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Abstra
t

It is an open problem to determined whether a polygonal 
hain 
an be straightened inside a 
on�ning region if its

links are not allowed to 
ross. In this paper we propose a spe
ial 
ase: whether a polygonal 
hain 
an be straightened

inside a 
ir
le without allowing its links to 
ross. We prove that this is possible if the straightened 
on�guration


an �t within 
ir
le. Then we show that these simple 
hains have just one equivalen
e 
lass of 
on�gurations.
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1. Introdu
tion

A 
hain is a sequen
e of rigid rods or links


onse
utively 
onne
ted at their endpoints, about

whi
h they may rotate freely. The link between

A

i�1

and A

i

(1 � i � n) is denoted by L

i

and the

length of L

i

is denoted by l

i

. The angle at inter-

mediate joint A

i

, �

i

2 [0; 2�), is that determined

by rotating L

i

about A

i


ounter
lo
kwise to bring

L

i

to L

i+1

. The 
hain � is simple if it is non-self-


rossing and non-self-tou
hing. The sub
hain of �

with joints A

i

; :::; A

j

is denoted by �[i; j℄.

We say a bend operation is performed at joint

A

i

, when the joint angle �

i

is 
hanged between �

i

and �. Throughout this paper, we assume that the

only bend operations allowed are single-joint bend

operations, in whi
h only one joint angle is altered

at a time. A bend operation is 
omplete if, at the

end of the operation the joint angle is �. We then

say that the joint has been straightened. A bend

Operation that is not 
omplete is 
alled a partial

bend. A sequen
e of bend operations is said to be

monotoni
 if no operation in
reases the absolute

deviation from straightness, j�

i

��j, for a joint A

i

.

Let � = (i

1

; i

2

; :::; i

n�1

) be a permutation of the

indi
es f1; 2; :::; n � 1g. For a simple 
hain �, we

say that a sequen
e (A

i

1

; A

i

2

; :::; A

i

n�1

) of joints is

unfoldable, if � 
an be straightened into a straight

line segment L using the joints in the sequen
e in
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turn, su
h that � remains simple and all of the

bend operations are 
omplete. A simple 
hain � is


alled unfoldable 
hain, if it has a unfoldable se-

quen
e of joints. An intermediate joint A

i

is 
alled

unfoldable joint, if a 
omplete bend operation 
an

be performed at A

i

su
h that during the perform-

ing bend operation, � remains simple.

The union 
hain, �

U

, of a 
hain � is a 
hain

whi
h is obtained from � in the following way: if

none of the joints of � is straight joint, �

U

= �; if

� has at least one straight joint, for any straight

joints A

i

, we delete joint A

i

and put A

i�1

A

i+1

as

a single link.

Re
on�guration problem and in parti
ular, fold-

ing problem, been raised independently by several

resear
hers. [3℄ has 
onsidered re
on�guration of

robot arms inside a 
ir
le, with allowing its links

to 
ross. In [4℄, Pei has proved that for a 
hain �

inside a 
ir
le whose radius is suÆ
iently big, there

is just one equivalen
e 
lass when its links are al-

lowed to 
ross. In [5℄ and [2℄, straightening a simple


hain in the plane is studied and is proved that any

simple 
hain 
an be straightened in the plane. And

in [1℄ Arkin, Fekete and Mit
hell have given an ef-

�
ient algorithm to determined if a simple 
hain


an be straightened by performing 
omplete bend

operations. In this paper, we study straightening a

simple 
hain within a 
ir
le. we give a quadrati
-

time algorithm to straighten a simple unfoldable


hain within a 
ir
le whose radius is suÆ
iently

big. Then we prove that all of simple 
hains 
an
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be straightened within a 
ir
le, if and only if their

straightened 
on�guration 
an �t in the 
ir
le. Fi-

nally we show that any two 
on�guration of these

simple 
hains are equivalent.

2. Preliminaries

Let � be a simple 
hain inside 
ir
leC(O; r) with

joints A

0

:::A

n

. For �tting straightened 
on�gura-

tion of � in C, we must have

P

n

i=1

l

i

� 2r. From

now on, we suppose � is a simple 
hain inside C

su
h that

P

n

i=1

l

i

< 2r.

For a 
ir
le C(O; r) and two points x; y 2 �C,

we use

_

xy to denote the 
lo
kwise ar
 from x to y.

For a point A

i

2 �C we denote the other endpoint

of the diameter of C whi
h is 
ontainingA

i

, byM

i

.

De�nition 1 A joint A

r

i

is 
alled rim joint

if it lies on boundary of 
ir
le C. We denote

the set of all rim joints of 
hain � by A

Rim

=

fA

r

0

; A

r

1

; :::; A

r

s

g.

De�nition 2 For any rim joint A

i

of 
hain �, the

ve
tor

��!

OM

i

is 
alled radius ve
tor of A

i

and is de-

noted by r

i

.

Lemma 3 There is a diameter s = ab of 
ir
le C

su
h that all of rim joints of 
hain � belong to one

of the ar
s

_

ab or

_

ba.

PROOF. If A

Rim

= ;, there is nothing to prove.

Let A

i

be a rim joint of � and X be a moving

obje
t whi
h is walking along ar


_

A

i

M

i


lo
kwise,

starting at the point A

i

. Suppose A

r

is the last rim

joint of � that is visited byX . Diameter s = A

r

M

r

is a solution. Be
ause ar


_

A

r

M

r


ontains no rim

joint of �, ex
ept A

r

. 2

De�nition 4 Suppose A

Rim

has at least two point

and rim joints of � belong to

_

ab. The nearest rim

joints to points a and b are denoted by A

f

and A

e

,

respe
tively. These joints are 
alled limit-joints.

It is 
lear that all of the other rim joints of � are

on ar


_

A

f

A

e

.

De�nition 5 Let A

e

and A

f

be limit-joints of �.

Ve
tors r

e

and r

f

are 
alled dire
tion ve
tors.

De�nition 6 The sum of dire
tion ve
tors, r

e

and

r

f

, is 
alled 
entral dire
tion and denoted by d, i.e.,

d = r

e

+ r

f

.

Central Translation:We draw n ve
tors parallel

to d from any joint A

i

until hit 
ir
le at points

N

i

, then put "

i

= jj

���!

A

i

N

i

jj and " = minf"

i

j 0 �

i � ng. Translation of � inside C along the ve
tor

d

"

=

"

jjdjj

d, is 
alled 
entral translation of �. New

positions of � and any joint A

i

, after the 
entral

translation, are denoted by �

0

and A

0

i

. It is 
lear

that "

e

= "

f

.

3. Unfoldable Simple Chains

Suppose � = (A

i

1

; A

i

2

; :::; A

i

n�1

) is an unfold-

able sequen
e of joints of �. For straightening �

inside 
ir
le C(O; r), we propose the following al-

gorithm whi
h 
ontains three steps:

Algorithm 1 Unfolding Simple Chain �:

step 1. �

0

= �; j = 0.

step 2. �

0

= �

0

U

; j = j + 1. If j = n , stop. else

k = i

j

;

step 3. Straighten A

k

. Go to step 2.

Now for step 3, straightening joint A

k

within 
ir-


le C, we propose the following algorithm whi
h


ontains four steps:

Algorithm 2 Straightening joint A

k

:

step 1. �

0

= �[0; k℄; �

n

= �[k; n℄;

step 2. Rotate �

0

about A

k

until A

k

straightens or

one of joints of �

0

hitsC and �

0


an not rotate more

about A

k

. If A

k

straightens, stop; else go to step 3.

step 3. Rotate �

n

about A

k

until A

k

straightens

or one of joints of �

n

hits C and �

n


an not rotate

more about A

k

. If A

k

straightens, stop; else go to

step 4.

step 4. Cal
ulate d

"

and transmit � by d

"

. Go to

step 2.

4. Corre
tness of Algorithm 2

Any repeat of algorithm 2 is 
alled a phase and

the joint angle at A

k

, at the end of phase i, is

denoted by �

i

. For showing 
orre
tness of algo-

rithm 2, we show that during the algorithm, � re-

mains simple and it remains insideC. And we prove

that by using algorithm 2, after a �nite number

of repeats, A

k

straightens. Furthermore, this �nite

number is independent of n.

Chain � remains simple, be
ause A

k

is an unfold-
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able joint in the plane. Now for showing that � re-

mains inside C, we �rst prove that 
entral transla-

tion always 
an be done.

Lemma 7 d

"

6= 0.

PROOF. If d = 0, we have r

f

= �r

e

. That is

implies A

f

= M

e

and A

e

=M

f

, i.e., A

f

A

e

= 2r.

Therefore

P

n

i=1

l

i

�

P

l

i

2�[e;f ℄

l

i

� A

f

A

e

= 2r.

That is a 
ontradi
tion. Thus d 6= 0.

Be
ause the angles between d and its 
ompo-

nents are less than �=2 and all of radius ve
tors

lie between ve
tors r

e

and r

f

, the angle between

d and radius ve
tors are less than �=2, too. Thus

any rim joint 
an transmit in dire
tion d inside C.

Any interior points of C also 
an transmit in all di-

re
tions inside C. Therefore " 6= 0. Consequently

d

"

6= 0. 2

It is 
lear that during the step 1 and step 2, all of

the joints remain inside 
ir
le. At step 3, be
ause

" = minf"

i

j 0 � i � ng and the angle between

radius ve
tors and d are less than �=2, � remains

inside C.

Now to show that after a �nite number of repeats,

algorithm 2 is terminated, we �rst show that at

the end of any phase of algorithm 2, �

i

be
omes

strongly 
lose to �, i.e., j� � �

i+1

j < j� � �

i

j. So

we have to prove at the end of 
entral translation

of �, at least one of the sub
hains �

0

or �

n

, 
an

rotate about A

k

su
h that joint angle at A

k

has

be
ame 
lose to �. Note that at the end of step 1

and step 2, if A

k

does not straighten, A

Rim

has at

least two points, one point from �

0

and the other

point from �

n

.

Lemma 8 Let A

e

and A

f

be the limit-joints of �

at phase i. If both of A

e

and A

f

belong to one of the

sub
hains �

0

or �

n

, then at the end of translation,

none of the joints of the other sub
hain lie on �C.

Furthermore, this sub
hain 
an rotate about A

k

at

phase i+ 1.

PROOF. Assume without loss of generality that

A

f

; A

e

2 �

0

. Suppose for a 
ontradi
tion, A

t

is a

joint of �

n

su
h that A

0

t

2 �C. At the beginning

of translation, �

n

has at least one rim joint, A

m

,

whi
h lies on ar


_

A

f

A

e

. If A

k

is in the exterior

of 
losed 
urve Æ =

_

A

f

A

e

[�

0

[e; f ℄, �

n

[m; k℄ and

�

0

[e; f ℄ will be interse
ting. Thus A

k

is in the in-

terior of Æ. See �gure 1. Therefore A

0

k

is in the in-

terior of the 
losed 
urve Æ

0

= � [ �

0

0

[f; e℄ where

A
f

A
f

-

Ae

Ae

-A
k

-

A
k

A
m d

G
-

A
0

G

b

Fig. 1. If �

n


ontains no limit-joints, �

0

n

has no rim joint.

� is the translation of ar


_

A

f

A

e

by the ve
tor d

"

.

But A

0

t

is in the exterior of Æ

0

. So �

0

n

[k; t℄ interse
ts

boundary of Æ

0

. That is a 
ontradi
tion. Be
ause

�

n

[k; t℄ does not interse
t boundary of Æ. 2

By lemma 8, we suppose A

e

and A

f

don't belong

to the same sub
hain. From now on, the sub
hain

whi
h 
ontains A

e

is denoted by �

e

and the other

sub
hain whi
h 
ontains A

f

is denoted by �

f

. We

have the following theorem.

Theorem 9 At the end of translation, at least one

of the sub
hains �

e

and �

f


an rotate about A

k

.

PROOF. Refer to full paper. 2

Corollary 10 j�

i

� �j > j�

i+1

� �j.

By 
orollary 10, the 
on�guration of � in two 
on-

se
utive phase is di�erent. Thus during the algo-

rithm 2, straightening A

k

is strongly progressed

and 
y
ling is not possible. Now for showing that

after a �nite number of repeats, algorithm 2 is ter-

minated, we use simpli
ity of �. Assume without

loss of generality that �

k

< �. Thus a

ording to

de�nition of joint angle, �

0

must rotate about A

k


lo
kwise. First suppose there is no 
on�ning re-

gion. So A

k


an be straightened and then �

0


an

rotate about A

k


lo
kwise more, until �rst self-

tou
hing is o

urred. This operation is 
alled �-

passage motion and the joint angle atA

k

is denoted

by � + �

k

, that �

k

> 0. Now suppose � is inside

C(O; r). We 
hange the stopping 
riteria of algo-

rithm 2, from a
hieving � to a
hieving � + �

k

and

use this new algorithm on A

k

. All of above proofs

also hold for this new algorithm. So by 
orollary

10 we also have:

j�

i+1

� � � �

k

j < j�

i

� � � �

k

j (�)



20th European Workshop on Computational Geometry

Assumption �

k

< � yields: for every i � 0, �

i

�

�+�

k

. So (�) yields �+�

k

��

i+1

< �+�

k

��

i

. In the

other words, f�

i

g

i�0

is a bounded and monotone

sequen
e. Therefore it 
onverges to its suprimum,

� + �

k

. Thus for every " > 0 exists a �nite natural

number N > 0 su
h that for every i � N we have

j�

i

����

k

j < ", i.e., for every i � N , �+�

k

��

i

<

". Thus for " = �

k

, there is a �nite number N

�

su
h that for all i � N

�

, � + �

k

� �

i

< �

k

. So for

i = N

�

, we have � + �

k

� �

N

�

< �

k

, i.e., �

N

�

> �.

Be
ause N

�

is the smallest natural number that

�+�

k

��

i

< �

k

, we have �+�

k

��

N

�

�1

� �

k

, i.e.,

�

N

�

�1

� �. Therefore A

k


an straighten in phase

N

�

or N

�

� 1. Be
ause �

N

�

�1

� � and �

N

�

> �.

It is 
lear that N

�

is independent of n.

Therefore proof of 
orre
tness of algorithm 2 is

terminated. Complexity of algorithm 1 is O(n

2

),

be
ause 
omplexity of ea
h step is O(n) and the

number of repeats is n� 1.

5. Arbitrary Simple Chains

Now we prove that an arbitrary simple 
hain 
an

be straightened inside a 
ir
le. First we have the

following theorem.

Theorem 11 Any simple 
hain � 
an be straight-

ened using a �nite number of monotoni
 single-

joint bend operations.

PROOF. See [1℄ and [2℄. 2

Theorem 11 is true, if 
hain is inside a 
ir
le as a


on�ning region.

Theorem 12 A simple 
hain � 
an be straight-

ened inside a 
ir
le using a �nite number of mono-

toni
 single-joint bend operations, if

n

X

i=0

l

i

< 2r.

PROOF. By theorem 11, � 
an be straightened

in the plane using a �nite number of monotoni


single-joint bend operations. If all of these bend

operations are 
omplete, � 
an be straightened by

using algorithm 1. But if at least one of the bend

operations is not 
omplete, these bend operations

will be in a

ordan
e with a sequen
e of motions,

M = fM

j

g

k

j=1

, su
h that M

j

is a partial bend

operation and � 
an be straightened by using M .

Any operation M

j

is single-joint, so it is in a

or-

dan
e with a joint A

i

j

and this a

ordan
e is not

one to one, be
ause M

j

s are not 
omplete. Sup-

pose any bend operationM

j

is 
hanged joint angle

at A

i

j

by �(A

i

j

; j). Now note that any operation

M

j

is monotone; so if we 
hange the stopping 
ri-

teria of algorithm 2, from a
hieving � to a
hieving

�

i

j

+�(A

i

j

; j), this new algorithm 
an be used to

perform any bend operation M

j

inside C. There-

fore � 
an be straightened inside C by performing

M

j

s in turn, be
ause k is �nite. 2

6. Con
lusion

Assume that � is a simple 
hain su
h that

P

n

i=1

l

i

< 2r and �

1

and �

2

are two 
on�guration

of � inside 
ir
le C(O; r). We denote their straight


on�gurations by L

1

and L

2

, respe
tively. Let M

be a sequen
e of bend operations for straighten-

ing �

2

inside C and M

R

be the reverse of Motion

M . It is 
lear that by performing M

R

, L

2


an be

re
on�gured to �

2

. Now by theorem 11, we 
an

re
on�gure �

1

to L

1

, then we 
an re
on�gure L

1

to L

2

by translation and rotation operations and

�nally we 
an re
on�gure L

2

to �

2

by M

R

. So �

1


an be re
on�gured to �

2

inside C, i.e., for a simple


hain �, if

n

X

i=1

l

i

< 2r, then any two 
on�gurations

of �, inside 
ir
le C(O; r) are equivalent.
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