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Abstract

The k-Centrum problem consists in finding a point that minimises the sum of the distances to the k farthest points

out of a set of given points. It encloses as particular cases to two of the most known problems in Location Analysis:

the center, also named as the minimum enclosing circle, and the median. In this paper the k-Centrum criteria is

applied to obtaining a straight line-shaped facility. A reduced finite dominant set is determined and an algorithm

with lower complexity than the previous one obtained.
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1. Introduction

Given a set of n demand points, the median
straight line problem consists in finding the
straight line that minimises the sum of the dis-
tances to the points. The center straight line
problem looks for the straight line that minimises
the distance to the farthest point. A k-Centrum
straight line minimises the sum of the distances
to the k farthest demand points. If k = 1 then the
corresponding problem is that of the center and
for k = n the median, thus enclosing both prob-
lems. However, last is not the only reason for the
relevancy of this problem: it provides the decision
maker a more flexible tool.

The k-Centrum criteria has been applied in point
location facility in different contexts. When the
underlying structure is a graph, Tamir [9] has de-
vised efficient algorithms for different cases (chain
graph, tree, general graphs, multiple case). The
corresponding repulsive problem, that of maximis-
ing the sum of the distances to the k nearest points
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has also been studied both in graphs [5] and in the
Euclidean plane [4]. Some of the classic location
problems have been extended to extensive facili-
ties (i.e. those that can not be represented as iso-
lated points). In particular, the center and the me-
dian line location problem have been intensively re-
searched (e.g. Lee and Wu [3], Morris and Norback
[7], Schöebel [8].) The only work on the k-Centrum
straight line problem is [6] in which a finite dom-
inating set is determined and an O(n4 log n) time
algorithm described.

2. Finite Dominating Set

Given a set of points P = {p1, p2, . . . , pn} ⊂ R
2

and the weight set associated W = {w1, w2, . . . , wn}
the straight line k-Centrum problem consists in
finding a line such that it minimises the function:

f(l) = max
Q⊂P,|Q|=k

∑

p∈Q

wpd(p, l)

where d(·, ·) is the Euclidean point-line distance.
The problem can be stated in the dual plane as

finding the point l∗ such that it minimises the dual
objective function:
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f∗(l∗) = max
Q∗⊂P∗,|Q∗|=k

∑

p∗∈Q∗

wpdv(l∗, p∗)
√

1 + l∗x
2

where dv(·, ·) is the vertical point-line distance and
l∗x is the x-coordinate of the point l∗.

In the dual plane let us consider the Vertical
Distance Completely Ordered Line Voronoi
Diagram: VDCOLVD(P ∗). The set

Bv(P ∗) = {bisv(p∗i , p
∗
j ); 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

induces that diagram. The Voronoi regions are the
union of (convex) polygonal regions neither neces-
sarily bounded nor simply connected.

Lemma 1 The VDCOLVD(P ∗) induces a par-
tition in the set of non-vertical straight lines of the
Euclidean plane such that the collection of ordered
distances to the points of P remains constant in
each class.

PROOF. For each region R of the Voronoi dia-
gram VDCOLVD(P ∗) there exists a permutation
σ of the set {1, 2, · · · , n} such that

wσ(1)dv(l∗, p∗σ(1)) ≤ · · · ≤ wσ(n)dv(l∗, p∗σ(n))

Dividing by
√

1 + l∗x
2 it follows

wσ(1)d(pσ(1), l) ≤ · · · ≤ wσ(n)d(pσ(n), l)

Lemma 2 The objective function in the dual plane
f∗ is quasiconcave in each connected component of
each Voronoi region.

PROOF. In each such a region CR the order of
distances from lines p∗i to points in it, remains con-
stant, i.e. ∀ l∗ ∈ CR

wσ(1)dv(l∗, p∗σ(1)) ≤ · · · ≤ wσ(n)dv(l∗, pσ(n))

Thus the k largest weighted vertical distances re-
mains constant in CR and, therefore, the function

f∗(l∗) =

∑n

i=n−k+1 dv(l∗, p∗
σ(i))

√

1 + l∗x
2

is the ratio between a sum of linear functions and
a positive convex function, therefore becoming a
quasiconcave function.

Let us note that each extreme point of the
Voronoi regions could be either

(i) a vertex of a bisector of two elements of P ∗,
(ii) an intersection of two edges corresponding

to the bisectors of two pairs of P ∗ with a
common element,

(iii) an intersection of two edges corresponding
to the bisectors of two disjoined pairs of ele-
ments.

However, not all of these extreme points are im-
ages of candidates for the problem in the primal
space.

Theorem 3 A finite dominant set for the straight
line k-Centrum problem is composed by the ele-
ments of the set of straight lines passing through
two points of P and those of the set of straight lines
at equal weighted distances from three points of P .

PROOF. Candidate straight lines correspond
under the geometrical dual map to candidate
points for the dual objective function. Points (i)
are images of straight lines passing through two
points. Points (ii) correspond to straight lines at
equal distances from three points.

However, points (iii) cannot be optimal points.
In effect,let l∗ be such a point; then there exists two
pairs {p∗i , p

∗
j} and {p∗s , p

∗
t } such that l∗ is the inter-

section of the corresponding bisectors. Therefore,
widv(l∗, p∗i ) = wjdv(l∗, p∗j ) and wsdv(l∗, p∗s) =
wtdv(l∗, p∗t ). Ruling out the degenerate case in
which coincide the four weighted distances, we
may assume that widv(l∗, p∗i ) < wsdv(l∗, p∗s).
Then, the only relevant case to be consider is when
one of the two weighted distances, say widv(l∗, p∗i ),
is k-rank at l∗, but in this case in each halfplane
above and below the widv(l∗, p∗i ) = wjdv(l∗, p∗j )
line and within a small enough neighbourhood of
l∗ the set of k-closest points does not change, so
the formula for f∗ remains exactly the same in
each of these half-neighbourhoods of l∗, so is qua-
siconcave in this half-neighbourhood, in which l∗

is not a vertex, so cannot be optimal.
Finally, unbounded extreme points of regions in

the dual space correspond to vertical lines in the
primal. A small rotation argument shows that ver-
tical straight lines not holding one of the two above
conditions cannot be optimal.
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3. Algorithm

In order to examine the candidates we will con-
sider each pair {pi, pj} of points and the bisector
bisv(p∗i , p

∗
j ) of their dual points. For the sake of sim-

plicity the reasoning will be done on one of the two
lines of the bisector. If C∗

ij is the set of candidate
points on this line, then Cij is a family of straight
lines with a common point Oij = (bisv(p∗i , p

∗
j ))

∗.
In order to compute the objective function, the
outer hull of the given points will be used. With
this purpose the problem will be transformed in a
equivalent non weighted one, with given point set

P ′ = {p′t = Oij + wt +
−−−→
Oijpt /pt ∈ P}.

Let us note that under this transformation the
weighted distance from a point p of P to a straight
line r of Cij is equal to the unweighted distance
from p′ to r. Furthermore, for each straight line
r ∈ Cij their k farthest points in P ′ can be found
in the k outer convex hulls of P ′.

A short description of the algorithm follows:
– Step 1: Compute the best vertical line.
– Step 2: For each pair {pi, pj} ∈ P,

· Obtain the sets Cij and P ′.
· Compute the k outer convex hulls for P ′.
· For each r ∈ Cij compute its objective value

by obtaining their k farthest point.
– Step 3: Select the best candidate from Steps 1

and 2.

Let us note that by means of this algorithm the
i-centrum (1 ≤ i ≤ k) straight lines can be com-
puted in O(n3 log n) time, when k is fixed.

4. Prospects

The finite dominant set given in Section 2 could
be too large when it is desired to find the k-
Centrum straight line only for a fixed k. In this
case an alternative set would result from consid-
ering the k-1 level of a plane arrangement. Each
weighted straight line of the dual plane could be
substituted by two planes such that the compu-
tation of the k farthest straight lines to a point
is equivalent to finding the k highest planes to
a point. Then by using the results in [2] and [1]
the time complexity of the finite dominant set we
expect would be O(n log n + n1+ǫ).
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