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1. Introduction

Analysis and comparison of geometric shapes are
of importance in various application areas within
computer science, such as pattern recognition and
computer vision, but also in other disciplines con-
cerned with the form of objects such as cartogra-
phy, molecular biology, medicine, or biometric sig-
nal processing.

The general situation is that we are given two
objects A, B modelled as subsets of 2- or 3-
dimensional space and we want to know how much
they resemble each other [1].

For this purpose we need a similarity measure
defined on pairs of shapes indicating the degree
of resemblance of these shapes. A frequently used
similarity measure is the Hausdorff distance, which
is defined for arbitrary non-empty compact sets A
and B. It assigns to each point of one set the dis-
tance to its closest point in the other and takes the
maximum of all these values. Formally, we define
the one-sided Hausdorff distance from A to B as

0r (4, B) = maxmin d(a, b), (1)

where d(z,y) denotes a distance measure between
points z and y.
Here we will assume the planar case, i.e., that
A, B C R? and that d is the Euclidean distance.
The (bidirectional) Hausdorff distance between
A and B is defined as

6H(A7B) = max(sH(AvB)7gH(B7A)) (2)

We will only describe the computation of the
one-sided Hausdorff distance from A to B, the com-
putation of the bidirectional Hausdorff distance is
then straightforward.
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The aim of this paper is to find an algorithm for
general shapes which are modelled by two sets of
algebraic curves. When we speak about the Haus-
dorff distance between these two sets we actually
mean the Hausdorff distance between the two sets
of points lying on these curves. We will restrict
to curves that are given by rational parameteriza-
tions, i.e., each curve is represented by a parame-
terization

c: I — R,

c(t) = (2(t), y(t)) 3)

where I C R is a closed interval and z(t),y(t) are
rational functions with no poles in I.

Observe that this definition includes some im-
portant families of free-form parametric curves, for
example B-splines.

For simplicity, we assume a certain general posi-
tion of the input curves. In particular, we assume
that any two curves intersect in at most finitely
many points.

2. Basic cases

In this section we will investigate how the di-
rected Hausdorff distance between two single ob-
jects (curves or points) can be computed.

2.1. Point-curve and curve-point

The Hausdorff distance from a point p = (u,v)
to a curve c(t) = (x(t),y(t)),t € I'is rtm}l d(p, c(t)).
€

The Hausdorff distance from a curve ¢(t) to a
point p is the maximum Euclidean distance from
any point on ¢ to p.

In order to find those parameters ¢ where the
minimum or maximum is attained, we consider the

Seville, Spain (2004)



20th European Workshop on Computational Geometry

zeroes of the derivative of the squared distance
L[d*(p, c(t))], i.e., the equation
2-(u—a(t)-2'(t) +2-(v—y(t)-y'(t) =0 (4)
This equation has constantly many solutions if the
degree of ¢ is bounded. We call a point satisfying
this equation a footpoint of p on c. In addition to
the points given by the solutions of equation 4 the

minimum or maximum distance can be attained at
the endpoints of ¢ (Fig. 1).

—

c(t)

p

Fig. 1. Hausdorff distance from a curve ¢(t) to a point p is
the distance from p to the farthest point on c.

2.2. Curve-curve

We reduce the problem of determining the Haus-
dorff distance from a curve a, a(t) = (z,(t), y.(t)),
t € I, to a curve b, b(s) = (zp(8), yp(s)), s € Iy to
determining the distances of constantly many can-
didate points on a to the curve b.

There are four different types of candidate
points. Firstly, the Hausdorff distance can be as-
sumed at one of the endpoints of curve a (type
EA).

Secondly, it can happen that the Hausdorff dis-
tance is attained between an endpoint  of b and a
point on a. Therefore, we determine on a all foot-
points of the endpoints of b by equation (4) (type
EB).

For the third type of candidate points we con-
sider the self-bisector (or medial axis) of a curve,
which is the set of all points whose minimal dis-
tance to the curve is attained at more than one
point on the curve, cf. Fig. 2.

The Hausdorff distance from a to b can be at-
tained at an intersection point of a with the self-
bisector of b. We will only give a system of equa-
tions describing such a point here for the part of
the self-bisector where the two closest points are
interior points of b, see Fig. 3.

point—point bisector
point—curve bisector

curve—curve bisector

Fig. 2. Self-bisector of a parabola segment.

b(s)

Fig. 3. The Hausdorff distance from the curve a(t) to the
curve b(s) is assumed at the intersection point @ of the
curve a with the self-bisector of the curve b. The point Q
has two different internal foot-points P and R on b.

Suppose = a(t) and that P = b(s) and R =
b(r) with r # s are the points on b closest to Q.
Then we obtain the following system of equations
for ¢, s, and r:

[(a (t) = 20() + (wa (1) — w(5))?] -
[(@a () — 25(r))” + (ya () — us(r)
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In order to enforce the condition r # s we intro-

duce a new variable u and add one more equation
to the system:

1—u(s—r)=0 (8)

We add all points determined by the finitely many
solutions of this system to the candidate list (type
SB).

For the fourth type of possible candidate points
we observe that the Hausdorff distance can occur
between two interior points p € a and ¢ € b with-
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out one of them lying on the self-bisector of the
other curve, see Fig. 4.
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Fig. 4. Hausdorff distance at interior points.

Since ¢ is a footpoint on b for point p, the line
segment pq must be perpendicular to the tangent
line to curve b at point ¢. In addition it can be
shown that the tangent line to the curve a at point
p must be parallel to the tangent line to the curve b
at point ¢ and, thus, also perpendicular to the line
segment pg. The remaining candidate points (type
) for the Hausdorff distance are, therefore, among
the solutions of the following system:

(@a(t) — @p(s)) - 74(5) + (Ya(t) — ys(s)) - yp(s) =0 (9)

(@a(t) = 25(5))  Ta () + (Ya(t) — vo(s)) - wa (t)

0 (10)

A detailed geometric proof for this fact is omitted
due to space limitations and can be found in [7].

3. The general case

As was said before, the general problem we con-
sider is to find the Hausdorff distance between two
point sets given by two sets A, B of rationally pa-
rameterized algebraic curves.

In order to find 6(A4, B) we split the curves of A at
their intersection points with the Voronoi diagram
of B. Theresulting set A’ of curves has the property
that each curve lies in one Voronoi cell of B, so its
distance to B is the distance to one curve and can
be determined using the techniques of section 2.

Computing the complete Voronoi diagram of al-
gebraic curvesis a very difficult task in practice and
there are some open questions about the bisector
of algebraic curves [3-5]. In [5] an approximation
algorithm for Voronoi diagrams of curves is given.

Instead, we just compute the intersection points
described. The splitting of each curve a of A is done
incrementally. Suppose that we have list of inter-
section points of the Voronoi diagram of a subset
of B with a and we want to add a new curve b €
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B. We do this by scanning the current segments
of a. Each segment s belongs to some curve ¢ € B
which has already been processed. First we deter-
mine all intersection points of the bisector between
b and ¢ with a and find out which ones lie inside s.
s is split further with these points and some por-
tions are labelled with b as nearest neighbor, others
with c. After this has been done it might be nec-
essary to merge neighboring segments which are
both marked with b but are separated by a split-
point from previous steps.

Similar to the case of self-bisectors, the intersec-
tion points of with the bisector between b and c
can be found as solutions of systems of equations.
We only give this system here for the “interior” bi-
sector of two curves b and ¢, not the ones for the
bisector between an endpoint of one curve and an-
other curve or between two endpoints. These sys-
tems, however have to be considered, as well.

The system for the “interior” bisector uses the
property that if a point a(t) lies on the bisector
between b and ¢ and the corresponding footpoints
are b(s) and c(r) then the line segment a(t)b(s)
is perpendicular to the tangent vector b'(s), and
a(t)e(r) is perpendicular to ¢/ (r).

d(a(t),b(s)) — d(a(t),c(r)) =0 (11)
((a(t) = b(s)),b'(s)) =0 (12)
((a(t) = c(r), d(r)y =0 (13)

The worst case running time of our algorithm
as stated is O(nm?) if A consists of n and B of m
curves, assuming that the degrees of the curves are
bounded. It can be easily improved to O(nm log m)
by using a divide-and-conquer approach for the
splitting of the curves of A. It should be worthwhile
to further improve the combinatorial complexity of
the algorithm (see also [2]), but our major intent
was to find a simple algorithm that can be put into
practice with a reasonable amount of effort.

4. Implementation

We implemented the algorithm described in
C++ using the computer algebra software library
SYNAPS (SYmbolic Numeric APplicationS), see
[8,6], for solving the systems of polynomial equa-
tions.
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For visualization purposes a graphical user in-
terface was developed using the GTK library. It
includes visualization of the curves, the input and
editing of the parameterization and the intervals
if the parameter values, the computation of the
Hausdorff distance and the graphical indication of
the candidate points considered for the computa-
tion. Figure 5 shows the interface with an example.
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Fig. 5. Result of a Hausdorff distance computation with
two B-splines of degree 2. Both one-way distances and all
candidate points are shown.
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