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Abstract

Problem 50 in the Open Problems Project [2] asks whether any triangulation on a point set in the plane contains
a pointed spanning tree as a subgraph. We provide a counterexample. As a consequence we show that there exist
triangulations which require a linear number of edge flips to become Hamiltonian.

Key words: triangulation, spanning tree, pointed pseudo-triangulation, Hamiltonian cycle, edge flip

1. Introduction

Let S be a finite set of points in the plane in
general position (no three points are on a common
line), and let G be a straight-line graph (drawing
in the plane) with vertex set S and edges E. A
point p ∈ S is pointed in G if there exists an angle
less than π that contains all edges incident to p

in G. The graph G is pointed if all its vertices are
pointed.

A triangulation of S is a maximal planar
straight-line graph on top of S. A spanning tree
on S is a connected, acyclic graph with vertex set
S. Several interesting relations between triangu-
lations and spanning trees exist. For example it is
well known that the Delaunay triangulation of S

contains a minimum spanning tree of S as a sub-
graph. Another example is a result of Schnyder [3]
who shows that every triangulation of a point set
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with three extreme vertices allows a partition of
its interior edges into three trees.

In this note we disprove the following conjecture
which was posed as Problem 10 at the First Gremo
Workshop on Open Problems (Stels, Switzer-
land) in July 2003 (by Bettina Speckmann) and
at the CCCG 2003 open-problem session (Hali-
fax, Canada) in August 2003. It later on became
Problem 50 in the Open Problems Project of the
computational geometry community [2].

Conjecture 1 Every triangulation of a set of
points in the plane (in general position) contains a
pointed spanning tree as a subgraph.

This conjecture arose while proving sub-
structure properties when investigating flips in
pointed and non-pointed pseudo-triangulations [1].
Pseudo-triangulations are a generalization of tri-
angulations. A pseudo-triangle is a planar polygon
with exactly three interior angles less than π. A
pseudo-triangulation of S is a partition of the con-
vex hull of S into pseudo-triangles whose vertex
set is S. Pseudo-triangulations have become a ver-
satile data structure. Beside several applications
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in computational geometry, the rich combinatorial
properties of pseudo-triangulations stimulated re-
search, see e.g. [1] and references therein.

Obviously Conjecture 1 would be true if a trian-
gulation always contained a Hamiltonian path or a
pointed pseudo-triangulation as a subgraph. Sev-
eral triangulations not containing these structures
are known, but for each example it is still easy to
find a pointed spanning tree as a subgraph. This
observation supported the general belief that the
conjecture should be true. However, in the next
section we provide a (non-trivial) counterexample.
In Section 3 we discuss some implications of this
result, like a lower bound for the number of neces-
sary edge flips to transform a given triangulation
such that it contains a Hamiltonian cycle.

2. A Counterexample

Figure 1(a) shows the simplest example of a
connected straight-line graph not containing a
pointed spanning tree as a subgraph. We call this
graph a 3-star and it is a spanning tree which is
not pointed at it’s central point.

a4
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a3

a1

a6 (b)(a)

Fig. 1. Small connected straight-line graphs that do not
contain a pointed spanning tree as a subgraph: (a) the
3-star (b) the bird graph

The graph on top of the points a1, .., a6 in Fig-
ure 1(b) is called the bird graph. It can be seen as
a triangulated composition of two 3-stars. In the
next lemma we show that the bird graph does not
contain a pointed spanning tree either.

Lemma 2 The bird graph does not contain a
pointed spanning tree as a subgraph.

Proof Assume that the bird graph contains a
pointed spanning tree T as a subgraph. Because
of connectivity, the edges a1a2 and a5a6 are in T .

The edge a2a5 cannot be in T , as otherwise any
edge incident to a3 would violate the pointedness
condition in either a2 or a5. Thus, either a3 or
a4 has to be connected to both, a2 and a5. This
prevents the other vertex, a4 resp. a3, to be con-
nected anyhow. ✷

In a next step, we extend the bird graph by two
additional points b1, b2, see Figure 2. Intuitively
speaking b1 and b2, respectively, are connected
by edges to each visible point of the bird graph.
Moreover we add the edge b1, b2. We call the re-
sulting full triangulation of the triangle b1, b2, a1

with interior points a2, .., a6 the bird cage graph.
The following lemma shows that it will play a cru-
cial role in the construction of a triangulation not
containing a pointed spanning tree.

b2b1

a1

Fig. 2. The bird cage graph: any connected, pointed, span-
ning subgraph contains at least one interior edge incident
to b1 or b2, respectively.

Lemma 3 Any connected, pointed, spanning sub-
graph of the bird cage graph contains at least one
interior edge incident to b1 or b2, respectively.

Proof Let A be a connected, pointed, spanning
subgraph of the bird cage graph. By Lemma 2, the
subgraph B of A induced by the points a1, .., a6

does not contain a pointed spanning tree. That is,
B consists of at least two components. Because of
connectivity, A has to include edges that connect
these components. For this, at least one interior
edge incident to b1 or b2, respectively, has to be in
A. ✷

We are now ready to prove the main theorem of
this note.

Theorem 4 There exist triangulations on top of
a point set in the plane in general position that do
not contain a pointed spanning tree as a subgraph.

Proof As indicated in Figure 3 we connect three
points a, b, c pairwise by bird cage graphs (shaded
triangles), such that for each bird cage graph the
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c

ba

Fig. 3. A bird wing graph containing five bird cage graphs.

connected vertices correspond to b1 and b2, re-
spectively. Furthermore, we add four points near
point c. This four points form a three star and are
connected to a, b and c as shown in the figure.
Next the whole construction, except the bird cage
graph connecting a to b, is mirrored along the
line a,b. We call the resulting graph a bird wing
graph, cf. Figure 3. Note that all edges incident
to c form three wedges in an obvious way. If we
group the edges of a wedge togehter the resulting
graph corresponds to a 3-star with c as its center.
The same holds for b and its incident edges. To
complete our construction we finally form another
3-star like graph with center a′ by joining three
bird wing graphs at their a-vertices, see Figure 4.
Let us denote the resulting graph by G and its
vertex set by S.

Let G be any planar straight-line graph draw-
ing on top of S which contains G as a subgraph.
Note that G might be a complete triangulation of
S. Assume that there exists a pointed spanning
tree PST as a subgraph of G. By similar argu-
mentation as for the 3-star, PST does not contain
any edge incident to a′ in at least one of the three
bird wing graphs. W.l.o.g. let b be a vertex of this
bird wing graph. Applying Lemma 3, PST has to
contain at least one edge in the interior of the bird
cage graph between a′ and b incident to b. From
the property of the 3-star we can find a bird cage
graph B incident to b such that PST does not
contain any edge incident to b in B. W.l.o.g. let c

be the vertex at the other end of B. By Lemma 3,
PST contains at least one edge incident to c in B.
The same holds for the bird cage graph between a′

and c. Moreover, the four additional points near

b

c

a’

Fig. 4. A graph consisting of three bird wing graphs.

point c cannot be connected by any edge to either
a′, b, or c without destroying pointedness at one
of these points. Since PST is connected, the three
bold edges in Figure 3 have to be in PST . How-
ever, the resulting graph is not pointed any more,
as the three bold edges form a 3-star. Thus, there
exists no pointed spanning tree as a subgraph for
G. Note that all arguments work for any planar
straight-line graph containing G as a subgraph,
because our argumentation is solely based on the
interior of fully triangulated areas. ✷

3. Some Implications

The example in the proof of Theorem 4 is con-
structed on top of a point set S with 124 points.
Adding more points to S in the outer face of G and
completing the extended graph with edges to a full
triangulation still gives a triangulation that does
not contain a pointed spanning tree. Thus, Theo-
rem 4 also holds if we put additional restrictions on
the size of the convex hull of the underlying point
set.

As a more interesting consequence we get a
lower bound on the minimum number of edge flips
that might be necessary to transform a triangula-
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tion such that it contains a pointed spanning tree
as a subgraph. To this end, we combine a linear
number of disjoint copies of the 124-point exam-
ple. After completing the graph on the resulting
point set to a full triangulation, at least one flip
has to be executed in each copy.

Corollary 5 There exist triangulations on top of
an n-point set in the plane in general position that
require Ω(n) edge flips to contain a pointed span-
ning tree as a subgraph.

From the Delaunay flip algorithm it follows that
a quadratic number of flips is always sufficient to
obtain a pointed spanning tree as a subgraph. So
far no better upper bound on this flip distance is
known.

Of particular interest is the investigation of
Hamiltonicity of triangulations. A triangulation
is called Hamiltonian if it contains a Hamiltonian
cycle. Let T be a non-Hamiltonian triangulation.
What is the minimum number of edge flips that is
always sufficient to come from T to a Hamiltonian
triangulation T ′? Note that Hamiltonicity implies
the existence of a pointed spanning tree, whereas
the reverse is not true in general. Therefore, we
conclude from Corollary 5:

Corollary 6 There exist non-Hamiltonian trian-
gulations on top of an n-point set in the plane in
general position that require Ω(n) edge flips to be-
come Hamiltonian.

The last statement can also be shown in a more
direct way. Let a point set S with |S| = n be given
such that the convex hull of S contains 3 points.
Then a triangulation on top of S has 2n − 5 tri-
angles. We place one additional point into each
of these triangles and connect it by edges to the
corners of the triangle. The set A of inserted
points is independent, meaning that there is no
edge between any two points of A in the resulting
triangulation T on top of S ∪ A. Assume there
exists a sequence δ of vertices forming a Hamil-
tonian cycle. Between any two vertices of A in δ

there must be at least one vertex of S because A is
an independent set. Since |A| > |S|, T cannot be
Hamiltonian, i.e., δ cannot exist. If we want T to
become Hamiltonian we must perform a sequence
of flips which reduces |A|. Any flip connects at
most two elements of A and therefore reduces |A|

by at most 1. Hence, a linear number of flips is
necessary because |A| is about twice the cardinal-
ity of S. ✷

4. Open Problems

There are several related open questions. First,
is there a smaller (in the number of points) coun-
terexample to Conjecture 1? Moreover, how fast
can we decide whether a given triangulation con-
tains a pointed spanning tree as a subgraph? And
if the answer is positive, how fast can we com-
pute this tree? Regarding flipping, what are tight
bounds on the required number of edge flips to
transform a triangulation such that it contains a
pointed spanning tree or a Hamiltonian cycle, re-
spectively?
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