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1. Summary
Prefoldin is a cochaperone, present in all eukaryotes, that cooperates with the cha-

peronin CCT. It is known mainly for its functional relevance in the cytoplasmic

folding of actin and tubulin monomers during cytoskeleton assembly. However,

both canonical and prefoldin-like subunits of this heterohexameric complex have

also been found in the nucleus, and are functionally connected with nuclear

processes in yeast and metazoa. Plant prefoldin has also been detected in the

nucleus and physically associated with a gene regulator. In this review, we

summarize the information available on the involvement of prefoldin in nuclear

phenomena, place special emphasis on gene transcription, and discuss the

possibility of a global coordination between gene regulation and cytoplasmic

dynamics mediated by prefoldin.
2. Introduction
Misfolded proteins are detected shortly after their synthesis or after denaturation

events, and are targeted to refolding. A large set of molecular chaperones and

auxiliary factors are involved in this phenomenon (reviewed in [1]). Prefoldin

was first described as a cochaperone [2], capable of capturing unfolded polypep-

tides and transferring them to the ATP-dependent class II chaperonin CCT [3],

also known as c-cpn [4] or TriC [5].

Prefoldin is not present in Eubacteria, but it is present in Archaea [6], suggest-

ing that its ubiquitous presence in the eukaryotic kingdom is archaeal in origin [7].

Prefoldin is a heterohexameric complex. Whereas archaeal prefoldin is composed

of two identical a and four identical b subunits, canonical eukaryotic prefoldin is

composed of two different a and four different b subunits (figure 1a and table 1).

All eukaryotic organisms, from yeast to human, share this heterohexameric struc-

ture, indicating an early differentiation of the prefoldin subunits during the

evolution of eukaryotes. Eukaryotic prefoldin is evolutionarily conserved, because

human and plant subunits functionally complement yeast prefoldin mutants [8,9].

In all cases, two subunits of the a class form a dimer, onto which four subunits of

the beta class assemble and produce a jellyfish-like complex [10]. This complex

consists of a double b barrel assembly with six long tentacle-like coiled coils pro-

truding from it. The distal regions of these coiled coils expose hydrophobic

patches, required for the binding of misfolded proteins. This feature situates pre-

foldin among the set of chaperone factors that use clamp-like structural features

to grip substrate proteins [11].

Cytoskeleton components are the best-known targets of eukaryotic prefoldin

[8]. This captures unfolded actin, a- and b-tubulin cotranslationally, and remains

bound to the relatively unfolded polypeptides until their posttranslational delivery

to CCT [12] (figure 1b). Recognition of actin and tubulin by prefoldin involves

specific interactions between certain domains of the target proteins [13] and the

distal ends of different, but overlapping, sets of prefoldin subunits [14]. The so-

formed prefoldin-target binary complex is then able to interact with CCT. In this

ternary complex, prefoldin transfers actin to CCT following a handoff mechanism
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Figure 1. The prefoldin complex. (a) Canonical prefoldin is a heterohexameric complex composed of two a subunits (dark green), which play a central structural
role, and four b subunits (light green). (b) The best-characterized function of prefoldin is the cotranslational folding of proteins. Prefoldin binds unfolded poly-
peptides and transfers them to the ATP-dependent chaperon CCT prior to its assembly into high-order protein structures, such as microtubules and actin filaments.
(c) In addition to canonical complexes, which retain the structure of archaeal prefoldin, eukaryotes exhibit prefoldin-like complexes. In these, the two a and some of
the b canonical subunits are replaced with alternative polypeptides. Prefoldin-like complexes interact and functionally cooperate with other cochaperones such as
the R2TP complex ( purple).
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[15]. Interestingly, the interaction between actin and eukaryotic

prefoldin maps inside the cavity formed by its six subunits,

whereas archaeal prefoldin stabilizes unfolded proteins by

interacting with the distal regions of the chaperone tentacles.

This suggests that the substrate interaction mechanism of prefol-

din has diverged through evolution and potentially reflects a

narrower range of substrates stabilized by prefoldin in eukar-

yotes [16]. Consistent with a role played by prefoldin in actin

and tubulin folding, the deletion of prefoldin-encoding genes

in Saccharomyces cerevisiae results in impaired cytoskeleton func-

tions [2]. These cytoskeletal defects of the prefoldin mutants are
even more marked in the absence of the phosducin-like protein

3, a factor that physically interacts with CCT and modulates its

chaperonin ATPase activity in vitro [17].

While none of the prefoldin subunits is essential for yeast

viability, the mutation of prefoldin genes or the depletion of

their products in Caenorhabditis elegans and Drosophila results in

embryonic lethality. In both cases, prefoldin-defective cells

show low tubulin levels and several cytoskeleton abnormalities

[18,19]. In the nematode, prefoldin depletion leads to a lower

microtubule growth rate [18] and prevents pronuclear migration

[20]. mgr flies, which are mutated in the gene encoding PFDN3,



Table 1. The canonical and prefoldin-like subunit nomenclature. Most
prefoldin subunits have synonymic names. In order to facilitate
comprehension, in this review, we have chosen the main nomenclature of
metazoan prefoldin (PFDN1-6). Likewise, the mammalian prefoldin-like
subunits have been named several times. We call them URI and UXT for
the sake of simplicity.

Archaea S. cerevisiae higher eukaryotes

b Pfd1/Gim6 PFDN1

Pfd2/Gim4 PFDN2

Pfd4/Gim3 PFDN4

Pfd6/Gim1/Yke2 PFDN6/HKE2

a Pfd3/Gim2/Pac10/Rks2 PFDN3/VBP1

Pfd5/Gim5 PFDN5/MM1

Bud27 URI/RMP

UXT/Art-27
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exhibit circular mitotic figures and loss of meiotic spindle

integrity [19]. In Arabidopsis, PFDN3, PFDN5 and PFDN6 are

required for normal microtubule dynamics and organization

[9,21], whereas the genetic murine models affected in PFDN1

and PFDN5 display developmental defects that were

interpreted in terms of cilia and cytoskeleton defects [22,23].

All these pieces of evidence have shaped the eukaryotic

prefoldin concept as a highly specialized cochaperone for

actin and tubulin folding. This specialization would be con-

sistent with the more severe phenotype of CCT knockdown

than the prefoldin one in C. elegans [18]. However, a more

in-depth review of the scientific literature reveals that eukary-

otic prefoldin has also been connected to phenomena that are

not directly linked to the cytoskeleton, such as protein aggre-

gation. Prefoldin prevents protein aggregation in brain cells

under conditions where protein degradation is compromised

[24]. This role of prefoldin explains its protective effect

against polyglutamine toxicity and the accumulation of aggre-

gated pathogenic huntingtin [25]. Human prefoldin also

inhibits amyloid-b fibrillation and contributes to the formation

of non-toxic amyloid-b aggregates in vitro, which is consistent

with its upregulation in a murine model for Alzheimer’s dis-

ease [26] and the genetic association of prefoldin variants

with this pathology [27].

The involvement of prefoldin subunits in the cytoplasmic

assembly of some non-cytoskeletal complexes has also been

well established. In this case, mammalian PFDN2 and PFDN6

form a complex together with UXT, RPB5, WDR92/Monad,

PDRG1 and URI [28]. In this complex, which is supposed to

adopt a prefoldin-like structure, non-canonical prefoldin pro-

teins substitute for the a subunits and some of the b subunits

(figure 1c), although no evident sequence similarity exists

between canonical and non-canonical prefoldin polypeptides.

The prefoldin-like complex participates in the cytoplasmic

assembly of RNA polymerase II [29], and in the stabilization

and assembly of phosphatidylinositol-3 kinase-related protein

kinase [30]. In both cases, it cooperates with another cochaper-

one, the R2TP complex, which is composed of four subunits:

RVB1, RVB2, PihD1 and hSpagh [31]. The latter two subunits

of R2TP interact with the Hsp90 chaperone, whereas RVB1

and RVB2 are AAAþ ATPases that participate in a set of

additional cellular activities. They act in the context of R2TP,
such as in the maturation of small nucleolar ribonucleoprotein

complexes, or independently, contributing to histone acety-

lation, chromatin remodelling, telomere dynamics and mitotic

spindle assembly (for a review, see [32]). Functional analyses

in mammalian cells indicate that the URI subunit of this com-

plex is a target of nutrient signalling and participates in TOR

kinase-controlled gene expression [28]. URI is conserved

through the evolution of eukaryotes, and its yeast homologue

Bud27 also mediates TOR-controlled gene expression [28] and

is involved in the cytoplasmic assembly of all three yeast

nuclear RNA polymerases [33].

a-class prefoldin-like subunit UXT is also located in

human centrosomes, associates with g-tubulin and its over-

expression disrupts the centrosome structure [34]. This

finding indicates that the canonical prefoldin complex may

share some of its cytoskeleton functions with non-canonical

prefoldin subunits.
3. Prefoldin shuttles between the
cytoplasm and the nucleus, and acts
on DNA-binding proteins

All the phenomena related to prefoldin that we have examined

so far in this review take place in the cytoplasm. However, both

the canonical and prefoldin-like subunits have also been found

in the nucleus. Proteomic analyses of URI nuclear interactors

indicate that all the components of the R2TP/prefoldin-like

complex, including the canonical prefoldin subunits PFDN2

and PFDN6, are found in the nucleus of prostate cells, and

shuttle between the nucleus and the cytoplasm, probably

together with RNA pol II [35]. The short isoform UXT-V2/

Art-27, of UXT, which has 157 amino acids, is primarily present

in the nucleus, whereas UXT-V1, which encompasses 169

amino acids, is predominantly found in the cytoplasm

[36,37]. This nuclear localization preference of some splice

variants also happens in the case of human PFDN5/MM-1.

MM-1b and MM-1d localize mainly to the cytoplasm, whereas

MM-1a and MM-1g are found in the nucleus [38].

Canonical plant prefoldin, at least its subunits PFDN5

and PFDN6, is also found in the nucleus of Nicotiana
benthamiana and Arabidopsis thaliana leaf cells [39]. Its nuclear

localization is not constitutive, but dependent on the physical

interaction with the nuclear DELLA proteins. Plant prefoldin

moves from the nucleus to the cytosol in response to environ-

mental or endogenous cues that cause degradation of DELLA

proteins [39]. Human PFDN3, also known as von Hippel–

Lindau binding protein1 (VBP1), because of its physical

interaction with VHL, localizes to the cytoplasm when it is

solely expressed, but it translocates to the nucleus when it

is co-expressed with VHL [40]. In turn, VHL localization to

the nucleus depends on UXT [41]. Localization of URI in

the nucleus also depends of its interaction with a partner,

in this case with the DNA methyltransferase 1-associating

protein (DMAP1), which inhibits the cytoplasmic localization

signal of URI and favours its import into the nucleus [42].

In addition to their cytoplasmic localization, all yeast

canonical prefoldin subunits can be detected in the nucleus.

Moreover, they accumulate in the nucleus when the nuclear

export systems based on Xpo1 and Mex67 become genetically

inactivated [43]. So, from yeast to metazoa, prefoldin
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Figure 2. Human PFDN3 favours HIV transcription by driving its integrase
into degradation. HIV integrase remains bound to proviral DNA after its inte-
gration into the host genome. PFDN3 is required for the in situ ubiquitination
of the HIV integrase and its subsequent degradation by the proteasome, by
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subunits are capable of migrating to the nucleus and of being

translocated back to the cytoplasm by active export systems.

Localization of prefoldin in the nucleus may be the result

of the regulation of its cytoplasmic functions by means of a

cytoplasm-exclusion mechanism, as has been demonstrated

in Arabidopsis [39]. In addition to this passive presence of pre-

foldin in the nucleus, several pieces of evidence indicate that

the nucleus is not just a reservoir for stand-by prefoldin. URI,

for instance, is required for DNA stability in C. elegans [44].

A clearer example of a nuclear function of prefoldin is its par-

ticipation in the degradation of the HIV integrase after the

provirus integration into the host genome, which is a strict

requirement for HIV expression [45]. PFDN3 binds the inte-

grase [46] and mediates its interaction with the cullin2-based

VHL ubiquitin ligase, which is essential for its polyubiquitina-

tion and subsequent proteosome-mediated degradation [45]

(figure 2). At least two other prefoldin subunits (PFDN1 and

PFDN6) influence HIV expression at a post-integration step,

suggesting that the whole prefoldin complex acts on the HIV

integrase [45]. PFDN3 also facilitates the VHL-mediated degra-

dation of other well-known DNA-interacting proteins, such as

the DNA mismatch repair protein hMSH4 [47]. In this case,

however, the co-localization of these two proteins is mainly

perinuclear [48].

This nuclear role of mammalian PFDN3 in protein degra-

dation is quite the opposite to that described for Drosophila
PFDN3 in the microtubule dynamics context. In this case,

PFDN3 promotes microtubule stabilization when tubulins

are correctly folded by prefoldin, and tubulin destruction

when they are not [19]. This double role of prefoldin in protein

folding and degradation resembles that of protein segregases

such as the VCP/p97/Cdc48 AAA-ATPase, which segregates

ubiquitinated proteins from stable assemblies with proteins,

membranes and chromatin [49]. Targets of VCP can either

end in degradation, or can survive as free subunits and recycle

[50]. No physical or functional connection between prefoldin

and VCP has been established so far.
4. Prefoldin plays transcriptional roles
Among the nuclear proteins bound and influenced by prefol-

din, transcription factors are the most frequent (table 2).

Prefoldin-like subunit UXT binds the EVI1 transcriptional

repressor and suppresses its cell transformation activity [59].

UXT is also an integral component of the NF-kB enhanceosome

and is essential for its nuclear function [60]. Its knockdown

leads to impaired NF-kB activity and dramatically attenua-

tes the expression of NF-kB-dependent genes [60]. UXT is

therefore an optimal target for NF-kB regulation. The

Epstein–Barr virus BGLF4 kinase downregulates NF-kB

transactivation by means of UXT phosphorylation, and the

subsequent interference of this modification with the inter-

action between UXT and NF-kB [61]. Amyotrophic lateral

sclerosis 2 protein has also been suggested to modulate the

NF-kB pathway through its physical interaction with UXT [62].

UXT is not only involved in NF-kB-dependent transcrip-

tion regulation, but it also contributes to the regulation of

androgen-dependent genes by binding the N-terminal

domain of the androgen receptor (AR) and enhancing its

transcriptional activation [36,63]. UXT also interacts with

LRP16, a macrodomain-containing protein that functions as

a coactivator of AR and other nuclear receptors [64]. The
positive contribution of UXT- to AR-dependent transactiva-

tion seems to be mediated, at least partially, by the capacity

of UXT to interact with VHL and to facilitate VHL-dependent

ubiquitination of AR [41]. UXT interacts directly with VHL

[41] and without the involvement of PFDN3, indicating that

this ubiquitinating protein can interact with both canonical

and prefoldin-like subunits. Two-hybrid assays suggest that

UXT is also able to interact with the human transcription

factor Sp1 and the TBP-interacting protein TAF130 [36].

A different prefoldin-like subunit, URI, can repress AR-

mediated transcription by interacting physically with UXT

in the chromatin context [35]. URI seems to inhibit AR

recruitment to target genes because it is bound to chromatin

prior to the hormonal activation of AR [35]. URI also inhibits

transactivation by other gene-specific transcription factors,

such as herpes simplex virus transactivator VP16 and hepa-

titis B virus protein X (HBx) [58]. In this case, URI inhibits

HBx-activated transcription by competing with the activator

to bind the RNA polymerase II subunit Rpb5 [58]. The co-

repressor activity of URI is also related to its interaction

with DMAP1, a partner of the histone deacetylase HDAC2

[42]. Interestingly, canonical prefoldin subunit PFDN3 also

influences HBx transcriptional function, yet, in this case, it

cooperates positively with this viral protein in the activation



Table 2. Nuclear proteins that physically interact with canonical or prefoldin-like subunits. For detailed explanations, see the text.

prefoldin subunit interactor (biological process) other factors involved organism reference

PFDN3 HIV integrase VHL human [45]

hMSH4 (DNA repair) VHL, p97 human [47]

NF-kB (transcription) HBx human [51]

PFDN5 c-Myc (transcription) HDAC1 – mSin3, TIF1b human [52,53]

Skp2 – ElonginB – ElonginC – Cullin2, Rabring7 human [54,55]

EGR1(transcription) human [56]

p73 (transcription) human [57]

PFDN3, PFDN5 DELLA (gene regulation) Arabidopsis thaliana [39]

URI HBx (transcription) Rpb5 human [58]

DMAP1 (transcription) human [42]

UXT EVI1 (transcription) human [59]

NF-kB (transcription) human [60]

HBV EGLF4 kinase (gene regulation) human [61]

ALS2 (gene regulation) human [62]

androgen receptor (transcription) VHL human [36,41,63]

URI human [35]

LRP16 (transcription) human [64]

TAF130 (transcription) human [36]

Sp1 (transcription) human [36]
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of the NF-kB transcription factor [51]. All these data indicate

considerable plasticity in the ability of the different canonical

and prefoldin-like subunits to interact with transcription fac-

tors, and suggest that they do not necessarily shape a single

functional entity in the nucleus of mammalian cells.

In addition to the degradation of HIV integrase, the

best-characterized contribution of a prefoldin subunit to tran-

scription is the action of PFDN5/MM-1 as a co-repressor of

the E-box-dependent transactivation activity of c-Myc [52].

The MM-1a and MM-1g nuclear isoforms bind the N-proximal

region of c-Myc, which accommodates one of its transactivation

domains, and repress its transcriptional activity [38]. A point

mutation in PFDN5, which is often observed in patients with

leukaemia or lymphoma, abrogates all of its repressive activities

towards c-Myc, indicating that PFDN5 behaves like a tumour

suppressor [65]. The repressive function of PFDN5 is due to

its ability to recruit the histone deacetylase HDAC1–mSin3

complex via transcriptional co-repressor TIF1b. This recruit-

ment antagonizes the histone transacetylases bound to the

N-terminal domain of c-Myc, thereby inhibiting chromatin

remodelling [53] (figure 3a). This inhibitory effect of PFDN5

on c-Myc offers a chance to modulate this transcription factor;

a good example of it is the ability of the hepatitis C virus

ARFP/F protein to enhance the gene transactivation activity of

c-Myc by interfering in its interaction with PFDN5 [66].

The negative action of PFDN5 on the c-Myc function also

takes place at two other levels. It favours c-Myc degradation

by recruiting the ubiquitin ligase Skp2–ElonginC–ElonginB–

Cullin2 complex, and driving it to the proteasome via the 26S

subunit Rpt3 [54] (figure 3b). The monoubiquitination of

PFDN5 by Rabring7, a Rab7-binding and RING finger-

containing protein, stimulates this second role of PFDN5 in

the control of c-Myc [55] (figure 3b). In addition, PFDN5
and the Egr-1 repressor bind and downregulate the promoter

of the wnt4 gene. Because the c-Myc gene is the target of

the Wnt–b-catenin pathway, PFDN5 also inhibits the

expression of c-Myc by this indirect mechanism [56] (figure 3c).

The above-described interactions indicate a role of prefol-

din subunits in the regulation of the transactivation capacity

or stability of gene-specific transcription factors. With the

exception of its contribution to HIV expression, the transcrip-

tional roles of prefoldin have been described for single

subunits. Although the presence of other prefoldin subunits

cannot be ruled out, the mechanisms described so far do

not involve the action of prefoldin complexes. Saccharomyces
prefoldin, however, seems to play a transcriptional role that

involves at least the concerted action of PFDN1, PFDN2,

PFDN5 and PFDN6 [43] (figure 4). These four canonical pre-

foldin subunits are recruited together to yeast transcribed

genes in a transcription-dependent manner. The profile of

recruited prefoldin parallels the phosphorylation of the Ser2

residues of Rpb1 CTD, a well-known marker of RNA poly-

merase II elongation activity. Accordingly, the deletion of

any of the genes encoding these four prefoldin subunits pro-

vokes transcription elongation defects [43]. In agreement with

this role of yeast prefoldin in transcription elongation, genes

longer than 4 kpb are particularly affected. The absence of

prefoldin increases the density of histones that remain

bound to these genes under intensive transcription. However,

nucleosome remodelling, reflected in the sensitivity of chro-

matin to micrococcal nuclease digestion, remains unaffected

by the absence of prefoldin. Together, these pieces of evidence

indicate a role of prefoldin in histone eviction after the

cotranscriptional destabilization of nucleosomes [43]. This

prefoldin–chromatin connection is fully consistent with the

strong genetic interactions detected between prefoldin and a
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wide set of chromatin factors [67,68]. Interestingly, the yeast

CCT mutants display the very same pattern of genetic

interactions with chromatin factors [69]. Moreover, mouse

CCT exhibits a nucleocytoplasmic distribution and associa-

tes to heterochromatin [70], and depletion of Cct2 interferes

with HIV integration at a post-integration step, exactly as

prefoldin does [45]. Taken altogether, the available experimen-

tal evidence suggests that prefoldin and CCT might also

cooperate in the transcriptional dynamics of chromatin.
5. Final perspective: prefoldin in global
cell regulation

To date, we have shown that the scientific literature contains a

significant amount of information on the presence of canonical

and prefoldin-like subunits in the nucleus, and their functional

involvement in gene transcription. The examples that we cite

demonstrate that, from yeast to mammals, a given prefoldin
subunit can play cytoplasmic and nuclear roles in the same

organism. Moreover, a set of yeast canonical subunits plays

concerted actions in both cytoplasmic cytoskeleton assembly

and nuclear gene transcription. This fact might merely be

the result of a functional divergence during the evolutionary

transition from archaea to eukaryotes. Alternatively, the cyto-

plasmic and nuclear functions of prefoldin might be coupled

in such a way as to favour a global coordination of gene

expression and cytoskeleton dynamics. This hypothetical

coordination is particularly expected in those situations

where cells are challenged by stimuli that require a specific

genomic response and, at the same time, the reorganization

of cytoplasmic organelles. Although this speculative model is

far from having been demonstrated, there are some experimen-

tal hints that are compatible with the notion of prefoldin as a

global cell regulator.

The cytoskeletal function of prefoldin is not essential for

the housekeeping assembly of microtubules or actin filaments.

This is the reason why yeast prefoldin genes can be deleted
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without compromising cell viability [8]. Similarly, double

knockout mice, lacking PFDN1, are also viable, at least until

the fifth week of age, although they display a small size and

cytoskeletal defects [22]. When b-tubulin is not expressed at

high levels in Drosophila cells, its stabilization does not require

prefoldin either, although it does when ectopic b-tubulin is

expressed [19]. This indicates that prefoldin is rate-limiting

only under strong cytoskeleton biogenesis conditions. Rate-

limiting steps are the regulatory points in most biological

pathways, and they are usually the most upstream stages.

Accordingly, prefoldin plays its role in the very first step of

microtubules and actin filaments biogenesis [18].

One of the most drastic cytoplasmic reorganizations

takes place during B-lymphocyte activation by antigens,

when they differentiate into highly secretory plasma cells.

PFDN1 knockout mice are severely affected in this process.

Interestingly, the mammalian PFDN6 gene is located in the

centromeric portion of the class II region of the major histo-

compatibility complex [71], and its expression dramatically

increases as a result of lymphocyte activation [72].

So far, the prefoldin role in lymphocyte activation has

not been connected to any nuclear event, but there is one

example where the cytoplasmic function of prefoldin is

linked to the nucleus. This is the case of organ growth by

cell expansion in the model plant Arabidopsis thaliana. The

plant controls anisotropic cell elongation by a mechanism

that finely coordinates the abundance of DELLA proteins

in the nucleus with the subcellular localization of prefoldin

[39]. When environmental conditions are not favourable

for growth, DELLA proteins accumulate, and prefoldin

is retained in the nucleus upon interaction, compromising

its role in the cytoplasm. Thus, microtubule assembly is

compromised, and anisotropic cell growth is prevented.

On the contrary, environmental conditions that are favour-

able for growth promote degradation of DELLA proteins

and prefoldin can move to the cytosol (figure 5) [39].

DELLAs are transcriptional regulators and, although no
transcriptional function of prefoldin has been described to

date in Arabidopsis, it is possible that prefoldin participates

not only in the cytoplasmic part of this regulated process,

but also in the transcriptional response.

The coordinated action in cytoskeleton dynamics and

transcription would be facilitated if prefoldin acted on similar

targets in these two processes. It is well known that the

main cytoplasmic targets of prefoldin are actin and tubulin

monomers. It is conceivable that actin, tubulin or both

might also be nuclear targets of prefoldin. The transcriptional

characterization of yeast prefoldin mutants, using chemical

inhibitors of cytoskeleton assembly, indicates that the role

of prefoldin in chromatin dynamics during transcription

elongation is not mediated by actin or tubulin polymerization

[43]. Yet the involvement of actin and tubulin monomers in

the nuclear function of prefoldin is an open possibility.

There is monomeric actin in the nucleus, and its contribution

to gene transcription has already been reported (reviewed

by [73]). The direct involvement of nuclear tubulin in gene tran-

scription has also been described [74]. c-Myc, the best example

of a transcription factor regulated by a prefoldin subunit (see

above), also binds tubulin, and the region of the c-Myc protein

that interacts with tubulin overlaps its PFDN5 interaction

domain [75]. It has been proposed that microtubules might be

involved in the migration of c-Myc to the cytoplasm, when

cells exit the cell cycle [76,77]. Myc-nick, a cleavage product of

c-Myc, promotes tubulin acetylation during cell differentiation

[78], and MIZ-1, another c-Myc-interacting protein, is regulated

by its association to microtubules and activate transcription

in response to cytoskeleton changes [79]. All these data visual-

ize physical and functional interactions between c-Myc and

tubulin, which support functional coupling between c-Myc-

dependent transcription and the cytoskeleton dynamics

mediated by prefoldin.

The existence of such mechanisms of coordination

between cytoplasmic dynamics and genome regulation,

and the potential involvement of prefoldin and other



DELLA

DELLA

CCT

CCT

growth-inducible
conditions

prefoldin

prefoldin

Figure 5. Plant prefoldin collaborates with the DELLA transcription factor in the regulation of cell expansion. When environmental conditions are not favourable for
growth, prefoldin is imported to the nucleus by the DELLA transcription factor, which contributes to the regulation of a set of genes, either positively or negatively.
Upon activation by growth-inducible conditions, DELLA is driven into degradation, allowing prefoldin to relocate to the cytoplasm and to participate in the
cytoskeleton reorganization required for cell expansion.
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protein-folding factors in them, is a challenging field for

contemporary biology.
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