111
232
363
232
111

32
1

2























=C

iterations.

Comparing with other fuzzy motion adaptive
algorithms, our proposal reduces considerably
the computational complexity of the method in
[3] (it will be proved in the Section 3). The bi-
dimensional convolution of the difference
matrix was firstly introduced in [4] to compute
the set of fuzzy inference of rules. In our case,
this operator is used as input of the fuzzy system
to distinguish the different levels of motion in
the image.

3 Simulation results

The simulation results presented in this section
allow comparing our proposal with other de-
interlacing algorithms. In order to employ an
objective performance measurement, original
progressive video sequences whose even/odd
lines were previously eliminated have been de-
interlaced and an error function has been
employed to evaluate the behavior of different
de-interlacing algorithms. The proposed
algorithm has been compared with line
doubling, line average, field insertion, VT
filtering using two [8] and three fields [9] and
the two fuzzy motion adaptive algorithms
proposed in [3] and [4]. The three motion

adaptive algorithms use the same interpolators:
line average as spatial filtering and field
insertion as temporal filtering (as it was
explained in Section 2, our approach uses a
linear combination of both techniques as third
interpolator).

Different sizes of the convolution windows have
been considered for our method: 3x3, 5x3 and
5x5. The weights of the new matrices 5x3 and
5x5 are shown in expressions (4) and (5),
respectively. They have been selected
empirically, given more priority to closest pixels
in the neighborhood. Obviously, when the
window size is bigger, more pixels are

Figure 6: Evolution of the tuning process

considered to evaluate motion with the
corresponding increase in the computational
cost.

Table 2 shows the average PSNR values
obtained when de-interlacing the fields of
several standard video sequences. Three rows,
corresponding to the three bi-dimensional
windows used for our proposal, are included in
the table. The PSNR results show that the new
algorithm performs better than all the other
algorithms∗ . The inclusion of a third consequent
increases the robustness of the motion detector
obtaining higher PSNR values than the other
two fuzzy motion adaptive algorithms. This
characteristic can be also corroborated with the
de-interlaced images showed in Figure 7 and
Figure 8 (especially in marked areas with white
circles). Regarding the three options for our
proposal, the method which works with a bigger
bi-dimensional convolution window achieves
the best results.

Nevertheless, not only quality performance but
also computational time and cost should be

∗ In spite of there are other perceptual measures, the
majority of research community in image processing use
the PSNR to estimate the quality of the reconstructed
image.

evaluated. This is the reason why all these
algorithms have been programmed in Matlab
and executed on the same PC (a 2.0 GHz
Pentium 4 processor running the MS-Window
XP operating system). The total CPU time and
the computational time ratio according to the
fastest algorithm are shown in Table 3.
Moreover, the complexity is also evaluated in
terms of memory requirements as it is shown in
Table 4. Comparing with the VT (3 fields)
algorithm (widely used in TV industry), our
proposal requires an extra-field memory since
four fields are used to evaluate the amount of
motion. However, it increases considerably the
detection of motion.

4 Conclusions

A novel motion adaptive algorithm for de-
interlacing has been presented in this paper. It
employs a fuzzy system which model heuristic
knowledge to classify different areas in the field
according to the presence of motion. Different
interpolations are applied depending on this
classification. Field insertion is performed in
static areas, line average in moving areas, and a
combination of both in the rest of the image. As
a result, the proposed method provides better
solutions eliminating the blurring and the

Video Sequence Missa Paris Trevor Salesman News Mother Carphone

Format CIF (288x352) QCIF (144x176)

Line Doubling 36.44 23.61 31.05 29.75 25.18 31.81 28.25

Line Average 40.47 26.67 35.04 33.53 29.25 35.94 32.61

Field Insertion 38.36 29.86 34.36 36.17 33.13 36.14 30.34

VT 2 fields 40.25 30.73 36.61 36.54 35.46 39.61 34.08

VT 3 fields 40.52 31.37 37.16 36.95 35.67 40.89 34.54
Fuzzy Motion
Adaptive [3] 40.01 33.12 35.38 37.62 34.73 39.49 32.27

Fuzzy Motion
Adaptive [4] 40.18 35.28 36.69 38.29 37.51 41.87 34.78

Proposed 1
(3x3) 40.51 35.78 37.49 38.44 38.68 41.93 34.83

Proposed 2
(5x3) 40.58 35.93 37.61 38.49 38.91 42.02 34.92

Proposed 3
(5x5) 40.63 35.99 37.68 38.55 38.97 42.05 34.97

Table 2: Average PSNR (values in dBs) when de-interlacing several video sequences

annoying stairs-step effect of the de-interlaced
images. Besides, it is achieved at the expense of
a low increment in the complexity.

Acknowledgements

The authors wish to express their gratitude to
Dr. J. Gutiérrez-Ríos for his encouragements
and advices. This work has been partially
funded by the projects TEC2005-04359/MIC
from the Spanish Ministry of Education and
Science and TIC2006-635 from the Andalusian
Regional Government. The first author is also
supported by the Spanish Ministry of Education
under the program F.P.U. for Phd. Students.

References

[1] G. De Haan and E.B. Bellers. De-
interlacing: An overview. Proc. of the IEEE,
vol.86, pp.1839-1857, Sept.1988

[2] G. De Haan. Video processing. University
Press, Eindhoven, 2004.

[3] D. Van de Ville, B. Rogge, W. Philips and I.
Lemahieu. De-interlacing using fuzzy-based
motion detection. Proc. 3rd Int. Conf. on
Knowledge-Based Intelligent Information
Engineering Systems, pp.263-267, Adelaide,
Australia, Aug. 1999

[4] J. Gutiérrez-Ríos, F. Fernández-Hernández,
J. C. Crespo and G. Treviño. Motion
adaptive fuzzy video de-interlacing method
based on convolution techniques. Proc. of
Information Processing and Management of
Uncertainty in Knowledge-Based Systems,
Perugia, Italy, July 2004

[5] A. M. Bock. Motion adaptive standards
conversion between formats of similar field
rates. Signal Processing: Image
Communication, pp.275-280, vol.6 no.3,
June 1994

[6] F.J. Moreno-Velo, I. Baturone, S. Sánchez-
Solano, A. Barriga. Rapid design of
complex fuzzy systems with XFUZZY,
Proc. IEEE Int. Conf. on Fuzzy Systems,
pp.342-347St. Louis, USA, May 2003

[7] F.J. Moreno-Velo, I. Baturone, R. Senhadji
and S. Sánchez-Solano. Tuning complex
fuzzy systems by supervised learning
algorithms, Proc. IEEE Int. Conf. on Fuzzy
Systems, pp.226-231, St. Louis, USA, May
2003

[8] Genesis Microchip, Inc., Preliminary data
sheet of Genesis gmVLD8, 8 bit digital
videoline doubler, version 1.0, June 1996

[9] M. Weston. Interpolating lines of video
signals. US-patent 4, 789-893, Dec. 1998

Line

Doub.

Line

Aver.

Field

Insert.

VT

2fields

VT

3fields

Motion

adap.[3]

Motion

adap.[4]

Proposed Algorithm

 3x3 5x3 5x5
CPU

time (s) 2.03 2.05 3.28 10.62 14.65 143.03 29.21 30.95 31.71 32.14

Ratio 1 1.01 1.61 5.23 7.21 70.42 14.37 15.25 15.62 15.82

Table 3: Computation time required by de-interlacing algorithms

Line

Doub.

Line

Aver.

Field

Insert.

VT

2fields

VT

3fields

Motion

adap.[3]

Motion

adap.[4]

Proposed Algorithm

 3x3 5x3 5x5
Field

Memories 0 0 1 1 2 3 3 3 3 3

Line
Delays 0 1 0 1 2 0 0 0 0 2
Pixel

Delays 0 0 0 0 0 4 4 2 4 4

Table 4: Storage devices

Figure 7: (a) Progressive frame of “Carphone” sequence. (b) The corresponding interlaced field.
De-interlaced image applying: (c) line doubling, (d) line average, (e) field insertion,

and (f) VT filtering 2 fields

Figure 8: De-interlaced image applying: (a) VT filtering 3 fields, (b) fuzzy motion adaptive
in [3] and (c) in [4], proposal with 5x5 (d), 5x3 (e) and (f) 3x3 window

