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1. Introdution

Analysis and omparison of geometri shapes are

of importane in various appliation areas within

omputer siene, suh as pattern reognition and

omputer vision, but also in other disiplines on-

erned with the form of objets suh as artogra-

phy, moleular biology, mediine, or biometri sig-

nal proessing.

The general situation is that we are given two

objets A, B modelled as subsets of 2- or 3-

dimensional spae and we want to know how muh

they resemble eah other [1℄.

For this purpose we need a similarity measure

de�ned on pairs of shapes indiating the degree

of resemblane of these shapes. A frequently used

similarity measure is the Hausdor� distane, whih

is de�ned for arbitrary non-empty ompat sets A

and B. It assigns to eah point of one set the dis-

tane to its losest point in the other and takes the

maximum of all these values. Formally, we de�ne

the one-sided Hausdor� distane from A to B as

~

Æ

H

(A;B) = max

a2A

min

b2B

d(a; b); (1)

where d(x; y) denotes a distane measure between

points x and y.

Here we will assume the planar ase, i.e., that

A;B � R

2

and that d is the Eulidean distane.

The (bidiretional) Hausdor� distane between

A and B is de�ned as

Æ

H

(A;B) = max(

~

Æ

H

(A;B);

~

Æ

H

(B;A)) (2)

We will only desribe the omputation of the

one-sidedHausdor� distane fromA toB, the om-

putation of the bidiretional Hausdor� distane is

then straightforward.
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The aim of this paper is to �nd an algorithm for

general shapes whih are modelled by two sets of n

algebrai urves. When we speak about the Haus-

dor� distane between these two sets we atually

mean the Hausdor� distane between the two sets

of points lying on these urves. We will restrit

to urves that are given by rational parameteriza-

tions, i.e., eah urve is represented by a parame-

terization

 : I ! R

2

; (t) = (x(t); y(t)) (3)

where I � R is a losed interval and x(t); y(t) are

rational funtions with no poles in I .

Observe that this de�nition inludes some im-

portant families of free-form parametri urves, for

example B-splines.

For simpliity, we assume a ertain general posi-

tion of the input urves. In partiular, we assume

that any two urves interset in at most �nitely

many points.

2. Basi ases

In this setion we will investigate how the di-

reted Hausdor� distane between two single ob-

jets (urves or points) an be omputed.

2.1. Point-urve and urve-point

The Hausdor� distane from a point p = (u; v)

to a urve (t) = (x(t); y(t)); t 2 I is min

t2I

d(p; (t)).

The Hausdor� distane from a urve (t) to a

point p is the maximum Eulidean distane from

any point on  to p.

In order to �nd those parameters t where the

minimum or maximum is attained, we onsider the
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zeroes of the derivative of the squared distane

d

d t

[d

2

(p; (t))℄, i.e., the equation

2 � (u� x(t)) � x

0

(t) + 2 � (v � y(t)) � y

0

(t) = 0 (4)

This equation has onstantly many solutions if the

degree of  is bounded. We all a point satisfying

this equation a footpoint of p on . In addition to

the points given by the solutions of equation 4 the

minimum or maximum distane an be attained at

the endpoints of  (Fig. 1).

p

c(t)

Q

Fig. 1. Hausdor� distane from a urve (t) to a point p is

the distane from p to the farthest point on .

2.2. Curve-urve

We redue the problem of determining the Haus-

dor� distane from a urve a, a(t) = (x

a

(t); y

a

(t)),

t 2 I

a

to a urve b, b(s) = (x

b

(s); y

b

(s)), s 2 I

b

to

determining the distanes of onstantly many an-

didate points on a to the urve b.

There are four di�erent types of andidate

points. Firstly, the Hausdor� distane an be as-

sumed at one of the endpoints of urve a (type

EA).

Seondly, it an happen that the Hausdor� dis-

tane is attained between an endpoint Q of b and a

point on a. Therefore, we determine on a all foot-

points of the endpoints of b by equation (4) (type

EB).

For the third type of andidate points we on-

sider the self-bisetor (or medial axis) of a urve,

whih is the set of all points whose minimal dis-

tane to the urve is attained at more than one

point on the urve, f. Fig. 2.

The Hausdor� distane from a to b an be at-

tained at an intersetion point of a with the self-

bisetor of b. We will only give a system of equa-

tions desribing suh a point here for the part of

the self-bisetor where the two losest points are

interior points of b, see Fig. 3.

point−point bisector

point−curve bisector

curve−curve bisector

Fig. 2. Self-bisetor of a parabola segment.

a(t)

Q

b(s)

R

P

Fig. 3. The Hausdor� distane from the urve a(t) to the

urve b(s) is assumed at the intersetion point Q of the

urve a with the self-bisetor of the urve b. The point Q

has two di�erent internal foot-points P and R on b.

Suppose Q = a(t) and that P = b(s) and R =

b(r) with r 6= s are the points on b losest to Q.

Then we obtain the following system of equations

for t; s; and r:

�

(x

a

(t) � x

b

(s))

2

+ (y

a

(t) � y

b

(s))

2

�

�

�

(x

a

(t) � x

b

(r))

2

+ (y

a

(t) � y

b

(r))

2

�

= 0 (5)

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (6)

(x

a

(t) � x

b

(r)) � x

0

b

(r) + (y

a

(t) � y

b

(r)) � y

0

b

(r) = 0 (7)

In order to enfore the ondition r 6= s we intro-

due a new variable u and add one more equation

to the system:

1� u(s� r) = 0 (8)

We add all points determined by the �nitely many

solutions of this system to the andidate list (type

SB).

For the fourth type of possible andidate points

we observe that the Hausdor� distane an our

between two interior points p 2 a and q 2 b with-
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out one of them lying on the self-bisetor of the

other urve, see Fig. 4.

a(t)

b(s)

p

q

Fig. 4. Hausdor� distane at interior points.

Sine q is a footpoint on b for point p, the line

segment pq must be perpendiular to the tangent

line to urve b at point q. In addition it an be

shown that the tangent line to the urve a at point

pmust be parallel to the tangent line to the urve b

at point q and, thus, also perpendiular to the line

segment pq. The remaining andidate points (type

I) for the Hausdor� distane are, therefore, among

the solutions of the following system:

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (9)

(x

a

(t) � x

b

(s)) � x

0

a

(t) + (y

a

(t) � y

b

(s)) � y

0

a

(t) = 0 (10)

A detailed geometri proof for this fat is omitted

due to spae limitations and an be found in [7℄.

3. The general ase

As was said before, the general problem we on-

sider is to �nd the Hausdor� distane between two

point sets given by two sets A;B of rationally pa-

rameterized algebrai urves.

In order to �nd

~

Æ(A;B) we split the urves ofA at

their intersetion points with the Voronoi diagram

ofB. The resulting setA

0

of urves has the property

that eah urve lies in one Voronoi ell of B, so its

distane to B is the distane to one urve and an

be determined using the tehniques of setion 2.

Computing the omplete Voronoi diagram of al-

gebrai urves is a very diÆult task in pratie and

there are some open questions about the bisetor

of algebrai urves [3{5℄. In [5℄ an approximation

algorithm for Voronoi diagrams of urves is given.

Instead, we just ompute the intersetion points

desribed. The splitting of eah urve a ofA is done

inrementally. Suppose that we have list of inter-

setion points of the Voronoi diagram of a subset

of B with a and we want to add a new urve b 2

B. We do this by sanning the urrent segments

of a. Eah segment s belongs to some urve  2 B

whih has already been proessed. First we deter-

mine all intersetion points of the bisetor between

b and  with a and �nd out whih ones lie inside s.

s is split further with these points and some por-

tions are labelled with b as nearest neighbor, others

with . After this has been done it might be ne-

essary to merge neighboring segments whih are

both marked with b but are separated by a split-

point from previous steps.

Similar to the ase of self-bisetors, the interse-

tion points of with the bisetor between b and 

an be found as solutions of systems of equations.

We only give this system here for the \interior" bi-

setor of two urves b and , not the ones for the

bisetor between an endpoint of one urve and an-

other urve or between two endpoints. These sys-

tems, however have to be onsidered, as well.

The system for the \interior" bisetor uses the

property that if a point a(t) lies on the bisetor

between b and  and the orresponding footpoints

are b(s) and (r) then the line segment a(t)b(s)

is perpendiular to the tangent vetor b

0

(s), and

a(t)(r) is perpendiular to 

0

(r).

d(a(t); b(s))� d(a(t); (r)) = 0 (11)

h(a(t) � b(s)); b

0

(s)i=0 (12)

h(a(t)� (r)); 

0

(r)i=0 (13)

The worst ase running time of our algorithm

as stated is O(nm

2

) if A onsists of n and B of m

urves, assuming that the degrees of the urves are

bounded. It an be easily improved toO(nm logm)

by using a divide-and-onquer approah for the

splitting of the urves ofA. It should be worthwhile

to further improve the ombinatorial omplexity of

the algorithm (see also [2℄), but our major intent

was to �nd a simple algorithm that an be put into

pratie with a reasonable amount of e�ort.

4. Implementation

We implemented the algorithm desribed in

C++ using the omputer algebra software library

SYNAPS (SYmboli Numeri APpliationS), see

[8,6℄, for solving the systems of polynomial equa-

tions.
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For visualization purposes a graphial user in-

terfae was developed using the GTK library. It

inludes visualization of the urves, the input and

editing of the parameterization and the intervals

if the parameter values, the omputation of the

Hausdor� distane and the graphial indiation of

the andidate points onsidered for the omputa-

tion. Figure 5 shows the interfae with an example.

Fig. 5. Result of a Hausdor� distane omputation with

two B-splines of degree 2. Both one-way distanes and all

andidate points are shown.
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