Minimal time of controllability for some parabolic systems

Manuel González-Burgos

In colaborationn with: F. Ammar-Khodja, A. Benabdallah and L. de Teresa

Control of PDE's, CNAM, Paris, March-April 2014

M. González-Burgos Minimal time of controllability for some parabolic systems

・ 同 ト ・ ヨ ト ・ ヨ ト

GOAL

The general aim of this talk is to show a phenomenon which arise when we deal with the null controllability properties of **parabolic coupled** systems: **minimal time of controllability**:

- Boundary control: The condensation index of the complex sequence of eigenvalues of the corresponding matrix elliptic operator.
- Oistributed control: The action and the geometric position of the support of the coupling term when this support does not intersect the control domain *w*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Boundary controllability problem

Distributed controllability problem

M. González-Burgos Minimal time of controllability for some parabolic systems

★ Ξ ► ★ Ξ

M. González-Burgos Minimal time of controllability for some parabolic systems

★ Ξ ► ★ Ξ

Let us fix T > 0 and $\omega = (a, b) \subset (0, \pi)$. We consider the coupled parabolic systems:

(1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q := (0, \pi) \times (0, T), \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

(2)
$$\begin{cases} y_t - y_{xx} + q(x)A_0 y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

In (1) and (2), 1_{ω} is the characteristic function of the set ω , y(x, t) is the state, $y_0 \in L^2(0, \pi; \mathbb{R}^2)$ (or $y_0 \in H^{-1}(0, \pi; \mathbb{R}^2)$) is the initial datum and • $D = \text{diag}(d_1, d_2) \in \mathcal{L}(\mathbb{R}^2)$, with $d_i > 0$, and $A_0 \in \mathcal{L}(\mathbb{R}^2)$ constant matrices; $q \in L^{\infty}(Q)$; $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ constant vector of \mathbb{R}^2 ; • $v \in L^2(0, T)$ and $u \in L^2(Q)$ are scalar control functions.

Remark

In this talk we are interested in studying the controllability properties of systems (1) and (2). Boundary and distributed control problems.

IMPORTANT

We have systems of two coupled heat equations and we want to control these systems (two states) only acting on the second equation.

・ロト ・ 同ト ・ ヨト ・ ヨト

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Existing results: $d_1 = d_2$: Approximate and null controllability.

- E. FERNÁNDEZ-CARA, M.G.-B., L. DE TERESA, J. Funct. Anal. (2010): 2 × 2 systems, 1-d, general matrices of constant coefficients, necessary and sufficient conditions, boundary NC ↔ internal NC.
- F. AMMAR-KHODJA, A. BENABDALLAH, M.G.-B., L. DE TERESA, J. Math. Pures Appl. (2011): n × n systems, 1-d, general matrices of constant coefficients, necessary and sufficient conditions, boundary NC ⇔ internal NC.

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Existing results: $d_1 = d_2$: Approximate and null controllability.

- L. ROSIER, L. DE TERESA, C. R. Math. Acad. Sci. Paris (2011), 2 × 2 systems, 1-d, cascade systems, sing conditions, sufficient conditions.
- F. ALABAU-BOUSSOUIRA, M. LÉAUTAUD, J. Math. Pures Appl. (2012): 2 × 2 systems, *N*-d, particular matrices depending on *x*, sing conditions, sufficient conditions, geometric control condition.
- F. ALABAU-BOUSSOUIRA, Math. Control Signals Systems (2014): 2 × 2 systems, *N*-d, cascade systems, sing conditions, sufficient conditions, geometric control condition.

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Existing results: $d_1 = d_2$: Approximate and null controllability.

• A. BENABDALLAH, F. BOYER, M.G.-B., G. OLIVE, Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null-controllability in cylindrical domains, (2014). Under review.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Existing results: $\omega \cap \text{Supp } q \neq \emptyset$, $a_{12} \neq 0$: Approximate and null controllability.

- L. DE TERESA, Comm. PDE 25 (2000).
- F. AMMAR-KHODJA, A. BENABDALLAH, C. DUPAIX, I. KOSTIN, ESAIM:COCV (2005).
- M.G.-B., R. PÉREZ-GARCÍA, Asymptot. Anal. (2006).
- M.G.-B., L. DE TERESA, Port. Math. (2010).

Different diffusion coefficients, any space dimension.

$$\begin{cases} \partial_t y_1 - d_1 \partial_x^2 y_1 + a_{11} y_1 + a_{12} y_2 = 0 & \text{in } Q, \\ \partial_t y_2 - d_2 \partial_x^2 y_2 + a_{22} y_2 + a_{21} y_1 = u \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Existing results: a_{12} is a PD operator of order ≤ 2 with $\omega \cap \text{Supp } a_{12} \neq \emptyset$ and a_{12} is "invertible": Approximate and null controllability.

- S. GUERRERO, SIAM J. Control Optim. 25 (2007).
- A. BENABDALLAH, M. CRISTOFOL, P. GAITAN, L. DE TERESA, Math. Control Relat. Fields (2014).
- K. MAUFFREY, J. Math. Pures Appl. (2013).

Different diffusion coefficients, any space dimension.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Existing results: $\omega \cap \text{Supp } q = \emptyset$ and $a_{12} \neq 0$ (sign conditions).

- O. KAVIAN, L. DE TERESA, ESAIM:COCV (2010): Approximate controllability.
- L. ROSIER, L. DE TERESA, C. R. Math. Acad. Sci. Paris (2011): Null controllability.
- F. ALABAU-BOUSSOUIRA, M. LÉAUTAUD, J. Math. Pures Appl. (2012): 2 × 2 systems, *N*-d, particular matrices depending on *x*, sing conditions, sufficient conditions, geometric control condition. Null controllability.

▲□→ ▲ 三→ ▲ 三→

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Existing results: $\omega \cap \text{Supp } q = \emptyset$ and $a_{12} \neq 0$

- F. ALABAU-BOUSSOUIRA, Math. Control Signals Systems (2014): 2 × 2 systems, N-d, cascade systems, sing conditions, sufficient conditions, geometric control condition. Null controllability.
- F. BOYER, G. OLIVE, Mathematical Control and Related Fields (2014). Approximate controllability, no sign conditions.
- B. DEHMAN, M. LÉAUTAUD, J. LE ROUSSEAU, Arch. Rational Mech. Anal. (2014). Null controllability.

Objective

We want to study the controllability properties of systems (1) and (2):

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$
$$\begin{cases} y_t - y_{xx} + q(x)A_0 y = Bu \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

in the one-dimensional case N = 1 and under the assumptions:

•
$$D = \text{diag}(d_1, d_2) \text{ and } d_1 \neq d_2$$
.

2 $q \in L^{\infty}(Q)$ (no sign conditions).

We will consider the "simple" case:

$$\begin{bmatrix} \mathbf{A}_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{bmatrix}$$

M. González-Burgos Minimal time of controllability for some parabolic systems

→ E → < E →</p>

(1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\mathbf{v} \in L^2(0, T)$: scalar control

function.

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d_1 = d_2 > 0$. Then system (1) is null controllable at time T for any T > 0.

イロト イポト イヨト イヨト

э.

(1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where
$$A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\mathbf{v} \in L^2(0, T)$: scalar control

function.

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d_1 = d_2 > 0$. Then system (1) is null controllable at time T for any T > 0.

We will assume that $d_1 \neq d_2$ and, for instance, $d_1 = 1$, $d_2 = d \neq 1$.

GOAL

Given T > 0, does there exist $v \in L^2(0, T)$ s.t. y(T) = 0?

M. González-Burgos Minimal time of controllability for some parabolic systems

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d \neq 1$. Then system (1) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

A simple problem??? No:

イロト イポト イヨト イヨト

э.

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability:

Theorem (Fernández-Cara, M.G.-B., de Teresa, (2010))

Assume $d \neq 1$. Then system (1) is approximately controllable at time T > 0 if and only if $\sqrt{d} \notin \mathbb{Q}$.

A simple problem??? No:

Theorem (Luca, de Teresa, (2012))

There exists d > 0 with $\sqrt{d} \notin \mathbb{Q}$ such that system (1) is not null controllable at any time T > 0.

ヘロマ ヘロマ ヘロマ

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$



イロト イポト イヨト イヨト

ъ

1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^* \varphi = 0 & \text{in } \mathbf{Q}, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in H_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If y is a solution of the direct problem, then

$$\langle \mathbf{y}(\mathbf{T}), \varphi_0 \rangle - \langle \mathbf{y}_0, \varphi(\mathbf{0}) \rangle = \int_0^{\mathbf{T}} \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(\mathbf{0}, t) dt$$

< 🗇 🕨

1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Let φ be a solution of the adjoint problem:

$$\begin{cases} -\varphi_t - \mathcal{D}\varphi_{xx} + \mathcal{A}_0^* \varphi = 0 & \text{in } Q, \\ \varphi(0, \cdot) = \varphi(\pi, \cdot) = 0 & \text{on } (0, T), \\ \varphi(\cdot, T) = \varphi_0 \in \mathcal{H}_0^1(0, \pi)^2 & \text{in } (0, \pi). \end{cases}$$

If y is a solution of the direct problem, then

$$\langle \mathbf{y}(\mathbf{T}), \varphi_0 \rangle - \langle \mathbf{y}_0, \varphi(\mathbf{0}) \rangle = \int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(\mathbf{0}, t) \, dt$$

Thus
$$y(T) = 0 \iff \exists \mathbf{v} \in L^2(0, T)$$
 such that
 $\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_X(0, t) dt = -\langle y_0, \varphi(0) \rangle, \quad \forall \varphi_0 \in H_0^1(0, \pi)^2$

Fattorini-Russell Method

Material at our disposal

•
$$\sigma(-D\partial_{xx}^2 + A_0^*) = \bigcup_{k\geq 1} \{k^2, dk^2\} := \bigcup_{k\geq 1} \{\lambda_{k,1}, \lambda_{k,2}\}$$

V_{k,1} and V_{k,2}: eigenvectors of the matrix (k²D + A₀^{*}) associated to the eigenvalues k², dk².

• $\Phi_{k,i} = V_{k,i} \sin kx$, i = 1, 2: eigenfunctions of $(-D\partial_{xx}^2 + A_0^*)$.

• { $\Phi_{k,i}$ } is a (Riesz) basis of $H_0^1(0,\pi)^2$. Let { $\Psi_{k,i}$ } be the associated biorthogonal family (for the duality $\langle \cdot, \cdot \rangle_{((H_0^1)^2, (H^{-1})^2)}$)

$$f \in H_0^1(0,\pi)^2 \iff f = \sum_{k \ge 1, i=1,2} \langle f, \Psi_{k,i}
angle \Phi_{k,i}$$

 $\|f\|_{(H_0^1)^2}^2 \sim \sum_{k \ge 1, i=1,2} |\langle f, \Psi_{k,i}
angle|^2$

イロト 不得 とうほう 不良 とう

э.

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

(1)

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = - \langle y_0, \varphi(0) \rangle \,, \quad \forall \varphi_0 \in H^1_0(0,\pi)^2$$

•

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Objective: Existence of $v \in L^2(0, T)$ s.t.

(1)

$$\int_0^T \mathbf{v}(t) \mathbf{B}^* \mathbf{D} \varphi_x(0,t) \, dt = - \left< y_0, \varphi(0) \right>, \quad \forall \varphi_0 \in H^1_0(0,\pi)^2$$

• Choosing $\varphi_0 = \Phi_{k,i}$, we have $\varphi(\cdot, t) = e^{-\lambda_{k,i}(T-t)} \Phi_{k,i}$ and

$$\varphi(x,0) = e^{-\lambda_{k,i}T} \Phi_{k,i}(x), \quad \varphi_x(0,t) = k e^{-\lambda_{k,i}(T-t)} \bigvee_{k,i}$$

• The identity connecting y and φ writes (moment problem)

$$kB^*DV_{k,i}\int_0^T v(T-t)e^{-\lambda_{k,i}t} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\boxed{kB^*DV_{k,i}}\int_0^T v(T-t)e^{-\lambda_{k,i}t} dt = -e^{-\lambda_{k,i}T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

イロト イ理ト イヨト イヨト

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (I)

•
$$\mathbf{k} \mathbf{B}^* \mathbf{D} \mathbf{V}_{k,i} \int_0^T \mathbf{v} (T-t) e^{-\lambda_{k,i} t} dt = -e^{-\lambda_{k,i} T} \langle \mathbf{y}_0, \mathbf{\Phi}_{k,i} \rangle, \quad \forall (k,i)$$

- A necessary condition: $B^*DV_{k,i} \neq 0$ for all $k \ge 1, i = 1, 2$
- Recall $d \neq 1$,

(1)

$$B^* = (0,1), \quad V_{k,1} = \begin{pmatrix} 1 \\ \frac{1}{(d-1)k^2} \end{pmatrix}, \quad V_{k,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \forall k \ge 1.$$

So, here $B^* DV_{k,i} \neq 0, \quad \forall k \geq 1, i = 1, 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

- 32

(1

)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^*DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^*DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \Longleftrightarrow \sqrt{d} \notin \mathbb{Q}$$

- 4 同 ト 4 回 ト 4 回 ト

(1

)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

Approximate controllability: a necessary condition (II)

$$\lambda_{k,1} = \lambda_{j,2} = \lambda \Rightarrow \begin{cases} kB^*DV_{k,1} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{k,1} \rangle \\ jB^*DV_{j,2} \int_0^T v(T-t)e^{-\lambda t} dt = -e^{-\lambda T} \langle y_0, \Phi_{j,2} \rangle \end{cases}$$

So it is necessary to have $\lambda_{k,1} \neq \lambda_{j,2}$. This leads to

$$k^2 \neq dj^2, \quad \forall k \neq j \ge 1 \Longleftrightarrow \sqrt{d} \notin \mathbb{Q}$$

In the sequel, we will assume $\sqrt{d} \notin \mathbb{Q}$, i.e., the eigenvalues of $-D\partial_{xx}^2 + A_0^*$ with Dirichlet boundary conditions are pairwise distinct.

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$k \mathbf{B}^* \mathbf{D} \mathbf{V}_{k,i} \int_0^T \mathbf{v} (T-t) e^{-\lambda_{k,i} t} dt = -e^{-\lambda_{k,i} T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

イロト イヨト イヨト イ

3

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$k \mathbf{B}^* \mathbf{D} \mathbf{V}_{k,i} \int_0^T \mathbf{v} (T-t) e^{-\lambda_{k,i} t} dt = -e^{-\lambda_{k,i} T} \langle y_0, \Phi_{k,i} \rangle, \quad \forall (k,i)$$

Summarizing

(1)

Let
$$m_{k,i} = -\langle y_0, \Phi_{k,i} \rangle$$
, $b_{k,i} = kB^*DV_{k,i}$ (for any $\varepsilon > 0$,
 $|m_{k,i}| \le C_{\varepsilon}e^{\varepsilon\lambda_{k,i}}$ and $|b_{k,i}| \ge C_{\varepsilon}e^{-\varepsilon\lambda_{k,i}}$),

$$\exists ? \mathbf{v} \in L^2(0,T) : \int_0^T \mathbf{v}(T-t) e^{-\lambda_{k,i}t} dt = \frac{m_{k,i}}{b_{k,i}} e^{-\lambda_{k,i}T}, \quad \forall k \ge 1, i = 1, 2$$

イロト イポト イヨト イヨト

Ð.

The moment problem: Abstract setting

Let $\Lambda = {\lambda_k}_{k \ge 1} \subset (0, \infty)$ be a sequence with pairwise distinct elements:

$$\sum_{k\geq 1}\frac{1}{|\lambda_k|}<\infty$$

Goal: Given $\{m_k\}_{k\geq 1}, \{b_k\}_{k\geq 1} \subset \mathbb{R}$ satisfying $||m_k| \leq C_{\varepsilon} e^{\varepsilon \lambda_k}|$ and $|b_k| \geq C_{\varepsilon} e^{-\varepsilon \lambda_k}|$, find $v \in L^2(0, T)$ s.t. $\int_0^T v(T-t) e^{-\lambda_k t} dt = \frac{m_k}{b_k} e^{-\lambda_k T}, \quad \forall k \geq 1.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The moment problem: Abstract setting

Theorem

Under the previous assumptions, $\{e^{-\lambda_k t}\}_{k\geq 1} \subset L^2(0, T)$ admits a biorthogonal family $\{q_k\}_{k>1}$ in $L^2(0, T)$, i.e.:

$$\int_0^T e^{-\lambda_k t} q_l(t) dt = \delta_{kl}, \quad \forall k, l \ge 1$$

イロト イポト イヨト イヨト

æ

The moment problem: Abstract setting

A formal solution to

$$\int_0^T \mathbf{v}(T-t) \mathbf{e}^{-\lambda_k t} dt = \frac{m_k}{b_k} \mathbf{e}^{-\lambda_k T}, \quad \forall k \ge 1,$$

is **v** given by:
$$\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The moment problem: Abstract setting

A formal solution to

$$\int_0^T \mathbf{v}(T-t) \mathbf{e}^{-\lambda_k t} dt = \frac{m_k}{b_k} \mathbf{e}^{-\lambda_k T}, \quad \forall k \ge 1,$$

is **v** given by:
$$v(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t)$$
,

Question:
$$v \in L^2(0, T)$$
?, i.e., is the series

$$\sum_{k\geq 1}\frac{m_k}{b_k}e^{-\lambda_k T}q_k(t)$$

< 回 > < 回 > < 回 >

convergent in $L^2(0, T)$?

But this question itself amounts to:

$$\|\boldsymbol{q}_k\|_{L^2(0,T)} \underset{k\to\infty}{\sim}?$$

The moment problem: Abstract setting

Theorem

Assume

$$\sum_{k\geq 1}\frac{1}{|\lambda_k|}<\infty.$$

Then, for any $\varepsilon > 0$ one has

$$\frac{\boldsymbol{C}_{1,\varepsilon}}{|\boldsymbol{E}'(\lambda_k)|} \leq \|\boldsymbol{q}_k\|_{L^2(0,T)} \leq \frac{\boldsymbol{C}_{2,\varepsilon}}{|\boldsymbol{E}'(\lambda_k)|}, \quad \forall k \geq 1,$$

where E(z) is the interpolating function:

$$E(z) = \prod_{k=1}^{\infty} (1 - \frac{z^2}{\lambda_k^2}), \quad E'(\lambda_k) = -\frac{2}{\lambda_k} \prod_{j \neq k}^{\infty} \left(1 - \frac{\lambda_k^2}{\lambda_j^2}\right)$$

イロト イポト イヨト イヨト

The moment problem: Abstract setting

Definition

The index of condensation of $\Lambda = {\lambda_k}_{k>1} \subset \mathbb{C}$ is:

$$c(\Lambda) = \limsup_{k \to \infty} \frac{-\ln |E'(\lambda_k)|}{\Re(\lambda_k)} \in [0, +\infty].$$

Corollary

For any $\varepsilon > 0$ one has

$$\|\boldsymbol{q}_k\|_{L^2(0,T;)} \leq \boldsymbol{C}_{\varepsilon} \boldsymbol{e}^{(\boldsymbol{c}(\Lambda)+\varepsilon)\boldsymbol{\lambda}_k}, \quad \forall k \geq 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $\mathbf{v} \in L^2(0, T)$ and

$$\int_0^T \mathbf{v}(T-t) e^{-\lambda_k t} dt = \frac{m_k}{b_k} e^{-\lambda_k T}, \quad \forall k$$

We took
$$\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t).$$

▲□→ ▲ 三→ ▲ 三→

The moment problem: Abstract setting

Recall that we had m_k s.t. $|m_k| \le C_{\varepsilon} e^{\varepsilon \lambda_k}$, $|b_k| \ge C_{\varepsilon} e^{-\varepsilon \lambda_k}$, for any $\varepsilon > 0$, and we wanted to solve: $\mathbf{v} \in L^2(0, T)$ and

$$\int_0^T \mathbf{v}(T-t) e^{-\lambda_k t} dt = \frac{m_k}{b_k} e^{-\lambda_k T}, \quad \forall k$$

We took
$$\mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t).$$

From the previous result: Given $\varepsilon > 0$:

$$\frac{m_k}{b_k} \left| e^{-\lambda_k T} \left\| q_k \right\|_{L^2(0,T)} \leq C_{\varepsilon} e^{-\lambda_{k,l} (T-c(\Lambda)-\varepsilon)}$$

Then

$$T > c(\Lambda) \Longrightarrow \mathbf{v}(T-t) = \sum_{k\geq 1} \frac{m_k}{b_k} e^{-\lambda_k T} q_k(t) \in L^2(0,T).$$

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In our case,

$$\Lambda_{\mathbf{d}} := \{\lambda_k\}_{k \ge 1} = \left\{j^2, \mathbf{d}j^2\right\}_{j \ge 1}.$$

Then

If $T > c(\Lambda_d)$, system (1) is null controllable at time T, where $c(\Lambda_d)$ is the **index of condensation** of the sequence Λ_d .

イロト イポト イヨト イヨト

æ

Index of condensation: Some background

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The index of condensation of a sequence Λ = {λ_k}_{k≥1} ⊂ C is a real number c (Λ) ∈ [0, +∞] associated with this sequence and which "measures" the condensation at infinity.

$$\mathcal{C}(\Lambda) = \limsup_{k o \infty} rac{-\ln |E'(\lambda_k)|}{\Re(\lambda_k)} \in [0,\infty], \left| E'(\lambda_k) = rac{-2}{\lambda_k} \prod_{j
eq k}^{\infty} \left(1 - rac{\lambda_k^2}{\lambda_j^2}
ight)
ight|$$

- This notion has been :
 - introduced by V.I. Bernstein in 1933: Leçons sur les progrès récents de la théorie des séries de Dirichlet for real sequences,
 - extended by J. R. Shackell in 1967 for complex sequences.

2 Boundary controllability problem Index of condensation: Some examples

3 Gap property:
$$\exists
ho > 0 \, : \, |\lambda_k - \lambda_l| \ge
ho \, |k - l| \Rightarrow \left| \, c(\Lambda) = 0 \, \right|.$$

In particular: for the scalar Dirichlet-Laplacien operator: $\lambda_k = k^2$, $|\lambda_k - \lambda_l| = |k^2 - l^2| > |k - l|$. So

$$\Lambda = \{k^2\}_{k\geq 1} \Rightarrow \boldsymbol{c}(\Lambda) = 0.$$

イロト イポト イヨト イヨト

æ

2 Boundary controllability problem Index of condensation: Some examples

Or Gap property:
$$\exists \rho > 0$$
 : $|\lambda_k - \lambda_l| \ge \rho |k - l| \Rightarrow c(\Lambda) = 0$.

In particular: for the scalar Dirichlet-Laplacien operator: $\lambda_k = k^2$, $|\lambda_k - \lambda_l| = |k^2 - l^2| \ge |k - l|$. So

$$\Lambda = \{k^2\}_{k\geq 1} \Rightarrow \boldsymbol{c}(\Lambda) = 0.$$

$$\boldsymbol{c}(\boldsymbol{\Lambda}) = \begin{cases} 0 & \beta < \alpha \\ 1 & \beta = \alpha \\ +\infty & \beta > \alpha \end{cases} \quad (\text{Note that } \boxed{\liminf |\lambda_{k+1} - \lambda_k| = 0})$$

イロト イポト イヨト イヨト

2 Boundary controllability problem Index of condensation: Some examples

3 Gap property:
$$\exists \rho > 0 : |\lambda_k - \lambda_l| \ge \rho |k - l| \Rightarrow |c(\Lambda) = 0|$$
.

In particular: for the scalar Dirichlet-Laplacien operator: $\lambda_k = k^2$, $|\lambda_k - \lambda_l| = |k^2 - l^2| > |k - l|$. So

$$\Lambda = \{k^2\}_{k\geq 1} \Rightarrow \boldsymbol{c}(\Lambda) = 0.$$

2 $\alpha > 1, \beta > 0$ and $\Lambda = {\lambda_k}_{k>1}$ with $\lambda_{2k} = k^{\alpha}, \lambda_{2k+1} = k^{\alpha} + e^{-k^{\beta}}$

$$c(\Lambda) = \begin{cases} 0 & \beta < \alpha \\ 1 & \beta = \alpha \\ +\infty & \beta > \alpha \end{cases}$$
 (Note that $\boxed{\liminf |\lambda_{k+1} - \lambda_k| = 0}$)

 \bigcirc $\Lambda = \{\lambda_k\}_{k>1}$ with

$$egin{aligned} \lambda_{k^2+n} &= k^2 + n e^{-k^2}, \quad n \in \{0, \cdots, 2k\}, \quad k \geq 1 \ \hline c(\Lambda) &= +\infty \end{aligned}$$

The controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$\Lambda_{d} = \{k^2, dk^2\}_{k \ge 1}, \quad \sqrt{d} \notin \mathbb{Q}.$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ such that if $T > T_0$ then system (1) is null controllable at time T

ヘロト ヘアト ヘビト ヘビト

3

The controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$$\Lambda_{d} = \{k^{2}, dk^{2}\}_{k \geq 1}, \quad \sqrt{d} \notin \mathbb{Q}.$$

We have proved:

Theorem

There exists $T_0 = c(\Lambda_d) \in [0, +\infty]$ such that if $T > T_0$ then system (1) is null controllable at time T

 $T > c(\Lambda_d)$ is a sufficient condition for the null controllability of system (1) at time T. But,

what happens if
$$T < c(\Lambda_d)$$
?

M. González-Burgos Minimal time of controllability for some parabolic systems

The non-controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The null controllability property at time T of system (1) is equivalent to the **observability inequality**:

$$\|\varphi(\cdot,\mathbf{0})\|_{(H_0^1)^2}^2 \leq C_T \int_0^T |B^* D \partial_x \varphi(\mathbf{0},t)|^2 dt,$$

for the solutions to the adjoint problem

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^*\varphi = \mathbf{0} & \text{in } Q, \\ \varphi(\mathbf{0}, \cdot) = \varphi(\pi, \cdot) = \mathbf{0} & \text{on } (\mathbf{0}, T), \end{cases}$$

< 🗇 🕨

The non-controllability result

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^* \varphi = \mathbf{0} & \text{in } \mathbf{Q}, \\ \varphi(\mathbf{0}, \cdot) = \varphi(\pi, \cdot) = \mathbf{0} & \text{on } (\mathbf{0}, \mathbf{T}), \end{cases}$$

•
$$\sigma(-\mathcal{D}\partial_{xx}^2 + A_0^*) = \bigcup_{k \ge 1} \{k^2, dk^2\} := \bigcup_{k \ge 1} \{\lambda_{k,1}, \lambda_{k,2}\}$$

- V_{k,1} and V_{k,2}: eigenvectors of the matrix (k²D + A₀^{*}) associated to the eigenvalues k², dk².
- $\Phi_{k,i} = V_{k,i} \sin kx$, i = 1, 2: eigenfunctions of $(-D\partial_{xx}^2 + A_0^*)$.
- { $\Phi_{k,i}$ } is a (Riesz) basis of $H_0^1(0,\pi)^2$. Let { $\Psi_{k,i}$ } be the associated biorthogonal family (for the duality $\langle \cdot, \cdot \rangle_{((H_0^1)^2, (H^{-1})^2)}$)

$$egin{aligned} f \in H^1_0(0,\pi)^2 & \Longleftrightarrow f = \sum_{k \geq 1, i=1,2} \langle f, \Psi_{k,i}
angle \Phi_{k,i} \ \|f\|^2_{(H^1_0)^2} & = \sum_{k \geq 1, i=1,2} |\langle f, \Psi_{k,i}
angle|^2 \end{aligned}$$

(同) (ヨ) (ヨ) 三日

The non-controllability result

$$\begin{cases} -\varphi_t - \mathbf{D}\varphi_{xx} + \mathbf{A}_0^* \varphi = \mathbf{0} & \text{in } \mathbf{Q}, \\ \varphi(\mathbf{0}, \cdot) = \varphi(\pi, \cdot) = \mathbf{0} & \text{on } (\mathbf{0}, \mathbf{T}), \end{cases}$$

Thus, the observability inequality for the adjoint system writes

$$\sum_{n,i} e^{-2\lambda_{n,i}T} |\mathbf{a}_{n,i}|^2 \leq C_T \int_0^T \left| \sum_{n,i} n \mathbf{B}^* \mathbf{D} \mathbf{V}_{n,i} e^{-\lambda_{n,i}t} \mathbf{a}_{n,i} \right|^2 \, dt,$$

 $\forall \{ \mathbf{a}_{n,i} \}_{n,i} \in \ell^2.$

(< ≥) < ≥)</p>

< 🗇 🕨

The non-controllability result

$$\sum_{n,i} e^{-2\lambda_{n,i}T} |\mathbf{a}_{n,i}|^2 \leq C_T \int_0^T \left| \sum_{n,i} n \mathbf{B}^* \mathbf{D} \mathbf{V}_{n,i} e^{-\lambda_{n,i}t} \mathbf{a}_{n,i} \right|^2 dt,$$

Assume
$$T \in (0, c(\Lambda_d))$$
.

By contradiction: Assume the observability inequality holds for $C_T > 0$

Construction of a suitable sequence of initial data

The idea is to construct sequences $\{a_{n,i}^{(k)}\}_{n,i} \in \ell^2$ such that

$$\int_0^T \left| \sum_{n,i} n \mathcal{B}^* \mathcal{D} \mathcal{V}_{n,i} e^{-\lambda_{n,i} t} \mathbf{a}_{n,i}^{(k)} \right|^2 \to 0, \quad \sum_{n,i} e^{-2\lambda_{n,i} T} |\mathbf{a}_{n,i}^{(k)}|^2 \ge \delta > 0.$$

Minimal time of controllability for some parabolic systems

The non-controllability result

Argument: Use the overconvergence of Dirichlet series

Theorem

Suppose that the sequence $\Lambda = {\lambda_n}_{n\geq 1}$ has index of condensation $c(\Lambda)$. We can choose a sequence of finite sets $N_k \subset \mathbb{N}$, a sequence ${\alpha_n}_{n\geq 1} \subset \mathbb{C}$, such that there exists $R \ge 0$ such that

• the series $\sum_{n\geq 1} \alpha_n e^{-\lambda_n z}$ converges in the region $\Re z > R$

- 2 the series $\sum_{n>1} \alpha_n e^{-\lambda_n z}$ diverges in the region $\Re z < R$
- the series $\sum_{k\geq 1} (\sum_{n\in N_k} \alpha_n e^{-\lambda_n z})$ converges in the region $\Re z > R c(\Lambda)$
 - One can construct $\{\alpha_n\}_{n\geq 1}$ such that $R = c(\Lambda)$.
 - The construction of the sequence $\{\alpha_n\}_{n\geq 1}$ is explicit.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

The non-controllability result

•
$$\Lambda_d = \{\lambda_n\}_{n\geq 1} = \{k^2, dk^2\}_{k\geq 1}$$
. We construct $\{a_n^{(k)}\}_{n\geq 1} \in \ell^2$:

$$a_n^{(k)} = \left\{ egin{array}{cc} rac{lpha_n}{b_n} & n \in N_k \ 0 & n
ot \in N_k \end{array}
ight.$$

 $b_n = n | \mathbf{B}^* \mathbf{D} \mathbf{V}_n |$

• $\{a_n^{(k)}\}_{n\geq 1} \in \ell^2$ (recall that the sets N_k are finite).

The observability inequality is

$$\sum_{n\in N_k} e^{-2\lambda_n T} |\boldsymbol{a}_n^{(k)}|^2 \leq \boldsymbol{C}_T \int_0^T \left| \sum_{n\in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt,$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |\boldsymbol{a}_n^{(k)}|^2 \leq \boldsymbol{C}_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 \, dt := \sigma_2^{(k)},$$

• The convergence of the series $\sum_{k\geq 1} (\sum_{n\in N_k} \alpha_n e^{-\lambda_n t})$ for all t > 0 (recall that $R = c(\Lambda_d)$ and then $R - c(\Lambda_d) = 0$) implies:

$$\lim_{k\to+\infty}\sum_{n\in N_k}\alpha_n e^{-\lambda_n t}=0,\quad\forall t>0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |\boldsymbol{a}_n^{(k)}|^2 \leq \boldsymbol{C}_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 \, dt := \sigma_2^{(k)},$$

The convergence of the series ∑_{k≥1}(∑_{n∈N_k} α_ne^{-λ_nt}) for all t > 0 (recall that R = c(Λ_d) and then R - c(Λ_d) = 0) implies:

$$\lim_{k\to+\infty}\sum_{n\in N_k}\alpha_n e^{-\lambda_n t}=0,\quad\forall t>0$$

Moreover, one can prove there exist C₁, C₂ > 0 such that

$$\left|\sum_{n\in N_k}\alpha_n e^{-\lambda_n t}\right| \leq C_1 e^{-C_2 t}.$$

• Thus, from Lebesgue's dominated convergence theorem, we obtain $\sigma_2^{(k)} \rightarrow 0$.

The non-controllability result

$$\sigma_1^{(k)} := \sum_{n \in N_k} e^{-2\lambda_n T} |a_n^{(k)}|^2 \leq C_T \int_0^T \left| \sum_{n \in N_k} e^{-\lambda_n t} \alpha_n \right|^2 dt := \sigma_2^{(k)},$$

 By construction the sequence {*α_n*}_{n≥1} satisfies that for all *k* ≥ 1 there exists *n_k* ∈ *N_k* such that

$$\left| \boldsymbol{a}_{n_k}^{(k)} \right| = \left| \frac{\alpha_{n_k}}{b_{n_k}} \right| \geq C_{\varepsilon} \boldsymbol{e}^{\Re(\lambda_{n_k})(\boldsymbol{c}(\Lambda_d) - \varepsilon)}$$

• One gets:

$$\sigma_1^{(k)} \geq e^{-2\lambda_{n_k}T} \left| a_{n_k}^{(k)} \right|^2 \geq C_{\varepsilon} e^{2\Re(\lambda_{n_k})(c(\Lambda_d) - T - \varepsilon)} \underset{T < c(\Lambda_d)}{\to} + \infty.$$

So, one has proved

$$\sigma_1^{(k)}
ightarrow +\infty, \quad \sigma_2^{(k)}
ightarrow 0$$

The controllability result

(1)

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The controllability result

() $\forall T > 0$: Approximate controllability if and only if $\sqrt{d} \notin \mathbb{Q}$

2 Assume
$$\sqrt{d} \notin \mathbb{Q}, \exists T_0 = c(\Lambda_d) \in [0, +\infty]$$
 such that

• the system is null controllable at time T if $T > T_0$

② Even if √d ∉ Q, if T < T₀ the system is not null controllable at time T!</p>

The controllability result

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

In fact, the good minimal time is

$$T_0 = \limsup_{k \to \infty} \frac{-\left(\ln |b_k| + \ln |E'(\lambda_k)|\right)}{\Re(\lambda_k)} \in [0,\infty]$$

< 🗇 🕨

э

- < ≣ → <

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

(1)

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

ヘロン 人間 とくほ とくほ とう

= 990

$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

$T_0 > 0?$

(1)

Is it possible to have a minimal time of control > 0? I.e., for $\Lambda_d = \{k^2, dk^2\}_{k \ge 1}$ with $\sqrt{d} \notin \mathbb{Q}$, is it possible that $c(\Lambda_d) > 0$?

Theorem

For any
$$\tau \in [0, +\infty]$$
, there exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = \tau$.

Remark

- There exists $\sqrt{d} \notin \mathbb{Q}$ such that $c(\Lambda_d) = +\infty$ (LUCA, DE TERESA).
- $c(\Lambda_d) = 0$ for almost $d \in (0, \infty)$ such that $\sqrt{d} \notin \mathbb{Q}$.
- For any $\tau \in [0, +\infty]$, the set $\{d \in (0, \infty) : c(\Lambda_d) = \tau\}$ is dense in $(0, +\infty)$.

F. AMMAR KHODJA, A. BENABDALLAH, M.G.-B., L. DE TERESA, Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences, under review (2014?).

http://personal.us.es/manoloburgos

The case of distributed controls

Let us consider the corresponding distributed control problem

$$\begin{cases} y_t - Dy_{xx} + A_0 y = Bv \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where $\mathbf{v} \in L^2(Q)$ is the control.

・ 同 ト ・ ヨ ト ・ ヨ ト

The case of distributed controls

Let us consider the corresponding distributed control problem

$$\begin{cases} y_t - Dy_{xx} + A_0 y = Bv \mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

where $\mathbf{v} \in L^2(Q)$ is the control. One has:

Theorem (Distributed control)

System (3) is null controllable at time T if and only if

(4)
$$\det[B, (k^2 D + A_0)B] \neq 0, \quad \forall k \ge 1.$$

F. AMMAR KHODJA, A. BENABDALLAH, C. DUPAIX, M.G.-B., J. Evol. Eq. (2009).

イロン 不得 とくほ とくほ とう

э.

The case of distributed controls

In our case,
$$A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $D = \text{diag}(1, d)$. Thus,

(1)

$$y_t - Dy_{xx} + A_0 y = Bv1_{\omega} \quad \text{in } Q,$$

$$y(0, \cdot) = y(\pi, \cdot) = 0 \text{ on } (0, T), \quad y(\cdot, 0) = y_0 \quad \text{in } (0, \pi),$$

is null controllable at time *T*, for any $\lfloor T > 0 \rfloor$ and any open set $\omega \subset (0, \pi)$.

 $\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

The case of distributed controls

In our case,
$$A_0 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $D = \text{diag}(1, d)$. Thus,

$$y_t - Dy_{xx} + A_0 y = Bv1_{\omega} \quad \text{in } Q,$$

$$y(0, \cdot) = y(\pi, \cdot) = 0 \text{ on } (0, T), \quad y(\cdot, 0) = y_0 \quad \text{in } (0, \pi),$$

is null controllable at time *T*, for any $\lfloor T > 0 \rfloor$ and any open set $\omega \subset (0, \pi)$.

(1)
$$\begin{cases} y_t - Dy_{xx} + A_0 y = 0 & \text{in } Q, \\ y(0, \cdot) = Bv, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0 & \text{in } (0, \pi), \end{cases}$$

The minimal time for parabolic systems, is it typically a phenomenon of **boundary controllability problems**?? **NO!!**.

M. González-Burgos Minimal time of controllability for some parabolic systems

< 🗇 🕨

(< ≥) < ≥)</p>

э

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

where $q \in L^{\infty}(Q)$,

(2)

$$\label{eq:A0} \pmb{A}_0 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad \pmb{B} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right),$$

 $\omega = (a, b) \subset (0, \pi)$ and $\mathbf{v} \in L^2(Q)$ is a scalar control function.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

where $q \in L^{\infty}(Q)$,

(2)

$$\label{eq:A0} \pmb{A}_0 = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \quad \pmb{B} = \left(\begin{array}{c} 0 \\ 1 \end{array} \right),$$

 $\omega = (a, b) \subset (0, \pi)$ and $\mathbf{v} \in L^2(Q)$ is a scalar control function.

No sign conditions on *q*.

 $\boldsymbol{\omega} \cap \operatorname{Supp} \boldsymbol{q} = \emptyset$

ヘロト ヘアト ヘビト ヘビト

э.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu\mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Theorem (Ammar Khodja, Benabdallah, G-B, de Teresa (2011))

Assume $l_k(q) \neq 0$ for any $k \geq 1$, where

(5)
$$I_k(q) := \int_0^{\pi} q(x) \sin^2(kx) dx,$$

and

$$\int_0^\pi q(x)\,dx\neq 0.$$

Then, for any T > 0, system (2) is **null controllable** at time T.

イロト イポト イヨト イヨト

æ

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu\mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Null controllability properties of system (2) when

$$\int_0^\pi q(x)\,dx=0?$$

In order to simplify the problem, we will assume the **geometrical assumption**:

Assumption (A1)

(2)

The function *q* satisfies Supp $q \in [0, a]$ or Supp $q \in [b, \pi]$ ($\omega = (a, b)$).

イロト イポト イヨト イヨト

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Proposition (Boyer and Olive (2014))

Under the geometrical assumption (A1), system (2) is **approximately** controllable at time T > 0 if and only if

 $I_k(q) \neq 0, \quad \forall k \geq 1.$

$$I_k(q) = \frac{1}{2} \int_0^{\pi} q(x) \, dx - \frac{1}{2} \int_0^{\pi} q(x) \cos(2kx) \, dx,$$

(四) (正) (正)

$$\boldsymbol{L}^* := -\frac{d^2}{dx^2} + \boldsymbol{q}(x)\boldsymbol{A}^*_0 : \boldsymbol{L}^2(0,\pi)^2 \longrightarrow \boldsymbol{L}^2(0,\pi)^2$$

domain $D(L^*) = H^2(0, \pi)^2 \cap H^1_0(0, \pi)^2$.

Lemma

The spectrum of L^* is given by $\sigma(L^*) = \{\lambda_k := k^2 : k \ge 1\}$. Moreover, λ_k is simple if and only if $I_k(q) \ne 0$, where

(5)
$$I_k(q) := \int_0^{\pi} q(x) \sin^2(kx) dx.$$

Finally, if $I_k(q) = 0$, the eigenvalue λ_k of L^* is double.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$\boldsymbol{L}^* := -\frac{d^2}{dx^2} + \boldsymbol{q}(x)\boldsymbol{A}^*_0 : \boldsymbol{L}^2(0,\pi)^2 \longrightarrow \boldsymbol{L}^2(0,\pi)^2$$

Proposition $(I_k(\mathbf{q}) \neq \mathbf{0})$

lf

$$\Phi_{k,1}^* = \begin{pmatrix} \phi_k \\ I_k(q)\psi_k \end{pmatrix}, \quad \Phi_{k,2}^* = \begin{pmatrix} 0 \\ I_k(q)\phi_k \end{pmatrix}$$

where $\phi_k(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \sin kx$ and ψ_k is the unique solution of

(6)
$$\begin{cases} -\psi_{xx} = \lambda_k \psi + \left[1 - I_k(q)^{-1}q(x)\right] \phi_k \text{ in } (0, \pi), \\ \psi(0) = 0, \quad \psi(\pi) = 0, \\ \int_0^{\pi} \psi(x) \phi_k(x) \, dx = 0, \end{cases}$$

then,

$$(\mathbf{L}^* - \lambda_k \mathbf{I}_d) \Phi^*_{k,1} = \Phi^*_{k,2}, \quad (\mathbf{L}^* - \lambda_k \mathbf{I}_d) \Phi^*_{k,2} = 0.$$

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bf(x)v(t) & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Idea:

(2)

We will work with controls u(x, t) = f(x)v(t) with $v \in L^2(0, T)$ and $f \in L^2(0, \pi)$ (appropriate) satisfies Supp $f \subset \omega$.

Objective

Apply Fattorini-Russell method: moment problem

Basis of
$$L^2(0,\pi)^2$$
: $\mathcal{B} := \left\{ \Phi_{k,1}^*, \Phi_{k,2}^* \right\}_{k \ge 1}$.

ヘロト 人間 とくほとくほとう

3

 $\begin{cases} y_t - y_{xx} + q(x)A_0y = Bf(x)v(t) & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$

The moment problem

(2)

Find $\mathbf{v} \in L^2(0, T)$ s.t.

$$\begin{cases} \int_0^T \mathbf{v}(T-t) \boxed{\mathbf{e}^{-k^2 t}} dt = \frac{\mathbf{m}_{k,1}}{\mathbf{b}_{k,1}} \mathbf{e}^{-k^2 T}, \quad \forall k \ge 1, \\ \int_0^T \mathbf{v}(T-t) \boxed{\mathbf{t} \mathbf{e}^{-k^2 t}} dt = \frac{\mathbf{m}_{k,2}}{\mathbf{l}_k(q) \mathbf{b}_{k,2}} \mathbf{e}^{-k^2 T}, \quad \forall k \ge 1, \end{cases}$$

where $\boxed{|\mathbf{m}_{k,i}| \le C_{\varepsilon} \mathbf{e}^{\varepsilon \lambda_k}}$ and $\boxed{|\mathbf{b}_{k,i}| \ge C_{\varepsilon} \mathbf{e}^{-\varepsilon \lambda_k}}$ $(i = 1, 2).$

< 回 > < 回 > < 回 > -

э.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Theorem

Assume $l_k(q) \neq 0$ for all $k \geq 1$ and let:

$$T_0(q) = T_0 := \limsup \frac{-\ln |I_k(q)|}{k^2} \in [0, +\infty].$$

Then, if $T > T_0$, system (2) is null-controllable at time T.

What happens if $T < T_0(q)$?

イロト イボト イヨト イヨト

э.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

As before, the null controllability property for system (2) is equivalent to the **observability inequality**:

$$\|\varphi(\cdot,\mathbf{0})\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_\omega |\varphi_2(x,t)|^2 dx dt,$$

for the solutions to the adjoint problem

$$\begin{cases} -\varphi_t - \varphi_{xx} + \boldsymbol{q}(x) \boldsymbol{A}_0^* \varphi = \boldsymbol{0} & \text{in } \boldsymbol{Q}, \\ \varphi(\boldsymbol{0}, \cdot) = \varphi(\pi, \cdot) = \boldsymbol{0} & \text{on } (\boldsymbol{0}, T), \end{cases}$$

$$\|\varphi(\cdot,\mathbf{0})\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_\omega |\varphi_2(x,t)|^2 dx dt,$$

Again, we prove that the inequality does not hold.

Important:

Behavior of ψ_k in ω :

$$\psi_k(x) = \tau_k \sin(kx) + g_k(x), \quad \forall x \in \omega;$$

 g_k is **bounded** in ω and $I_k(q)\tau_k \to 0$.

$$\varphi_{0} = \Phi_{k,1}^{*} - \tau_{k} \Phi_{k,2}^{*} = \begin{pmatrix} \phi_{k} \\ I_{k}(q)\psi_{k} \end{pmatrix} - \tau_{k} \begin{pmatrix} 0 \\ I_{k}(q)\phi_{k} \end{pmatrix}$$

イロト イボト イヨト イヨト

æ

$$\frac{1}{2}e^{-2k^2T} \leq \|\varphi(\cdot,0)\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_\omega |\varphi_2(x,t)|^2 \, dx \, dt \leq C_T I_k(q)^2$$

In particular

$$1 \leq \frac{C}{T} e^{2k^2 T} \frac{I_k(q)^2}{k} \equiv \frac{C}{T} e^{-2k^2(\frac{-\ln|I_k(q)|}{k^2} - T)}, \quad \forall k \geq 1.$$

Recall

$$0 < T < T_0(q) = \limsup \frac{-\ln |I_k(q)|}{k^2}.$$

Choosing a subsequence, we get a contradiction.

イロト イポト イヨト イヨト

э

$$\frac{1}{2}e^{-2k^2T} \leq \|\varphi(\cdot,0)\|_{(L^2)^2}^2 \leq C_T \int_0^T \int_\omega |\varphi_2(x,t)|^2 \,\,dx\,dt \leq C_T I_k(q)^2$$

In particular

$$1 \leq \frac{C_T}{e^{2k^2T}} I_k(q)^2 \equiv \frac{C_T}{e^{-2k^2(\frac{-\ln|I_k(q)|}{k^2} - T)}}, \quad \forall k \geq 1.$$

Recall

$$0 < T < T_0(q) = \limsup \frac{-\ln |I_k(q)|}{k^2}.$$

Choosing a subsequence, we get a contradiction. Then system

(2)
$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

is not null controllable at time T.

イロト イポト イヨト イヨト

æ

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu\mathbf{1}_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Theorem

Assume $I_k(q) \neq 0$ for all $k \geq 1$ and let:

$$T_0(q) = T_0 := \limsup \frac{-\ln |I_k(q)|}{k^2} \in [0, +\infty]$$

Then,

- If $T > T_0$, then system (2) is null-controllable at time T.
- If Supp q ⊂ [0, a] or Supp q ⊂ [b, π], for any T < T₀, the system is not null-controllable at time T.

イロト イ押ト イヨト イヨトー

э.

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Question

Does there exist $q \in L^{\infty}(Q)$ such that $T_0(q) > 0$?

M. González-Burgos Minimal time of controllability for some parabolic systems

イロト イポト イヨト イヨト

3

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

Question

Does there exist $q \in L^{\infty}(Q)$ such that $T_0(q) > 0$?

Theorem

For any
$$\tau \in [0, +\infty]$$
, there exists $q \in L^{\infty}(0, \pi)$ such that $T_0(q) = \tau$.

Note that if $\int_0^{\pi} q(x) dx \neq 0$ then $T_0(q) = 0$. In particular, the previous result recovers the results on null controllability of system (2) when a sign condition is imposed on q.

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・

Approximate controllability

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

F. BOYER, G. OLIVE, Mathematical Control and Related Fields (2014). Assume $\omega \cap \text{Supp } q = \emptyset$. Approximate controllability:

- A necessary and sufficient condition for the approximate controllability of system (2) at time *T*.
- System (2) is approximately controllable at a given time T₀ > 0 if and only if it is approximately controllable at any time T > 0.
- The necessary and sufficient condition strongly depends on the relative position of ω with respect to Supp q.

(4回) (日) (日)

÷.

M. González-Burgos Minimal time of controllability for some parabolic systems

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

4 Comments

(2)

$$\begin{cases} y_t - y_{xx} + q(x)A_0y = Bu1_{\omega} & \text{in } Q, \\ y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 & \text{on } (0, T), \\ y(\cdot, 0) = y_0, & \text{in } (0, \pi), \end{cases}$$

 The null controllability result is valid (with a different minimal time) without the geometrical

Assumption (A1)

The function *q* satisfies Supp $q \in [0, a]$ or Supp $q \in [b, \pi]$ ($\omega = (a, b)$).

イロト イポト イヨト イヨト

Comments

- This minimal time also arises in other parabolic problems (degenerated problems): BEAUCHARD, CANNARSA, GUGLIELMI, Null controllability of Grushin-type operators in dimension two. J. Eur. Math. Soc. (JEMS) (2014).
- The minimal time for parabolic systems imply negative controllability results for cascade hyperbolic systems when the coupling coefficient does not have constant sign (Alabau-Boussouira-Léautaud, Rosier-de Teresa, Dehman et al.)

F. AMMAR KHODJA, A. BENABDALLAH, M.G.-B., L. DE TERESA, Minimal time of controllability of two parabolic equations with disjoint control and coupling domains, C. R. Math. Acad. Sci. Paris, (2014).

http://personal.us.es/manoloburgos

Scalar case versus systems

SCALAR CASE SYSTEMS

minimal time of controls	No	Yes
approximate ⇔ null controllability	Yes	No
boundary ⇔ distributed control	Yes	No
geometrical conditions	No	Yes

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Thank you for your attention!!

M. González-Burgos Minimal time of controllability for some parabolic systems

(A) (E) (A) (E)

A ▶