
DistributedRankingMethods forGeographic InformationRetrieval

Marc van Kreveld Iris Reinbacher Avi Arampatzis Roelof van Zwol
Institute for Information & Computing Sciences

Utrecht University
P.O. Box 80.089
3508 TB Utrecht
The Netherlands

{marc,iris,avgerino,roelof}@cs.uu.nl

Abstract

Geographic Information Retrieval is concerned with retrieving documents that are related to some location. This

paper addresses the ranking of documents by both textual relevance and spatial relevance. To this end, we introduce

distributed ranking, where similar documents are ranked spreaded in the list instead of sequentially. The effect

of this is that documents close together in the ranked list have less redundant information. We present various

ranking methods and efficient algorithms for them.

1. Introduction

The most common way to return a set of docu-
ments obtained from a Web query is by a ranked
list. The search engine attempts to determine
which document seems to be the most relevant to
the user and will put it first in the list. In short,
every document receives a score, or distance to the

query, and the returned documents are sorted by
this score or distance.

There are situations where the sorting by score
may not be the most useful one. When a more com-
plex query is done, composed of more than one
query term or aspect, documents can also be re-
turned with two or more scores instead of one. This
is particularly useful in geographic information re-

trieval [5,6,8]. For example, the Web search could
be for castles in the neighborhood of Koblenz, and
the documents returned ideally have a score for the
query term “castle” and a score for the closeness
to Koblenz. This implies that a Web document re-
sulting from this query can be mapped to a point
in the 2-dimensional plane.

A cluster of points in this plane could be several
documents about the same castle. If this castle is in
the immediate vicinity of Koblenz, all of these doc-
uments would be ranked high in the sorted list, pro-
vided that they also have a high score on the term

“castle”. However, the user probably also wants
documents about other castles that may be a bit
further away, especially when these documents are
more relevant for the term “castle”. To incorporate
this idea in the ranking, we introduce distributed

ranking in this paper. We present various models
that generate ranked lists that also have diversity.
We also present efficient algorithms that compute
the distributed rankings. To keep server load low,
it is important to have efficient algorithms.

There are other situations where ranking based
on two scores shows up: scores of two textual terms,
or of a textual term and metadata information. A
common example of metadata is the number of hy-
perlinks that link to a document. Standard in infor-
mation retrieval is to combine the two scores into
a single score (e.g., by a weighted sum), which pro-
duces the ranked list by sorting. Besides the prob-
lem that it is unclear how the two scores should
be combined, it also makes distributed ranking im-
possible. Two documents with the same combined
score could be similar documents or quite differ-
ent. If two documents have two scores that are the
same, one has more reason to suspect that the doc-
uments themselves are similar.

The topic of geographic information retrieval is
studied in the SPIRIT project [5]. The idea is to
build a search engine that has spatial intelligence
because it will understand spatial relationships like

20th EWCG Seville, Spain (2004)



20th European Workshop on Computational Geometry

close to, to the North of, adjacent to, and inside, for
example. The core search engine will process a user
query in such a way that both the term relevance
and the spatial relevance of a document is obtained
in a score. This is possible because the search en-
gine will not only have a term index, but also a spa-
tial index. These two indices provide the two scores
that are needed to obtain a distributed ranking.
The ranking study presented here will form part of
the geographic search engine to be developed for
the SPIRIT project.

Related research has been conducted in various
papers [1,3,6]. They address geographic informa-
tion retrieval or text document analysis, and use
more than one score to rank results. The scores are
combined into one score by a weighting formula.
In some papers, the additional relevance is deter-
mined, which depends on documents ranked ear-
lier. This is quite similar to our approach. How-
ever, we have a different starting point because we
assume that we have two scores of one document
based on two aspects. Furthermore, other papers
do not give algorithms and efficiency analyses.

2. Distributed Ranking Methods

In this section we will present specific ranking
methods. We will focus on the two dimensional
case only. So we assume that a Web query has
been done, and a number of relevant documents
were found. Each document is associated with two
scores, for example a term score and a spatial score.
The relevant documents are mapped to points in
the plane, and the query is also mapped to a point.
We perform the mapping in such a way that the
query is a point Q at the origin, and the documents
are mapped to points p1, . . . , pn in the upper right
quadrant of Q where documents with high scores
are points close to Q. The point with the small-
est Euclidean distance to the query is considered
the most relevant document and is always first in
any ranking. The remaining points are ranked with
respect to already ranked points. At any moment
during the ranking, we have a subset R ⊂ P of
points that have already been ranked, and a subset
U ⊂ P of points that are not ranked yet. We choose
from U the “best” point to rank next, where “best”
is determined by a scoring function that depends
both on the distance to the query Q and on the set

Q

y

x

p1

p2

p3

p

pi
‖p‖

‖p − pi‖

φ

Fig. 1. An unranked point p and ranked points p1, p2, p3, pi,
where p is closest to pi by distance and by angle.

R of ranked points. Intuitively, an unranked point
p has a higher added value or relevance if it is not
close to any ranked points in R.

For every unranked point p, we consider only the
closest point pi ∈ R, where closeness is measured
either in the Euclidean sense, or by angle with re-
spect to the query point Q. This is illustrated by
‖p−pi‖ and φ, respectively, in Figure 1. Using the
angle to evaluate the similarity of p and pi seems
less precise than using the Euclidean distance, but
it allows for more efficient algorithms, and certain
extensions of angle-based ranking methods give
well-distributed results.

2.1. Distance to query and angle to ranked

Our first ranking method uses the angle mea-
sure to obtain the similarity between an unranked
point and a ranked point. In Figure 1, consider the
angle φ = φ(p, pi) and rank according to the score
S(p, R) ∈ [0, 1], which can be derived from the fol-
lowing normalized equation:

S(p, R) = min
pi∈R

(

2(φ(p, pi) + c)

π + 2c
· (

1

1 + ‖p‖
)k

)

(1)
Here, k denotes a constant; if k < 1, the empha-
sis lies on the distribution, if k > 1, we assign a
bigger weight to the proximity to the query. The
additive constant 0 < c ≪ 1 ensures that all un-
ranked points p ∈ U are assigned a positive score.
During the ranking algorithm, we always choose
the unranked point p that has the highest S(p, R)
score and rank it next. This implies an addition to
the set R, and hence, recomputation of the scores
of unranked points may be necessary. We first give
a generic, quadratic time algorithm.



March 25-26, 2004 Seville (Spain)

Algorithm 1:

(i) Rank the point p closest to the query Q first.
Delete it from the point set P .

(ii) For every unranked point p ∈ P do
(a) Store with p the point pi ∈ R with the

smallest angle to p.
(b) Compute the score S(p, R) = S(p, pi) .

(iii) Choose the point with the highest score
S(p, R) as next in the ranking; add it to R

and delete it from P .
(iv) Compute for every point p′ ∈ P the angle to

the last ranked point p. If it is smaller than
the angle of the point stored with p′, then
store p with p′ and update the score S(p′, R).
Continue with step (iii).

This simple, quadratic time algorithm can easily
be modified to work for different score functions.
Theorem 1 A set of n points in the plane can

be ranked according to the distance-to-query and

angle-to-ranked model in O(n2) time.

2.2. Distance to query and distance to ranked

We next study a model based the distance to the
closest ranked point. In Figure 1, consider the dis-
tance ‖p−pi‖ from p to the closest ranked point pi

and rank according to the outcome of the following
equation:

S(p, R) = min
pi∈R

(

‖p − pi‖

‖p‖2

)

(2)

A normalized equation such that S(p, R) ∈ [0, 1] is
the following:

S(p, R) = min
pi∈R

(

(1 − e−λ·‖p−pi‖) ·
1

1 + ‖p‖

)

(3)

Here, λ is a constant that defines the slope of the
exponential function. Algorithm 1 can be modified
to work here as well with the same running time.
Theorem 2 A set of n points in the plane can

be ranked according to the distance-to-query and

distance-to-ranked model in O(n2) time.

2.3. Addition models

So far, our distributed methods were all based
on a formula that divided angle or distance to the
closest ranked point by the distance to the query.
In this way, points closer to the query get a higher
relevance. We can obtain a similar effect but a dif-
ferent ranking by adding up these values. It is not

ℓ1

ℓ2

ℓ3

p1

p2 p3

ℓ2

Tcw

Tccw

T ′
ccw

T ′′
ccw

T ′
cw

T ′′
cw

ℓ12

ℓ32

ℓ13

ℓ12

ℓ32ℓ32

ℓ1

Fig. 2. The split and concatenate of trees in Algorithm 2.

clear beforehand which model will be more satis-
factory for users, so we analyze these models as
well.

S(p, R) = min
pi∈R

(

α · (1 − e−λ·(‖p‖/‖pmax‖))+

(1 − α) · φ(p, pi) ·
2

π

)

(4)

In this equation, pmax is the point with maximum
distance to the query, α ∈ [0, 1] denotes a variable
which is used to put an emphasis on either distance
or angle, and λ is a constant that defines the slope
of the exponential function. Algorithm 1 can be
modified for this addition model, but because of
the fact that the angle is now only an additive and
not a multiplicative part of the score equation, we
can give algorithms with better running time.

The point set is initially stored in the leaves of
a binary tree T , sorted by counterclockwise (ccw)
angle to the y-axis. In every leaf of the tree we also
store: (i) ccw and clockwise (cw) angle to y and
x-axis respectively; (ii) the distance to the query;
(iii) ccw and cw score. We augment T as follows
(see e.g. (Cormen et al. 1990) for augmenting data
structures): In every internal node we store the
best cw and ccw score per subtree. In the root we
additionally store the angle of the closest ccw and
cw ranked point and whether the closest ranked
point is in cw or ccw direction. Additionally we
store the best score per tree in a heap for quicker
localization. As shown left in Figure 2, between
two already ranked points p1 and p2, indicated by
ℓ1 and ℓ2, there are two binary trees, cw and ccw
of the bisecting barrier line ℓ12. All the points in
Tccw are closer in angle to p2 and all the points in
Tcw are closer in angle to p1. If we insert a new
point p3 to the ranking, this means we insert a
new imaginary line ℓ3 through p3 and we need to
perform the following operations on the trees:

(i) Split Tcw and Tccw at the angle-bisectors ℓ32

and ℓ13, creating the new trees T ′
cw and T ′

ccw



20th European Workshop on Computational Geometry

and two intermediate trees T cw and T ccw

(ii) Concatenate the intermediate trees from (i),
creating one tree T .

(iii) Split T at the newly ranked point p3, creating
T ′′

cw and T ′′
ccw.

Figure 2 right, shows the outcome of these op-
erations. Whenever we split or concatenate the bi-
nary trees we need to make sure that the augmen-
tation remains correct, which is standard. We also
need to update the information in the root of each
tree about the closest cw and ccw ranked point and
the best scores. As the scores are additive, and all
scores for points in the same tree are calculated
with respect to the same ranked point, we simply
subtract the cw (ccw) angle of the closest ranked
point from the cw (ccw) best score to get the new
best score for the tree. Furthermore we need to up-
date the score information in the heap. Now we
can formulate an algorithm for the addition-model
that runs in optimal O(n log n) time.
Algorithm 2:

(i) Create T with all points of P , the augmenta-
tion and a heap that contains only the point
p closest to the query Q.

(ii) Choose the point p with the highest score
S(p, R) as next in the ranking by deleting the
best one from the heap.

(iii) For every last ranked point p do:
(a) Split and concatenate the binary trees

as described above and update the in-
formation in their roots.

(b) Update the best-score information in
the heap: delete the remaining best
score of the old tree that did not con-
tain p and insert the four best scores of
the new trees.

Theorem 3 A set of n points in the plane can

be ranked according to the angle-distance addition

model in O(n log n) time.

Another, similar, addition model adds up the
distance to the query and the distance to the clos-
est ranked point. Algorithm 2 is not applicable for
this addition model, because the distance to the
closest ranked point does not change by the same
amount for a group of points as the angle. This im-
plies that the score for every unranked point needs
to be adjusted individually when adding a point
to R. We can modify Algorithm 1 for this addi-
tion model. Alternatively, we can use an algorithm
that has O(n2) running time in the worst case, but
a typical running time of O(n log n), as in [4,7].

The idea is to maintain the Voronoi diagram of the
ranked points, and with each Voronoi cell, main-
tain the unranked points in it. This practically fast
algorithm can be applied to all ranking methods
described thus far.

3. Conclusions

This paper introduced distributed relevance
ranking for documents that have two scores. In
the full paper we present more models and also
several extensions of the models. We have im-
plemented the rankings to inspect how well they
spread, while not sacrificing distance to the query
too much. It seems that certain extensions of the
models presented here perform best. However,
user evaluation is needed (and is planned) to test
this properly.

References

[1] J.G. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents and
producing summaries. In Research and Development in
Information Retrieval, pages 335–336, 1998.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[3] J. Goldstein, V.O. Mittal, J.G. Carbonell, and J.P.
Callan. Creating and evaluating multi-document
sentence extract summaries. In Proc. CIKM, pages 165–
172, 2000.

[4] P. S. Heckbert and M. Garland. Fast polygonal
approximation of terrains and height fields. Report
CMU-CS-95-181, Carnegie Mellon University, 1995.

[5] C.B. Jones, R. Purves, A. Ruas, M. Sanderson,
M. Sester, M.J. van Kreveld, and R. Weibel. Spatial
information retrieval and geographical ontologies – an

overview of the SPIRIT project. In Proc. 25th Annu.
Int. Conf. on Research and Development in Information
Retrieval (SIGIR 2002), pages 387–388, 2002.

[6] E. Rauch, M. Bukatin, and K. Naker. A confidence-
based framework for disambiguating geographic terms.
In Proc. Workshop on the Analysis of Geographic
References, 2003.

[7] M. van Kreveld, R. van Oostrum, and J. Snoeyink.
Efficient settlement selection for interactive display.
In Proc. Auto-Carto 13: ACSM/ASPRS Annual
Convention Technical Papers, pages 287–296, 1997.

[8] U. Visser, T. Vögele, and C. Schlieder. Spatio-
terminological information retrieval using the BUSTER
system. In Proc. of the EnviroInfo, pages 93–100, 2002.


