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1. Introduction. Statement of the problem
Let Ω ⊂ RN be a bounded domain, N ≥ 1, with boundary ∂Ω of class
C2. Let ω ⊆ Ω be an open subset anf let us fix T > 0.

We consider the linear and nonlinear problems for the heat equation:

(1)


∂ty −∆y + ay = v1ω in Q = Ω× (0,T ),

y = 0 on Σ = ∂Ω× (0,T ),
y(·,0) = y0 in Ω,

(2)

{
∂ty −∆y + F (y) = v1ω in Q,
y = 0 on Σ, y(·,0) = y0 in Ω.

In (1) and (2), 1ω represents the characteristic function of the set ω,
y(x , t) is the state, y0 is the initial datum and is given in an appropriate
space, and v is the control function (which is localized in ω
-distributed control-). In (1), a ∈ L∞(Q) is given. We will assume that
F : R→ R is a given function.
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1. Introduction. Statement of the problem
Remark
In this talk we are interested in studying the controllability properties of
systems (1) and (2) (controllability to trajectories).

Linear Problem: For every ω and T system (1) is null controllable
(equivalently exactly controllable to trajectories): For every y0 ∈ L2(Ω)
there is v ∈ L2(Q) s.t. the solution y to (1) satisfies y(T ) ≡ 0 in Ω.

1 H.O. FATTORINI, D.L. RUSSELL, Exact controllability theorems for
linear parabolic equations in one space dimension, Arch. Rational
Mech. Anal. 43 (1971), 272–292.

2 G. LEBEAU, L. ROBBIANO, Contrôle exact de l’équation de la
chaleur, Comm. P.D.E. 20 (1995), no. 1-2, 335–356.
a ≡ 0: v ∈ C∞0 (ω × (0,T )).

3 O. YU. IMANUVILOV, Controllability of parabolic equations,
(Russian) Mat. Sb. 186 (1995), no. 6, 109–132; translation in Sb.
Math. 186 (1995), no. 6, 879–900.
a ∈ L∞(Q): v ∈ L2(Q).
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1. Introduction. Statement of the problem
Nonlinear Problem: Under appropriate assumptions on the function
F (which has a superlinear growth at infinity) system (2) is exactly
controllable to trajectories at time T :

1 E. FERNÁNDEZ-CARA, Null controllability of the semilinear heat
equation, ESAIM Control Optim. Calc. Var. 2 (1997), 87–103.

F (s) ∼ |s| log(1 + |s|).

2 E. FERNÁNDEZ-CARA, E. ZUAZUA, Null and approximate
controllability for weakly blowing up semilinear heat equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 5,
583–616.

F (s) ∼ |s| logp(1 + |s|), p ∈ [0,3/2).

3 V. BARBU, Exact controllability of the superlinear heat equation,
Appl. Math. Optim. 42 (2000), no. 1, 73–89.
F (s) ∼ |s| logp(1 + |s|) (p ∈ [0,3/2)), 1 ≤ N < 6 and a dissipativity

condition on the the nonlinearity: sF (s) ≥ −µo|s|2 (µ0 ≥ 0).
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1. Introduction. Statement of the problem
Remark
Common Point: The linear problem (1) is solved with a control v in
Lp(Q) (p > N

2 + 1) with estimates of its norm with respect to T , ‖a‖∞
and y0.

DIFFERENT TECHNIQUES

GOAL:
Revisit the main known techniques which allow to prove the null
controllability result for system (1) with a control v ∈ Lp(Q), p ∈ (2,∞]
(with estimates).
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1. Introduction. Statement of the problem
THREE BASIC REFERENCES

O. YU. IMANUVILOV, Controllability of parabolic equations,
(Russian) Mat. Sb. 186 (1995), no. 6, 109–132; translation in Sb.
Math. 186 (1995), no. 6, 879–900.
E. FERNÁNDEZ-CARA, E. ZUAZUA, Null and approximate
controllability for weakly blowing up semilinear heat equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 17, No. 5, (2000),
583–616.
V. BARBU, Exact controllability of the superlinear heat equation,
Appl. Math. Optim. 42 (2000), no. 1, 73–89.

ANOTHER REFERENCE
O. BODART, M. G.-B., R. PÉREZ-GARCÍA, Existence of
insensitizing controls for a semilinear heat equation with a
superlinear nonlinearity, Comm. P.D.E 29 (2004), no. 7-8,
1017–1050.
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2. Linear null controllability result with regular controls
We consider the distributed controllability problem for the linear
system:

(1)

{
∂ty −∆y + ay = v1ω in Q,
y = 0 on Σ, y(·,0) = y0 in Ω,

where ω ⊂ Ω is an open subset, v ∈ L2(Q) is the control and y0 is
given in L2(Ω).

Let us fix ϕ0 ∈ L2(Ω) and consider the adjoint problem

(3)

{
−∂tϕ−∆ϕ+ aϕ = 0 in Q,
ϕ = 0 on Σ, ϕ(T ) = ϕ0 in Ω.

It is well known:
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2. Linear null controllability result with regular controls
Theorem

The following conditions are equivalent:
1 There exists C s.t. ∀y0 ∈ L2(Ω), there is v ∈ L2(Q), with

‖v‖2L2(Q) ≤ C‖y0‖2L2(Ω),

s.t. the solution yv to (1) associated to y0 and v satisfies

yv (T ) = 0 in L2(Ω).

2 There exists C > 0 s.t. (observability inequality)

‖ϕ(0)‖2L2(Ω) ≤ C
∫∫

ω×(0,T )
|ϕ(x , t)|2 dx dt ,

holds for every solution ϕ to the adjoint problem (3) associated to
ϕ0 ∈ L2(Ω).
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2. Linear null controllability result with regular controls
The observability inequality for the adjoint problem with an explicit
expression of C with respect to the data can be obtained from a global
Carleman inequalities for the linear parabolic problem:

(4)

{
−∂tϕ−∆ϕ = F 0 in Q,
ϕ = 0 on Σ, ϕ(·,T ) = ϕ0 in Ω,

with F 0 ∈ L2(Q) and ϕ0 ∈ L2(Ω) are given.

In

V. A. FURSIKOV, O. YU. IMANUVILOV, Controllability of Parabolic
Equations, Lecture Notes Series 34, Seoul National University,
Research Institute of Mathematics, Seoul, 1996,
E. FERNÁNDEZ-CARA, E. ZUAZUA, The cost of approximate
controllability for heat equations: the linear case. Adv. Differential
Equations 5 (2000), no. 4-6, 465–514,

it is proved:
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2. Linear null controllability result with regular controls
Lemma

There exist a regular and strictly positive function, α0, and two
constants C0 y σ0 (only depending on Ω and ω) s.t.

I(ϕ) ≡ s−1
∫∫

Q
e−2sαt(T − t)

(
|∂tϕ|2 + |∆ϕ|2

)
+ s

∫∫
Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2

≤ C0

(
s3
∫∫

ω×(0,T )
e−2sαt−3(T − t)−3|ϕ|2 +

∫∫
Q

e−2sα|F 0|2
)
,

∀s ≥ s0 = σ0(Ω, ω)(T + T 2), (ϕ is the solution to (4) associated to
ϕ0 ∈ L2(Ω)). The function α = α(x , t) is given by

α(x , t) = α0(x)/t(T − t) .
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2. Linear null controllability result with regular controls
Coming back to the adjoint problem

(3)
{
−∂tϕ−∆ϕ+ aϕ = 0 in Q,
ϕ = 0 on Σ, ϕ(·,T ) = ϕ0 in Ω.

Lemma

There exist C1 > 0 and σ1 > 0 (only depending on Ω and ω) s.t.
(5)

I(ϕ) = s−1
∫∫

Q
e−2sαt(T − t)

(
|∂tϕ|2 + |∆ϕ|2

)
+ s

∫∫
Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2

≤ C1s3
∫∫

ω×(0,T )
e−2sαt−3(T − t)−3|ϕ|2,

∀s ≥ s1 = σ1(Ω, ω)
(

T + T 2 + T 2‖a‖2/3
∞
)

.
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2.1. First approach
We follow:

E. FERNÁNDEZ-CARA, E. ZUAZUA, Null and approximate
controllability for weakly blowing up semilinear heat equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 17, No. 5, (2000),
583–616.

From the previous global Carleman inequality one has:

Theorem

For every a ∈ L∞(Q) and ϕ0 ∈ L2(Ω) one has (observability inequality)

‖ϕ(0)‖2L2(Ω) ≤ exp [C M(T , ‖a‖∞)]

∫∫
ω×(0,T )

|ϕ|2,

(ϕ solution to (3)) with C = C(Ω, ω) > 0 and M given by:

M(T , ‖a‖∞) = 1 +
1
T

+ T‖a‖∞ + ‖a‖2/3
∞ .
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2.1. First approach
Remark
This inequality shows the null controllability result for the linear
system (1) with a control v in L2(Q) (in fact, Supp v ⊂ ω × (0,T )) and
provides the following estimate for ‖v‖L2(Q):

‖v‖2L2(Q) ≤ exp [C M(T , ‖a‖∞)]‖y0‖2,

with M given as before.

Is it possible to solve this problem with a control v ∈ L∞(Q)? YES.
The key point is a better observability inequality with a weaker norm on
the right hand-side:
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2.1. First approach
A refined observability inequality:

Proposition

There exists C = C(Ω, ω) > 0 such that

‖ϕ(0)‖2L2(Ω) ≤ exp
[
C M̃(T , ‖a‖∞)

](∫∫
ω×(0,T )

|ϕ|

)2

,

with C = C(Ω, ω) > 0 and M̃ given by:

M̃(T , ‖a‖∞) = 1 +
1
T

+ T +
(

T 1/2 + T
)
‖a‖∞ + ‖a‖2/3

∞ ,

for any ϕ0 ∈ L2(Ω) and T > 0.
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2.1. First approach
Sketch of the proof:

1 We fix ω0 ⊂⊂ ω and we apply the previous observability inequality
with ω0 and [T/4,3T/4] instead of ω and [0,T ]. Using the energy
inequality we get

‖ϕ(0)‖2L2(Ω) ≤ exp [C M(T , ‖a‖∞)]

∫∫
ω0×(T/4,3T/4)

|ϕ|2,

for a new constant C = C(Ω, ω0) and M as before.

2 We use the inequality

∫
ω0

∫ 3T/4

T/4
|ϕ|2 ≤ CTα(1 + T 1/2(1 + ‖a‖∞))β

(∫∫
ω×(0,T )

|ϕ|

)2

valid for every solution ϕ to the adjoint problem (3) (α, β > 0).
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2.1. First approach

Corollary

There exists C = C(Ω, ω) > 0 s.t. ∀y0 ∈ L2(Ω), there is v ∈ L∞(Q),
with

‖v‖2L∞(Q) ≤ exp
[
C M̃(T , ‖a‖∞)

]
‖y0‖2L2(Ω),

s.t. the solution yv to (1) associated to y0 and v satisfies

yv (T ) = 0 in L2(Ω).

(M̃ is given by

M̃(T , ‖a‖∞) = 1 +
1
T

+ T +
(

T 1/2 + T
)
‖a‖∞ + ‖a‖2/3

∞ ).
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2.1. First approach
Remark

1 The previous technique uses the local regularizing effect of the
heat equation. The result is independent of the initial condition
y0 and the boundary condition.

2 This technique can be applied to linear parabolic problems with
first order terms B · ∇y:

A. DOUBOVA, E. FERNÁNDEZ-CARA, M. G.-B., E. ZUAZUA, On the
controllability of parabolic systems with a nonlinear term involving
the state and the gradient, SIAM J. Control Optim. 41 (2002), no. 3,
798–819.

3 The existence of the bounded control is deduced from the
observability inequality: “If system (1) is exactly controllable to
trajectories at time T with controls in L2(Q), then system (1) is exactly
controllable to trajectories at time T with controls in L∞(Q)”.
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2.1. First approach
Remark

1 More regularity??? For example., v ∈ L2(0,T ; H2(Ω)× H1
0 (Ω))

and ∂tv ∈ L2(Q) or v ∈ C∞(Q) when a ≡ 0 (as in the work of
Lebeau-Robbiano).

2 What happens if Ω and ω are unbounded sets???
3 What happens if we consider coupled parabolic systems???
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2.1. First approach
Coupled parabolic systems: Let us consider a “simple” coupled
parabolic system{

∂ty −∆y = Ay + Bv1ω in Q,
y = 0 on Σ, y(0) = y0 in Ω,

{
∂tϕ+ ∆ϕ = −A∗ϕ in Q,
ϕ = 0 on Σ, ϕ(T ) = ϕ0 in Ω,

with A =

(
0 0
1 0

)
, B =

(
1
0

)
(one control force) and y0 ∈ L2(Ω)2.

The particular structure of A and B (cascade system) gives:

‖ϕ(0)‖2L2(Ω) ≤ C
∫∫

ω0×(T/4,3T/4)
|ϕ1|2,

for a constant C > 0. Then, there is v ∈ L2(Q) s.t. yv (T ) = 0 in Ω and
‖v‖2L2(Ω)

≤ C‖y0‖2L2(Ω)2 . Control in L∞(Q)??
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2.1. First approach
Following this technique, does the following inequality

∫∫
ω0×(T/4,3T/4)

|ϕ1|2 ≤ C

(∫∫
ω×(0,T )

|ϕ1|

)2

hold?? NO.

Remark
This first approach cannot be applied to the previous coupled system
since the local regularizing effect of the linear adjoint problem
involves the functions ϕ1 and ϕ2 while the corresponding “refined”
observability inequality should only involve ϕ1 (recall that the control v
only appears in first equation of the direct problem).
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2.2. Second approach
We follow

V. BARBU, Exact controllability of the superlinear heat equation,
Appl. Math. Optim. 42 (2000), no. 1, 73–89.

We recall the global Carleman inequality (∂Ω ∈ C2):

I(ϕ) = s−1
∫∫

Q
e−2sαt(T − t)

(
|∂tϕ|2 + |∆ϕ|2

)
+ s

∫∫
Q

e−2sαt−1(T − t)−1|∇ϕ|2 + s3
∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2

≤ C1s3
∫∫

ω×(0,T )
e−2sαt−3(T − t)−3|ϕ|2,

∀s ≥ s1 = σ1(Ω, ω)
(

T + T 2 + T 2‖a‖2/3
∞
)

, where C1 = C1(Ω, ω) > 0
and ϕ the solution to

(3)
{
−∂tϕ−∆ϕ+ aϕ = 0 in Q,
ϕ = 0 on Σ, ϕ(·,T ) = ϕ0(·) in Ω.
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2.2. Second approach
In this work, a control in Lp(Q), with p = p(N), is obtained from the
previous global Carleman inequality (we fix

s = s1 = σ1(Ω, ω)
(

T + T 2 + T 2‖a‖2/3
∞

)
).

First Step:

Lemma

For every a ∈ L∞(Q) and ϕ0 ∈ L2(Ω) one has (observability inequality)

‖ϕ(0)‖2L2(Ω) ≤ exp [C M(T , ‖a‖∞)]

∫∫
ω×(0,T )

e−2s1αt−3(T − t)−3|ϕ|2,

(ϕ solution to (3)) with C = C(Ω, ω) > 0 and M given by:

M(T , ‖a‖∞) = 1 +
1
T

+ T‖a‖∞ + ‖a‖2/3
∞ .
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2.2. Second approach
Second Step: From this observability inequality we deduce

Proposition

∀y0 ∈ L2(Ω), there is v ∈ Lp(N)(Q), with p(N) <∞ if N = 2 and

p(N) =
2(N + 2)

N − 2
if N ≥ 3, and

‖v‖2Lp(N)(Q)
≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω),

s.t. the solution yv to (1) associated to y0 and v satisfies

yv (T ) = 0 in L2(Ω).

Sketch of the proof: 1.- We consider the optimal control problem

min
v∈L2(Q)

(
1
2

∫∫
Q

e2s1αt3(T − t)3|v(x , t)|2 dx dt +
1
2ε
‖yv (T )‖2L2(Ω)

)
,

(yv ∈ L2(Q)2 is the solution of (1) associated to y0 and v ).
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2.2. Second approach
This problem has a unique solution vε ∈ L2(Q) and, using the

optimality system, it is characterized: vε = e−2s1αt−3(T − t)−3ϕε1ω
and {

∂tyε −∆yε + ayε = vε1ω in Q,
yε = 0 sobre Σ, yε(·,0) = y0 in Ω, −∂tϕε −∆ϕε + aϕε = 0 in Q,

ϕε = 0 on Σ, ϕε(·,T ) = −1
ε

yε(·,T ) in Ω.

The previous observability inequality (Lemma 7) gives:∫∫
ω×(0,T )

e−2s1αt−3(T−t)−3|ϕε|2+
1
ε
‖yε(T )‖2L2(Ω) ≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω).
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2.2. Second approach
2.- Combining the last inequality and the global Carleman
inequality (5) we get∫∫

Q
e−2s1αt(T − t)

(
|∂tϕε|2 + |∆ϕε|2

)
≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω).

Taking into account the expresion vε = e−2s1αt−3(T − t)−3ϕε1ω, we
deduce vε ∈ H2,1(Q) = {q : q ∈ L2(0,T ; D(−∆)), ∂tq ∈ L2(Q)},

‖vε‖2H1,2(Q)
+

1
ε
‖yε(T )‖2L2(Ω) ≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω),

for a new constant C(Ω, ω) > 0. Thus, {vε}ε>0 is bounded in H2,1(Q).
We can extract a subsequence that converges to v weakly in H2,1(Q).
Clearly,

‖v‖2H1,2(Q) ≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω) and yv (T ) = 0 in Ω.
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2.2. Second approach
3.- Finally, using the continuous embedding

H2,1(Q) ↪→ Lp(N)(Q)

we deduce the proof.

Remark

Observe that the previous control v ∈ Lp(N)(Q) provides a solution
yv ∈W 2,1,p(N) = {q ∈ Lp(N)(0,T ; W 2,p(N)(Ω) ∩W 1,p(N)

0 (Ω)) : ∂tq ∈
Lp(N)(Q)}. Thus, using again the continuous embedding of this space,
if p(N) > N/2 + 1, i.e., if 1 ≤ N < 6 , the solution yv ∈ L∞(Q). In
Barbu’s work, the nonlinear null controllability problem is treated with
this constraint on the dimension N.
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2.2. Second approach. Remarks I
1 This technique uses the global regularizing effect of the heat

equation. Then, the result depends on the boundary conditions
but is independent of the initial condition y0.

2 This technique cannot be directly applied if we consider a linear
parabolic problem with a first order term B · ∇y . Observe that in
the global Carleman inequality for the corresponding adjoint
system the terms ∂tϕ and ∆ϕ do not appear.

3 In fact, the control v provided by this approach lies in H2,1(Q), but,
more regularity??? For example., when a ≡ 0, v ∈ C∞(Q) (as in
the work of Lebeau-Robbiano)??.
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2.2. Second approach. Remarks II

4 The existence of a control v in Lp(N) is deduced from the global
Carleman inequality satisfied by the adjoint system. When Ω and
ω are unbounded open sets and under some geometric conditions
on (Ω, ω), it is possible to establish a global Carleman inequality
for the adjoint system:
L. DE TERESA, M. G.-B., Some results on controllability for linear
and nonlinear heat equations in unbounded domains,
Adv. Diff. Eq. 12 (2007), no. 11, 1201–1240.
In this situation it is possible to obtain a control v whith the same
regularity as before.
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2.2. Second approach. Remarks III

5 This approach also works in the case of coupled parabolic
systems (if we have proved a global Carleman inequality for the
corresponding adjoint system).

Following the same approach, it is possible to solve the null
controllability result for system (1) with controls in W 2,1

p (Q), for every
p ∈ [1,∞): Last section.
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2.3. Third approach
We follow

O. BODART, M. G.-B., R. PÉREZ-GARCÍA, Existence of
insensitizing controls for a semilinear heat equation with a
superlinear nonlinearity, Comm. P.D.E 29 (2004), no. 7-8,
1017–1050.

ASSUMPTION

Given y0 ∈ L2(Ω), there is ṽ ∈ L2(Q), with Supp ṽ ⊂ ω0 and ω0 ⊂⊂ ω,
such that the solution to (1) ỹ satisfies ỹ(·,T ) ≡ 0 in Ω.

One has
ỹ ∈W (0,T ) = {y ∈ L2(0,T ; H1

0 (Ω)) : ∂ty ∈ L2(0,T ; H−1(Ω))} and a
explicit estimate ‖ỹ‖W (0,T ) ≤ exp (C(1 + T )‖a‖∞)

(
‖y0‖2 + ‖ṽ‖2

)
.

The function ỹ is regular except near t = 0 and near ω0. The idea is
eliminate these irregular parts of ỹ .
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)
.

The function ỹ is regular except near t = 0 and near ω0. The idea is
eliminate these irregular parts of ỹ .
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2.3. Third approach
Let us now introduce two cut-off functions η ∈ C∞([0,T ]) and
θ ∈ C∞(Ω) such that{
η ≡ 1 in [0, T

4 ], η ≡ 0 in [3T
4 ,T ], 0 ≤ η ≤ 1 in [0,T ], |η′(t)| ≤ C/T , ∀t ;

θ ≡ 1 in ω0, 0 ≤ θ ≤ 1 in Ω and Supp θ ⊂ ω.

Let Y be the solution to system (1) corresponding to v ≡ 0:{
∂tY −∆Y + aY = 0 in Q,
Y = 0 on Σ, Y (·,0) = y0(·) in Ω,

We now take {
y = (1− θ)ỹ + ηθY in Q,
v = (∂t −∆ + a)y .

It is clear that Supp v(·, t) ⊆ Supp θ ⊂ ω, y is the solution to (1)
corresponding to the control v and, taking into account that ỹ(T ) ≡ 0
in Ω, we get y(·,T ) ≡ 0 in Ω.
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2.3. Third approach
In fact v is a regular control and its regularity properties are
independent of y0 and ṽ . Indeed, we can express y and v as

y ≡ (1− θ)q + η(t)Y , v ≡ θη′Y + 2∇θ · ∇q + (∆θ)q,

where q is given by q = ỹ − ηY and, therefore, satisfies{
∂tq −∆q + aq = ṽ1ω − η′Y in Q,
q = 0 on Σ, q(·,0) = 0 in Ω.

Let us fix δ ∈ (0,T/4), p ∈ [2,∞) and O0,O1 ⊂⊂ Ω such that
O1 ⊂⊂ Ω \ ω0 (and, in particular, O1 ∩ Supp ṽ = ∅). If we denote by{

X p
0 = {y ∈ Lp(δ,T ; W 2,p(O0)) : ∂ty ∈ Lp(O0 × (δ,T ))},

X p
1 = {y ∈ Lp(0,T ; W 2,p(O1)) : ∂ty ∈ Lp(Oi × (0,T ))}

then, Y ∈ X p
0 , q ∈ X p

1 and v ∈ Lp(0,T ; W 1,p
0 (Ω)).
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2.3. Third approach
In fact, we can obtain something better: if p > N + 2, one has
X p

0 ↪→ C1+α,(1+α)/2(O0 × [δ,T ]) and X p
1 ↪→ C1+α,(1+α)/2(O1 × [0,T ])

with α = 1− (N + 2)/p. Thus, v ∈ C0
0(Q) and

‖v‖C0 ≤ eC(1+T +T‖a‖∞)‖ỹ‖W (0,T )

with C = C(Ω,T ) > 0.
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2.2. Third approach. Remarks I
1 The previous regularity result for v is independent of the initial

datum y0, the control ṽ and the regularity of the boundary ∂Ω. We
have only used the local regularity properties of the operator
L ≡ ∂t −∆ + a. In the case in which a ≡ 0, we obtain v ∈ C∞(Q)
(as in the paper of Lebeau-Robbiano).

2 In fact we have proved: “Let us fix y0 ∈ L2(Ω) and assume that
there exists ṽ ∈ L2(Q) such that the solution ỹ to the linear
problem (1) satisfies ỹ(T ) ≡ 0 in Ω. Then, there exists ṽ ∈ C0

0(Q)
s.t. the solution yv of (1) also satisfies yv (T ) ≡ 0 in Ω”.

3 This technique can be applied if we consider a linear parabolic
problem with a first order term B · ∇y obtaining the same
regularity result.
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2.2. Third approach. Remarks II

4 When Ω and ω are unbounded open sets we can obtain the same
result:
L. DE TERESA, M. G.-B., Some results on controllability for linear
and nonlinear heat equations in unbounded domains,
Adv. Diff. Eq. 12 (2007), no. 11, 1201–1240.

5 This approach also works in the case of systems of two coupled
parabolic equations.
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3. The “best” null control
We consider once again the linear problem

(1)

{
∂ty −∆y + ay = v1ω in Q,
y = 0 on Σ, y(·,0) = y0(·) in Ω.

Question

Fix p ∈ [1,∞). Given y0 ∈ L2(Ω), does there exist v ∈W 2,1
p (Q) s.t. the

solution to (1) satisfies y(T ) = 0 in Ω??? Estimates of v???

W 2,1
p (Q) = {u ∈ Lp(0,T ; W 2,p(Ω)) : ∂tu ∈ Lp(Q)}.

Idea
We are going to add “better” terms on the left hand-side of the global
Carleman inequality for the adjoint problem and then apply again
the approach of Barbu.
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3. The “best” null control
The adjoint problem:

(3)
{
−∂tϕ−∆ϕ+ aϕ = 0 in Q,
ϕ = 0 on Σ, ϕ(·,T ) = ϕ0(·) in Ω.

From the Carleman inequality, we deduce,
s−1

∫∫
Q

e−2sαt(T − t)
(
|∂tϕ|2 + |∆ϕ|2

)
≤ C1s3

∫∫
ω×(0,T )

e−2sαt−3(T − t)−3|ϕ|2,

∀s ≥ s1 = σ1(Ω, ω)
(

T + T 2 + T 2‖a‖2/3
∞
)

, where C1 = C1(Ω, ω) > 0.
We take:

α∗0 = max
x∈Ω

α0(x), α∗(t) =
α∗0

t(T − t)
.
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Remark
The function α0 is given by

α0(x) = e2Cm||η0||∞ − eC(m||η0||∞+η0(x)),

with m > 1 an arbitrary constant, η0, a function only depending on Ω and ω,
and C = C(Ω, ω) > 0. The construction of η0 = η0(x) is given
in [FURSIKOV-IMANUVILOV]. This function satisfies:

η0 ∈ C2(Ω), η0 ≥ 0 in Ω,
∂η0

∂n
≤ on ∂Ω and ∇η0 6= 0 in Ω \ ω.

(n = n(x): the outward unit normal to Ω at point x ∈ ∂Ω).
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We take

ψ = s−5/2e−sα∗(t)t5/2(T − t)5/2ϕ = ρ0(t)ϕ.

Then, {
∂tψ + ∆ψ = aρ0(t)ϕ+ ∂tρ0(t)ϕ in Q,
ψ = 0 on Σ, ψ(·,T ) = 0 in Ω.

If s ≥ s1 = σ1

(
T + T 2 + T 2‖a‖2/3

∞
)

, we have ∂tρ0(t)ϕ ∈ H2,1(Q) and

‖∂tρ0(t)ϕ‖2H2,1 ≤ Cs−1
∫∫

Q
e−2sαt(T − t)

(
|∂tϕ|2 + |∆ϕ|2

)
.

But, H2,1(Q) ↪→ Lp(N)(Q) with p(N) = 2(N+2)
N−2 . Thus,

‖∂tρ0(t)ϕ‖Lp(N)(Q) ≤ C‖∂tρ0(t)ϕ‖H2,1

We can also prove that aρ0(t)ϕ ∈ Lp(N)(Q) and

‖aρ0(t)ϕ‖2Lp(N)(Q)
≤ Cs−1

∫∫
Q

e−2sαt(T − t)
(
|∂tϕ|2 + |∆ϕ|2

)
.
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The maximal parabolic regularity for the heat equation (∂Ω ∈ C2) gives
ψ = s−5/2e−sα∗(t)t5/2(T − t)5/2ϕ ∈W 2,1

p(N)(Q) and
‖ψ‖2

W 2,1
p(N)

(Q)
≤ Cs−1

∫∫
Q

e−2sαt(T − t)
(
|∂tϕ|2 + |∆ϕ|2

)
≤ C2s3

∫∫
ω×(0,T )

e−2sαt−3(T − t)−3|ϕ|2.

Conclusion
We have obtained a new Carleman inequality for the problem (3)

‖s−5/2e−sα∗(t)t5/2(T − t)5/2ϕ‖2
W 2,1

p(N)
(Q)

+ I(ϕ)

≤ C2s3
∫∫

ω×(0,T )
e−2sαt−3(T − t)−3|ϕ|2,

∀s ≥ s1 = σ1

(
T + T 2 + T 2‖a‖2/3

∞
)
.
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Corollary

∀y0 ∈ L2(Ω), there is v ∈W 2,1
p(N)(Q), with p(N) <∞ if N = 2 and

p(N) =
2(N + 2)

N − 2
if N ≥ 3, and

‖v‖2
W 2,1

p(N)

≤ e[C M(T ,‖a‖∞)]‖y0‖2L2(Ω),

s.t. the solution yv to (1) associated to y0 and v satisfies

yv (T ) = 0 in L2(Ω).

Remark
We can apply a boot-strap argument and deduce that the previous
result is valid for every p ∈ [2,∞). In this case the constant C also
depends on p.
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