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1. Introdu
tion

Analysis and 
omparison of geometri
 shapes are

of importan
e in various appli
ation areas within


omputer s
ien
e, su
h as pattern re
ognition and


omputer vision, but also in other dis
iplines 
on-


erned with the form of obje
ts su
h as 
artogra-

phy, mole
ular biology, medi
ine, or biometri
 sig-

nal pro
essing.

The general situation is that we are given two

obje
ts A, B modelled as subsets of 2- or 3-

dimensional spa
e and we want to know how mu
h

they resemble ea
h other [1℄.

For this purpose we need a similarity measure

de�ned on pairs of shapes indi
ating the degree

of resemblan
e of these shapes. A frequently used

similarity measure is the Hausdor� distan
e, whi
h

is de�ned for arbitrary non-empty 
ompa
t sets A

and B. It assigns to ea
h point of one set the dis-

tan
e to its 
losest point in the other and takes the

maximum of all these values. Formally, we de�ne

the one-sided Hausdor� distan
e from A to B as

~

Æ

H

(A;B) = max

a2A

min

b2B

d(a; b); (1)

where d(x; y) denotes a distan
e measure between

points x and y.

Here we will assume the planar 
ase, i.e., that

A;B � R

2

and that d is the Eu
lidean distan
e.

The (bidire
tional) Hausdor� distan
e between

A and B is de�ned as

Æ

H

(A;B) = max(

~

Æ

H

(A;B);

~

Æ

H

(B;A)) (2)

We will only des
ribe the 
omputation of the

one-sidedHausdor� distan
e fromA toB, the 
om-

putation of the bidire
tional Hausdor� distan
e is

then straightforward.
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The aim of this paper is to �nd an algorithm for

general shapes whi
h are modelled by two sets of n

algebrai
 
urves. When we speak about the Haus-

dor� distan
e between these two sets we a
tually

mean the Hausdor� distan
e between the two sets

of points lying on these 
urves. We will restri
t

to 
urves that are given by rational parameteriza-

tions, i.e., ea
h 
urve is represented by a parame-

terization


 : I ! R

2

; 
(t) = (x(t); y(t)) (3)

where I � R is a 
losed interval and x(t); y(t) are

rational fun
tions with no poles in I .

Observe that this de�nition in
ludes some im-

portant families of free-form parametri
 
urves, for

example B-splines.

For simpli
ity, we assume a 
ertain general posi-

tion of the input 
urves. In parti
ular, we assume

that any two 
urves interse
t in at most �nitely

many points.

2. Basi
 
ases

In this se
tion we will investigate how the di-

re
ted Hausdor� distan
e between two single ob-

je
ts (
urves or points) 
an be 
omputed.

2.1. Point-
urve and 
urve-point

The Hausdor� distan
e from a point p = (u; v)

to a 
urve 
(t) = (x(t); y(t)); t 2 I is min

t2I

d(p; 
(t)).

The Hausdor� distan
e from a 
urve 
(t) to a

point p is the maximum Eu
lidean distan
e from

any point on 
 to p.

In order to �nd those parameters t where the

minimum or maximum is attained, we 
onsider the
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zeroes of the derivative of the squared distan
e

d

d t

[d

2

(p; 
(t))℄, i.e., the equation

2 � (u� x(t)) � x

0

(t) + 2 � (v � y(t)) � y

0

(t) = 0 (4)

This equation has 
onstantly many solutions if the

degree of 
 is bounded. We 
all a point satisfying

this equation a footpoint of p on 
. In addition to

the points given by the solutions of equation 4 the

minimum or maximum distan
e 
an be attained at

the endpoints of 
 (Fig. 1).

p

c(t)

Q

Fig. 1. Hausdor� distan
e from a 
urve 
(t) to a point p is

the distan
e from p to the farthest point on 
.

2.2. Curve-
urve

We redu
e the problem of determining the Haus-

dor� distan
e from a 
urve a, a(t) = (x

a

(t); y

a

(t)),

t 2 I

a

to a 
urve b, b(s) = (x

b

(s); y

b

(s)), s 2 I

b

to

determining the distan
es of 
onstantly many 
an-

didate points on a to the 
urve b.

There are four di�erent types of 
andidate

points. Firstly, the Hausdor� distan
e 
an be as-

sumed at one of the endpoints of 
urve a (type

EA).

Se
ondly, it 
an happen that the Hausdor� dis-

tan
e is attained between an endpoint Q of b and a

point on a. Therefore, we determine on a all foot-

points of the endpoints of b by equation (4) (type

EB).

For the third type of 
andidate points we 
on-

sider the self-bise
tor (or medial axis) of a 
urve,

whi
h is the set of all points whose minimal dis-

tan
e to the 
urve is attained at more than one

point on the 
urve, 
f. Fig. 2.

The Hausdor� distan
e from a to b 
an be at-

tained at an interse
tion point of a with the self-

bise
tor of b. We will only give a system of equa-

tions des
ribing su
h a point here for the part of

the self-bise
tor where the two 
losest points are

interior points of b, see Fig. 3.

point−point bisector

point−curve bisector

curve−curve bisector

Fig. 2. Self-bise
tor of a parabola segment.

a(t)

Q

b(s)

R

P

Fig. 3. The Hausdor� distan
e from the 
urve a(t) to the


urve b(s) is assumed at the interse
tion point Q of the


urve a with the self-bise
tor of the 
urve b. The point Q

has two di�erent internal foot-points P and R on b.

Suppose Q = a(t) and that P = b(s) and R =

b(r) with r 6= s are the points on b 
losest to Q.

Then we obtain the following system of equations

for t; s; and r:

�

(x

a

(t) � x

b

(s))

2

+ (y

a

(t) � y

b

(s))

2

�

�

�

(x

a

(t) � x

b

(r))

2

+ (y

a

(t) � y

b

(r))

2

�

= 0 (5)

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (6)

(x

a

(t) � x

b

(r)) � x

0

b

(r) + (y

a

(t) � y

b

(r)) � y

0

b

(r) = 0 (7)

In order to enfor
e the 
ondition r 6= s we intro-

du
e a new variable u and add one more equation

to the system:

1� u(s� r) = 0 (8)

We add all points determined by the �nitely many

solutions of this system to the 
andidate list (type

SB).

For the fourth type of possible 
andidate points

we observe that the Hausdor� distan
e 
an o

ur

between two interior points p 2 a and q 2 b with-
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out one of them lying on the self-bise
tor of the

other 
urve, see Fig. 4.

a(t)

b(s)

p

q

Fig. 4. Hausdor� distan
e at interior points.

Sin
e q is a footpoint on b for point p, the line

segment pq must be perpendi
ular to the tangent

line to 
urve b at point q. In addition it 
an be

shown that the tangent line to the 
urve a at point

pmust be parallel to the tangent line to the 
urve b

at point q and, thus, also perpendi
ular to the line

segment pq. The remaining 
andidate points (type

I) for the Hausdor� distan
e are, therefore, among

the solutions of the following system:

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (9)

(x

a

(t) � x

b

(s)) � x

0

a

(t) + (y

a

(t) � y

b

(s)) � y

0

a

(t) = 0 (10)

A detailed geometri
 proof for this fa
t is omitted

due to spa
e limitations and 
an be found in [7℄.

3. The general 
ase

As was said before, the general problem we 
on-

sider is to �nd the Hausdor� distan
e between two

point sets given by two sets A;B of rationally pa-

rameterized algebrai
 
urves.

In order to �nd

~

Æ(A;B) we split the 
urves ofA at

their interse
tion points with the Voronoi diagram

ofB. The resulting setA

0

of 
urves has the property

that ea
h 
urve lies in one Voronoi 
ell of B, so its

distan
e to B is the distan
e to one 
urve and 
an

be determined using the te
hniques of se
tion 2.

Computing the 
omplete Voronoi diagram of al-

gebrai
 
urves is a very diÆ
ult task in pra
ti
e and

there are some open questions about the bise
tor

of algebrai
 
urves [3{5℄. In [5℄ an approximation

algorithm for Voronoi diagrams of 
urves is given.

Instead, we just 
ompute the interse
tion points

des
ribed. The splitting of ea
h 
urve a ofA is done

in
rementally. Suppose that we have list of inter-

se
tion points of the Voronoi diagram of a subset

of B with a and we want to add a new 
urve b 2

B. We do this by s
anning the 
urrent segments

of a. Ea
h segment s belongs to some 
urve 
 2 B

whi
h has already been pro
essed. First we deter-

mine all interse
tion points of the bise
tor between

b and 
 with a and �nd out whi
h ones lie inside s.

s is split further with these points and some por-

tions are labelled with b as nearest neighbor, others

with 
. After this has been done it might be ne
-

essary to merge neighboring segments whi
h are

both marked with b but are separated by a split-

point from previous steps.

Similar to the 
ase of self-bise
tors, the interse
-

tion points of with the bise
tor between b and 



an be found as solutions of systems of equations.

We only give this system here for the \interior" bi-

se
tor of two 
urves b and 
, not the ones for the

bise
tor between an endpoint of one 
urve and an-

other 
urve or between two endpoints. These sys-

tems, however have to be 
onsidered, as well.

The system for the \interior" bise
tor uses the

property that if a point a(t) lies on the bise
tor

between b and 
 and the 
orresponding footpoints

are b(s) and 
(r) then the line segment a(t)b(s)

is perpendi
ular to the tangent ve
tor b

0

(s), and

a(t)
(r) is perpendi
ular to 


0

(r).

d(a(t); b(s))� d(a(t); 
(r)) = 0 (11)

h(a(t) � b(s)); b

0

(s)i=0 (12)

h(a(t)� 
(r)); 


0

(r)i=0 (13)

The worst 
ase running time of our algorithm

as stated is O(nm

2

) if A 
onsists of n and B of m


urves, assuming that the degrees of the 
urves are

bounded. It 
an be easily improved toO(nm logm)

by using a divide-and-
onquer approa
h for the

splitting of the 
urves ofA. It should be worthwhile

to further improve the 
ombinatorial 
omplexity of

the algorithm (see also [2℄), but our major intent

was to �nd a simple algorithm that 
an be put into

pra
ti
e with a reasonable amount of e�ort.

4. Implementation

We implemented the algorithm des
ribed in

C++ using the 
omputer algebra software library

SYNAPS (SYmboli
 Numeri
 APpli
ationS), see

[8,6℄, for solving the systems of polynomial equa-

tions.
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For visualization purposes a graphi
al user in-

terfa
e was developed using the GTK library. It

in
ludes visualization of the 
urves, the input and

editing of the parameterization and the intervals

if the parameter values, the 
omputation of the

Hausdor� distan
e and the graphi
al indi
ation of

the 
andidate points 
onsidered for the 
omputa-

tion. Figure 5 shows the interfa
e with an example.

Fig. 5. Result of a Hausdor� distan
e 
omputation with

two B-splines of degree 2. Both one-way distan
es and all


andidate points are shown.

Referen
es

[1℄ Helmut Alt and Leonidas J. Guibas. Dis
rete geometri


shapes: Mat
hing, interpolation, and approximation. In

Handbook of 
omputational geometry. Elsiever S
ien
e

B.V., 1999.

[2℄ Helmut Alt and Otfried S
hwarzkopf. The Voronoi

diagram of 
urved obje
ts. In Pro
. 11th ACM Comput.

Geom. Symp., pages 89{97, Van
ouver, BC, 1995.

[3℄ Gershon Elber and Myung-Soo Kim. Bise
tor 
urves

of planar rational 
urves. Computer-Aided Design,

30(14):1089{1096, 1998.

[4℄ Rida T. Farouki and Rajesh Ramamurthy. Degenerate

point/
urve and 
urve/
urve bise
tors arising in medial

axis 
omputations for planar domains with 
urved

boundaries. Internat. J. Comput. Geom. Appl., 8:599{

617, 1998.

[5℄ Rida T. Farouki and Rajesh Ramamurthy. Voronoi

diagram and medial axis algorithm for planar domains

with 
urved boundaries, I. Theoreti
al foundations.

Journal of Computational and Applied Mathemati
s,

102(1):119{141, February 1999.

[6℄ G. Dos Reis, B. Mourrain, R. Rouillier, and Ph.

Tr�ebu
het. An environment for symboli
 and numeri



omputation. In Pro
. of the International Conferen
e

on Mathemati
al Software, pages 239{249, 2003.

[7℄ Ludmila S
harf. Computing the Hausdor� distan
e

between sets of 
urves. Master's thesis, Freie Universit�at

Berlin, Germany, 2003.

[8℄ http://www-sop.inria.fr/galaad/logi
iels/synaps/.


