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Invariance properties for coefficients of
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3Departamento de Álgebra, Universidad de Sevilla, Avda. Reina Mercedes, 41012 Sevilla, Spain.

Abstract. We show that several of the main structural constants for symmetric functions (Littlewood-Richardson
coefficients, Kronecker coefficients, plethysm coefficients, and the Kostka–Foulkes polynomials) share invariance
properties related to the operations of taking complements with respect to rectangles and adding rectangles.

Résumé. Nous montrons que plusieurs des principales constantes de structure de la théorie des fonctions symétriques
(les coefficients de Littlewood–Richardson, les coefficients de Kronecker, les coefficients du pléthysme, et les polynômes
de Kostka–Foulkes) ont en commun des symétries décrites par des opérations de complémentation dans des rectangles
et d’ajout de rectangles pour les partitions qui les étiquettent.
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1 Introduction
This paper investigates some invariance properties of four of the main families of coefficients in the theory
of symmetric functions: the Kostka numbers (and their deformations, the Kostka–Foulkes polynomials),
the Littlewood-Richardson, the Kronecker, and the plethysm coefficients. These coefficients have applica-
tions to many different fields of mathematics such as representation theory, invariant theory and algebraic
geometry, as well as physics and computer science. The presence of invariance relations often leads to
a better understanding of the objects they enumerate, to simplifications in the number of cases in proofs,
and in some cases, can be used to simplify computations.

In this paper we present a unified approach that shows some invariance relations for all these families
of coefficients. These relations involve two operations on partitions: (i) taking complements in rectangles,
or (ii) adding “tall” rectangles. We show that in the language of symmetric polynomials these symmetries
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appear as evaluation at the inverses of the variables, for type (i), and factorization by the product of the
variables, for type (ii).

We let 2k,a(λ) denote the complement of λ with respect to a k× a rectangle, as illustrated in Figure 1.

2k,a(λ)
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a

Fig. 1: The partition 2k,a(λ)

For example in the case of the Littlewood–Richardson coefficients we have shown in Theorem 1 that
they satisfy the following invariance relation with respect to taking complements in rectangles:

cνλ,µ = c
2l+m,n(ν)

2l,n(λ),2m,n(µ)
, when λ ⊆ (ln), µ ⊆ (mn) and ν ⊆ ((l +m)n)

(see Figure 2). Moreover, in Theorem 2 we show the following invariance relation with respect to the
operation of adding rectangles to the indexing partitions:

cνλ,µ = c
ν+(kn)
λ+(kn),µ, when ν and λ have length at most n.
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Fig. 2: The partitions occurring in the invariance relation of Theorem 1

Our aim is to show that analogous results hold for the other families of coefficients mentioned earlier.
To prove our results we use some identities in the ring of Laurent symmetric functions. The details of our
methods is discussed in Section 2.

2 Algebraic tools
We assume that the reader is familiar with the various algebraic structures on the space of symmetric
functions, Sym, and in particular, with its main bases. For background information see [9, 13, 17]. We
mainly follow the notation of [17], except for the fact that we draw our Ferrers diagrams using the French
notation. Let P+(n) be the set of all weakly decreasing sequences (λ1, λ2, . . . , λn) of nonnegative inte-
gers. When dealing with weakly decreasing sequences of integers, it will be convenient not to distinguish
between sequences that differ only by trailing zeros. Therefore P+(n) represents as well the set of integer
partitions with length at most n. Given any two integer partitions λ and µ, λ ⊆ µ stands for the inclusion
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of the corresponding Ferrers diagrams, λ′ is the conjugate of λ, and λ+ µ is the partition whose parts are
the λi + µi. We use `(λ) to denote the number of nonzero parts of λ, i.e., its length. Last, (kn) stands for
the sequence with n terms all equal to k.

Let X = {x1, x2, . . .} be a countable set of independent variables. For n ≥ 0, we set Xn =
{x1, x2, . . . , xn}. The ring of symmetric polynomials, Z[x1, x2, . . . , xn]Sn , admits as a linear basis the
Schur polynomials, sλ[Xn] = sλ(x1, x2, . . . , xn), indexed by all λ ∈ P+(n). They are defined by

s(λ1,λ2,...,λn)[X] =
det(x

λj+j−1
i )1≤i,j≤n

det(xj−1i )1≤i,j≤n
. (1)

This is Jacobi’s definition of Schur polynomials as “bialternants” [13, I.§3.(3.1)].
Let us consider now Z[x±11 , x±12 , . . . , x±1n ]Sn , the ring of symmetric Laurent polynomials in n vari-

ables. Let P(n) be the set of all weakly decreasing sequences of integers (λ1, λ2, . . . , λn). (Compared
to the definition of P+(n), we dropped the requirement of nonnegativity). We define the Schur Laurent
polynomials sλ[Xn], for λ ∈ P(n), again by (1). Denote by Xn

∨ the set of the inverses of the variables,
i.e., Xn

∨ = { 1
x1
, 1
x2
, . . . , 1

xn
}. For any sequence λ ∈ P(n) and any integer k, define the new sequence

2k,n(λ) = (k − λn, k − λn−1, . . . , k − λ1).

This sequence is also in P(n). This extends the definition given in the introduction, when λ is a partition
that fits in the diagram of (kn). In that case, 2k,n(λ) is also a partition, “complement” of λ in the
rectangle. It is immediate to check from (1) the following properties:

Lemma 1. For all λ ∈ P(n) and all integers k, we have

sλ+(kn)[Xn] = (x1x2 · · ·xn)ksλ[Xn]. (2)

and
sλ[Xn

∨] = s20,n(λ)[Xn]. (3)

Formula (3) is well known, see [9, (I.4.12.)], [17, Ex. 7.41] or [20, B].

Lemma 2. The Schur Laurent polynomials sλ[Xn], for λ ∈ P(n), are a basis for Z[x±11 , x±12 , . . . , x±1n ]Sn .

Representation–theoretic interpretation of (3)
Let V be a complex vector space of dimension n. The Schur polynomials in n variables are the formal
characters of the irreducible polynomial representations ofGL(V ), the Sλ(V ) for λ ∈ P+(n). The Schur
Laurent polynomials are the formal characters of its rational irreducible representations.

Relation (2) corresponds to the isomorphism Sλ+(kn)(V ) ∼= Sλ⊗Dk, whereDk is the one dimensional
representation where g ∈ GL(V ) acts as the multiplication by det(g)k.

The Schur Laurent polynomial sλ[Xn
∨] is the formal character of the dual representation Sλ(V ∗). The

identity (3) means that Sλ(V ∗) ∼= S20,n(λ)(V ).
We will now exploit (2) and (3) systematically to produce symmetries for the Littlewood–Richardson

coefficients, the Kronecker coefficients and the plethysm coefficients. In Section 6, we will extend (2) and
(3) to Hall–Littlewood polynomials, to produce symmetries for the Kostka–Foulkes polynomials.
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3 Littlewood–Richardson coefficients
The Littlewood–Richardson coefficients are the structure constants in the ring of symmetric functions
with respect to the basis of Schur functions.

sλsµ =
∑
ν

cνλ,µsν

In representation theory, the Littlewood–Richardson coefficients describe the multiplicities of tensor prod-
ucts of irreducible representations of general linear groups, and also the multiplicities in the decomposi-
tions of certain induced representations of the symmetric group. In algebraic geometry, they are the
structure coefficients when multiplying Schubert classes in the cohomology ring of the Grassmannian.

In this section we will prove the rectangular invariances for the Littlewood-Richardson coefficients. Let
n be a nonnegative integer and λ and µ be two partitions. Specializing at Xn = {x1, x2, . . . , xn}, we get

sλ[Xn]sµ[Xn] =
∑

ν:`(ν)≤n

cνλ,µsν [Xn]. (4)

If `(λ) or `(µ) is bigger than n, then the right–hand side is zero. Then all coefficients cνλ,µ in the right–
hand side are zero. We assume now that λ and µ have length at most n. Let us replace each xi with 1/xi.
We obtain sλ[Xn

∨]sµ[Xn
∨] =

∑
ν:`(ν)≤n c

ν
λ,µsν [Xn

∨]. By (3), this can be written as

s20,n(λ)[Xn]s20,n(µ)[Xn] =
∑

ν:`(ν)≤n

cνλ,µs20,n(ν)[Xn].

Let l ≥ λ1 and m ≥ µ1. Let us multiply both sides with (x1x2 · · ·xn)l+m. We get, by (2),

s2l,n(λ)[Xn]s2m,n(µ)[Xn] =
∑

ν:`(ν)≤n

cνλ,µs2l+m,n(ν)[Xn].

This implies the following theorem.

Theorem 1. Let l, m, n be nonnegative integers and λ, µ and ν be three partitions such that `(ν) ≤ n,
λ1 ≤ l and µ1 ≤ m. If λ ⊆ (ln), µ ⊆ (mn) and ν ⊆ ((l +m)n) then

cνλ,µ = c
2l+m,n(ν)

2l,n(λ),2m,n(µ)
.

In the other cases, cνλ,µ = 0.

Note that the involution ω (that maps the elementary symmetric function ei to the complete sum hi,
see [13] I.§2) yields an analogous invariance relation with respect to three rectangles of the same width,
instead of height.

As an immediate consequence of Theorem 1, we obtain the following well-known identity for skew
Schur functions. Let λ ⊆ (mn), then

s(mn)/λ = s(m−λm,m−λm−1,...,m−λ1).

In addition, by multiplying (4) and (x1x2 · · ·xn)k and using (2) we obtain the following translational
invariance relation for cνλ,µ .
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Theorem 2. Let n ≥ 0 and k be integers and λ, µ, ν be partitions such that n ≥ `(ν) and λ+ (kn) is a
partition (i.e. λn + k ≥ 0). If `(λ) ≤ n and ν + (kn) is a partition, then

cνλ,µ = c
ν+(kn)
λ+(kn),µ,

else cνλ,µ = 0.

By means of the invariance relation cνλ,µ = cνµ,λ, we also have that cνλ,µ = c
ν+(kl)

λ,µ+(kl)
.

4 Kronecker coefficients
The Kronecker coefficients describe the multiplicities of tensor products of irreducible representations of
symmetric groups, and also the multiplicities in the decompositions of certain induced representations of
the general lineal group. Understanding the Kronecker coefficients is a major open problem in the repre-
sentation theory of the symmetric and the general linear group. These coefficients also appear naturally
in some interesting problems in quantum information theory [11, 12], geometric complexity theory [4, 2]
and invariant theory.

In this section, we show how to use Formula (3) to derive a rectangular invariance relation for the
Kronecker coefficients. We start with the following description of the Kronecker cofficients: let X and Y
be two independent set of variables x1, x2, . . . and y1, y2, . . .. Let f [XY ] stand for the evaluation of the
symmetric function f at all products xiyj , this is a symmetric function in X and in Y and expands in the
basis of the sλ[X]sµ[Y ]. Then, for all partitions ν, (see [13, I.§7.(7.9)])

sν [XY ] =
∑
λ,µ

g(λ, µ, ν)sλ[X]sµ[Y ].

The similar proof as for the Littlewood-Richardson coefficients can be used to show the following
rectangular and translational invariance relations for the Kronecker coefficients. For proofs and more
details see [3].

Theorem 3. Let l, m and n be three nonnegative integers and λ, µ and ν be three partitions such that
λ1 ≤ l, µ1 ≤ m, ν1 ≤ n. If λ ⊆ (lmn), µ ⊆ (mln) and ν ⊆ (nlm), then

g(λ, µ, ν) = g(2l,mn(λ),2m,ln(µ),2n,lm(ν)).

In the other cases, g(λ, µ, ν) = 0.

Theorem 4. Let λ, µ and ν be partitions. Let l ≥ 0, m ≥ 0 and k ∈ Z be integers such that l ≥ `(λ),
m ≥ `(µ) and ν + (klm) is a partition (i.e. has no negative components). If `(ν) ≤ lm and λ+ ((km)l)
and µ+ ((kl)m) are partitions, then

g(λ, µ, ν) = g(λ+ ((km)l), µ+ ((kl)m), ν + ((k)lm))

and else g(λ, µ, ν) = 0.

An important class of Kronecker coefficients are those indexed by rectangular partitions. They are
important in quantum information theory to model entanglement [11, 12] and also to advance the program
of Geometric Complexity Theory [4]. As a corollary we easily recover the result of Stembridge [20, (C.1)].
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Corollary 1. Let k and d be nonnegative integers. If k ≤ d2,

g((dk), (dk), (dk)) = g((dd
2−k), (dd

2−k), (dd
2−k))

and when k > d2, this Kronecker coefficient is zero.

Weight reduction for Kronecker coefficients
The naive algorithm to compute a Kronecker coefficient g(λ, µ, ν) consists in converting Schur functions
in power sums. Indeed, in the power sums basis, Kronecker products are trivial. This is the algorithm
used, for instance, currently in SAGE [18] and the Maple package SF [19] . The cost of the computation
depends then mainly on the weight of λ, µ and ν. (Note that other algorithms are available and efficient
for partitions of short height, regardless of the weight, see for instance [6]).

Theorem 3 shows that g(λ, µ, ν) is equal to other Kronecker coefficients, that may be of smaller weight.
Precisely, let N = |λ| = |µ| = |ν|. Then the weight of g(2l,mn(λ),2m,ln(µ),2n,lm(ν)) (i.e. the weight
of the indexing partitions) is lmn − N . We can take l = λ1, m = µ1 and n = ν1, the computation is
reduced to the computation of a Kronecker coefficient of weight λ1µ1ν1 − N . Last, we may make use
of the symmetries under conjugation g(λ, µ, ν) = g(λ, µ′, ν′) = g(λ′, µ, ν′) = g(λ′, µ′, ν) to reduce the
computation to the computation of a Kronecker coefficient whose weight is the smallest among

K
λ1
`(λ)

−N, K
µ1

`(µ)
−N, K

ν1
`(ν)

−N, and K
λ1µ1ν1

`(λ)`(µ)`(ν)
−N

Representation–theoretic interpretation of Corollary 1.
Let V be a complex vector space of dimension d. Consider the exterior algebra: Λ (V ⊗ V ⊗ V ) =⊕d3

i=0 Λi (V ⊗ V ⊗ V ). The group GL(V ) × GL(V ) × GL(V ) acts on this exterior algebra. The Kro-
necker coefficient g(λ′, µ′, ν′) is the multiplicity of its irreducible representation Sλ(V )⊗Sµ(V )⊗Sν(V ).
In particular, Λi (V ⊗ V ⊗ V ) contains non–trivial invariants for SL(V )×SL(V )×SL(V ) only if there
exists an integer k such that i = kd. Then the dimension of the subspace of invariants is the rectangu-
lar Kronecker coefficient g((dk), (dk), (dk)). Equation (5) follows from the SL(V ⊗ V ⊗ V ) natural
isomorphism Λi (V ∗ ⊗ V ∗ ⊗ V ∗) ∼= Λd

3−i (V ⊗ V ⊗ V ) .

5 Plethysm coefficients
The plethysm of two symmetric functions f and g is denoted by f [g]. This operation was introduced by
Littlewood [10] in the context of compositions of representations of the general linear groups. Plethysm
has important applications to physics [23] and invariant theory [7]. The plethysm coefficients are the
coefficients aνλ,µ of the plethysm of two Schur functions, expanded in the Schur basis:

sλ[sµ] =
∑
ν

aνλ,µsν .

While there are algorithms for computing aνλ,µ (see for example [5, 24]), no satisfying combinatorial de-
scription has been found. In this section we describe two rectangular symmetries satisfied by the plethysm
coefficients.
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Fig. 3: The partitions in the invariance relation of Theorem 5 (top) and Theorem 7 (bottom)

It will be useful to extend the plethysm operation to the case when f is a symmetric function but
g = g(x1, x2, . . .) is any formal series. This is done by means of the following two rules: (1) the map
f 7→ f [g] is a morphism of algebras; and (2) for any positive integer n, pn[g] = g(xn1 , x

n
2 , . . .) (here pn is

the n–th power sum symmetric function).
This determines f [g] for any symmetric function f , since the algebra of symmetric functions with

rational coefficients is freely generated by the power sums pn. When g is a symmetric function, f [g]
defined as above coincides with the plethysm of f with g, see [13, I.§8.] or [17, Def. A.2.6]. We will
make use of the following property.

Lemma 3. Let f be a homogeneous symmetric function of degree L and g(x1, x2, . . .) be a formal series.
Let xw be a monomial in x. Then f [xwg] = xLwf [g].

First pair of symmetries for plethysm coefficients
Let Xn = {x1, x2, . . . , xn} be a set of n variables, where n is a nonnegative integer, and let λ and µ
be two partitions. Evaluating (5) at Xn we get sλ[sµ[Xn]] =

∑
ν : `(ν)≤n a

ν
λ,µsν [Xn]. Applying similar

ideas as for the Littlewood-Richardson and Kronecker coefficients we obtain the following symmetries
for plethysm coefficients, for details see [3].

Theorem 5. Fix nonnegative integers m and n and let λ, µ and ν be partitions such that µ ⊆ (mn) and
`(ν) ≤ n. If ν ⊆ ((m|λ|)n), then

aνλ,µ = a
2m|λ|,n(ν)

λ,2m,n(µ)
.

Otherwise aνλ,µ = 0.

Theorem 6. Let λ, µ and ν be partitions. Let n ≥ 0 and k ∈ Z be integers such that `(ν) ≤ n and
µ+ (kn) is a partition.

If ν + ((k|λ|)n) is a partition, then

aνλ,µ = a
ν+((k|λ|)n)
λ,µ+(kn) ,
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and else aνλ,µ = 0.

Second pair of symmetries for plethysm coefficients
There is another way to exploit the alphabet of inverses for plethysm coefficients in order to obtain another
rectangular invariance relation. Recall that the combinatorial definition of Schur functions says that,

sµ =
∑
T

xw(T )

where the sum is carried over all semistandard tableaux T of shape µ. The exponent w(T ) is the weight
of T , i.e., its i–th component is the number of occurrences of i in T . For details see [17, §7.10.1.].

If f is a symmetric function and g a sum of monomials, then f [g] is the specialization of f at these
monomials [13, I.§8]: f [xω1 + xω2 + . . .] = f(xω1 , xω2 , . . .). This holds in particular for g = sµ[X].

A careful analysis of the evaluation at the alphabet of inverses leads to the following results. See [3] for
further details.

Theorem 7. Let l and n be nonnegative integers and µ, ν, and λ be partitions such that λ1 ≤ l, and
`(ν) ≤ n. Let r be the number of semistandard tableaux of shape µ and entries in {1, 2, . . . , n}. Then
q = r|µ|/n is an integer, and we have that if λ ⊆ (lr) and ν ⊆ ((ql)n),

aνλ,µ = a
2ql,n(ν)

2l,r(λ),µ
,

and otherwise aνλ,µ = 0.

Theorem 8. Let λ, µ and ν be partitions. Let n ≥ 0 and k ∈ Z be integers such that `(ν) ≤ n. Let r
and q be defined as in Theorem 7. Assume that λ + (kr) is a partition. If `(λ) ≤ r and ν + ((qk)n) is a
partition, then

aνλ,µ = a
ν+((qk)n)
λ+(kr),µ ,

else aνλ,µ = 0.

Remark. The number r = #Tµ(n) is given by the hook–content formula (see [17, pg. 376]).

Weight reduction for Plethysm coefficients
As for Kronecker products (see 4), plethysms are trivial in the basis of power sums. Plethysm coefficients
can thus be computed by means of conversions to the power sums basis (this is done this way in SAGE
and SF [18, 19]). When performing such a computation, it is very helpful to reduce the weight of the
symmetric functions involved. This can be done, in some cases, by means of Theorem 5. The weight for
the plethysm coefficient aνλ,µ is N = |ν| = |λ| · |µ|. Theorem 5 shows that this plethysm coefficient is
equal to another plethysm coefficient with weight µ1`(ν)|λ|−N . We can also make use of the symmetries
([13, I.§8.Ex.1(a)])

aνλ,µ =

{
aν
′

λ,µ′ when |µ| is even,
aν
′

λ′,µ′ when |µ| is odd.

Set K = `(µ)`(ν)|λ|. We can obtain, therefore, a reduction to the weight: K ·min
(
µ1

`(µ) ,
ν1
`(ν)

)
−N .
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6 Kostka–Foulkes polynomials
The Kostka-Foulkes polynomials Kλ,µ(t) are the coefficients that appear in the decompositions of Schur
functions in the basis of Hall–Littlewood polynomials Pµ(X; t):

sλ[X] =
∑
µ

Kλ,µ(t) Pµ(X; t). (5)

They are deformations of the Kostka numbers. We recover the Kostka numbers by evaluating the Kostka–
Foulkes polynomials at t = 1.

On the other hand, their specialization at a finite set of variablesXn = {x1, x2, . . . , xn}, with n ≥ `(µ)
is given [13, III.(2.1)] by

Pµ(Xn; t) =
1

vµ,n(t)

∑
w∈Sn

w

xµ1

1 · · ·xµnn
∏
i<j

xi − txj
xi − xj

 .

where w ∈ Sn permutes the variables xi and vµ,n(t) =
∏
i

∏mi(µ)
r=1

1−tr
1−t , and mi is the number of

occurrences of i in the sequence µ, once it has been padded with zeros to get length n.
As in the case of Schur polynomials, this definition still makes sense perfectly when µ ∈ P(n) (with

possible negative coordinates). We get the following generalization of (3):

Lemma 4. Let µ be a weakly decreasing sequence of integers, of length n, and X = {x1, x2, . . . , xn}.
We have

Pµ(Xn
∨; t) = P20,n(µ)(Xn; t)

and for any integer k,
Pµ+(kn)(Xn; t) = (x1x2 · · ·xn)k · Pµ(Xn; t). (6)

Using Lemma 4 and (6) we get the following results.

Theorem 9. Let k and n be nonnegative integers.
Let λ and µ be partitions such that λ1 ≤ k and `(µ) ≤ n. If λ ⊆ (kn) and µ ⊆ (kn) then

Kλ,µ(t) = K2k,n(λ),2k,n(µ)(t).

Else Kλ,µ(t) = 0.

Specializing (5) at Xn and multiplying with (x1x2 · · ·xn)k, and using (2) and (6), we get the following
result.

Theorem 10. Let n and k be integers, with n ≥ 0. Let λ and µ be partitions, with `(µ) ≤ n and such
that λ+ (kn) is a partition.

If `(λ) ≤ n and µ+ (kn) is a partition then

Kλ,µ(t) = Kλ+(kn),µ+(kn)(t),

else Kλ,µ(t) = 0.
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7 Final Remarks

1. All the symmetries described in this extended abstract involve the operations of (i) taking comple-
ments in rectangles, or (ii) adding “tall” rectangles to the parts. They can also be shown to hold using the
language of representation theory. The symmetries of type (i) actually follow from duality between rep-
resentations of general linear groups, and those of type (ii) from factoring by determinant representations.

2. Other invariances for the Littlewood–Richardson coefficients, such as cνλ,µ = cνµ,λ and cνλ,µ =

c
2m,n(µ)

λ,2m,n(ν)
, have been extensively studied. In particular there are several bijective proofs for them, see

[14, 15, 21] and the references therein. These other invariances, that generate a full symmetric group S3,
are also obvious in the setting of Schubert calculus, since the numbers c2m,n(µ)λ,ν interpret as triple inter-
sections of Schubert varieties [8, §4, Eq. (23)]. We believe that it would be interesting to find a bijective
proof of Theorem 1.

3. The invariance relation presented in Theorem 1 is probably folklore, but we did not find it in the liter-
ature in the way presented here. It is, however, equivalent to the invariance relation mentioned in [1, §2.
rem.(a)], as the generator of the Z2 subgroup in a Z2×S3 group of symmetries (the factor S3 is the group
of other invariances mentioned above in Remark 2).

4. The identity presented in Theorem 2 is very easily established from the combinatorial descriptions of
the Littlewood–Richardson coefficients (e.g. the Littlewood–Richardson rule). The analogous identities
described for Kronecker and plethysm coefficients, for which akin combinatorial descriptions are unavail-
able, are then more difficult to prove without Schur polynomials (or equivalent representation–theoretic
considerations).

5. The invariance relation described in (3) is equivalent to the one found by Stembridge [20]. The method
is basically the same, except for the presentation: where Stembridge uses representations of general linear
groups we use their formal characters (symmetric Laurent polynomials). Our version is slightly more
symmetric.

6. The translational invariance for the Kronecker coefficients described in Theorem 4 is well-known. It
appears, for instance in [22, Theorem 3.1], [2, Lemma 2.1].

7. The bijection in the solution of exercise 7.41 in [17] gives a bijective proof for the specialization of
Theorem 9 to the Kostka numbers. But this does not generalize to a bijective proof for the identity for the
Kostka-Foulkes polynomials. The autors would like to see a bijective proof of this result.

8. The invariance relation described in Theorem 9 also follows from a much more elaborate result by
Shimozono and Weyman on the Poincaré polynomials of graded characters of isotopic components of
a natural family of GL(Cn)–modules supported in the closure of a nilpotent conjugacy class [16, Eq.
(2.16)].
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9. The Macdonald polynomials Pλ(Xn; q, t), defined in [13] Ch. VI, satisfy the relation

(x1 · · ·xn)kPλ(X∨; q, t) = P2k,n(λ)(X; q, t).

Hence one can obtain similar relations for coefficients related to these basis. The results of this investiga-
tion will appear as a separate note.
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